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Abstract
This work is motivated by a mobility study conducted in the city of Munich, Germany. The variable
of interest is a binary response, which indicates whether public transport has been utilized or not. One
of the central questions is to identify areas of low/high utilization of public transport after adjusting
for explanatory factors such as trip, individual and household attributes. The goal is to develop flexible
statistical models for a binary response with covariate, spatial and cluster effects. One approach for
modeling spatial effects are Markov Random Fields (MRF). A modification of a class of MRF models
with proper joint distributions introduced by Pettitt et al. (2002) is developed. This modification has
the desirable property to contain the intrinsic MRF in the limit and still allows for efficient spatial
parameter updates in Markov Chain Monte Carlo (MCMC) algorithms. In addition to spatial effects,
cluster effects are taken into consideration. Group and individual approaches for modeling these effects are
suggested. The first one models heterogeneity between clusters, while the second one models heterogeneity
within clusters. A naive approach to include individual cluster effects results in an unidentifiable model.
It is shown how an appropriate reparametrization gives identifiable parameters. This provides a new
approach for modeling heterogeneity within clusters. For hierarchical spatial binary regression models with
individual cluster effects two MCMC algorithms for parameter estimation are developed. The first one is
based on a direct evaluation of the likelihood. The second one is based on the representation of binary
responses with Gaussian latent variables through a threshold mechanism, which is particularly useful
for probit models. Simulation results show a satisfactory behavior of the MCMC algorithms developed.
Finally the proposed model classes are applied to the mobility study and results are interpreted.

Key words: binary regression, spatial effects, group and individual cluster effects, MCMC
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1 Introduction

This work has been motivated by a German mobility study investigating the usage of public transport
options. The variable of interest is a binary indicator, whether public transport has been utilized or not.
One central question of the investigators is to identify areas of low/high utilization of public transport
after adjusting for explanatory factors such as trip, individual and household attributes. Therefore the
goal is to develop flexible statistical models for a binary response with covariate, spatial and cluster effects.
There are a large number of statistical models discussed in the literature which incorporate covariates
together with spatial information. We provide now a short overview. In the context of general additive
models, the simplest possibility to account for spatial information would be to use an additional nominal
covariate indicating the region if there are multiple responses per region. But such an approach does not
give a model for spatial dependence. This property is especially desired if the data volume is not large
with respect to the number of covariates. In this case the assumption of a spatial structure (such as
spatial smoothness) is especially helpful to be used as additional prior information.

There are two general approaches to incorporate spatial effects in a model. The first one is appropriate
for data collected at specified point locations, while the other one uses data regions. The first approach is
known as generalized linear kriging (see for example Diggle et al. 1998). It is based on generalized linear
mixed models (Breslow and Clayton 1993), where spatial random effects are modeled as realizations of a
stationary Gaussian process with zero mean and a parameterized covariance structure. For binary data
this approach models the success probability pi as follows:

pi = E(Yi|xi, bi) = h(ηi) and ηi = x′
iα + bi , i = 1, . . . , n , (1.1)

where xi is the design vector of the random variable Yi and bi, i = 1, . . . , n, are realizations of a zero
mean stationary Gaussian process b at the locations of the Yi’s. The parameterization of the covariance
structure by a covariance parameter δ is usually based on distances between the observed locations.
Even in the case of normal responses Yi, i = 1, . . . , n, maximizing the likelihood over α and δ becomes
analytically intractable as soon as independence of the spatial effects bi, i = 1, . . . , n, cannot be assumed.
One general approach therefore is to maximize the reduced log-likelihood l(Y; α̂(δ), δ) with respect to δ,
where α̂(δ) is the maximum likelihood estimate of α for fixed δ, and profile over δ. But such estimation
is computationally expensive for large data sets. For arbitrary responses parameter estimation is carried
out by Markov Chain Monte Carlo (MCMC) methods such as Gibbs sampling (see Diggle et al. 1998).
For large data sets the updating of the covariance parameter δ is difficult, since it requires to compute the
determinant and inverse of a large dimensional variance-covariance matrix at each iteration. Heagerty and
Lele (1998) remark (p.1104) that this step is computationally prohibitive already for sample sizes larger
than 500. To overcome this problem they assume local independence between spatial effects which have a
distance longer than some fixed value R. Heagerty and Lele (1998) use this idea for an iterative approach
to determine the local conditional posterior mode of the spatial effect for the prediction at a new location.
In contrast to Diggle et al. (1998), Heagerty and Lele (1998) estimate spatial effects bi, i = 1, . . . , n using
a composite likelihood approach. Gelfand et al. (2000), which analyze a binary kriging model for the
probit link function h(·) in (1.1), propose to apply MCMC with a suitably selected importance sampling
density. Their method replaces a n × n matrix inversion with sampling from an n-dimensional normal,
which for large values of n can be carried out much faster using a Cholesky decomposition. They also
do not need to compute the determinant of the variance-covariance matrix. It allows to determine the
posterior distribution of the regression parameter α and the covariance parameter δ, but the posterior
distribution for the spatial effects bi, i = 1, . . . , n cannot be calculated this way.

The other approach to incorporate a spatial model is appropriate when spatial effects are associated
with data regions. These do not need to be on a regular lattice. The model equation is similar as in (1.1),
but now data are assumed to be aggregated over regions and spatial effects are individual for each region
instead for each observation, as before. Therefore the linear predictors are modeled as

ηi = x′
iα + bj(i), i = 1, . . . , n, j = 1, . . . , J ,
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where J denotes the number of regions and j(i) indicates the region associated with the ith observation.
The spatial effects bj , j = 1, . . . , J , are modeled as a realization from some Gaussian Markov random field
(MRF) (Besag and Green 1993). Gaussian MRF’s are zero mean Gaussian process. The name Gaussian
conditional autoregression (Gaussian CAR) is also used, since such a distribution is typically given
through its full conditionals. This last fact allows fast individual updating of J << n spatial effects in a
Gibbs sampler scheme. More precisely, the distribution of the spatial effect bj given all the other spatial
effects depends only on the spatial effects of the neighbors of the jth region. Therefore this approach
requires some spatial neighborhood structure. This modeling is appropriate for our mobility application,
since data are aggregated over postal codes of Munich, Germany. It is natural to consider two postal
codes as neighbors if they have a joint border. In contrast to stationary Gaussian processes used in
kriging, in Gaussian CAR models the explicit form of its precision matrix (inverse covariance matrix)
is available. Therefore we do not need to compute the inverse of the variance-covariance matrix when
updating the covariance parameter δ. Moreover this precision matrix is usually sparse, which allows to
compute its determinant much faster than in the kriging approach. Further, Pettitt et al. (2002) use this
fact and propose a specific dependence structure which provides even an analytical computation of its
determinant. The next difference to stationary Gaussian processes, used in kriging, is that some Gaussian
CAR models possess an improper joint density. The simplest example is the intrinsic CAR model (Besag
and Green 1993), whose precision matrix is only semi positive. Fahrmeir and Lang (2000) use improper
intrinsic CAR models as a prior for a Bayesian semi parametric regression model for multi categorical
time-space data, while Knorr-Held and Rue (2000) applied intrinsic CAR priors for Poisson models used
in disease mapping. For our application we study more advanced proper Gaussian CAR models with a
parameterized correlation matrix. In particular, we develop a modification of the Pettitt’s CAR model,
which includes in the limit a specific intrinsic CAR model. The modification we propose still has all nice
properties of the Pettitt et al. (2002) CAR models: proper joint distributions, a similar interpretation
of parameters, the same conditional correlations and more important allows for fast computation of the
determinant of the precision matrix, providing fast Gibbs sampling. An alternative proper Gaussian CAR
model was also discussed in Sun et al. (2000). It also includes the intrinsic CAR model and allows for
fast computation of the determinant of the precision matrix. It has been used to develop hierarchical
spatio-temporal Poisson models for disease mapping data, but not for binary spatial responses. Gaussian
CAR models will be considered in more detail in Section 2.

A principally different, well-known approach, also developed for spatial regression binary data over
the region lattice is the auto logistic regression model. Huffer and Wu (1998), which use this method for
the analysis of the distribution of plant species in Florida, U.S.A., propose to extend the auto logistic
modeling of the success probability for each species by incorporating a fixed effect term x′

iα:

log

(
pi

1 − pi

)

= x′
iα + γy∗

i , y∗
i :=

∑

j:i∼j

yj ,

where ”i ∼ j” indicates that sites i and j are neighbors. They work with a regular rectangular lattice and
one-observation-per-site data. But in spite of this simplicity Huffer and Wu (1998) note that exact MLE
is not tractable, except when the number of sites is quite small, while two other estimation methods,
namely the coding method (Besag (1974)) and the maximum pseudo-likelihood method (Besag (1975)),
seem to be not sufficiently efficient. For their application Huffer and Wu (1998) investigate a MCMC MLE
approach, which produces the likelihood function via Monte Carlo simulations. Note they do not give any
idea, how to take into consideration possible interactions between different species. For the Gaussian CAR
approach Pettitt et al. (2002) solve this problem by modeling the correlation between several Gaussian
CAR models for each species applied to tree biodiversity data. Also Carlin and Banerjee (2002) develop
this approach for multiple cancer survival data with 3 types of cancer. Further a multivariate extension of
the proper Gaussian CAR model developed in Sun et al. (2000) is considered by Gelfand and Vounatsou
(2003) for multivariate continuous and multinomial response data.

We close our short overview on spatial modeling for binary data by mentioning a non parametric
binary regression approach, which was proposed by Kelsall and Diggle (1998) for the analysis of spatial
variation in risk of disease. The idea is to model logits through spatially dependent intensities λ1(x)
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(cases) and λ2(x) (controls), where x ∈ A ⊂ R2 is the response point location:

p(x) := P (Yi|Xi = x) =
q1λ1(x)

q1λ1(x) + q2λ2(x)
⇒ logit(p(x)) = log

(
λ1(x)

λ2(x)

)

+ c (1.2)

Kelsall and Diggle (1998) consider non parametric kernel estimators p̂h(x) for p(x), where h denotes the
corresponding bandwidth. Cross-validation is used to optimize h. While in the Gaussian CAR approach
we test the significance of the spatial effects bj , j = 1, . . . , J , Kelsall and Diggle (1998) construct tolerance
contours, which indicate for each x whether p̂h(x) is consistent with the proportional hazard assumption,

which is given by the null hypothesis H0 : λ1(x)
λ2(x) = const. These are determined by generating m times

new data which are consistent with H0 but otherwise similar in distribution to the original data. Finally,
they construct new estimates p̂sim

h (x) for each of the m generating data sets. The authors note that, since
covariates are not included in (1.2), the collection of a stratified sample of controls can be very difficult,
particularly when the number of covariates is large. Therefore they extend their model by including fixed
effects utα:

logit(p(x, u)) = utα + g(x) (1.3)

This extension allows to collect a simple random sample of controls and to take into account covariates
by modeling their effects within (1.3). The authors however note that kernel regression estimation based
on Model (1.3) is substantially more computer intensive, so that the simpler kernel regression method,
based on (1.2) will sometimes be preferable.

In addition to spatial effects we extend our modeling of the linear predictor ηi by cluster random
effects. It allows us to obtain more flexible models taking into account possible overdispersion caused
by unobserved heterogeneity. Examples of clusters are age groups or the household types. We consider
two approaches, namely group and individual cluster effects. The first one, which models heterogeneity
between clusters, implies the usual idea of having the same random effect within a cluster. These random
effects are assumed to be some realization from the multivariate normal NK(0, σ2

cIK) with usually un-
known cluster variance σ2

c . Here K denotes the number of clusters and IK stands for the K-dimensional
identity matrix. A different choice of the variance-covariance matrix is possible.

The second approach allows for heterogeneity within a cluster, i.e. we model cluster effects within
a cluster as independent normally distributed random variables with zero mean and a cluster specific
variance. Therefore we have to estimate K cluster specific variances instead of K cluster effects as be-
fore. In this paper we will show how an unidentifiability problem occurring in the second case can be
overcome. For this hierarchical spatial binary regression model with individual cluster effects we develop
two estimating MCMC algorithms. The first one is useful if the likelihood of the data, given covariates
and unknown parameters, can be easily computed as for binary logistic models. Markov Chains are then
generated using Metropolis-Hastings steps. The second approach, which is particularly useful for probit
model is based on latent variables, where the observed binary responses are generated through a thresh-
old mechanism. For latent Gaussian variables this leads to binary probit models (see for example Albert
and Chib 1993). For MCMC inference, Gaussian latent variables are considered as unknown additional
“parameters” and are generated with the other parameters in a Gibbs sampling scheme. We note that
block updating for the regression parameters α and the spatial parameters b is available in this esti-
mating algorithm. Therefore we achieve considerably better mixing than in the direct algorithm, where
parameters are updated individually. This allows us to reduce the number of iterations in the correspond-
ing Markov chains. Further, this method reduces the number of parameters, which require a numerically
more complicated Metropolis-Hastings step to only one.

The remainder of this paper is organized as follows. In Section 2 we discuss spatial effects modeling
using Gaussian CAR processes. We propose some modification of the Gaussian CAR models developed by
Pettitt et al. (2002), which allows to achieve an intrinsic CAR model in the limit. Using this modification
we develop in Section 3 a hierarchical spatial binary regression model with group cluster effects, while
in Section 4 we present individual cluster effects modeling. In Section 5 we present the results of a
comprehensive simulation study investigating the performance of the MCMC algorithms developed in
Sections 3 and 4 in small samples. In Section 6 we apply our approach to data from a German mobility
study. Finally Section 7 gives a discussion and presents an outlook for further research.
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2 Modeling of Spatial Effects Using Gaussian CAR Models

The most popular kind of Markov random fields (MRF) are Gaussian MRF’s (Besag and Green 1993), or
Gaussian conditional autoregressive processes (Gaussian CAR) (see for detailed discussion Pettitt et al.
2002), where a random vector b ∈ RJ is defined through its full conditionals as follows:

bj |b−j ∼ N



µj +
∑

j′ 6=j

cjj′(bj′ − µj′), κj



 , j = 1, . . . , J .

Here b−j = (b1, . . . , bj−1, bj+1, . . . , bJ )t and N(µ, σ2) denotes a normal distribution with mean µ and
variance σ2. Besag and Green (1993) show that the joint distribution of a zero-mean Gaussian CAR is
given by

b ∼ NJ

(
0, (IJ − C)−1M

)
, (2.1)

where C = (cjj′) with cjj = 0, j = 1, . . . , J , and M = diag(κ1, . . . , κJ ). Here NJ(µ,Σ) denotes a J-
dimensional normal distribution with mean vector µ and covariance matrix Σ. The precision matrix is
given by Q = M−1(IJ −C). Below we present examples of Gaussian CARs. Further we will always assume
that the neighborhood structure in the Gaussian CAR has no isolated regions or groups of regions.

Example 1: The intrinsic Gaussian CAR (Besag and Green 1993) is defined by:

bj |b−j ∼ N(bj ,
τ2

Nj
) , j = 1, . . . , J, and bj =

∑

j∼j′ bj′

Nj
, (2.2)

where Nj = # of neighbors of the region j, and “j ∼ j′ ” denotes contiguous regions. In particular, we

have j /∼ j. The precision matrix of b is equal to Q0

τ2 , where

Q0 = (qjj′) =







Nj , if j = j′

−1, if j ∼ j′

0, otherwise .
(2.3)

Q0 is positive semi-definite with rank(Q0)= J − 1, therefore b has an improper density, but can be
characterized (see Prokopenko 2004).

Example 2: Pettitt et al. (2002) use a particular Gaussian CAR, where

bj |bj′ , j 6= j′ ∼ N




φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
τ2

1 + |φ|Nj



 . (2.4)

Here the parameter φ measures the strength of the spatial dependency. There is no spatial dependency,
if φ = 0. Since maximum likelihood estimation is intractable for this model MCMC methods have been
used to estimate φ and τ2. It was shown (Pettitt et al. 2002) that a fast and simple update of φ for a
Gibbs Step given the vector b and τ2 is available. Note that in contrast to the intrinsic CAR, the joint
distribution of b based on conditionals specified in (2.4) is a proper distribution, which leads to a proper
posterior when used as a prior distribution. This will circumvent any problems in the Gibbs sampler
arising from using an improper prior.

Example 3: In this paper we introduce now a modified Pettitt’s CAR model, where the full conditionals
for b are given as follows:

bj |bj′ , j 6= j′ ∼ N




φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
(1 + |φ|)τ2

1 + |φ|Nj



 . (2.5)

This (also proper) distribution differs from Pettitt’s CAR (2.4) by the additional term 1 + |φ| in the
numerator of the conditional variance. This modification allows us to have the intrinsic CAR (2.2) in
the limit, when φ → ∞ (for details see Prokopenko 2004). Note that the conditional variance of bj |bj′

decreases to τ2/Nj as |φ| increases to infinity, while in the original model (2.4) this quantity decreases to
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zero, which is a very restrictive assumption. Further, this model has the same behavior as Pettitt’s CAR
(2.4) when φ goes to zero (no spatial dependency), and also all partial correlations between bj and bi given
all the other sites are the same, as in (2.4). Finally, in the modified Pettitt’s model we can also achieve
a simple update for φ. To indicate the dependency on φ we write now Qm.P (φ) for the precision matrix
of the modified Pettitt’s model (2.5). Each update of φ requires the computation of the determinant of
Qm.P (φ). With the reparametrization ψ = φ

1+|φ| we can apply the same procedure as in Pettitt et al.

(2002). More precisely, if we define the diagonal matrix

D = diag(N1 − 1, . . . , NJ − 1) and Γ = (γjj′)j,j′=1,...,J =

{
1, if j ∼ j′

0, if j ∼/ j′, j = j′
,

then Qm.P (φ) can be written in the form Qm.P (ψ) = IJ + |ψ|D − ψΓ. If (λ1, . . . , λJ ) are the eigenvalues
of Γ − D and (ν1, . . . , νJ ) are the eigenvalues of Γ + D, then the determinant of Qm.P (ψ) is equal to

|Qm.P (ψ)| =







∏

j(1 − ψλj), if ψ > 0

1, if ψ = 0
∏

j(1 − ψνj), if ψ < 0 .
(2.6)

and can be computed quickly for any value of ψ. Finally we like to note that the conditional variance
of bj |bj′ , j 6= j′ is independent of the spatial dependence parameter for the proper Gaussian CAR model
considered by Sun et al. (2000) in contrast to the modified Pettitt’s CAR model (2.5). It is more reasonable
to assume that this conditional variance increases as dependence among the spatial effects decreases. If
φ = 0, then the conditional variance in Sun et al. (2000) still depends on Nj , while this is not the case
for the modified Pettitt’s CAR model. Therefore we prefer the modified proper Pettitt’s CAR model over
the proper CAR model studied by Sun et al. (2000) for modeling spatial effects.

3 Spatial Binary Regression with Group Cluster Effects

3.1 Model Formulation

For the data from the mobility study we use a binary response vector Y = (Y1, . . . , Yn)t with

Yi =

{
1 if trip i used individual transport
0 if trip i used public transport

, i = 1, · · · , n, (3.1)

where Yi’s follow a Bernoulli distribution with the success probabilities pi and assume that Yi given pi

are independent for i = 1, . . . , n. In this model we specify pi through their logits as follows:

θi := log

(
pi

1 − pi

)

= xt
iα

︸︷︷︸

fixed effect

+ bj(i)
︸︷︷︸

random spatial effect

+ cm(i)
︸ ︷︷ ︸

random group cluster effect

. (3.2)

Here the design vector xi multiplied with the regression parameter vector α ∈ Rp represents the fixed
effects. With the vector b = (b1, . . . , bJ ) we attempt to take into consideration possible random spatial
effects. As sites we take J = 74 postal code areas of the city of Munich. Therefore, the index j(i) denotes
the residence postal code of the person who takes trip i. In order to be able to take into account possible
spatial smoothness we assume, that bj ’s arise from the modified Pettitt’s CAR (2.5).

To model heterogeneity between the clusters we allow also for random cluster effects, which are
represented by the vector c = (c1, . . . , cM ). We assume that each of the M clusters (say age groups
or household types) induces a group specific random effect, which we denote by cm,m = 1, . . . ,M ,
respectively. Therefore we speak of group cluster effects. The index m(i) denotes the cluster of trip i.
Finally, we assume that cm ∼ N(0, σ2

c ) i.i.d. for m = 1, . . . , M . This completes the description of
Model (3.2). Note that the likelihood of the response vector Y is proportional to

[Y| α, b, c] ∝

n∏

i=1

exp(Yi(xi
tα + bj(i) + cm(i)))

1 + exp(xi
tα + bj(i) + cm(i))

.

Finally, we remark that Model (3.2) is similar to a family of semi parametric models for multi categorical
time-space data (with time- instead cluster effects) as discussed in Fahrmeir and Lang (2000).
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3.2 Bayesian Inference Using MCMC Methods

Markov Chain Monte Carlo (MCMC) methods allow us to draw an arbitrary large number of joint samples
from the posterior distribution [α,b, c, φ, τ2, σ2

c |Y] approximately. With these samples we can easily make
inference for these parameters using for example estimated posterior means or density estimates of the
marginal posterior. Readers unfamiliar with MCMC methods can for example consult Chib (2001) for an
introduction and Gilks et al. (1996) for applications of MCMC methods. We denote further the density of
a random variable X by [X] and the conditional density of X given Y by [X|Y ]. We assume independent
prior distributions for the fixed effect α, the spatial parameters b given their dependence parameter φ
and variance scalar τ2, the cluster parameters c given their random variance σ2

c and the hyperparameters
φ, τ2, σ2

c respectively, i.e.

[α, b, c, φ, τ2, σ2
c ] = [α] × [b|φ, τ2] × [φ] × [τ2] × [c|σ2

c ] × [σ2
c ] .

A more detailed description of the following updates can be found in Prokopenko (2004).

3.2.1 Regression Parameter Update

The full conditional for an individual update of αl, l = 1, . . . , p, has the following form:

[αl|Y,α−l,b, c, φ, τ2, σ2
c ] ∝

n∏

i=1

exp(Yi(xilαl))

1 + exp(xi
tα + bj(i) + cm(i))

[αl] , (3.3)

where α−l = (α1, . . . , αl−1, αl+1, . . . , αp)
t. Individual updates are used, since a good joint proposal density

for Metropolis-Hastings (MH) step is difficult to find. As prior for αl, l = 1, . . . , p a normal distribution
with zero-mean and large standard deviation was taken. As proposal density in the rth iteration for αr

l a
normal density with the mean equal to the previous value αr−1

l and a fixed value for the standard error
was chosen. The value for this standard error was found using pilot runs. In particular, we used pilot
runs to determine standard error values which give an acceptance rate between 30-60% (as proposed in
Bennett et al. (1996) or Besag et al. (1995)). The pilot runs also served as “burn in” phase.

3.2.2 Spatial Parameter Update

For the prior density of b we use the modified Pettitt’s conditional autoregression (2.5). Since the compu-
tational effort for the joint update of b are rapidly increasing with the dimension of b, we use individual
updates here as well. The full conditional densities are proportional to:

[bj |Y,b−j ,α, c, φ, τ2, σ2
c ] ∝ [Y|α,b, c] × [bj |b−j ,α, φ, τ2]

∝
∏

i:j(i)=j

exp(Yi bj)
1+exp(xi

tα+bj+cm(i))
exp

{

−
1+|φ|Nj

2 (1+|φ|)τ2

(

bj −
φ

1+|φ|Nj

∑

j∼j′ bj′

)2
}

, (3.4)

where b−j = (b1, . . . , bj−1, bj+1, . . . , bJ )t. For the required MH step, we used as proposal density for bj a
similar proposal density as for the regression parameters and we also used pilot runs in order to find a
good proposal standard error for each spatial parameter bj , j = 1, . . . , J .

3.2.3 Spatial Dependence Parameter Update

The full conditional density for φ is given by

[φ|Y,α,b, c, τ2, σ2
c ] = [φ|b, τ2] ∝ [b|φ, τ2] × [φ] . (3.5)

Since b|φ, τ2 ∼ NJ

(
0, τ2Qm.P (φ)−1

)
, the determinant of the matrix Qm.P (φ) must be calculated for

each φ−iteration. Since once the eigenvalues of Γ−D and Γ+D are known, we can write the determinant
of Qm.P (φ) analytically as a function of ψ = φ

1+|φ| as in (2.6). Since ψ ∈ (−1, 1), it is reasonable to take a

uniform distributed prior for ψ on (−1, 1). Such a prior choice corresponds to a heavy-tailed prior for φ,
namely a Pareto distribution with the density ∼ 1

(1+|φ|)2 . This density has no finite moments , but it is

unimodal and symmetric with mode at 0. To generalize the link between the priors for ψ and φ we note
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that the prior for ψ proportional to 1
(1−|ψ|)1−a , ψ ∈ (−1, 1) corresponds to a prior for φ proportional to

1
(1+|φ|)1+a , φ ∈ (−∞,+∞). It is a proper prior for a > 0. The last term in the conditional [φ|b, τ2] which

depends on ψ is proportional to exp(− 1
2τ2 b

′Qm.P (ψ)b) and can also be calculated fast in each iteration.
As proposal distribution for the rth iteration ψr we also take a normal density with mean equal to the
previous iteration ψr−1, but now in contrast to the parameters α and b truncated to the interval (−1, 1).
Again pilot runs are used to initialize proposal standard error.

3.2.4 Spatial Variance Parameter Update

For this update, an inverse gamma prior for τ2 is used with density given by

[τ2] =
1

b
(aτ )
τ Γ(aτ )(τ2)aτ +1

exp

(

−
1

bττ2

)

, (3.6)

where aτ > 0 and bτ > 0 are known hyperparameters. We denote this prior by τ2 ∼ IG(aτ , bτ ). Since
the full conditional for τ2 depends solely on b and φ we can write

[τ2|Y,α,b, c, φ, σ2
c ] = [τ2|b, φ] ∝ [b|φ, τ2] × [τ2] .

We have that the conditional distribution of [τ2|Y,α,b, c, φ, σ2
c ], is again IG(a∗

τ , b∗τ ) with

a∗
τ = aτ +

J

2
and b∗τ =

{
1

bτ
+

b′ Q(φ)b

2

}−1

.

When a flat improper prior for τ2 is used (as we have chosen) , the posterior [τ2|b, φ] is IG(a∗
τ , b∗τ ) with

a∗
τ =

J

2
− 1 and b∗τ =

{
1

2
b′ Q(φ)b

}−1

.

3.2.5 Cluster Parameter Update

The cluster effect c = (c1, . . . , cm) is taken as a random effect with prior cm ∼ N(0, σ2
c ) for each cluster

m = 1, . . . ,M, i.i.d. Again an MH step is needed. The individual full conditionals can be written as
follows

[cm|Y, c−m,α,b, φ, τ2, σ2
c ] ∝ [Y|α,b, c] × [cm|σ2

c ]

∝
∏

i:m(i)=m

exp(Yi cm)
1+exp(xi

tα+bj(i)+cm) exp
{

− 1
2 σ2

c
c2
m

}

, (3.7)

where c−m = (c1, . . . , cm−1, cm+1, . . . , cM )t. As proposal density for the rth iteration cr
m we chose a

normal density with mean equal to cr−1
m from the previous iteration.

3.2.6 Cluster Variance Parameter Update

The full conditional density of the cluster variance parameter σ2
c has a similar form as the spatial variance

parameter τ2, namely:

[σ2
c |Y,α,b, c, φ, τ2] = [σ2

c |c] ∝ [c|σ2
c ] × [σ2

c ] ∝
1

(σ2
c )M/2

exp

{

−
1

2σ2
c

c′c

}

[σ2
c ] . (3.8)

A direct Gibbs step is available by choosing as prior density an inverse gamma prior (see (3.6)) or an im-
proper prior for σ2

c . In particular, if σ2
c ∼ IG(ac, bc), then

σ2
c |Y,α,b, c, φ, τ2 ∼ IG(a∗

c , b
∗
c) with

a∗
c = ac +

M

2
and b∗c =

{
1

bc
+

c′c

2

}−1

.

For an improper prior it follows that the full conditional density for σ2
c is a IG(a∗

c , b
∗
c) density with

a∗
c =

M

2
− 1 and b∗c =

{
1

2
c′c

}−1

.

This density has a finite expectation for M ≥ 5 and a finite variance for M ≥ 7.
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4 Spatial Binary Regression with Individual Cluster Effects

4.1 Model Formulation

Now we introduce for our binary transport response (3.1) a more advanced model where individual cluster
effects are modeled by a normal distribution with fixed variance inside each cluster given by:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

θi := log
(

pi

1−pi

)

= xt
iα

︸︷︷︸

fixed effect

+ bj(i)
︸︷︷︸

random spatial effect

+ cm(i),k(i)
︸ ︷︷ ︸

random individual cluster effect

, (4.1)

where for fixed m = 1, . . . ,M, cm,k ∼ N(0, σ2
m), k = 1, . . . ,Km, i.i.d. As in Model (3.2), M

denotes the number of clusters and m(i) denotes the cluster of trip i. Km stands for the number of trips,
which belong to cluster m (i.e. K1 + . . . + KM = n) and the index k(i) gives the number of trip i in its
cluster. The specification of the fixed effects α = (α1, . . . , αp)

t and the spatial effects b = (b1, . . . , bJ )t

remain as before. In contrast to (3.2), the cluster effects are now not the same for each trip in cluster m,
namely cm, but random realizations cm,k, k = 1, . . . ,Km from the same cluster distribution N(0, σ2

m)
denoted by c = (c1,1, . . . , c1,K1

, · · · , cM,1, . . . , cM,KM
)t. This allows for modeling heterogeneity within

each cluster. In Model (4.1) we have to estimate in addition to the parameters α,b the cluster effect
variances σ2 = (σ2

1 , . . . , σ2
M )t instead of the cluster effects c = (c1, . . . , cM )t and their variance σ2

c for
Model (3.2).

One problem with Model (4.1) is that even without an intercept term α0 the model is unidentifiable.
To understand the nature of the unidentifiability we first substitute in (4.1) the logit link function with
the probit link function, i.e. we assume for i = 1, . . . , n:

Yi|pi ∼ Bernoulli(pi) conditionally independent with
pi = P{Yi = 1|xi,α, bj(i), cm(i),k(i)} = Φ(xt

iα + bj(i) + cm(i),k(i)),
(4.2)

where Φ(·) is the standard normal distribution function. This allows for the following latent variable
representation:

Yi = 1|xi,α, bj(i), σ
2
m(i) ⇔ Zi ≤ 0, where

Zi = −ηi + ǫ∗i , ǫ∗i ∼ N(0, 1 + σ2
m(i)) independent and ηi = xt

iα + bj(i) .
(4.3)

This is a similar representation as discussed in Albert and Chib (1993) for binary probit models. Therefore
we have for i = 1, . . . , n

P{Yi = 1|xi,α, bj(i), σ
2
m(i)} = P{Zi ≤ 0|xi,α, bj(i), σ

2
m(i)} = Φ




xt
iα + bj(i)

√

1 + σ2
m(i)



 . (4.4)

Equation (4.4) shows that the parameters α,b and σ2 are not jointly identifiable in
Model (4.2), since it is invariant with respect to the parameter vectors
{

k × (αt,bt,
√

1 + σ2
1 , . . . ,

√

1 + σ2
M )t, k ∈ R

}

. If we define now

α′ :=
α

√

1 + σ2
1

, b′ :=
b

√

1 + σ2
1

, σ
′2
m :=

1 + σ2
m

1 + σ2
1

, m = 2, . . . ,M, σ
′2
1 = 1, (4.5)

then the marginal distributions (4.4) of Yi|xi,α, bj(i), σ
2
m(i) from Model (4.2) will coincide with the

marginal distributions from the following model:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

pi = P{Yi = 1|xi,α
′, b′j(i), σ

′2
m(i)} =







Φ
(

xt
iα

′ + b′j(i)

)

if m(i) = 1

Φ

(
xt

i
α′+b′j(i)

σ′

m(i)

)

if m(i) = 2, . . . ,M .

(4.6)
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Using (4.3) it follows, that also the joint distribution of Y = (Y1, . . . , Yn)t in both Models (4.2) and (4.6)
are equal. Therefore Model (4.6) is an equivalent reparametrization of Model (4.2). But this representation
(4.6) has one parameter less and is therefore identifiable. Further, Model (4.6) can also be represented
using normal latent variables:

Yi = 1|xi,α
′, b′j(i), σ

′2
m(i) ⇔ Z ′

i ≤ 0, where

Z ′
i = −η′

i + ǫ′i, ǫ′i ∼ N(0, σ
′2
m(i)) ind. and η′

i = xt
iα

′ + b′j(i) .
(4.7)

We will show that the latent variable representation allows us in the probit case to reduce significantly
the number of variables, which need MH-updates. MH-updates are especially computational expensive
for probit models because of the numerical complexity of the computations for Φ(·) in the tails.

Note that large values of cluster parameter σ2′

m indicate the large heterogeneity within cluster m. Such
interpretation of cluster parameters follows from the reparametrization (4.5).

The above discussion helps us also to understand the unidentifiability of Logit Model (4.1), since the
behavior of both probit and logit link functions is quite similar and becomes significantly different only
in the tails. So we use the same idea to construct an identifiable logit model, which is approximately
equivalent in distribution to (4.1). In particular we assume for i = 1, . . . , n

Yi|pi ∼ Bernoulli(pi) conditionally independent with

log
(

pi

1−pi

)

=







xt
iα

′ + b′j(i) if m(i) = 1
xt

i
α′+b′j(i)

σ′

m(i)
if m(i) = 2, . . . ,M

,
(4.8)

where pi = P{Yi = 1|xi,α
′, b′j(i), σ

′2
m(i)} and α′,b′,σ2′ := (σ2′

1 , . . . , σ2′

M )t are defined as in (4.5).

4.2 Bayesian Inference for Hierarchical Spatial Binary Regression Models
with Individual Cluster Effects

4.2.1 Bayesian Inference for Logit Model (4.8)

We begin with the logit case (4.8). From (4.8) it follows that the likelihood of the response vector Y is
proportional to

[Y| α′, b′, σ′] ∝

n∏

i=1

exp(Yi
xi

tα′+b′j(i)

σ′

m(i)
)

1 + exp(Yi
xi

tα′+b′
j(i)

σ′

m(i)
)

,

where σ′ := (1, σ′
2, . . . , σ

′
M )t, σ′

m :=
√

σ2′

m, m = 2, . . . ,M . We again assume independent prior distri-
butions for the fixed effect α′, the spatial parameters b′ given their dependence parameter φ′ and the
variance scalar τ2′

and the cluster parameters σ′. Finally we assume independence between the hyper-
parameters φ′ and τ2′

. Therefore the joint prior distribution is given by [α′, b′, σ′, φ′, τ2′

] = [α′] ×
[b′|φ′, τ2′

] × [φ′] × [τ2′

] × [σ′] . The MCMC update procedure for the parameters α′ and b′ remains the
same as in Subsection 3.2, with the full conditionals replaced by

[α′
l|Y,α′

−l,b
′,σ′, φ′, τ2′

] ∝

n∏

i=1

exp(Yi
xilα

′

l

σ′

m(i)
)

1 + exp(Yi
xi

tα′+b′
j(i)

σ′

m(i)
)

[α′
l]

and
[b′j |Y,b′

−j ,α
′,σ′, φ′, τ2′

] ∝ [Y|α′,b′,σ′] [b′j |b
′
−j , φ

′, τ2′

]

∝
∏

i:j(i)=j

exp(Yi

b′
j

σ′

m(i)

)

1+exp(
xi

tα′+b′
j

σ′

m(i)

)
exp

{

−
1+|φ′|Nj

2 (1+|φ′|)τ2′

(

b′j −
φ′

1+|φ′|Nj

∑

j∼j′ b′j′

)2
}

.

Since the full conditionals of the spatial hyperparameters τ2′

and φ′ given the data and other parameters
depend only on the spatial effects b′, their MCMC updates have the same form as described in Subsection
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3.2. We update the parameter σ′ in a similar way as the other main parameters α′ and b′. The full
conditional of σ′

m, m = 2, . . . ,M , can be written as

[σ′
m|Y,α′,b′,σ′

−m, φ′, τ2′

] ∝ [Y|α′,b′,σ′] [σ′
m] ∝

n∏

i:m(i)=m

exp(Yi
xi

tα′+b′j(i)

σ′

m
)

1 + exp(Yi
xi

tα′+b′
j(i)

σ′

m
)

[σ′
m] .

It is reasonable to take a prior for σ′
m, m = 2, . . . ,M , which is distributed around 1. Such a choice is

clear from the reparametrization (4.5). According to (4.5) large deviations from 1 for some σ′
m, m =

2, . . . ,M , correspond to large values for some σ2
m, m = 1, . . . ,M , in the primary model (4.1), what would

correspond to insignificance of the regression and spatial effects in these clusters. Therefore we use a
normal distribution N(1, 1) truncated on the interval [0.2,+∞) as prior for σ′

m, m = 2, . . . ,M .

4.2.2 Bayesian Inference for Probit Model (4.6) Based on Representation (4.7)

In the hierarchical structure of (4.7) the latent variables Z ′
i’s link the data Y with the model parameters

α′,b′ and σ2′. The full conditionals of these parameters do not depend on the binary vector Y given
the vector Z′ = (Z ′

1, . . . , Z
′
n)t and therefore represent some standard distributions, which do not need

computational expensive MH-steps. Moreover, in contrast to the previous models joint updates for the
parameter vectors α′ and b′ are available here. Further, the full conditional of Z′ given the data Y and all
the parameters has also a simple form, which is suitable for the direct joint updating. More precisely, since
the latent Z ′

i’s are conditionally independent given η′
i, i = 1, . . . , n, we can immediately reduce the joint

update of [Z′|Y,α′,b′,σ2′, φ′, τ2′

] to the individual updates of [Z ′
i|Y,α′,b′,σ2′, φ′, τ2′

] for i = 1, . . . , n.

Each of these univariate conditional distributions is equivalent to [Z ′
i|Y,α′,b′,σ2′], since given b′ the

information contained in φ′ and τ2′

has no influence on Z′. Moreover, we have [Z ′
i|Y,α′,b′,σ2′] =

[Z ′
i|Yi,α

′, b′j(i), σ
2′

m(i)], i = 1, . . . , n, due again to the conditional independence. It is easy to see that these

distributions are univariate truncated normal with mean −xi
tα′−b′j(i) and variance σ2′

m(i). The truncation

interval is (−∞, 0] (or [0,∞)) when Yi = 1 (or Yi = 0). We use rejection sampling for the generation of
truncated univariate normal random variables in the numerical implementation as proposed by Robert
(1995).

We proceed now with the parameter updates. First define a design matrix X of p × n dimension as
X = (x1, . . . ,xn)t and assume a full column rank. Further we define B = (bij) as a n×J spatial incidence
matrix with bij = 1, if j(i) = j and bij = 0, if j(i) 6= j. This implies that B · b′ = (b′j(1), . . . , b

′
j(n))

t.

Finally let Σ := cov(Z′|α′,b′,σ2′) = diag(σ2′

m(1), . . . , σ
2′

m(n)).

For the regression parameter α′ update with prior Np (µ0,Σ0) we obtain, that

α′|Z′,b′,σ2′ ∼ Np(µα′ ,Σα′) with

Σα′ =
(
XΣ−1Xt + Σ−1

0

)−1
and

µα′ = −Σα′

(
XΣ−1(Z′ + Bb′) − Σ−1

0 µ0

)
.

(4.9)

For a flat improper prior of α′ (4.9) can be simplified by replacing the parameters µ0 = 0 and Σ−1
0 = 0,

which gives also a proper distribution.
For the spatial parameter vector b′ its joint full conditional [b′|Y,Z′,α′,σ2′, φ′, τ2′

]

= [b′|Z′,α′,σ2′, φ′, τ2′

] can be found in a similar way as for α′. Under the J-variate normal

NJ

(

0,
(
Qm.P (φ′)

)−1
)

prior for [b′|φ′, τ2′

], the full conditional [b′|Z′,α′,σ2′, φ′, τ2′

]

∝ [Z′|α′,b′,σ2′] [b′|φ′, τ2′

] is also J-variate normal NJ (µb′ ,Σb′) with

Σb′ =
(

BtΣ−1B + 1
τ2′ Q

m.P (φ′)
)−1

and

µb′ = −Σb′BtΣ−1(Z′ + Xtα′) .
(4.10)

Note that in (4.10) for each update we need to invert the J ×J-dimensional precision matrix of b′, which
may be computationally very expensive, if the number of regions J is large. Since the band structure of
the precision matrix Σ−1

b′ = BtΣ−1B + 1
τ2′ Q

m.P (φ′) coincides with the band structure of Q (note that
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BtΣ−1B is a diagonal matrix) and is therefore known and stable, it might be more efficient to simulate a
J-variate normal NJ (µb′ ,Σb′) vector using the Cholesky decomposition of Σb′ , which requires an order
J2 operation. It is significantly cheaper for large J , than the inversion of the matrix Σb′ (an order J3

operation) and more stable (see Gelfand et al. (2000), p.380). Further it is useful to reorder b′ in a way,
which provides minimal bandwidth for its precision matrix. One method to facilitate this is the Cuthill-
McKee Algorithm (George and Liu 1981) which is implemented in MATLAB by the function symrcm. In
contrast to Model (4.8) we update here the cluster variance parameters σ2′

m, instead of σ′
m, m = 2, . . . ,M ,

since it can be updated directly under a suitable choice of prior. More precisely, the individual full
conditionals for σ2′

m, m = 2, . . . ,M , are given by

[σ2′

m|Y,Z′,α′,b′,σ2′
−m, φ′, τ2′

] = [σ2′

m|Z′,α′,b′,σ2′
−m]

∝ [Z′|α′,b′,σ2′] [σ2′

m] ∝ 1

(σ2′
m)

Km
2

exp

{

− 1
2σ2′

m

∑

i:m(i)=m

(Z ′
i + xi

tα′ + b′j(i))
2

}

× [σ2′

m],
(4.11)

where σ2′
−m=(1, σ2′

2 , . . . , σ2′

m−1, σ
2′

m+1, σ
2′

M )t. If [σ2′

m] is IG(a0, b0) (see (3.6)), we immediately obtain in
(4.11) a IG(aσ′ , bσ′) density function, up to a constant, where

aσ′ = Km

2 + a0 and

bσ′ =

{

1
b0

+

∑

i:m(i)=m

(Z′

i+xi
tα′+b′j(i))

2

2

}−1

.
(4.12)

As mentioned before in this subsection, it is reasonable to choose a prior for σ2′

m, m = 2, . . . ,M , which
is distributed around 1. Therefore we took [σ2′

m] ∼ IG(3, 0.5) for m = 2, . . . ,M . This gives E(σ2′

m) =
Var(σ2′

m) = 1. We note finally, that the update of the spatial hyperparameters φ′ and τ2′

remains the
same as described in Subsection 3.2 for Models (3.2) and (4.8). So we have only one parameter, namely
φ′, that needs a MH-step.

5 Simulation Studies

5.1 Study 1: Hierarchical Spatial Binary Regression with Group Cluster Ef-
fects

The simulation study based on the Logit Model (3.2) has the following mean structure:

Θi := log

(
pi

1 − pi

)

= x1iα1 + x2iα2 + bj(i) + cm(i), i = 1, . . . , n, j = 1, . . . , J, m = 1, . . . ,M.

We simulated n = 2100 binary responses residing in J = 70 regions arranged on a 7 × 10 regular
lattice (i.e. 30 observations per region) and in M = 5 clusters (i.e. 420 observations per cluster) so,
that each cluster is represented in each region with 6 responses. The number of responses, the number
of regions and clusters approximately corresponds to our real mobility data. The regression effect is
simulated identically for each of the 4 data sets. More precisely, we chose xi1 as categorical covariate
with possible values 0 or 1 and xi2 as continuous covariate taking cycled integer values between 1 and
23, i.e. x1,2 = 1, x2,2 = 2, . . . , x23,2 = 23, x24,2 = 1, . . . With this choice we achieved a good data mixing
inside both regions and clusters. The true values for the regression parameters were taken as α1 = −1
and α2 = 0.05. Spatial effects b′j , j = 1, . . . , 70, are simulated from the modified Pettitt’s Model (2.5)

with φ = 25 giving strong spatial smoothing. We chose τ2 = 0.64 which gives a similar range of the
observed spatial effects and the regression effects. For the neighborhood structure we chose a first order
neighborhood dependence defined by joint borders. Finally, for each data set we simulated group cluster
effects from c ∼ N5(0, σ

2
c ) with σ2

c = 1.
For the MCMC estimation we chose α1 ∼ N(0, 1002) and α2 ∼ N(0, 102) reflecting a diffuse prior

choice. For the variance hyperparameters τ2, σ2
c we chose flat priors, while for ψ = φ

1+φ , ψ ∈ [0, 1)

we chose as prior density [ψ] ∼ 1
(1−ψ)1−a with a = 0.5. This corresponds to a Pareto distribution for

φ = ψ
1−ψ , φ ∈ [0,+∞), namely [φ] ∼ 1

(1+φ)1+a .
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MCMC algorithm of Section 3.2 was implemented in MATLAB and was run for 50,000 iterations
with every 50th iteration recorded. As ”burn in” phase served 10 pilot runs with 300 iterations per each
pilot run, which we used to determine optimal proposal standard error values for the MH-step (i.e. an
acceptance rate of 30 − 60%). The resulting trace plots (not shown) show that such a length of “burn
in” phase is enough. The autocorrelation plots (not shown) indicate, that the autocorrelations between
recorded iterations are below 0.1. Figure 5.1 shows marginal posterior density estimates of the parameters
α0, α1, ψ = φ

1+φ , τ2 and σ2
c from the 4 data sets, where the vertical fat dashed lines correspond to the

true parameter value. For each density curve its mode is also marked by a thin vertical line. From this
we see that in all four cases the true values are well inside 90% credible intervals. Further we see that
ψ is overestimated, however other simulation studies show that when using a = 1(i.e ψ ∼ Uni[0, 1]) the
parameter ψ is underestimated. We note that another simulation study, conducted using an improper
prior choice with a = −1(⇔ [φ] ∝ 1) indicates that in this case the posterior for ψ (and for φ) is improper.
Despite the overestimation of ψ, posterior mode estimates of the spatial and cluster effects (not shown)
are quite precise. We also calculated absolute and relative errors between the true parameter values and
their posterior mode estimators. These estimates as well as graphical checks with estimated posterior
densities for J = 70 spatial and M = 5 cluster effects can be found in Prokopenko 2004 (Table 5.1 and
Figure 5.5 respectively).

5.2 Study 2: Hierarchical Spatial Binary Regression with Individual Cluster
Effects using Logit Model (4.8)

The simulation study based on the Logit Model (4.8) has the following mean structure:

Θ′
i := log

(
pi

1 − pi

)

=
x1iα

′
1 + x2iα

′
2 + b′j(i)

σ′
m(i)

, i = 1, . . . , n, j = 1, . . . , J, m = 1, . . . ,M.

As before we chose α′
1 = −1, α′

2 = 0.05, τ2′

= 0.64, φ′ = 25. As true values for the cluster parameters
σ′

m, m = 2, . . . ,M , we take 4 samples from a Uni[0.75, 1.25] distribution. According to Model (4.8) we set
σ′

1 = 1. In this way we have as true cluster parameter values: σ′ = (1, 1.2251, 0.8656, 1.0534, 0.9930)t. We
generated 4 data sets with n = 2100 binary responses using the same J = 70 regions and M = 5 clusters.
The same specification of the fixed regression effects x1iα

′
1 + x2iα

′
2, i = 1, . . . , n, and the spatial effects

bj(i), i = 1, . . . , n, is used Prior choices for α′,b′, τ2′

, ψ′ remain the same, while for the prior distribution
of the cluster parameters σ′

m, m = 1, . . . ,M , we used N(1, 1) truncated on the interval [0.2,+∞].
Figure 5.2 gives posterior density estimates of all parameters using the MCMC algorithm of Section

4.2.1 based on 50000 iterations with every 50th iteration recorded. Estimated posterior location measures
and quantiles can be found in Prokopenko 2004 (Table 5.2). In contrast to Simulation Study 1 we note
that for this model ψ′ is no longer overestimated.

5.3 Study 3: Hierarchical Spatial Binary Regression with Individual Cluster
Effects using Model (4.6)

The only difference between this model and the previous Model (4.8) is that now we use a probit link
instead of a logit one as in Model (4.8). Therefore the generation of the data sets is similar and uses
the same parameter values α′,b′,σ′, τ2′

, φ′ as before. However, the MCMC algorithm is based now on
the utilization of the latent variables Z ′

i, i = 1, . . . , n (for details see Section 4.2.3) which allow a direct
Gibbs step for all parameters except ψ′. Moreover, now in contrast to Model (4.8) a joint update for α′

and b′ is possible. One further difference is that in this model we update the parameter σ2′ instead of
σ′ as before. As a prior for the parameter σ2′

m, m = 2, . . . ,M , we use an IG(3, 0.5) distribution (with
E(σ2′

m) = Var(σ2′

m) = 1), while the other parameters have the same priors as before.
Since the corresponding MCMC algorithm requires double computation time compared to the previous

simulation studies we run 25,000 instead of 50,000 iterations with every 25th iteration recorded. However
the corresponding autocorrelation plots (not shown here) indicate even better mixing as by the previous
models. This effect is due to joint updates. Unfortunately, the precision of the estimators in this study is
not as good as before. This holds especially for the variance parameters σ2′

m, m = 2, . . . ,M . Also for the
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regression parameter α′ the estimator based on the third data set has relatively large deviations from
the corresponding true values.

5.4 Summary of Simulation Results

First of all, trace plots of the realized MCMC Chains from Models (4.8) and (4.6) with individual cluster
effects indicate identifiability.

To consider the random variability we simulated 4 data sets, which provided 4 posterior estimates of
the corresponding parameter vector. For group cluster Model (3.2) all 4 posterior estimates for the fixed
α, spatial b and cluster c parameters lie quite closely around the corresponding true values. The true
values are also well inside 90% credible intervals. However the spatial hyperparameter ψ, if close to 1,
is often overestimated when a prior [ψ] ∼ 1

(1−|ψ|)1−a with a = 0.5 (see Figure 5.1) and underestimated

when a = 1 is chosen. For the Logit Model (4.8) the hyperparameter ψ is not overestimated by a prior
choice of [ψ] ∼ 1

(1−|ψ|)1−a with a = 0.5, while the estimates for the other parameters remain close to the

corresponding true values (see Figure 5.2, and Table 5.2 in Prokopenko (2004)). Finally for the Probit
Model (4.6) the estimates for α′,b′, τ2′

and ψ′ are usually still sufficient, but not as precise, as for former

models. This is especially true for the cluster parameter σ2′ (see Figure 5.3).
The MCMC estimating algorithms are fast enough so, that we were able to simulate long Markov

Chains (50,000 iterations for Models (3.2), (4.8) and 25,000 iterations for Model (4.6)), with every 50th
or 25th iteration respectively recorded. The running time was between 10 and 15 hours. This provided a
good mixing for each model, which were evident by low observed autocorrelations. This is especially true
for Model (4.6), where the estimating MCMC algorithm allows block updating and reduces the number of
parameters, whose updates require a MH-step to only one. Finally we note, that the length of the “burn
in” phase, which consists of 10 pilot runs is enough to achieve the stationary phase of the corresponding
Markov Chains.

6 Application: Mobility Data

6.1 Data Description

We analyze a data set studying mobility behavior of private households in Munich. One central question
is to identify areas of low/high utilization of public transport after adjusting for explanatory factors such
as trip, individual and household related attributes. The goal is to find flexible statistical models which
incorporate covariates together with spatial and cluster information.

The data was collected within the study “Mobility 97” (see Zängler 2000). The participants of the
survey are German-speaking persons not younger then 10 years, which live in a private household in
the state of Bavaria. In order to take into consideration seasonal fluctuations in mobility behavior of
the participants, the survey was carried out in three waves in March, June and October of 1997. Each
participant reported all his or her trips conducted by public or individual transport during a period of
two or three days. We consider part of the data which includes 1375 trips taken by 296 persons in 167
households in the city of Munich, Germany.

For each trip the binary variable of interest Y has value 1, if individual transport was used and value
0, if public transport was used. In addition person, household and trip related covariates were recorded.
Neglecting spatial and cluster effects standard model selection techniques for logistic regression selected
the following covariates. Person related covariates are age (metric), sex, personal income, car usage (main,
secondary or not user) and whether the person possesses or not a public transport net card. We retain
only one household related covariate, namely household type (single, single parent or not single). Trip
related covariates are day type (work day or weekend), day time (day or night), distance and whether
the person took the trip alone or not alone. Table 6.1 shows the chosen covariates. For the covariate
USAGE, note that both main and secondary users must be not younger than 18 years and must have
a driver license and a car available in the household. We use standard model selection procedures for
binary regression models ignoring spatial and cluster effects to identify a starting model for our analysis.
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Figure 6.1: Number of Available Trips over Postal Codes of Munich, Germany

This approach resulted in selecting main effects and 10 significant interactions:

WAY ALONE:NET CARD USAGE:SEX
WAY ALONE:USAGE DISTANCE:USAGE
DAY TYPE:NET CARD USAGE:DAY TIME
SEX:DAY TIME PERSONAL INCOME:NET CARD
DISTANCE:AGE DAY TYPE:AGE

6.2 Results

We present the results for 11 different model specifications. Model 1 is a spatial logit regression model
with no cluster effects, while Models 2 — 5 are spatial logit regression models with group cluster effects.
Finally Models 6 — 11 are binary spatial regression models with individual cluster effects. Here both
logit (based on (4.8) and probit (based on (4.6)) link specifications are used. For the first 5 models as well
as for Models 6, 8, 10 the 25000 MCMC iterations were run and every 25th iteration was recorded, giving
acceptable low autocorrelations (not shown). Models 6, 8, 10 are based on Logit Model (4.8). Finally,
Models 7, 9, 11 have the same cluster choice as Models 6, 8, 10, respectively, but are based on Probit
Model (4.6). For probit models we run 20000 iterations (and recorded every 20th iteration) of the MCMC
algorithm based on latent variable representation (4.7). We found, that 10 pilot runs (5 pilot runs for
probit models) with 300 iterations per pilot run are sufficient as “burn in”.

As a starting point for the choice of fixed effects for each of the 11 models we used the covariates
identified in Table (6.1) involving a total of 36 regression parameters. The intercept effect is modeled
within the spatial and cluster part. As prior distributions for α1, . . . , α36 we chose independent normal
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Covariable Number of Trips Using Most

type Variable Levels Individual Public Total frequently

Transport Transport obs. value

PERSON PERSONAL INCOME NO INCOME (< 200 DM) 24 31 55 0
related MIDDLE (200 − 3000 DM) 475 193 668 1

HIGH (> 3000 DM) 521 131 652 0

USAGE MAIN USER 731 100 831 1
SECONDARY USER 213 99 312 0
NOT USER 76 156 232 0

NET CARD YES 235 247 482 0
NO 785 108 893 1

SEX MALE 549 172 721 1
FEMALE 471 183 654 0

median

AGE metric (quadratic, normalized with Splus function poly(age,2)) 42 years

HOUSE- HOUSEHOLD TYPE SINGLE 156 125 281 0
HOLD SINGLE PARENT 84 10 94 0
related NOT SINGLE 780 220 1000 1

TRIP DAY TYPE WORK DAY 595 297 892 1
related WEEKEND 425 58 483 0

DISTANCE SHORT (≤ 3.5 km) 294 71 365 0
MIDDLE (3.6 − 21.5 km) 571 257 828 1
FAR (> 21.5 km) 155 27 182 0

WAY ALONE ALONE 507 267 774 1
NOT ALONE 513 88 601 0

DAY TIME DAY (6 a.m. - 9 p.m.) 905 336 1241 1
NIGHT (9 p.m. - 6 a.m.) 115 19 134 0

T O T A L 1020 355 1375

Table 6.1: Significant covariates identified in logistic regression model selection without spatial and cluster
effects

distributions with zero mean and standard error equal to 5. We consider an interaction as insignificant
when the corresponding estimated 90% credible interval contains the zero value for all interaction terms.
If an interaction is found to be insignificant, then the corresponding terms will be removed and the
model parameters will be estimated again using the appropriate MCMC algorithm. Continuing with this
procedure we arrive at a model where all interactions are significant.

For Model 1 we chose as prior for ψ = φ
1+|φ| an uniform distribution on (−1, 1), while for τ2 we chose

an non-informative prior, i.e. [τ2] ∝ 1.
The top row of Figure 6.2 presents estimated posterior densities for the hyperparameters τ2 and ψ,

respectively. Note that the spatial dependence parameter ψ is negative, which indicates that large positive
spatial effects in an area can be surrounded by negative spatial effects and vice versa. This behavior is
seen on the bottom maps of Figure 6.2, where posterior means and their 90% credible intervals (CI) of
the spatial effects are given. Here we use the following color code: white if 0 is below 90% CI, gray if 0
is contained in 90% CI and black if 0 is above 90% CI. We note that spatial effects in postal codes with
no observations are insignificant.

We now consider the Logit Models 2 — 5 with group cluster effects. In Model 2 we chose as cluster
groups the 74 postal codes, while the cluster groups specification for Models 3 and 5 are given in Table
(6.2). Model 4 uses 12 cluster groups formed by number of trips a household has taken. For the cluster
variance σ2

c we choose σ2
c ∼ IG(3, 0.5), while prior choices for fixed and spatial parameters remain the

same as in Model 1. Only in Model 2, in order to avoid numerical problems (clustering around border
values -1 and 1) we chose [ψ] ∝ (1 − |ψ|)0.5 instead of [ψ] ∝ 1 on the interval (−1, 1). The posterior
centrality estimates of the hyperparameters and their 90% credible intervals are given in Table 6.3.



19

0 2 4 6 8
0

0.05

0.1

0.15

0.2

τ2

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ = φ / (1+|φ|)

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

mean
white: 0 is below 90%−c.i.;black: 0 is over 90%−c.i.;

gray: 0 is in 90%−c.i. (i.e. insignificance)

Figure 6.2: Results for Model 1: Top: Estimated Posterior Densities of Spatial Hyperparameters (Solid

Line = Estimated Posterior Mode, Dashed Line = 90% CI). Bottom: Estimated Spatial Effects b̂j , j =
1, . . . , 74 and 90% CI

Model Cluster Description Total

3 1st Households which conducted ≥ 23 trips 275 trips

2nd Households which conducted 16 − 22 trips 296 trips

3rd Households which conducted 12 − 15 trips 250 trips

4th Households which conducted 8 − 11 trips 275 trips

5th Households which conducted ≤ 7 trips 279 trips
Model Cluster Description Total

5 1st Persons which conducted ≥ 12 trips 309 trips

2nd Persons which conducted 9 − 11 trips 301 trips

3rd Persons which conducted 7 − 8 trips 240 trips

4th Persons which conducted 5 − 6 trips 285 trips

5th Persons which conducted ≤ 4 trips 240 trips

Table 6.2: Distribution of Trips into Clusters in Models 3 and 5
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Model Number of Parameter Mode Mean Median 90% CI

Clusters 5% 95%

74 formed ψ −0.500 −0.271 −0.372 −0.857 0.646

2 by postal τ2 3.628 4.777 4.313 0.981 10.335

codes σ2

c
0.554 0.836 0.678 0.315 1.912

5 formed ψ −0.541 −0.422 −0.446 −0.930 0.149

3 by # of trips τ2 6.262 9.124 8.233 3.358 18.417

per household σ2

c
0.802 1.270 1.076 0.486 2.797

12 formed ψ −0.507 −0.516 −0.538 −0.954 0.031

4 by # of trips τ2 6.293 8.299 7.452 3.194 16.067

per household σ2

c
0.880 1.272 1.122 0.589 2.398

5 formed ψ −0.874 −0.543 −0.594 −0.956 0.058

5 by # of trips τ2 4.025 5.298 4.777 2.020 9.685

per person σ2

c
0.526 0.753 0.646 0.324 1.585

Table 6.3: Point and Interval Posterior Estimates for the Hyperparameters in Models 2 - 5 (with Group
Cluster Effects)

In Model 2 we have as cluster groups the 74 postal codes. Therefore both structured (bj , j = 1, . . . , 74)
and unstructured (cj , j = 1, . . . , 74) spatial effects are included in Model 2. In Figure 6.3 we present spa-
tial maps with estimated posterior means for the structured spatial effects bj (top left) and unstructured
spatial effects cj (top middle). On the top right map we present estimated posterior means of the sum
bj + cj of structured and unstructured spatial effects. Corresponding 90% CI are given in the middle row
of Figure 6.3. It is remarkable that both structured and unstructured effects are insignificant, while their
sum is, and form a similar spatial pattern as in Model 1. Therefore it is not surprising that the posterior
density of ψ, in particular the posterior mode estimate in Models 1 and 2 are also similar (see bottom
row of Figure 6.3).

In Figure 6.4 we present for Model 3 estimated posterior densities of the group cluster effects cm, m =
1, . . . , 5. A cluster effect is significant (marked with *), if its 90% credible interval does not include zero.
Note that cluster effects for households with large numbers of trips are positive and cluster effects for
households with few numbers of trips are negative. Finally the maps on the bottom row of Figure 6.5
give estimated spatial effects.

Similarly to Models 3 and 4 in Model 5 only the higher cluster effects (i.e. with fewest numbers of
trips), namely the 4th and the 5th are significant. Again, both have negative values, namely around −1, i.e.
the probability to use public transport for the corresponding trips is higher. We omit the corresponding
density plots to save space. For the last 2 models we also omit figures with the estimated spatial effects
maps since their spatial patterns are similar to the ones of Models 1 or 3 and Model 2 when the joint
effect of structured and unstructured spatial components is considered. Therefore the posterior density of
the spatial dependence parameter ψ, in particular the estimate (the posterior mode) also remains similar
(not shown for Models 3,4 and 5). This can be seen in Table 6.3 where posterior centrality estimates and
90% credible intervals for the hyperparameters are given.

We consider now the model specifications with individual cluster effects. Their exact model specifi-
cation is given by the second and third column of Table 6.4. As before, we chose a flat prior [τ2′

] ∝ 1.
We take the prior [ψ′] ∝ (1 − |ψ′|)0.5 to avoid numerical problems (clustering around border values -1
and 1). In Probit Models 7, 9, 11 the cluster parameters σ2′

2 , . . . , σ2′

M have an inverse gamma prior given
by IG(3, 0.5) (with expectation and variance equal to 1). This choice allows direct Gibbs sampling for
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Figure 6.3: Results for Model 2: Top: Estimated Spatial Effects: Structured b̂j , j = 1 : 74 (left), Unstruc-
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these parameters. In Logit Models 6, 8, 10 we assume for σ′
2, . . . , σ

′
M a normal N(1, 1) prior truncated

to (0.2,+∞). The posterior centrality estimates and their 90% CI’s of the hyperparameters for models
with individual cluster effects are given in Table 6.4. From Table 6.4 we see that cluster components of
the higher clusters are significant, i.e. 1 /∈ 90% CI. It means (Models 8 — 11) that the heterogeneity
within the group with the fewest numbers of trips per household (or per person) is the largest. Further
we see from Table 6.4, that more cluster components are significant for individual cluster effects formed
by household type or number of trips per household than by the number of trips per person.

In all models with individual cluster effects the spatial dependence hyperparameter ψ is negative and
about the same size. The link specification (logit versus probit) however influences the size of τ2′

, which
is expected since the link influences the size of the regression parameters as well.

The estimates for the fixed effects α′ for all 11 models are given in Table 6.5. Posterior mode estimates
are marked with *, when the corresponding parameter is insignificant, i.e. the 90% credible interval
contains zero. If all terms of an interaction effect were insignificant, the model was reduced on this
interaction and the model parameters were estimated again using the appropriate MCMC algorithm.
Those interactions are marked with “n.r.”, correspond to ”not represented” in the model.
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Figure 6.4: Estimated Posterior Densities of Group Cluster Effects cm, m = 1, . . . , 5 in Model 3. (Solid
Line = Estimated Posterior Mode, Dashed Line = 90% CI)

Model Link Number of Parameter Mode Mean Median 90% CI

Clusters 5% 95%

6 logit 3 formed ψ −0.468 −0.396 −0.418 −0.870 0.181

by household τ2
′

4.861 6.854 5.931 2.553 14.196
type σ′

2
0.277 0.484 0.430 0.226 0.921

σ′

3
1.439 1.461 1.443 1.068 1.943

7 probit 3 formed ψ −0.525 −0.408 −0.444 −0.874 0.111

by household τ2
′

1.685 2.283 2.095 0.903 4.418

type σ2
′

2
0.404 0.540 0.497 0.252 0.973

σ2
′

3
1.672 1.831 1.763 1.062 2.763

8 logit 5 formed ψ −0.410 −0.413 −0.422 −0.865 0.075

by # of trips τ2
′

10.769 17.101 14.799 6.002 36.512
per household σ′

2
0.922 1.010 0.973 0.648 1.464

σ′

3
2.842 2.951 2.913 2.240 3.734

σ′

4
1.430 1.486 1.459 1.078 2.019

σ′

5
1.822 1.797 1.789 1.313 2.343

9 probit 5 formed ψ −0.512 −0.382 −0.412 −0.854 0.195

by # of trips τ2
′

3.588 5.380 4.678 1.817 11.032

per household σ2
′

2
0.797 0.906 0.845 0.477 1.534

σ2
′

3
5.844 6.949 6.477 3.707 11.627

σ2
′

4
1.543 1.958 1.837 0.996 3.370

σ2
′

5
2.743 3.174 2.953 1.600 5.474

10 logit 5 formed ψ −0.476 −0.403 −0.439 −0.876 0.199

by # of trips τ2
′

7.538 9.468 8.232 3.167 19.895
per person σ′

2
1.027 1.058 1.041 0.752 1.430

σ′

3
1.168 1.180 1.166 0.797 1.610

σ′

4
1.271 1.300 1.287 0.897 1.768

σ′

5
1.553 1.681 1.642 1.196 2.255

11 probit 5 formed ψ −0.350 −0.369 −0.383 −0.867 0.2220

by # of trips τ2
′

1.773 2.517 2.182 0.849 5.2690

per person σ2
′

2
0.782 0.887 0.846 0.510 1.4190

σ2
′

3
0.976 1.067 1.009 0.557 1.7630

σ2
′

4
1.021 1.340 1.250 0.731 2.1950

σ2
′

5
1.972 2.209 2.088 1.169 3.7700

Table 6.4: Point and Interval Posterior Estimates for the Spatial Hyperparameters and Cluster Parameters
in Models 6 - 11 (with Individual Cluster Effects)



23

Model

1 2 3 4 5 6 7 8 9 10 11

Main Effect spatial spatial+group cluster spatial+individual cluster
only

PERSONAL INCOME

MIDDLE 0.41* 0.48* 1.63 1.41 0.71* 1.06 0.58 1.62 0.80 0.64* 0.37*

HIGH 0.25* 0.42* 1.27 1.14 0.12* 0.76 0.35* 1.46 0.56 0.24* 0.05*

USAGE

SECOND.USER 0.38* 1.09* 1.27 1.16* 0.88* 1.11 0.73 1.23* 0.51* 1.51 0.80
NOT.USER −3.87 −6.41 −6.52 −6.52 −5.90 −6.38 −3.63 −9.99 −5.39 −7.44 −3.95

NET CARD

NO 2.07 2.67 3.03 3.32 2.72 2.78 1.70 3.90 2.28 3.11 1.64

SEX

FEMALE 0.28* 0.16* −0.19* −0.47* 0.10* 0.30* 0.11* −0.48* −0.20* 0.01* −0.05*

AGE

POLY.AGE.1 16.80 8.73 11.64 11.53 9.95 6.11 5.57 7.97 8.82 9.81 7.46
POLY.AGE.2 −13.07 −8.96 −9.03 −8.64 −9.67 −8.93 −7.85 −9.69 −8.65 −7.63 −8.03

(orthogonal parametrization taken)

HOUSEHOLD

SINGLE.PARENT 1.61 3.15 3.42 2.92 3.31 n. r. n. r. 4.24 2.62 3.65 2.17

NOT.SINGLE 0.70 0.68 0.25* 0.27* 0.90 n. r. n. r. 0.85* 0.40* 0.96 0.44

DAY TYPE

WEEKEND 1.44 2.21 2.46 2.52 2.11 2.25 1.19 3.32 1.70 2.78 1.29

DISTANCE

MIDDLE −0.96 −1.15 −1.06 −1.17 −1.05 −1.29 −0.61 −1.90 −1.04 −1.16 −0.59

FAR 0.32* 0.81* 0.98* 0.83* 0.97* 1.21* 0.64* 0.78* 0.65* 0.85* 0.33*

WAY ALONE

NOT.ALONE 1.82 2.09 2.07 2.30 1.93 2.17 1.36 3.21 1.76 2.30 1.20

DAY TIME

NIGHT −0.58* −1.02 −1.12 −1.29 −1.13 −1.19 −0.63 −1.99 −1.08 −1.30 −0.64

Interaction

WAY ALONE:NET CARD

NOT.ALONE:NO −1.86 −2.39 −2.37 −2.76 −2.37 −2.54 −1.54 −3.10 −1.69 −2.53 −1.48

USAGE:SEX

SECOND.USER:FEMALE −1.70 −2.13 −2.07 −1.81 −2.01 −2.30 −1.45 −2.80 −1.73 −2.50 −1.22

NOT.USER:FEMALE −0.20* 0.66* 0.58* 0.79* 0.40* 0.26* 0.22* 1.39* 0.62* 0.80* 0.62*

WAY ALONE:USAGE

NOT.ALONE:SECOND.USER 0.79 1.21 0.80 0.76* 1.22 1.09 0.62 1.20* 0.66* 1.32 0.77
NOT.ALONE:NOT.USER 1.75 3.65 4.19 3.76 3.41 4.35 2.30 5.08 3.06 4.22 2.03

DISTANCE:USAGE

MIDDLE:SECOND.USER −0.68* −1.03 −1.39 −0.97 −1.19 −1.31 −0.74 −1.44* −0.52* −1.54 −0.87
FAR:SECOND.USER −1.02 −2.25 −2.12 −1.72 −2.22 −2.73 −1.52 −2.41 −1.52 −3.61 −1.62
MIDDLE:NOT.USER 0.95 1.68 1.52 1.64 1.27 1.20 0.63 2.47 1.66 1.53 0.89

FAR:NOT.USER −1.19 −1.19* −1.55* −2.01 −1.51* −2.31 −1.27 −2.68 −1.93 −1.94 −1.15

DAY TYPE:NET CARD

WEEKEND:NO n. r. −0.91 −1.23 −1.23 −1.07 −0.82* −0.50* −1.51 −0.83 −1.25 −0.45

USAGE:DAY TIME

SECOND.USER:NIGHT 1.32 5.01 5.22 6.63 5.71 5.07 3.53 6.17 4.53 5.67 4.96

NOT.USER:NIGHT −0.06* 0.31* 0.45* 0.38* 0.26* 0.32* 0.56* 0.72* 0.69* 0.68* 0.59*

SEX:DAY TIME

FEMALE:NIGHT 1.70 2.88 3.36 3.55 3.49 3.02 1.11 2.94 1.65 3.30 1.22

PERSONAL INCOME:

NET CARD

MIDDLE:NO n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.
HIGH: NO n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

DISTANCE:AGE

MIDDLE:POLY.AGE.1 −12.93 n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

FAR:POLY.AGE.1 −0.09* n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

MIDDLE:POLY.AGE.2 −2.41* n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

FAR:POLY.AGE.2 0.76* n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

DAY TYPE:AGE

WEEKEND:POLY.AGE.1 n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.
WEEKEND:POLY.AGE.2 n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

Table 6.5: Posterior Mode Estimates for Main Effect and Interaction Parameters (* = 90% credible
interval does not include 0, n.r.= effect was not required in model, since model with effect has a 90%
credible interval which includes 0)
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6.3 Model Comparison

A general method for model comparison in Bayesian models estimated by MCMC is the DIC criterion
suggested by Spiegelhalter et al. (2002). This method is developed for exponential family models and based
on the deviance. Even though the binary probit and logit models belong to this class of models, Collett
(2002) has shown that the deviance in binary data problems should not be used for model assessment.
Our application is based on binary responses. Since they cannot be grouped to binomial responses with
sufficient large numbers of trials because of the complexity of the fixed, spatial and cluster effects, we
decided not to use the DIC criterion for this application. We like to note that it is in general possible to
determine DIC values of the models discussed in Section 3 and 4 as long as the binary regression data
can be grouped to binomial regression data with sufficiently large number of trials.

To facilitate model comparison for this application we propose to use the sum of weighted squared
residuals. Since in this application it is of special interest to compare the fit for all 11 investigated models
with regard to their spatial effects, we chose as measure Dw the sum of weighted squared residuals over
all postal codes of Munich defined by

Dw(Y) :=

74∑

j=1

nj(p
empir
j − pestim

j )2 , (6.1)

where nj := number of trips in the jth postal code. Empirical probabilities p
empir
j are equal to observed

proportion of trips using individual transport in postal code area j, and the posterior probability estimates

pestim
j are based on the MCMC run, and defined as:

pestim
j :=

1

nj ∗ R

∑

i: j(i)=j

R∑

r=1

h−1(ηir), (6.2)

where h(·) is logit (for Models 1 - 5, 6, 8, 10) or probit (for Models 7, 9, 11) link function, and

ηir =







xt
iαr + bj(i),r for Model 1

xt
iαr + bj(i),r + cm(i),r for Models 2-5

xt

i
α′

r+b′j(i),r

σ′

m(i),r

for Models 6-11 .

In Table 6.6 we present value Dw for all 11 models and the number of parameters required in calculating

Model 1 2 3 4 5 6 7 8 9 10 11

spatial only spatial + group cluster spatial + individual cluster

fixed effects 31 28 28 28 28 26 26 28 28 28 28

spatial effects 74 74 74 74 74 74 74 74 74 74 74

cluster effects 0 74 5 12 5 2 2 4 4 4 4

total number of 105 176 107 114 107 102 102 106 106 106 106

parameters for Dw

Dw 2.35 1.23 0.95 1.02 1.44 1.9 1.7 3.25 2.88 1.84 1.72

Table 6.6: Model Fit Comparison with Regard to Spatial Probabilities

Dw. The total number of parameters required for Dw will be used as a rough measure for the complexity
of the model with regard to the spatial fit. This means we regard these parameters as model parameters
and the spatial dependence parameter, spatial variance and the cluster variance parameters in group
cluster models as hyperparameters belonging to the prior. This approach is consistent with the approach
taken in Spiegelhalter et al. (2002), which point out in their discussion that complexity depends on the
focus of the analysis. We already pointed out the difficulties in using the DIC criterion in binary regression
models. But now we want to add that in setting our focus on assessing the spatial fit, the corresponding
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Figure 6.5: Top right map: Observed Probabilities of Individual Transport Use by Postal Codes in Munich,
Germany; Top left map: Posterior Mean Probability Estimates of Individual Transport Use by Postal
Codes in Munich, Germany for Model 3; Bottom maps: Estimated Spatial Effects b̂j , j = 1, . . . , 74 in
Model 3.

calculations of the complexity measure pD suggested by Spiegelhalter et al. (2002) cannot facilitated
since the corresponding deviances are not available in closed form as pointed out by S.P. Brooks in the
discussion of the paper of Spiegelhalter et al. (2002). According to Table 6.6 the best fit with regard to
spatial probabilities has Model 3 (with group cluster effects). We see that even though the models with
individual cluster effects have a lower model complexity with regard to spatial fit, their goodness of fit as
measured by Dw is worse than Model 3. Model 4 has a comparable Dw value to Model 3 but the model
complexity is higher, therefore we prefer Model 3.

For Model 3 we present a color map with estimated spatial probabilities over postal codes of Munich
(see Figure 6.5, top right map), which coincides quite well with the map showing the empirical spatial
probabilities (for comparison see Figure 6.5, top left map). This indicates graphically that Model 3 has a
reasonably good fit of the data with respect to the spatial resolution. Recall that we presented in Figure
6.1 the map with the number of available trips over postal codes of Munich.
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Figure 6.6: Estimated posterior mean probabilities for using an individual transport in Postal code area
81377 and 5th cluster group for different AGE, while other covariates are set as in Table 6.1 (dotted
lines correspond to 90% credible bounds)

6.4 Model Interpretation

After model fitting and model selection one is interested in what can be learned about the transport
behavior. For this we now investigate the implications of Model 3. First we will estimate these probabilities
when individual or combinations of two covariates change. The remaining covariates in the model are set
to their “most usual values”, corresponding to the modus for categorical covariates and median values
for quantitative covariates. These “most usual values” are presented in Table 6.1. The only quantitative
covariate AGE has a median age of 42 years. Since Model 3 includes spatial effects we have to specify a
postal code for which we estimate these probabilities. We have chosen postal code area 81377, since this
postal code area has a large observed number of trips and the smallest 90% credible interval for its spatial
effect. Finally Model 3 contains group cluster effects with regard to the number of trips a household has
taken. Since each cluster group contains the similar number of individual trips, for our investigations we
chose the last, i.e. the 5th cluster group corresponding to households with ≤ 7 trips (see Table 6.2), which
has the smallest 90% credible interval for its cluster effect c5. Posterior mean estimates for individual
transport probabilities for a fixed covariate vector x in Postal code 81377 (corresponding to b47 and the
5th group cluster can be calculated as

pmean(x) :=
1

R − B

R∑

r=B+1

pr(x) =
1

R − B

R∑

r=B+1

(

exp(xtα̂r + b̂47,r + ĉ5,r)

1 + exp(xtα̂r + b̂47,r + ĉ5,r)

)

, (6.3)

where α̂r, b̂47,r and ĉ5,r are the rth MCMC estimate of α, b47 and c5 respectively. Here R is the total
number of MCMC iterations and B is the burn-in. We can also determine 90% credible bounds which
are defined as 5% and 95% quantiles of the sample {pr(x)}R

r=B+1. For “the most usual” trip, which is
associated with postal code 81377 and 5th cluster group, the estimated posterior mean probability for
taking individual transport is equal to 0.7.

Figure 6.6 gives the estimated posterior mean probability together with 90% credible bounds for
choosing individual transport as age changes in Postal code area 81377 and trips associated with the 5th
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group cluster when the remaining covariates are set to their “most usual value” given in Table 6.1. It
is not very surprising that the probability of using a car increases rapidly to an age of about 35 years,
remains reasonably stable between 35 years and 65 years and decreases slowly after the 65 years. Younger
people have a lower probability to own a car, while older people might prefer public transport options.

We can interpret the effect of age directly, since no interaction terms include age. For almost all
other covariate effects we have to consider covariate combinations corresponding to interaction terms. In
particular note that Model 3 includes 7 interaction terms. In order to interpret effects of the categorical
covariates we plot for each of the 7 interactions the estimated posterior mean probabilities (6.3) for using
individual transport. For brevity reasons we interpret only 2 of the 7 interaction plots. From top left
panel of Figure 6.7 we see that net card users prefer public transport for trips taken alone much more
often than when the trip is taken with others. This is to be expected since a net card can only be used in
general by a single person. In contrast users without a net card take individual transport options much
more often regardless if the trip taken alone or not.

The third left panel shows an interesting behaviorial difference between females and males. During the
day there is a little difference. However during the night women nearly always use individual transport
options, while males choose this option only half as often. An explanation might be that women are afraid
to use public transport at night because of low usage and deserted stops.

This shows that some expected behaviorial patterns can be captured when interactions are allowed
in the model. The remaining panels of Figure 6.7 are interpreted in detail in Section 6.4 of Prokopenko
(2004).

We continue now this subsection with the interpretation of spatial effects. There are 24 postal codes
whose 90% credible intervals do not include zero and therefore are significant (see bottom right panel
of Figure 6.5). We expect that the interpretation of the spatial effects is related to the structure of the
subway (U-Bahn) net and suburban railway (S-Bahn) net. Table 6.7 confirms our assumption in general.
The left column shows the numbers of postal code areas, which have U- or S-stops inside. The right

with U- or S-stops without U- or S-stops inside PLZ
90% CI over 0 2 5

(80333, 81476)
90% CI below 0 11 6

(80999, 80634, 80797,
81243, 80689, 81373)

Table 6.7: Interpretation of spatial effects in context of presence/absence of the U-or S- stops inside of
postal codes; the postal code numbers of 8 untypical postal code areas are given in parentheses.

column contains the numbers of postal code areas without stops. The estimated odds ratio of Table 6.7
is 2·6

11·5 ≈ 0.22, which is clearly below 1 (the 90% confidence interval is [0.044, 1.091]). This confirms that
presence of U- and S-stops are related to significant spatial effects. While there is a general relationship
between significant spatial effects and the presence of the U+S-net in these postal areas, 8 areas do
not follow this pattern (see Table 6.7). These areas should therefore be of special interest to the city
planners, which seek to improve the public transport net, since these areas indicate areas of low/high
public transport usage even after adjustment of trip, person and household specific effects.

We already noted that the estimate of the spatial dependency parameter ψ̂ ≈ −0.5 is negative. This
can be explained by the specific structure of S- and U-Bahn net of Munich, whose lines run from the
center to suburbs like a star. Since the sign of the spatial effects correlates with the presence/absence of
the U-or S- stops, it is not surprising, that especially far from the center the neighboring postal codes
have often spatial effects with opposite signs.

Finally we mention that cluster effects for households with large numbers of trips are positive and
cluster effects for households with few numbers of trips are negative (see Table 6.2 and Figure 6.4). This
implies that households with high mobility needs use a car more often than households with low mobility
needs.
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Figure 6.7: Estimated posterior mean probabilities for using an individual transport in Postal code area
81377 and 5th cluster group for different combinations of the covariates which form the interaction,
while other covariates are set to the “most usual value” given in Table 6.1. Dotted lines correspond to
90% credible bounds.
Left column: WAY ALONE:NET CARD, DAY TYPE:NET CARD, SEX:DAY TIME.
Right column: USAGE:SEX, USAGE:WAY ALONE, USAGE:DAY.TIME.
Bottom: USAGE:DISTANCE.
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7 Discussion: Summary and Discussion

An extended version of the spatial Gaussian CAR model proposed by Pettitt et al. (2002) has been
presented, which allows for spatial independence and the intrinsic CAR model as special cases. In addition,
this model possesses a proper joint distribution and allows for a fast update of the spatial dependence
parameter. As noted before this modification has a more reasonable behavior of the conditional variance
of a spatial effect given all other spatial effects than the model considered in Sun et al. (2000).

In a hierarchical setup this extended CAR model has been used for binary spatial regression data.
To capture additional heterogeneity, cluster effects have been included. In addition to the conventional
modeling of heterogeneity between groups (group cluster effects) through independent random effects,
modeling of heterogeneity within groups (individual cluster effects) has also been considered. A naive
approach for this yields an unidentifiable model. It is shown how the model can be reparametrized to
overcome nonidentifiability. Parameter estimation is facilitated by an MCMC approach. centrality esti-
mates and their credible intervals have asymptotically Separate MCMC algorithms have been developed
for the two hierarchical model classes considered: binary regression with spatial and group cluster effects
and binary regression with spatial and individual cluster effects. For the models with individual cluster
effects, a logit and probit formulation can be used. For a probit link we developed a MCMC algorithm by
using a latent variable representation requiring only a single MH updates. This is faster because of bet-
ter mixing behavior than a corresponding MCMC algorithm based on the logit formulation. All MCMC
algorithms presented in this paper are validated through simulation.

The usefulness of these models has been demonstrated by the application to the mobility study which
motivated the work. We show that this approach is able to detect spatial regions where public transport
options are more/less often used after adjusting for explanatory factors.

For model comparison, we use the sum of weighted squared residuals as a measure of fit and the number
of parameters required for estimating spatial probabilities as a rough measure of model complexity. A
more theoretical based approach is still needed and of current research interest. Alternatives such as
posterior predictive p-values proposed by Gelman et al. (1996) are possible.

Another line of further research is to consider the problem of including interactions between cluster
and spatial effects. For this we suggest to use multivariate CAR models mentioned for example by Pettitt
et al. (2002). The multivariate CAR model is a model for b = (b1, . . . ,bJ)t, where the components
bj = (bj1, . . . , bjM )t, j = 1, . . . , J are M−dimensional vectors instead of scalars, as before. The joint
distribution of the vector b is defined as follows:

b = (b1, . . . ,bJ)t ∼ NJ×M

(
0, τ2(Q−1 ⊗ V )

)
, V =









1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1









∈ R
M×M , (7.1)

where A⊗B stands for Kronecker product of matrices A and B. In particular for the multivariate modified
Pettitt CAR, the conditional distribution is given then as follows (compare with (2.5)):

bj|bj′ , j 6= j′ ∼ NM









φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
(1 + |φ|)τ2

1 + |φ|Nj









1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1

















.

The parameter ρ measures the strength of the cluster dependence. If ρ = 0 then all M components
of vector bj are iid. As before, the parameter φ measures the strength of the spatial dependence. If
φ = 0 then the vectors bj, j = 1, . . . , J are independent and normally distributed with mean zero and
covariance matrix τ2V . Properties of the multivariate CAR model are studied in Pettitt et al. (2002). The
authors use multivariate Gaussian CAR models for a data augmentation approach. In their application
the binary data concerns the presence or absence of two tree varieties represented at 469 sites. Since
the presence of these two kinds of trees can depend on each other, the authors model this data using a
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multivariate CAR model with J = 469 and M = 2 by a threshold mechanism. Gelfand and Vounatsou
(2003) use multivariate extensions of (Sun et al. 2000) proper CAR models for multivariate continuous
and multinomial spatial data. Further, Carlin and Banerjee (2002) use multivariate Gaussian CAR models
in generalized linear mixed models, namely for spatial survival data analysis, where the Gaussian variable
enters in the linear predictor. We now propose to apply the multivariate Gaussian CARs in a new way,
namely for modeling spatial-cluster interactions. More precisely, we propose to model spatial and cluster
effects jointly as some multivariate CAR. As usually, J denotes the number of regions, while M stands
for the number of clusters. Then logits are modeled as follows (compare with (3.2)):

θi := log

(
pi

1 − pi

)

= xt
iα

︸︷︷︸

fixed effect

+ bj(i),m(i)
︸ ︷︷ ︸

spatial and cluster effect

,

where b = (b1, . . . ,bJ)t, bj = (bj1, . . . , bjM )t, j = 1, . . . , J is modeled as a realization of the multivariate
CAR (7.1). In this model we have to estimate one additional parameter ρ, which measures strength of
a space-cluster interaction. The absence of interaction is indicated by ρ = 0. In this case the M vectors
(b1m, . . . , bJm)t, m = 1, . . . ,M are independent identically distributed Gaussian CAR models.

Finally we show how to interpret the modeled interaction present in the multivariate CAR model
(7.1) as a product of spatial and cluster effects. By this we mean that the distribution of the multivari-
ate Gaussian CAR vector b with the variance-covariance matrix τ2(Q−1 ⊗ V ) has the same mean and
covariance matrix as the random vector B := (B11, . . . , BJM )t with components

Bjm = Bj · Am,

where Bj , j = 1, . . . , J and Am,m = 1, . . . ,M are independent random vectors. Here

(B1, . . . , BJ)t ∼ NJ(0, τ2Q−1) is a Gaussian CAR and
A := (A1, . . . , AM )t has zero mean and covariance V.

If in addition for the vector A the following distribution is chosen:

P (Am = 1) = P (Am = −1) = 1
2 ,

P (Am′ = 1|Am = 1) = P (Am′ = −1|Am = −1) = 1+ρ
2 ,

P (Am′ = 1|Am = −1) = P (Am′ = −1|Am = 1) = 1−ρ
2 ,

then the components Bjm, j = 1, . . . , J, m = 1, . . . ,M have the same distribution as the corresponding
spatial-cluster effects bjm, i.e. they are also normal with the same mean and variance. However their joint
distributions are different.

Another topic of research would be to consider the modeling of simultaneous heterogeneity within and
between clusters, which would combine group and individual cluster approaches. In particular we would
assume

cmk ∼ N(cm, σ2
m), cm ∼ N(0, σ2

c ) for m = 1, . . . ,M, k = 1, . . . ,Km.

(compare with 3.2 and 4.1). Here a similar non identifiability problem has to be solved.
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