
Müller, Gernot J.; Czado, Claudia

Working Paper

Stochastic volatility models for ordinal valued time
series with application to finance

Discussion Paper, No. 504

Provided in Cooperation with:
Collaborative Research Center (SFB) 386: Statistical Analysis of discrete structures - Applications in
Biometrics and Econometrics, University of Munich (LMU)

Suggested Citation: Müller, Gernot J.; Czado, Claudia (2006) : Stochastic volatility models for ordinal
valued time series with application to finance, Discussion Paper, No. 504, Ludwig-Maximilians-
Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen,
München,
https://doi.org/10.5282/ubm/epub.1869

This Version is available at:
https://hdl.handle.net/10419/31080

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5282/ubm/epub.1869%0A
https://hdl.handle.net/10419/31080
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Stochastic Volatility Models for Ordinal Valued

Time Series with Application to Finance

Gernot MÜLLER∗, Claudia CZADO∗

Abstract

In this paper we introduce two stochastic volatility models where the response variable takes on

only finite many ordered values. Corresponding time series occur in high-frequency finance when

the stocks are traded on a coarse grid. For parameter estimation we develop an efficient Grouped

Move Multigrid Monte Carlo (GM-MGMC) sampler. We apply both models to price changes of the

IBM stock in January, 2001 at the NYSE. Dependencies of the price change process on covariates

are quantified and compared with theoretical considerations on such processes. We also investigate

whether this data set requires modeling with a heavy-tailed Student-t distribution.
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1 INTRODUCTION

Stochastic volatility (SV) models offer a useful tool of modeling time series with non-constant volatility.

Perhaps the most important field for the application of these models is finance, and in the last years

many different versions of SV models for financial applications appeared, cf. for example Taylor (1994)

or Shephard (1996). Recently, also many continuous-time SV models are discussed, cf. for example

Barndorff-Nielsen and Shephard (2002).

In modeling stock prices one usually decides to model either the log-returns or the price change process

itself. However, when a stock is traded on a coarse grid, for example a 1/16 dollar grid, and when the

range of the stock prices in the data set at hand is not too large, it seems not adequate to consider

the log-returns and to apply a continuous-response model. The reason for this is that the possible

log-returns then occur in clusters. Because of the small price range, these clusters are clearly separated

from each other. This feature of the data set can only be captured by discrete-response models. The

aim of this paper is therefore to suggest a new model for the price change process together with an

efficient estimation procedure. Moreover, we will provide volatility estimates for this process and use

this model to prove empirically some theoretical considerations on the price change process.

Up to now only few discrete-response models have been suggested to model price changes. The approach

by Hausman, Lo, and MacKinlay (1992) applied the common ordered probit model to such data.

Another approach was made by Rydberg and Shephard (2003). They suggested a decomposition model,

where the price change is assumed to be a product of three random variables, namely of a price change

indicator, of the direction and of the absolute value of the price change. Recently, Russell and Engle

(2005) introduced the ACM-ACD model which combines an autoregressive conditional multinomial

model for the price changes and an ACD model for the durations following Engle and Russell (1998).

In their context our models could be viewed as an alternative for the ACM model, since we consider

the durations as given covariates and model the price changes conditioned on these durations and other

covariates.

We introduce two SV models for ordinal valued time series where also exogenous variables are involved.

We call these models ordinal-response stochastic volatility (OSV) models. Whereas the first model

incorporates normally distributed errors, the second model allows for Student-t distributed errors. To

distinguish between these two models, we abbreviate in following the first one by OSV and the second
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one by OSVt.

For fitting the OSV and the OSVt model, we apply Markov chain sampling methods to simulate the

posterior distribution of the parameters and latent variables. In addition, we utilize the method of

Liu and Sabatti (2000) to improve the efficiency of the sampling procedure. In particular, a randomly

drawn element from a transformation group is used to scale some of the parameters and latent variables

in each iteration. We show that the use of this scaling leads to a very satisfying mixing of the MCMC

output. Procedures which involve such grouped moves are called Grouped Move Multigrid Monte Carlo

(GM-MGMC) algorithms.

We apply the OSV and OSVt model to price changes of the IBM stock at the New York Stock Exchange

in January 2001. We detect and quantify the impact of covariates on several levels of the OSV process.

The feature of the data that the observations are irregularly spaced is taken into account by using a

corresponding covariate in the volatility equation. Further we investigate whether the data set requires

modeling with a heavy-tailed Student-t distribution. For this, we use the OSVt model, modify the

GM-MGMC algorithm for the OSVt case, and estimate also the degrees of freedom of the additional

Student-t distribution in the IBM data set.

The paper is organized as follows. In Section 2 we introduce the OSV model (with normally distributed

errors), and construct a GM-MGMC sampler for parameter estimation. In Section 3 we apply the OSV

model to the IBM data set. In Section 4 the OSV model is extended to the OSVt model with Student-t

errors. This OSVt model is then applied to the same IBM data set. Section 5 provides a short summary

and discussion. Since the main application of these models is to high-frequency financial data we finally

refer to Bauwens and Giot (2001) or Dacorogna, Gençay, Müller, Olsen, and Pictet (2001) for a global

overview about models for such data.

2 OSV MODEL AND PARAMETER ESTIMATION

2.1 Model formulation

To cover the main features of the price change process as ordinal response, non-constant volatility, and

dependence on covariates we introduce the Ordinal-response Stochastic Volatility (OSV) Model
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defined by the following three equations:

yt = k ⇔ y∗
t ∈ [ck−1, ck) , (2.1)

y∗
t = x′

tβ + exp(h∗
t /2)ε∗t , (2.2)

h∗
t = µ + z′

tα + φ(h∗
t−1 − µ − z′

t−1α) + ση∗
t , (2.3)

where ε∗t
i.i.d.

∼ N(0, 1) independent of η∗
t

i.i.d.

∼ N(0, 1), k ∈ {1, . . . ,K}, t ∈ {1, . . . , T}, and h∗
0 = µ. xt and

zt are vectors of covariates, for t = 0 we set

z0 := (0, . . . , 0)′. (2.4)

The parameters c1, . . . , cK−1 are cutpoints. For notational convenience we set c0 := −∞ and cK := +∞.

Additionally we define y := (y1, . . . , yT ).

We call the latent variables y∗
t the continuous versions of the observations yt. Given the covariate vector

xt and the latent variable h∗
t , y∗

t is normally distributed with conditional mean x′
tβ and conditional

variance exp(h∗
t ). The log-volatilities h∗

t form an autoregressive process of order one with impact of

another covariate vector zt. Since the expression z′
t−1α is subtracted in the brace in Equation (2.3),

the vector zt has an impact only on h∗
t but not on future log-volatilities h∗

s, s > t.

For reasons of identifiability we set c1 = 0. Furthermore, we have to fix another cutpoint or, alter-

natively, the intercept µ in the log-volatility evolution equation (2.3). Since some of the equations

in Section 2.2, where we develop the GM-MGMC sampler, would not longer be true if we would fix

another cutpoint, we fix µ. Obviously a large value for µ would heavily increase the volatility exp(h∗
t )

and therefore the cutpoints would also become very large. For this we set µ = −0.6 which leads to

non-extreme parameter estimates in the data sets considered later.

In addition to the parameters which appear in the continuous-response SV-model of Chib et al. (2002)

we have to estimate the cutpoints c := (c2, . . . , cK−1), and the latent continuous versions of yt, y∗ :=

(y∗
1 , . . . , y∗

T ). We emphasize that xt =(1, xt1, . . . , xtp)
′ contains an intercept, whereas zt =(zt1, . . . , ztq)

′

does not, since Equation (2.3) already contains the (fixed) intercept µ.

2.2 GM-MGMC algorithm

For estimating the parameters in the OSV model we constructed first an Hybrid MCMC sampler

without any steps to speed up the convergence. However, simulations showed that this Hybrid MCMC
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sampler produces chains which converge very slowly to the region around the true values, especially

for the cutpoints ck and the regression intercept β0. We encountered similar problems already for

the autoregressive ordered probit (AOP) model in Müller and Czado (2005). There we achieved a

fast convergence by an appropriate grouped move step which was inserted after each iteration of the

standard Gibbs sampler.

The idea of grouped move steps is based on the following Theorem in Liu and Sabatti (2000): If Γ is

a locally compact group of transformations defined on the sample space S, L its left-Haar measure,

w ∈ S follows a distribution with density π, and γ ∈ Γ is drawn from π(γ(w))|Jγ(w)|L(dγ), with

Jγ(w) = det (∂γ(w)/∂w), ∂γ(w)/∂w the Jacobian matrix, then w∗ = γ(w) has density π, too (Liu

and Sabatti (2000), Theorem 1). The difficulty in developing a suitable grouped move step is how to

choose the distribution π and the transformation group Γ. Obviously, an improvement in convergence

without too high computational cost can only be expected, when on the one hand the problematic

parameters are transformed and on the other hand the distribution π(γ(x))|Jγ(x)|L(dγ) allows to draw

samples very fast. We develop an appropriate grouped move step in Section 2.2.2.

The GM-MGMC algorithm which we present here consists of three parts. The first and the third part

contain the updates of the Hybrid sampler. In the first part, the regression parameter vector β, the

latent variables y∗
t , t = 1, . . . , T , and the cutpoints c2, . . . , cK−1 are updated. In the second part we apply

a grouped move step to achieve fast convergence. The third part updates the remainung parameters.

Here we use ideas of the MCMC sampler developed in Chib, Nardari, and Shephard (2002), in particular

a state space approximation of the latent process (2.2) and (2.3). This state space approximation is

equivalent to that one used in Chib et al. (2002) and is therefore only briefly discussed in Section 2.2.1.

However, there are two differences to the sampler of Chib, Nardari, and Shephard (2002). First, the SV

model considered there uses the equation h∗
t = µ + z′

tα + φ(h∗
t−1 − µ) + ση∗

t instead of Equation (2.3),

so that the covariate vector zt also has an impact on future log-volatilities h∗
s for s > t. Secondly, we

use a multivariate normal proposal distribution instead of the multivariate t-distribution in Chib et al.

(2002) for the update of α, φ, and σ. Since the updates in the first and third part of the algorithm do

not require any sophisticated ideas, we skip further details on them to the appendix.
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2.2.1 State space approximation and prior distributions

Obviously, Equation (2.2) is equivalent to

log (y∗
t − x′

tβ)
2

= h∗
t + log ε∗2t . (2.5)

The distribution of log ε∗2t can be approximated by a seven-component mixture of normals, as in Kim,

Shephard, and Chib (1998). In particular, log ε∗2t ≈
∑7

i=1 qiu
∗(i)
t where u

∗(i)
t is normally distributed with

mean mi and variance v2
i independent of t. Moreover, the random variables {u

∗(i)
t | t = 1, . . . , T, i =

1, . . . , 7} are independent. The quantity qi denotes the probability that the mixture component i

occurs. These probabilities are also independent of t and are given in Chib et al. (2002), Table 1,

together with the corresponding means and variances. Now let st ∈ {1, . . . , 7} denote the component

of the mixture that occurs at time t and let π(st) denote the prior for st, where π(st = i) = qi. With

ỹ∗
t := log (y∗

t − x′
tβ)

2
, Equation (2.5) leads to the following state space approximation of the latent

process (2.2) and (2.3):

ỹ∗
t = h∗

t + u
∗(st)
t , (2.6)

h∗
t = µ + z′

tα + φ(h∗
t−1 − µ − z′

t−1α) + ση∗
t . (2.7)

We will use this approximation for sampling φ, σ, α, and h∗
t , t = 1, . . . , T . Of course, we now have

to sample in addition the unknown mixture indices st for t = 1, . . . , T . For notational convenience we

define ỹ∗ := (ỹ∗
1 , . . . , ỹ∗

T ), s := (s1, . . . , sT ), and s−t := (s1, . . . , st−1, st+1, . . . , sT ).

For the Bayesian approach we now specify the prior distributions for c, β, h∗
0, α, φ, and σ. We assume

prior independence so that the joint prior density can be written as

π(c,β, h∗
0,α, φ, σ) = π(c)π(β)π(h∗

0)π(α1) · · ·π(αq)π(φ)π(σ).

For β we choose a multivariate normal prior distribution, for h∗
0 the Dirac measure at µ, and for the

remaining parameters uniform priors. In particular,

π(c) = 1l{0<c2<...<cK−1<C}, π(β) = Np+1(β | b0, B0), π(h∗
0) = 1l{h∗

0
=µ},

π(αj) = 1l(−Cα,Cα)(αj), j = 1, . . . , q, π(φ) = 1l(−1,1)(φ), π(σ) = 1l(0,Cσ)(σ),

where C > 0, Cα > 0, and Cσ > 0 are (known) hyperparameters, as well as the mean vector b0 and the

covariance matrix B0.
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2.2.2 Development of an appropriate grouped move step

For the AOP model in Müller and Czado (2005) one succeeded by using the posterior distribution and

the partial scale group for π and Γ, respectively. Here, however, it seems to be impossible to find a

suitable transformation group when π is the full posterior distribution. Therefore we apply the Theorem

of Liu and Sabatti (2000) not to the full posterior distribution, but on a certain conditional one. In

particular, we set

w := (y∗
1 , . . . , y∗

T , c2, . . . , cK−1, β0, . . . , βp) ,

combine the remaining parameters to R := (h∗,α, φ, σ), and let π(w) be the conditional distribution

f(w|y,R). With Ft denoting the observations until time t, i.e. Ft = (y1, . . . , yt), we see that

f(y∗
1 , . . . , y∗

t ,y, c,β,R) = f(yt|y
∗
t , c) f(y∗

t |β,R) f(y∗
1 , . . . , y∗

t−1,Ft−1, c,β,R). (2.8)

Using Equation (2.8) recursively we have the following proportionality for π(w):

π(w) = f(y∗
1 , . . . , y∗

T , c,β|y,R) ∝

[

T
∏

t=1

f(yt|y
∗
t , c)

] [

T
∏

t=1

f(y∗
t |β,R)

]

π(c,β,R).

At this point we now set the mean of the normal prior for β to zero, i.e. π(β) = Np+1(β |0, B0).

Otherwise some of the transformations in the following cannot be made. Since we further assume c, β,

and R to be a priori independent of each other and a noninformative prior for the cutpoints, we get

π(w) ∝

[

T
∏

t=1

1l[cyt−1,cyt
)(y

∗
t )

]

1l{0<c2<...<cK−1<C} exp

{

−
1

2

[

T
∑

t=1

(y∗
t − x′

tβ)2

exp(h∗
t )

+ β′B−1
0 β

]}

.

In order to get an easy sampling distribution we now use the scale group

Γ = {γ > 0 : γ(w) = (γw1, . . . , γwd)}

with γ−1dγ as left-Haar measure. In this case γ has to be drawn from γd−1π(γw), where d denotes

the dimension of w. Since w contains all the latent variables y∗
t , t = 1, . . . , T , the cutpoints ck,

k = 2, . . . ,K − 1, and βj , j = 0, . . . , p, we have d = T +K + p− 1. Therefore we get the proportionality

γd−1π(γw) ∝ γT+K+p−2

[

T
∏

t=1

1l[γcyt−1,γcyt
)(γy∗

t )

]

1l{0<γc2<...<γcK−1<C}

· exp

{

−
1

2

[

T
∑

t=1

(γy∗
t − x′

tγβ)2

exp(h∗
t )

+ γβ′B−1
0 γβ

]}

. (2.9)

For all γ > 0 we have the equivalence

[0 < γc2 < . . . < γcK−1 < C and cK−1 < C] ⇐⇒
[

0 < c2 < . . . < cK−1 < C and γ2 < C2/c2
K−1

]

.
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Since expression (2.9) is considered to be a density for γ (up to a normalizing constant), and since

during all updates the condition 0 < c2 < . . . < cK−1 < C is always fulfilled, this equivalence leads to

the proportionality

1l{0<γc2<...<γcK−1<C} ∝ 1l{0<γc2<...<γcK−1<C}1l{cK−1<C} ∝ 1l{γ2<C2/c2
K−1

}.

Therefore expression (2.9) simplifies to

γT+K+p−2

[

T
∏

t=1

1l[cyt−1,cyt
)(y

∗
t )

]

1l{γ2<C2/c2
K−1

} exp

{

−
1

2
γ2

[

T
∑

t=1

(y∗
t − x′

tβ)2

exp(h∗
t )

+ β′B−1
0 β

]}

∝
(

γ2
)

T+K+p−2

2 exp

{

−
1

2
γ2

[

T
∑

t=1

(y∗
t − x′

tβ)2

exp(h∗
t )

+ β′B−1
0 β

]}

1l{γ2<C2/c2
K−1

}.

If one chooses a prior for c with infinite support, i.e. C = ∞, this expression is proportional to a

Gamma distribution Γ(a, b) for γ2 with parameters

a =
T + K + p

2
and b =

1

2

[

T
∑

t=1

(y∗
t − x′

tβ)2

exp(h∗
t )

+ β′B−1
0 β

]

, (2.10)

where the Γ(a, b) density is given by fΓ(a,b)(x) = baxa−1e−bx/Γ(a), x ≥ 0.

If a finite support for c is chosen, i.e. C < ∞, one gets a Gamma distribution for γ2 with the same

parameters as before, however truncated to (0, C2/c2
K−1). Of course, one can easily sample also from

this truncated Gamma distribution by rejection sampling.

If γ2 is drawn from the (truncated) Gamma distribution with a and b given in (2.10), respectively, the

Theorem by Liu and Sabatti (2000) guarantees that γw =
√

γ2w can be considered as a sample from

π(w) = f(w|y,R), if w itself is a sample from this conditional distribution. Such a sample is given

directly after the updates of β, y∗
t , t = 1, . . . , T , and ck, k = 2, . . . ,K − 1. Therefore we insert the

corresponding grouped move step exactly at this point in each iteration of the basic Hybrid sampler.

Each iteration of the GM-MGMC sampler consists now of the following steps:

Algorithm 1 One iteration of the GM-MGMC sampler for the OSV model

1. MCMC-Step (Part 1), more details in Appendix

• Draw β from (p + 1)-variate normal.

• Draw y∗
t , t = 1, . . . , T, from truncated univariate normals.

• Draw ck, k = 2, . . . ,K − 1, from Unif(lk, rk) where

lk = max{ck−1, max
t=1,...,T

{y∗
t |yt = k}}, rk = min{ck+1, min

t=1,...,T
{y∗

t |yt = k + 1}}.
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Get βcur,y
∗
cur, ccur as current values.

2. GM-Step

Draw γ2 from the (truncated) Γ(a, b) distribution with a and b defined in (2.10), respectively, and

update β∗
cur, y∗

cur, ccur by multiplication with the group element γ =
√

γ2,

βnew ← γβcur, y∗
new ← γy∗

cur, cnew ← γccur.

3. MCMC-Step (Part 2), more details in Appendix

• Compute ỹ∗
t = log(y∗

t − x′
tβ)2 for t = 1, . . . , T .

• Draw st, t = 1, . . . , T, proportional to Pr(st)N(ỹ∗
t |h

∗
t + mst

, v2
st

).

• Draw (α, φ, σ) via Metropolis-Hastings step; use ML-estimates of (α, φ, σ) to find an ade-

quate multivariate normal proposal.

• Draw h∗ in one block using the simulation smoother of De Jong and Shephard (1995).

2.3 Illustration and results of a simulation study

Now we illustrate the performance of the GM-MGMC sampler for a special parameter setting. Here and

in the following we always use the hyperparameters C = ∞, b0 = 0, B0 = diag(10, . . . , 10), Cα = 106,

Cσ = 10, so that the prior distributions are

π(c) = 1l{0<c2<...<cK−1<∞}, π(β) = Np+1(β |0,diag(10, . . . , 10)),

π(αj) = 1l{−106<αj<106}, j = 1, . . . , q, π(φ) = 1l{−1<φ<1}, π(σ) = 1l{0<σ<10}.

We simulate an OSV process of length T = 22000 where we allow for K = 7 response categories. For

the log-volatility Equation (2.3) we use a two-dimensional covariate vector zt. The two components are

exactly the covariates from the IBM data which will be used in Section 3. The simulation parameters

in the log-volatility equation are set to α1 = 0.25, α2 = 0.15, φ = 0.90 and σ = 0.20. Using these

parameters we first simulate the log-volatility process {h∗
t | t = 1, . . . , T}. The covariate vector xt in

the equation for the latent variables y∗
t also has two components. The first corresponds to the intercept

and is always 1, the second is the lagged response yt−1. The simulation parameters are set to β0 = 3.50

and β1 = −0.30. To generate the response, we choose the cutpoints as c2 = 0.90, c3 = 1.80, c4 = 2.75,

c5 = 3.65, and c6 = 4.50. We note that these simulation parameters are chosen close to the estimated

values for the IBM data investigated in Section 3. Therefore, by showing that the GM-MGMC sampler
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works very well for these parameters and covariates, we get a first justification that the GM-MGMC

algorithm works well for the IBM data.

We run the GM-MGMC sampler for 4000 iterations. As starting values for the cutpoints c2, . . . , c6 we

choose 2.0, 4.0, 6.0, 8.0, 10.0, respectively, 0.0 for each of the regression coefficients αj , 0.8 for φ, and

0.3 for σ. Since each iteration starts with the β-update, starting values for βj , j = 0, . . . , p, are not

necessary.

Figure 1 demonstrates the very satisfying behaviour of the GM-MGMC sampler. The chains converge

within about only 100 iterations for the cutpoints as well as for the regression coefficients and the

parameters φ and σ. An interesting effect occurs at iterations 2 to 13 of the parameters α1, α2, φ, and

σ, which do not move during these 11 iterations. This effect is typical for the burn-in period, since

the parameters α1, α2, φ, and σ are drawn by a Metropolis-Hastings step. During the iterations 2 to

13, the proposal values for these parameters were never accepted. However, when the chains of the

other parameters get closer to the true values, the multivariate normal proposal for θ = (α1, α2, φ, σ)

approximates the target density very good, and the chains of the components of θ start to converge.

Beyond iteration 100, the average acceptance rate is about 90%. Since the proposal density for θ is

adapted to the target density very carefully, this leads to a fast mixing in the whole support of the

target density.

We further investigate the empirical autocorrelations for the lags 0 to 200 in the observed chains after

a burn-in period of 1000 iterations for both samplers. As can be seen from Figure 2, the empirical

autocorrelations in the GM-MGMC chains decline very fast.

We conducted a simulation study to assess the accuracy of the posterior mean estimates by the GM-

MGMC sampler. Since the behaviour of the GM-MGMC sampler was always similar to the previous

illustration, we only summarize the results briefly. We considered two settings which differed in the

choice of the covariates, the length of the data, and the values of the simulation parameters. For both

settings the prior distributions from above were used, and 20 data sets were simulated with response

categories 1, . . . , 7. We computed posterior mean estimates by running the GM-MGMC sampler for

4000 iterations each, where the first 1000 iterations were discarded for burn-in. In the first setting the

data sets had length T = 8000. Running the GM-MGMC sampler for such data sets takes about 2.1

seconds per iteration on an UltraSPARC III Cu 900 Mhz processor. In the second setting the length of

the data sets was T = 22000, which is close to the length of the IBM data set of Section 3. For both
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settings the chains converged very rapidly and the autocorrelations in the chains were small. On average

the posterior mean estimates agreed nearly with the true parameter values. The standard deviations

for the posterior mean estimates were very small, so that the posterior mean estimates themselves had

always been close to the true values.

3 APPLICATION TO IBM DATA

3.1 Data description

We investigate price changes of the IBM stock traded at the New York Stock Exchange (NYSE) from

January 9, 2001 to January 25, 2001. In this period we removed data from Mondays and Fridays, and

data before 09:50am and after 03:40pm to exclude data which might exhibit a special behavior. The

minimum price in this period was 91.2500$, the maximum price 111.4375$. The prices and therefore also

the price differences take on only values which are integer multiples of 1/16 US$. Since price changes of

less than −3/16$ and more than +3/16$ hardly occur, we deal with them like price changes of −3/16$

and +3/16$, respectively. Therefore, we only observe seven different price changes. We associate these

price changes to the categories 1, . . . , 7 in a natural way, as can be seen from Table 1. Adding up the

frequencies in Table 1, we see that we have a total of 22689 observations.

The feature of the OSV model that the impact of exogenous variables can be captured allows for a

simple strategy to deal with the irregularly spaced data: We use the covariate TIMEDIFF (the time

which elapses between two subsequent transactions in seconds) to model the impact of different inter-

transaction times. Furthermore we consider the covariate SIZE, i.e. the volume of the transaction.

From the application of the AOP model to another IBM data set in Müller and Czado (2005) we know

that these covariates have an impact on how large a price change is. We use log-transformations of

TIMEDIFF and SIZE for the covariate vector zt in the log-volatility equation. In addition, we center

the covariate vector zt at 0 for reasons of numeric stability. With TIMEDIFFt denoting the time which

elapses between the transaction at time t − 1 and the transaction at time t, and with SIZEt denoting

the transaction volume at time t, we have

zt1 := log(TIMEDIFFt + 1) −
∑22689

k=1 [log(TIMEDIFFk + 1)] /22689,

zt2 := log(SIZEt) −
∑22689

k=1 [log(SIZEk)] /22689.
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Table 2 gives some summary information about these two covariates for the log-volatility equation.

Considering the response one can observe that often a positive price jump is followed by a negative

one and vice versa. This can be taken into account by using the lagged response as covariate in the

model Equation (2.2) since the covariates there have an impact on the mean of the latent variables

y∗
t . Therefore we use xt := (1, yt−1)

′ as covariate vector for Equation (2.2). We note that exploratory

analyses for TIMEDIFF and SIZE show that often higher values of these covariates come along with

higher price changes, but partly upwards and partly downwards. Therefore we do not expect an impact

of these covariates on the mean of the latent variables y∗
t .

3.2 Parameter estimates, volatility estimates, and conclusions

With the range of the covariate values in mind, we decided to use hyperparameters which correspond

to the prior distributions summarized in Table 3. We note explicitly that we must set b0 (mean of

β-prior) to 0 to be able to apply the grouped move step in the GM-MGMC algorithm (cf. Section

2.2.2). We checked out by using other hyperparameter values that the posterior estimates are not very

prior-sensitive. This also can be expected because of the large number of observations.

We run the GM-MGMC sampler from Section 2.2 for 4000 iterations and discard the first 1000 iterations

for burn-in. The results are summarized in Table 4. It shows the posterior mean estimates for the

parameters of interest together with their corresponding estimated standard deviations and 90% credible

intervals.

Since the 90% credible intervals for β0, β1, α1, and α2 are far away from zero, we conclude that

the intercept, the lagged observation yt−1, log(TIMEDIFFt + 1), and log(SIZEt) all have a significant

impact on the new observation yt. Also the credible intervals for the autoregressive parameter φ and the

standard deviation σ are far away from zero. The estimate 0.9061 for φ shows the high dependence of

the log-volatility h∗
t on the previous log-volatility h∗

t−1, it is, however, still away from the nonstationary

case φ = 1.

The estimated posterior marginal densities look all like densities from normal distributions and are

therefore not shown here. The estimated autocorrelations in the chains produced by the GM-MGMC

sampler after the burn-in period of 1000 iterations decline quite fast for all parameters. They look like

the GM-MGMC-autocorrelations in Figure 2 and are therefore also not shown here. This justifies that

11



no subsampling is required to estimate the standard errors of the estimates.

The negative sign of the estimate −0.3073 for β1 and the positive signs of the estimates 0.2599 for α1

and 0.1511 for α2 lead to the following qualitative conclusions:

• Positive price changes are often followed by negative ones and vice versa (this confirms what we

can see directly from the data).

• The more time elapses between two subsequent transactions, the higher the (log-) volatility is, or,

equivalently, the more time elapses, the higher the probability for a big price change is.

• The more stocks are traded, the higher the (log-) volatility is, or, equivalently, the more stocks

are traded, the higher the probability for a big price change is.

These results agree with many publications about theoretical results for the price change process.

Diamond and Verrecchia (1987) point out, that periods without transactions can be considered as a

hint for the existence of bad news. Because of the prohibition of short-selling many investors cannot

use bad information by selling. Therefore, longer periods between consecutive transactions usually lead

to a higher volatility of the price change process. Following Easley and O’Hara (1987), well informed

investors usually buy or sell large amounts of stocks in each transaction to take maximal advantage

of their informations. Therefore, noninformed market participants associate large transaction volumes

with existence of new information and trade themselves. Hence for large transaction volumes one can

expect higher volatilities. The same dependence between market informations, transaction volumes,

and expected volatility is derived by Tauchen and Pitts (1983).

Using the posterior mean estimates for α1 and α2 we can compare the impacts of TIMEDIFF and

SIZE on the log-volatilities. From Table 2 we know that the time difference always lies between 0

and 116 seconds. For each value in this interval we compute the corresponding transformation z·1 (cf.

Section 3.1) and multiply the resulting value by the posterior mean estimate 0.2599 for α1. The same is

done for the transaction volume with range 100 to 180000 stocks. Here the transformed values z·2 are

multiplied by the estimate 0.1511 for α2. The result can be seen in Figure 3. For the extreme values

TIMEDIFF = 0 and TIMEDIFF = 116, the estimated impacts are about −0.51 and 0.73, respectively.

The corresponding estimates for the covariate SIZE are −0.32 and 0.81. We conclude that the covariate

TIMEDIFF affects the log-volatility slightly more than the covariate SIZE. Moreover, the impact of

both covariates is quite large if one takes the posterior mean estimate 0.2230 for σ into account.
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From Section 2.1 we know that in the OSV model the log-volatility is not determined uniquely until

the additive constant µ is fixed. For computational reasons we fixed this parameter to = −0.6, but

in this context it may be more intuitive to consider log-volatilities with mean zero. Therefore we

now define the normalized volatility at time t by vn
t := exp {h∗

t − µ} = exp {h∗
t + 0.6} since the

covariates in the log-volatility equation were also centered at zero. In each iteration i the GM-MGMC

sampler produces estimates ĥ∗
t,i of h∗

t , t = 1, . . . , 22689, which can be used to get estimates v̂n
t for the

normalized volatilities vt. Figure 4 shows the IBM stock prices and the estimated normalized volatilities

on January 9, 09:50am to 03:40pm.

4 THE OSVt MODEL

Now we replace the normal distribution of the errors ε∗t in the OSV model by a Student-t distribution

with ν degrees of freedom. Using the decomposition of a t-distributed random variable in a product of

a normally and a Gamma-distributed random variable we define the Ordinal-response Stochastic

Volatility Model with t-distributed errors (OSVt Model) by the following three equations:

yt = k ⇔ y∗
t ∈ [ck−1, ck) , (4.1)

y∗
t = x′

tβ + exp(h∗
t /2)λ∗

t
−1/2ε∗t , (4.2)

h∗
t = µ + z′

tα + φ(h∗
t−1 − µ − z′

t−1α) + ση∗
t , (4.3)

where ε∗t
i.i.d.

∼ N(0, 1) independent of λ∗
t

i.i.d.

∼ Γ(ν/2, ν/2). In all other respects we assume the same

conditions as for the OSV model. In addition to the parameters and variables to estimate in the OSV

model, now the variables λ∗
t and the parameter ν have to be estimated. For notational convenience we

define λ∗ := (λ∗
1, . . . , λ

∗
T ) and λ∗

−t := (λ∗
1, . . . , λ

∗
t−1, λ

∗
t+1, . . . , λ

∗
T ).

4.1 GM-MCMC sampler for OSVt model

Since the OSVt model differs only slightly from the OSV model, the derivation of the updates is

completely analogous to Section 2.2. Mostly, one has only to replace the term exp(h∗
t ) by exp(h∗

t )λ
∗
t
−1.

Again one can use a state space approximation of Equations (4.2) and (4.3). However, in contrast to the

OSV model, here one must compute ỹ∗
t := log(y∗

t − x′
tβ)2 + log λ∗

t , t = 1, . . . , T . Using this definition

of ỹ∗
t the updates of the mixture indices st, the complete Metropolis-Hastings step for the joint update

of α, φ, and σ, and the h∗-update can be done exactly as in the OSV case.
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In addition we now need an update for the degrees of freedom ν of the t-distribution, and updates for the

variables λ∗
t , t = 1, . . . , T . For ν we assume a uniform prior on the set [1, 127]. Since the t-distribution

becomes more and more similar to the normal distribution as ν increases, the maximal value 127 for

ν seems to be sufficiently large. Following the model definition, the variables λ∗
t are assumed a priori

independent of each other and Γ(ν/2, ν/2)-distributed. Moreover, we assume ν and λ∗
t , t = 1, . . . , T , a

priori independent of all other parameters and variables.

Again defining θ := (α, φ, σ), one can update ν and λ∗
t , t = 1, . . . , T , by first drawing ν from

f(ν |y, c,y∗,β,h∗,θ) and then sampling λ∗
t , t = 1, . . . , T , from f(λ∗

t |y, c,y∗,β,h∗,λ−t, ν,θ). We

draw ν by a Metropolis-Hastings step. As proposal distribution we use a truncated version of a

Gamma-distribution. This choice has some computational advantages. Moreover, suitably chosen

hyperparameters for this Gamma-distribution lead usually to acceptance probabilities of about 30 to

60 percent on average. As can be derived quite easily, the variables λ∗
t , t = 1, . . . , T , have to be drawn

from Gamma(c, dt)-distributions, where c = (ν + 1)/2 and dt = (ν + (y∗
t − x′

tβ)2/ exp(h∗
t ))/2. The

derivation of the GM step for the OSVt model is again analoguous to the OSV case. One uses the

same vector w := (y∗
1 , . . . , y∗

T , c2, . . . , cK−1, β0, . . . , βp), but has now the following vector of remaining

parameters: R := (h∗,λ∗,α, φ, σ). Again one considers the conditional distribution f(w|y,R). The

scale group which was used as transformation group in the OSV case leads here also to a (truncated)

Gamma-distribution for γ2, however, with parameters

a =
T + K + p

2
and b =

1

2

[

T
∑

t=1

(y∗
t − x′

tβ)2λ∗
t

exp(ht)
+ β′B−1

0 β

]

. (4.4)

The GM-MGMC sampler for the OSVt model therefore consists of 3 MCMC parts and the GM step

which must be inserted after the first MCMC part. Whereas for part 2 one switches to the state space

approximation, parts 1 and 3 use the original model equations. The steps of one iteration of the GM-

MGMC sampler are summarized in the following Algorithm 2.

Algorithm 2 One iteration of the GM-MGMC sampler for the OSVt model

1. MCMC-Step (Part 1)

Draw β from (p + 1)-variate normal. Draw y∗
t , t = 1, . . . , T, from truncated univariate normals.

Draw ck, k = 2, . . . ,K − 1, from Unif(lk, rk). Get βcur,y
∗
cur, ccur as current values.
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2. GM-Step

Draw γ2 from the (truncated) Γ(a, b) distribution with a and b defined in (4.4), respectively, and

update β∗
cur, y∗

cur, ccur by multiplication with the group element γ =
√

γ2,

βnew ← γβcur, y∗
new ← γy∗

cur, cnew ← γccur.

3. MCMC-Step (Part 2)

Compute ỹ∗
t = log(y∗

t − x′
tβ)2 + log λ∗

t . Draw st proportional to Pr(st)N(ỹ∗
t |h

∗
t + mst

, v2
st

), for

t = 1, . . . , T,. Draw (α, φ, σ) via Metropolis-Hastings step; use ML-estimates of (α, φ, σ) to find

an adequate multivariate normal proposal. Draw h∗ in one block using the simulation smoother

of De Jong and Shephard (1995).

4. MCMC-Step (Part 3)

Draw ν by a Metropolis-Hastings step; use an ML-estimate of ν to find an adequate truncated

Gamma proposal. Draw λ∗
t , t = 1, . . . , T from Gamma distributions.

We note that one can use also modified versions of this GM-MGMC sampler, since not all parameters

need to be updated in each iteration. For example, the parameter ν is used only for modeling the

tail-behavior of the error distribution for the latent variables y∗
t . Therefore one can omit the update of

ν until the other chains have moved away from the starting values towards the area around the true

values. Since ν remains unchanged under the GM-step one can use the same GM-step as in the original

sampler.

4.2 Simulation study

Here we investigate the accuracy of the posterior mean estimates for the parameter ν in the OSVt

model. We do this by two simulation settings where the simulation parameters for φ, σ, β0, β1, α1, α2,

and c2, . . . , c6 are identical to that chosen for the illustration in Section 2.3. Also the used covariates

from the IBM data set are the same as well as the prior distributions. For ν we use in both settings

the starting value 10. In the first simulation setting we choose ν = 15, in the second ν = 100. We

simulate 20 data sets for both parameter settings, each of length T = 22000. We compute the posterior

mean estimates by running the GM-MGMC sampler for 4000 iterations each, discarding the first 1000

for burn-in.

Table 5 gives the means and standard deviations of the posterior mean estimates across the 20 samples
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for the Settings 1 and 2, respectively. In Setting 1, where we chose the value 15 for ν, the mean of the

posterior mean estimates is about 14.9 with standard deviation 2.4. Hence ν was always estimated quite

well, which is also true for the other parameters. In Setting 2, where the true value for ν was 100, the

mean of the posterior mean estimates is 98.3. Therefore the GM-MGMC sampler estimates ν well on

average. However, the standard deviation of about 8.3 is quite large. This may be a consequence of the

fact that the t-distribution becomes more and more similar to the normal distribution when the degrees

of freedom increase. Therefore one needs much more data to be able to distinguish clearly between

t-distributions with high degrees of freedom. The other parameters are all estimated quite well again.

We mention that for Setting 1 the chain for ν moves around more slowly than for Setting 2, however,

fast enough to move several times around the whole support of the posterior distribution within 3000

iterations.

4.3 Application to IBM data

Now we answer the question whether our IBM high-frequency data set in fact requires modeling with

the heavier tailed t-distributed errors. For this we run the GM-MGMC sampler for the OSVt model

for 4000 iterations and discard again the first 1000 for burn-in. From the simulations in Section 4.2 we

know that this leads to quite accurate estimates. The results are summarized in Table 6.

It shows the posterior mean estimates together with their corresponding estimated standard deviations

and 90% credible intervals for all parameters of interest. Comparing these values to the results for the

OSV model in Table 4, we see that the posterior mean estimates for the OSV model are nearly identical

to the posterior mean estimates in the OSVt model. The posterior mean estimate for the additional

parameter ν is about 107. Since a t-distribution with 107 degrees of freedom is already quite close

to a normal distribution, we conclude that the usage of t-distributed errors is not really necessary for

our IBM data. Therefore we prefer the OSV model. Figure 5 shows an histogram of the estimates for

the parameter ν in iterations 1001 to 4000. It suggests that the marginal posterior for ν is unimodal,

but not symmetric, since the chosen prior does not allow for values greater than 127. Furthermore,

Figure 5 shows the estimated autocorrelations in the ν-chain after iteration 1000. They decline very

fast, therefore no subsampling is required to estimate the standard error of ν.
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5 SUMMARY AND DISCUSSION

In this paper we introduced two stochastic volatility models for time series with an ordinal response

where covariates are involved on two different levels of the process. Whereas in the first model the errors

in the latent variable equation are assumed to be normal, the second model allows here for the heavier-

tailed Student-t distribution. We developed a GM-MGMC sampler, using a scale transformation group,

whose elements operate on the random samples of a certain conditional distribution. This GM-MGMC

sampler shows a very satisfying behavior. We used the GM-MGMC sampler to detect and to quantify

significant covariates for the price changes of the IBM stock. The logarithms of the elapsed time between

two subsequent transactions and of the transaction volume are important covariates for the volatility

process. The results confirm theoretical results for the price change process, for example results by

Diamond and Verrecchia (1987), Easley and O’Hara (1987), and Tauchen and Pitts (1983). The lagged

observation plays a role for the means of the price changes. Further we investigated whether the price

changes in the IBM data set require modeling using the heavy-tailed Student-t distribution. However,

the analysis showed that at least for this data set the use of a normal distribution is sufficient. The

data analysis can be extended in the direction that other covariates are investigated in addition. In

particular, one can look for temporal effects, e.g. indicators for opening and closing periods, or some

lagged covariates, e.g. the transaction volume of several transactions before. Another extension of this

work could be to combine the OSV model with an ACD model for the durations in a similar way as it

was done in Russell and Engle (2005) for the ACM and the ACD model.
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APPENDIX: GM-MGMC UPDATES

A.1 Regression parameter, latent variable and cutpoint parameter update

Given β and h∗
t , the latent variable y∗

t is normally distributed with mean x′
tβ and variance exp(h∗

t ).

Since f(β|y, c,y∗,h∗,α, φ, σ) ∝
∏T

t=1 f(y∗
t |β, h∗

t ) · π(β) and since β has the prior Np+1(b0, B0) we

conclude that β|y, c,y∗,h∗,α, φ, σ ∼ Np+1(b, B) where

B :=

(

T
∑

t=1

xtx
′
t

exp(h∗
t )

+ B−1
0

)−1

and b := B

(

T
∑

t=1

xty
∗
t

exp(h∗
t )

+ B−1
0 b0

)

.

Furthermore, it can be seen directly that the latent variable y∗
t , t = 1, . . . , T , must be drawn from the

univariate truncated normal distribution N[cyt−1,cyt)
(y∗

t |x
′
tβ, exp(h∗

t )). Since, for k ∈ {2, . . . ,K − 1},

f(ck|y, c−k,y∗,β,h∗,α, φ, σ) ∝

[

T
∏

t=1

f(yt|y
∗
t , c)

]

π(c) ∝

[

T
∏

t=1

1l[cyt−1,cyt)
(y∗

t )

]

1l{0<c2<...<cK−1<C},

we conclude that the full conditional for ck is uniform on the interval (lk, rk), where

lk := max

{

ck−1, max
t=1,...,T

{y∗
t |yt = k}

}

, (A.1)

rk := min

{

ck+1, min
t=1,...,T

{y∗
t |yt = k + 1}

}

. (A.2)

A.2 Mixture index update, (α, φ, σ) joint update, and log-volatility update

Here we compute first ỹ∗
t = log(y∗

t −x′
tβ)2, t = 1, . . . , T , and use the state space approximation (2.6) and

(2.7) of the latent process. Since the mixture indices {st, t = 1, . . . , T} are conditionally independent,

we have on the one hand

f(st|ỹ
∗,h∗, s−t,α, φ, σ) = f(st|ỹ

∗
t , h∗

t ) ∝ f(st, ỹ
∗
t , h∗

t ) = f(ỹ∗
t |h

∗
t , st)π(st).

On the other hand, given h∗
t and st, ỹ∗

t is normally distributed with mean h∗
t +mst

and variance v2
st

. We

conclude that f(st|ỹ
∗,h∗, s−t,α, φ, σ) ∝ N(ỹ∗

t |h
∗
t + mst

, v2
st

)π(st). For the update of st we therefore

first evaluate the seven densities N(h∗
t + mi, v

2
i ), i = 1, . . . , 7, each at the point ỹ∗

t , resulting in the

values rt,i := (2πv2
i )−1/2 exp{−(ỹ∗

t − h∗
t − mi)

2/(2v2
i )} and then draw st ∈ {1, . . . , 7} according to the

probabilities

f(st = i | ỹ∗,h∗, s−t,α, φ, σ) =
rt,i qi

∑7
k=1 rt,k qk

, i = 1, . . . , 7.

Now define θ := (α′, φ, σ)′. Since f(h∗,θ|ỹ∗, s) = f(h∗|θ, ỹ∗, s)f(θ|ỹ∗, s) we will draw a sample from

f(θ|ỹ∗, s) and then use this sample for a block update of h∗.
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First we consider the sampling from f(θ|ỹ∗, s) which is done by a Metropolis-Hastings (MH) step. Let

θ• denote the current value of θ. The MH step requires the specification of an appropriate proposal

density q( · ) for θ, to sample a proposal θ◦ from this proposal density, the evaluation of the target

density f( · |ỹ∗, s) and of the proposal density q( · ) both at θ◦ and θ• (at least up to a normalizing

constant), finally accepting the proposal θ◦ with probability

α(θ•,θ◦|ỹ∗, s) = min

{

f(θ◦|ỹ∗, s)

f(θ•|ỹ∗, s)

q(θ•)

q(θ◦)
, 1

}

. (A.3)

First we show how f(θ|ỹ∗, s) can be evaluated up to a normalizing constant. Since

f(θ|ỹ∗, s) = d · f(ỹ∗
1 |θ, s)

[

T
∏

t=2

f(ỹ∗
t |ỹ

∗
1 , . . . , ỹ∗

t−1,θ, s)

]

π(θ), (A.4)

where d ∈ R is some unknown normalizing constant independent of θ, we can derive that log f(θ|ỹ∗, s)−

log d = log g(θ|ỹ∗, s) + log π(θ), where

g(θ|ỹ∗, s) := f(ỹ∗
1 |θ, s)

[

T
∏

t=2

f(ỹ∗
t |ỹ

∗
1 , . . . , ỹ∗

t−1,θ, s)

]

. (A.5)

To evaluate g(θ|ỹ∗, s) we apply the prediction error decomposition

log g(θ|ỹ∗, s) = −
T

2
log(2π) −

1

2

T
∑

t=1

log ft|t−1 −
1

2

T
∑

t=1

e2
t

ft|t−1
. (A.6)

The values et and ft|t−1 are given by the Kalman recursions. Recall, that since π(h∗
0) = 1l{h∗

0
=µ} and

since z0 = (0, . . . , 0)′ (cf. Equation (2.4)), h∗
1 given h∗

0 is normally distributed with mean h1|0 := µ+z′
1α

and variance p1|0 := σ. These quantities serve as initial values for the following recursions:

yt|t−1 := mst
+ ht|t−1, et := ỹ∗

t − yt|t−1,

ft|t−1 := pt|t−1 + v2
st

, nt := pt|t−1f
−1
t|t−1,

ht|t := ht|t−1 + ntet, pt|t := (1 − nt)pt|t−1,

ht+1|t := µ + z′
t+1α + φ(ht|t − µ − z′

tα), pt+1|t := φ2pt|t + σ2.

(A.7)

Therefore, the target density can be evaluated at θ◦ and θ• up to the normalizing constant d, which,

of course, cancels down in the first fraction of expression (A.3).

As proposal density we take a (q+2)-dimensional normal distribution for θ where the mean is determined

by the maximum likelihood estimator m of the target density f(θ|ỹ∗, s). As covariance matrix W we

take the negative inverse of the Hessian matrix V of [log g(θ|ỹ∗, s) + log π(θ)] at m:

m := arg max
θ

[log g(θ|ỹ∗, s) + log π(θ)] , W := −V −1.

m is found by numerical minimization of − [log g(θ|ỹ∗, s) + log π(θ)].

We now summarize the Metropolis-Hastings step to draw a sample from f(θ|ỹ∗, s):
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1. Find the maximum likelihood estimator m of [log g(θ|ỹ∗, s) + log π(θ)] using the Nelder-Mead

algorithm where log g(θ|ỹ∗, s) is evaluated running the Kalman recursions (A.7) and applying the

prediction error decomposition (A.6).

2. Approximate the Hessian matrix V at m and calculate W = −V −1.

3. Draw a proposal θ◦ from the (q + 2)-dimensional normal distribution q(θ) = Nq+2(θ|m,W ).

4. Accept the proposal θ◦ with probability

α(θ•,θ◦|ỹ∗, s) = min

{

g(θ◦|ỹ∗, s)

g(θ•|ỹ∗, s)

π(θ◦)

π(θ•)

q(θ•)

q(θ◦)
, 1

}

.

If θ◦ is rejected, retain θ• as the next draw.

Finally we consider the block update of h from f(h|θ, ỹ∗, s). Let θ• = (α•′, φ•, σ•)′ denote the

sample from the MH step before. Sampling can be done using the simulation smoother of De Jong and

Shephard (1995). It requires running the Kalman recursions (A.7) with α = α•, φ = φ•, and σ = σ•,

storing et, ft|t−1 and nt for each t = 1, . . . , T , and finally running the following backward recursions for

t = T, . . . , 1. Initially set rT = 0 and mT = 0.

dt := f−1
t|t−1 + φ2n2

t mt, bt := f−1
t|t−1et − φntrt,

qt := v2
st
− v4

st
dt, κt ∼ N(0, qt),

at := v2
st

(dt − φ2ntmt), rt−1 := f−1
t|t−1et + (φ − φnt)rt − atq

−1
t κt,

mt−1 := f−1
t|t−1 + (φ − φnt)

2mt + a2
t q

−1
t , ξt := ỹ∗

t − mst
− v2

st
bt − κt.

Now the vector (ξ1, . . . , ξT ) can be considered as a sample from the distribution f(h∗
1, . . . , h

∗
T |θ, ỹ∗, s).
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price diff. ($) ≤ -3/16 -2/16 -1/16 0 1/16 2/16 ≥ 3/16

response yt 1 2 3 4 5 6 7

frequency 151 1053 4886 10333 5222 860 184

Table 1: Price differences and corresponding response categories together with observed frequencies.

TIMEDIFF (seconds) z·1 SIZE (stocks) z·2

min 0 -1.9563 100 -2.1339

avg 8.3357 0.0000 2331 0.0000

max 116 2.8059 180000 5.3616

Table 2: Minimum, average, maximum for the two original covariates and their transformations z·1, z·2.

Parameter Prior distribution

c Uniform on {(c2, . . . , c6) | 0 < c2 < . . . < c6 < ∞}

β N2(0,diag(10, 10))

h∗
0 Dirac(−0.6)

α1 Uniform on {−100 < α1 < 100}

α2 Uniform on {−100 < α2 < 100}

φ Uniform on {−1 < φ < 1}

σ Uniform on {0 < σ < 10}

Table 3: Prior distributions of parameters.

estimate std.err. 90% cred.int. estimate std.err. 90% cred.int.

φ 0.9061 0.0119 (0.8853,0.9248) c2 0.9332 0.0137 (0.9102,0.9554)

σ 0.2230 0.0194 (0.1922,0.2570) c3 1.8248 0.0208 (1.7894,1.8587)

β0 3.5152 0.0463 (3.4402,3.5908) c4 2.7609 0.0310 (2.7087,2.8113)

β1 -0.3073 0.0070 (-0.3188,-0.2962) c5 3.6893 0.0443 (3.6140,3.7609)

α1 0.2599 0.0182 (0.2298,0.2912) c6 4.5562 0.0636 (4.4500,4.6623)

α2 0.1511 0.0090 (0.1363,0.1665)

Table 4: Posterior mean estimates and corresponding estimated standard deviations and 90% posterior

credible intervals for parameters in OSV model.
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true mean std. dev. true mean std. dev.

φ 0.90 0.8919 0.0171 c2 0.90 0.9129 0.0178

σ 0.20 0.2152 0.0304 c3 1.80 1.8169 0.0360

β0 3.50 3.5181 0.0391 c4 2.75 2.7788 0.0343

β1 -0.30 -0.3010 0.0069 c5 3.65 3.6740 0.0468

α1 0.25 0.2540 0.0138 c6 4.50 4.5303 0.0552

α2 0.15 0.1549 0.0100 ν 15 14.8781 2.4203

φ 0.90 0.8928 0.0164 c2 0.90 0.9167 0.0192

σ 0.20 0.2131 0.0297 c3 1.80 1.8276 0.0384

β0 3.50 3.5214 0.0524 c4 2.75 2.7741 0.0395

β1 -0.30 -0.3022 0.0075 c5 3.65 3.6735 0.0525

α1 0.25 0.2517 0.0136 c6 4.50 4.5405 0.0670

α2 0.15 0.1545 0.0098 ν 100 98.2844 8.3142

Table 5: Means and standard deviations of posterior mean estimates across the 20 samples in Setting 1

(above) and Setting 2 (below).

estimate std.err. 90% cred.int. estimate std.err. 90% cred.int.

φ 0.9133 0.0087 (0.8984,0.9275) c2 0.9489 0.0095 (0.9333,0.9641)

σ 0.2066 0.0136 (0.1851,0.2294) c3 1.8548 0.0163 (1.8280,1.8812)

β0 3.5388 0.0385 (3.4749,3.6016) c4 2.7794 0.0243 (2.7381,2.8183)

β1 -0.3082 0.0064 (-0.3181,-0.2976) c5 3.7217 0.0329 (3.6679,3.7759)

α1 0.2584 0.0172 (0.2301,0.2861) c6 4.6116 0.0476 (4.5351,4.6868)

α2 0.1482 0.0078 (0.1362,0.1615) ν 106.81 15.4530 (77,126)

Table 6: Posterior mean estimates and corresponding estimated standard deviations and 90% posterior

credible intervals for parameters in OSVt model.
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Figure 1: First 1000 iterations of chains produced by the GM-MGMC sampler. The horizontal thin

lines indicate the true values.
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Figure 2: Autocorrelations of chains produced by the GM-MGMC sampler.
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Figure 3: Estimated impacts of TIMEDIFF and SIZE on the log-volatilities h∗
t . The estimated joint

impact of both covariates is given by adding these individual impacts.
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Figure 4: IBM stock prices and estimated normalized volatilities on January 9, 2001.
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Figure 5: Histogramm for estimates of ν for iterations 1001 to 4000 (left). Autocorrelation of chain for

ν after iteration 1000 (right).
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