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Structured additive regression for multicategorical
space-time data: A mixed model approach

Thomas Kneib and Ludwig Fahrmeir

Department of Statistics, University of Munich.

May 27, 2004

Abstract

In many practical situations, simple regression models suffer from the fact that
the dependence of responses on covariates can not be sufficiently described by a
purely parametric predictor. For example effects of continuous covariates may be
nonlinear or complex interactions between covariates may be present. A specific
problem of space-time data is that observations are in general spatially and/or tem-
porally correlated. Moreover, unobserved heterogeneity between individuals or units
may be present. While, in recent years, there has been a lot of work in this area deal-
ing with univariate response models, only limited attention has been given to models
for multicategorical space-time data. We propose a general class of structured addi-
tive regression models (STAR) for multicategorical responses, allowing for a flexible
semiparametric predictor. This class includes models for multinomial responses with
unordered categories as well as models for ordinal responses. Non-linear effects of
continuous covariates, time trends and interactions between continuous covariates
are modelled through Bayesian versions of penalized splines and flexible seasonal
components. Spatial effects can be estimated based on Markov random fields, sta-
tionary Gaussian random fields or two-dimensional penalized splines.

We present our approach from a Bayesian perspective, allowing to treat all func-
tions and effects within a unified general framework by assigning appropriate priors
with different forms and degrees of smoothness. Inference is performed on the basis
of a multicategorical linear mixed model representation. This can be viewed as pos-
terior mode estimation and is closely related to penalized likelihood estimation in a
frequentist setting. Variance components, corresponding to inverse smoothing pa-
rameters, are then estimated by using restricted maximum likelihood. Numerically
efficient algorithms allow computations even for fairly large data sets. As a typical
example we present results on an analysis of data from a forest health survey.

Key words: Multicategorical space-time data, generalized linear mixed models, restricted
maximum likelihood, stationary Gaussian random fields, P-splines

1 Introduction

Space-time regression data consist of repeated observations on a response variable and
a set of covariates, where, in addition, the spatial location of each unit in the sample is
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given. These locations can be either exact locations, consisting of longitude and latitude,
or locations on a (possibly irregular) spatial array.

In our application, we will analyze data from a forest health survey, where for several years
the damage state of a population of trees is measured in ordered categories. In addition
to a set of continuous and categorical covariates, the location of each tree is available
on a lattice map. A typical approach to deal with such data, ignoring the spatial and
temporal correlations, are parametric cumulative regression models, compare for example
Fahrmeir and Tutz (2001), ch. 3. However, due to the space-time structure of the data,
we have to take temporal as well as spatial correlations into account. Moreover, effects
of continuous covariates may be non-linear or complex interactions between covariates
might be present. Within a parametric modelling framework, it is virtually impossible to
include these aspects.

In recent years, models for space-time data with univariate responses have gained con-
siderable attention. Based on mixed model representations, Lin and Zhang (1999) used
smoothing splines and random effects to model longitudinal data with responses from
a univariate exponential family and Kammann and Wand (2003) introduced geoadditive
models for Gaussian responses based on stationary Gaussian random fields and P-Splines.
A more general empirical Bayes approach, extending generalized additive mixed models
and geoadditive models, is presented in Fahrmeir et al. (2004). A fully Bayesian approach
allowing for models of comparable complexity is described in Fahrmeir and Lang (2001a).

In contrast, the literature dealing with models for multicategorical space-time data is
rather limited (compare Fahrmeir and Lang (2001b) and Brezger and Lang (2003) for a
notable exception based on latent Gaussian utilities and Markov Chain Monte Carlo sim-
ulation techniques). We propose a general class of structured additive regression models
(STAR) for multicategorical responses, allowing for a flexible semiparametric predictor.
This class includes models for multinomial responses with unordered categories as well as
models for ordinal responses with ordered categories. Our approach is presented from a
Bayesian perspective, allowing to treat all functions and effects within a unified general
framework by assigning appropriate priors with different forms and degrees of smoothness.
This fact greatly facilitates implementation since all effects are treated in a unified way
conceptually and also allows to present formulae in a compact way. Note, however, that
there is a very close connection to penalized likelihood estimation, with penalty terms in
the frequentist setting corresponding to log-priors in the Bayesian approach.

Smooth effects of continuous covariates are modelled by P-splines, introduced by Eilers
and Marx (1996) in a frequentist setting and transferred to a full Bayesian formulation by
Lang and Brezger (2003). P-splines can also be used to model a flexible time trend. An
alternative are more general autoregressive priors, including random walks or flexible sea-
sonal components, to capture temporal correlations of a different form. Brezger and Lang
(2003) extend P-splines to two dimensions using tensor products of one dimensional B-
spline basis functions together with smoothness priors common in spatial statistics. This
allows to model interactions between continuous covariates in a rather flexible way. An-
other, less flexible possibility to model interactions are varying coefficient models (Hastie
and Tibshirani 1993). These are more commonly used if one of the interacting variables
is categorical.

For the specification of the spatial effect we distinguish two different situations: The lo-
cations can be available exactly in terms of longitude and latitude or observations may be
clustered in connected geographical regions. If exact locations are available, we propose to
use two-dimensional P-splines to model the spatial effect. As an alternative we consider
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stationary Gaussian random fields, popular in geostatistics. If the geographical informa-
tion is not given exactly, but observations can be clustered in connected geographical
regions, Markov random fields allow the estimation of smooth spatial effects. Additional
uncorrelated random effects may be incorporated as a surrogate for unobserved local
small-area heterogeneity. Of course, random effects can also be used to deal with group
or individual specific heterogeneity.

Inference for STAR models is performed on the basis of a multicategorical linear mixed
model representation. In fact, any model based on smoothness priors or on a penalization
approach can be rewritten as a variance components model, and all model components
described above are of this type. The variance components, corresponding to inverse
smoothing parameters in a frequentist approach, can then be estimated using mixed model
methodology, especially restricted maximum likelihood, also termed marginal likelihood
in the literature. Given estimates of the variance parameters, regression coefficients are
estimated by a modified Fisher-scoring procedure. Since variance components are treated
as unknown constants, our approach can be viewed as empirical Bayes/posterior mode
estimation. Numerically efficient algorithms, developed in Fahrmeir et al. (2004), allow
the computation of the estimates even for fairly large data sets.

Section 2 describes structured additive regression models for multicategorical data and
the different model components in greater detail. Inference is presented in Section 3.
In Sections 4 and 5 the performance of the approach is investigated through simulation
studies and an application to the forest health data mentioned above. The conclusions in
Section 6 give comments on directions of future research.

The methodology presented in this paper is implemented in BayesX, a public domain
software package for Bayesian inference. The program is available at

http://www.stat.uni-muenchen.de/~lang/bayesx

2 Structured additive regression

2.1 Multicategorical response models

Regression models for a categorical response Y ∈ {1, . . . , k} are mostly based on some
latent response mechanism. Depending on the type of response and specific assumptions,
various categorical regression models have been proposed, see, e.g., Agresti (1990), and
Fahrmeir and Tutz (2001, ch. 3). Here we focus on the most popular models, but our
concepts can be extended to other models.

For the case of a nominal response Y with unordered categories 1, . . . , k we consider the
widely used multinomial logit model

P (Y = r) =
exp(η(r))

1 +
∑q

s=1 exp(η(s))
, r = 1, . . . , q = k − 1, (1)

where η(r) is a predictor depending on covariates and k is chosen as the reference category.
For an ordered response Y we consider cumulative logit or probit models

P (Y ≤ r) = F (η(r)) (2)

with η(r) = θ(r) − u′γ and linear predictor u′γ, F as the logistic or standard normal
distribution function and ordered thresholds θ(1) < . . . < θ(q).
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Multicategorical space-time data can be seen as longitudinal data for individuals or units
i = 1, . . . , n, observed at time points t ∈ {t1, t2, . . . .}, where the spatial location or site
s on a spatial array {1, . . . , S} is given for each unit as an additional information. For
notational simplicity we assume the same time points for each individual, only the number
of time points varies over individuals, but generalizations to individual-specific time points
are obvious. We also distinguish between continuous covariates xt = (xt1, . . . , xtl)

′, whose
effects are assumed to be nonlinear, and a further vector ut of covariates, whose effects
will be modelled in usual linear parametric form. Multicategorical space-time data then
consists of observations

{Yit, xit, uit, si}, i = 1, . . . , n, t = 1, . . . , Ti,

where si is the location or spatial index of individual i.

In the following we formulate structured additive response models from a Bayesian per-
spective, but we will also point out the close relationship to penalized likelihood ap-
proaches in a frequentist setting.

2.2 Observation models

Structured additive regression models extend the common linear predictors in (1) and (2)
to more general semiparametric additive predictors. As an example, we consider models
of increasing complexity for ordinal responses. The same extensions can be defined for
nominal responses if all effects are assumed to be category-specific and the threshold
is dropped from the predictor. At the end of the section we present a generic form
of structured additive regression models for both ordinal and nominal responses, which
comprises all submodels.

2.2.1 Space-time main effect model

For ordinal responses Yit, the usual linear predictor in (2) can be extended to

η
(r)
it = θ(r) − [f1(xit1) + . . . + fl(xitl) + ftime(t) + fspat(si) + u′

itγ]. (3)

Here, ftime and fspat represent possibly nonlinear effects of time and space, f1, . . . , fl are
unknown smooth functions of the continuous covariates x1, . . . , xl, and u′γ corresponds to
the usual parametric linear part of the predictor. The functions f1, . . . , fl will be modelled
as P-splines, see Section 2.3.1. Depending on the data, the effect of time may be split up
into a trend and a seasonal component, i.e.

ftime(t) = ftrend(t) + fseason(t). (4)

The trend function can be modelled by random walks or, more generally, by P-splines,
and the seasonal component by an autoregressive process, see Section 2.3.1

In analogy the spatial effect can be split up into a spatially correlated (smooth) part fstr

and a spatially uncorrelated (unsmooth) part funstr, i.e.

fspat(s) = fstr(s) + funstr(s).

A rationale is that a spatial effect is usually a surrogate of many unobserved influential
factors, some of them may obey a strong spatial structure and others may be present
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only locally. By estimating a structured and an unstructured component we aim at
distinguishing between the two kinds of influential factors, see Besag et al. (1991). For
the smooth spatial part we assume Markov random field priors, two-dimensional surface
smoothers or stationary Gaussian fields, compare Section 2.3.2. For the uncorrelated part
we may assume i.i.d. Gaussian random effects.

In the basic space-time model (3) all effects are population effects. For example, ftime(t) is
the population time trend, fj(xj) is the nonlinear population effect of the covariate xj, and
γ is the vector of ”fixed” population effects of the covariate vector u. From a frequentist
point of view, these population effects are considered as deterministic. Whether or not
a population effect is deterministic is debatable, however. From a Bayesian perspective
all effects, including population effects and fixed effects, are interpreted as realizations
of random variables or random functions, with appropriate priors assigned to them, see
Section 2.3.

This Bayesian perspective also reveals more clearly that temporal or spatial correlation
can be taken into account by suitable specification of ftime and fspat, through correlated
random effects with appropriate priors. Integrating out these random effects from the
predictors, observations Yit become marginally correlated.

For nominal responses Yit, category-specific predictors η
(r)
it , in (1) are defined in complete

analogy to (3), introducing category-specific functions f
(r)
j , j = 1, . . . , l, time, spat and

parameters γ(r).

2.2.2 Models with individual-specific effects

Individual-specific departures from the population effects in model (3) can be specified
by introducing additional random effects in the predictors as in generalized linear mixed
models. Then, (3) is extended to

η
(r)
it = θ(r) − [f1(xit1) + . . . + u′

itγ + w′
itbi] (5)

where wit is a design vector and bi is a vector of i.i.d. random effects. For the special case
wit = 1 the random intercept bi is often introduced to model unobserved heterogeneity.
More generally, individual-specific effects bi and appropriate design vectors wit can be used
to model individual-specific departures from population effects as well as correlations of
repeated observations. For example, assume that the population time trend is approxi-
mated by a linear combination f(t) =

∑
βjBj(t) of basis functions, such as the first terms

of a Taylor or Fourier expansion, or of a spline basis. Individual-specific departures can
then be modelled through the random effects part of the predictor, i.e. fi(t) =

∑
bjiBj(t),

where bji are i.i.d. random effects, and the design variables witj are equal to Bj(t). This
is in analogy to standard parametric mixed models with, e.g., a linear time trend β0 +β1t
and individual specific random departures b0i + b1it from this trend.

2.2.3 Models with interactions

Interactions between variables in the main effect model (3) can be incorporated in various
ways. Including an interaction between a categorical or continuous covariate u, say, and
time of the form

η
(r)
it = . . . + ftime(t) + g(t)uit + . . .

where g is a smooth function, leads to a model with a time-varying effect g(t) of the
covariate u. Generally models with interaction terms of the form g(x)u and a continuous
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effect modifier x, are called varying coefficient models. We also allow for models with
space-varying effects g(s)u.

For two continuous covariates x1 and x2, say, an interaction effect f1|2(x1, x2) may be
added to the main effects, leading to predictors of the form

η
(r)
it = . . . + f1(xit1) + f2(xit2) + f1|2(xit1, xit2) + . . .

The two-dimensional interaction surface f1|2 can be modelled e.g. by two-dimensional
P-splines, see Section 2.3.4

2.2.4 Structured additive predictors in generic form

All predictors presented in Sections 2.2.1 to 2.2.3 can be cast into the generic form

η
(r)
it = θ(r) − [f1(vit1) + . . . + fp(vitp) + u′

itγ] (6)

where f1, . . . , fp are different types of functions and v1, . . . , vp are different types of covari-
ates or design variables. For example, f(v) = g(x)u with v = (x, u), represents a varying
coefficient term, f(v = (x1, x2)) denotes an interaction surface, and random effect terms
w′

itbi are special linear functions.

The generic form (6) is useful for developing and implementing the methodology in unified
and compact form. It turns out in Section 2.3, that we will always be able to express
fj(vitj) as the product of a design vector zitj and a (possibly highdimensional) vector βj

of unknown parameters. So we can rewrite the predictor (6) as

η
(r)
it = θ(r) − [z′it1β1 + . . . + z′itpβp + u′

itγ]. (7)

Similarly, for the multinomial logit model (1), the predictor η(r) can be written as

η
(r)
it = z′it1β

(r)
1 + . . . + z′itpβ

(r)
p + u′

itγ
(r). (8)

In the first case the vector of all unknown regression coefficients is given by β =
(θ(1), . . . , θ(q), β′

1, . . . , β
′
p, γ

′)′, while in the latter case it is β = (β
(1)′
1 , γ(1)′, . . . , β(q)′

1 , γ(q)′)′.
Finally, we make the usual conditional independence assumption: Given unknown func-
tions and parameters, the observations Yit are conditionally independent. Together with
specific multinomial distributions defined by the logit or probit models (1) and (2), the
likelihood of all observations is then uniquely defined as

L(β) =
∏
i,t

f(Yit|β), (9)

and the log-likelihood is

l(β) =
∑
i,t

log f(Yit|β). (10)

2.3 Prior assumptions on functions and parameters

For simplicity we will restrict the discussion of priors to the case of models for ordinal
responses. If multinomial models are considered, all effects have to be treated as category
specific and the additional index r has to be added to the vector of regression coefficients,
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but concepts remain exactly the same. So it should be kept in mind that all results in the
following sections apply also for nominal response models. However, no deeper insight is
gained if this case is treated separately, only formulae would become more cumbersome.

From a Bayesian point of view, the unknown functions f1, . . . , fp in (6), more exactly
corresponding vectors of function evaluations, and the fixed effects parameters γ are con-
sidered as random variables and must be supplemented by appropriate prior assumptions.

Throughout the paper we will assume independent diffuse priors p(γ) ∝ const for the
fixed effects parameters γ and the thresholds θ(r) in cumulative models.

A prior for a function fj is now defined by specifying a suitable design vector zitj and a
prior distribution for the vector βj of unknown parameters. All specific priors defined in
the following subsections have the general form

p(βj|τ 2
j ) ∝ exp

(
− 1

2τ 2
j

β′
jKjβj

)
, (11)

where Kj is a penalty matrix that shrinks parameters towards zero or penalizes too abrupt
jumps between neighboring parameters. In most cases Kj will be rank deficient and
therefore the prior for βj is partially improper.

For given or known variance parameters, Bayesian inference is then based on the posterior

p(β|Y ) ∝ L(β)
∏

j

exp

(
− 1

2τ 2
j

β′
jKjβj

)
. (12)

Posterior mode estimates β̂ for β are obtained by maximizing the right hand side, or,
taking logarithms, the penalized log-likelihood

lpen(β|Y ) = l(β) − 1

2

∑
j

λjβ
′
jKjβj (13)

with smoothing parameters λj = 1/τ 2
j and penalty terms β′

jKjβj.

From a frequentist point of view, we could start directly from the the penalized likelihood,
and penalized likelihood estimates obtained by maximizing (13) are identical to posterior
mode estimates. This shows the close connection between both approaches for inference.
In particular, all priors below lead to specific penalty terms obtained from the log-priors.

For full Bayesian inference, weakly informative inverse gamma hyperpriors are usually
assigned to τ 2

j . In our empirical Bayes approach, τ 2
j is considered as an unknown constant.

As an alternative to data driven determination of τ 2
j , e.g. by crossvalidation, the Bayesian

point of view opens the way to estimate τ 2
j by (restricted) maximum likelihood, see Section

3.

2.3.1 Priors for continuous covariates and time scales

Several alternatives have been recently proposed to specify smoothness priors for continu-
ous covariates or time trends. These are random walk priors or more generally autoregres-
sive priors (see Fahrmeir and Lang (2001a) and Fahrmeir and Lang (2001b)), Bayesian
P-splines (Lang and Brezger (2003)) and Bayesian smoothing splines (Hastie and Tibshi-
rani (2000)). In the following we will focus on P-splines. Commonly used random walk
priors for smooth time trends, popular in state space models, result as a special case: they
are P-splines of degree 0.
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The approach assumes that an unknown smooth function fj of a covariate xj can be
approximated by a polynomial spline of degree l defined on a set of equally spaced knots
xmin

j = κ0 < κ1 < · · · < κd−1 < κd = xmax
j within the domain of xj. Such a spline can be

written in terms of a linear combination of Mj = d + l B-spline basis functions Bm, i.e.

fj(xj) =

Mj∑
m=1

βjmBm(xj).

Here βj = (βj1, . . . , βjMj
)′ corresponds to the vector of unknown regression coefficients.

The Mj-dimensional design vector zitj in (7) or (8) consists of the basis functions evaluated
at the observation xitj, i.e. zitj = (B1(xitj), . . . , BMj

(xitj))
′.

The crucial point is the choice of the number of knots. For a small number of knots, the
resulting spline may not be flexible enough to capture the variability of the data. For a
large number of knots, estimated curves tend to overfit the data and, as a result, too rough
functions are obtained. As a remedy Eilers and Marx (1996) suggest a moderately large
number of equally spaced knots (usually between 20 and 40) to ensure enough flexibility,
and to define a roughness penalty based on first or second order differences of adjacent
B-Spline coefficients to guarantee sufficient smoothness of the fitted curves. This leads to
penalized likelihood estimation with penalty terms

P (λj) =
1

2
λj

Mj∑
m=k+1

(∆kβjm)2 =
1

2
λjβ

′
jKjβj, k = 1, 2 (14)

where ∆k is the difference operator of order k. The penalty matrix is of the form Kj = D′D
where D is a first or second order difference matrix. First order differences penalize abrupt
jumps βjm − βj,m−1 between successive parameters and second order differences penalize
deviations from the linear trend 2βj,m−1 − βj,m−2. In a Bayesian approach we use the
stochastic analogue of difference penalties, i.e., first or second order random walks, as a
prior for the regression coefficients. First and second order random walks are defined by

βjm = βj,m−1 + ujm or βjm = 2βj,m−1 − βj,m−2 + ujm (15)

with Gaussian errors ujm ∼ N(0, τ 2
j ) and diffuse priors p(βj1) ∝ const, or p(βj1) and

p(βj2) ∝ const, for initial values, respectively. The joint distribution of the regression
parameters βj is easily computed as a product of conditional densities defined by (15)
and can be brought into the general form (11). More details about Bayesian P-splines
can be found in Lang and Brezger (2003).

Simple first or second order random walks ∆kβt = ut are often used to model time trends
f(t) =: βt. They can be regarded as P-splines of degree l = 0 and are therefore a special
case. More general autoregressive process priors than the random walk models (15) may
be useful, for example to model flexible seasonal patterns, see Fahrmeir and Lang (2001a).
A flexible seasonal component fseason(t) =: βt with period per can be defined by

βt = −
per−1∑
j=1

βt−j + ut

and once again diffuse priors for initial values and errors ut ∼ N(0, τ 2
season).

8



2.3.2 Priors for smooth spatial effects

For the specification of the smooth spatial effect fstr we can distinguish two different situa-
tions: Locations can be available exactly in terms of longitude and latitude or observations
may be clustered in connected geographical regions.

Markov random field priors

Suppose first that the index s ∈ {1, . . . , S} represents the location or site in connected
geographical regions. For simplicity we assume that the regions are labelled consecutively.
A common way to introduce a spatially correlated effect is to assume that neighboring
sites are more alike than two arbitrary sites. Thus for a valid prior definition a set of
neighbors for each site s must be defined. For geographical data one usually assumes that
two sites s and s′ are neighbors if they share a common boundary.

The simplest (but most often used) spatial smoothness prior for the function evaluations
fstr(s) =: βs is

βs|βs′ , s′ �= s, τ 2
str ∼ N

(
1

Ns

∑
s′∈∂s

βs′ ,
τ 2
str

Ns

)
, (16)

where Ns is the number of adjacent sites and s′ ∈ ∂s denotes that site s′ is a neighbor of
site s. Thus the (conditional) mean of βs is an unweighted average of function evaluations
of neighboring sites. The prior is a direct generalization of a first order random walk
to two dimensions and is called a Markov random field (MRF). More general priors can
be based on weighted averages rather than an unweighted average as in (16), e.g. with
weights being proportional to the distance of neighboring sites to site s. In terms of
weights wss′ a general spatial prior can be defined as

βs|βs′ , s′ �= s, τ 2
str ∼ N

(∑
s′∈∂s

wss′

ws+

βs′ ,
τ 2
str

ws+

)
, (17)

where + denotes summation over the missing subscript.

For both priors the S-dimensional design vector zstr = (0, . . . , 1, . . . , 0)′ is now a 0/1
incidence vector. Its value in the s-th row is 1 if the corresponding observation is located
in site or region s, and zero otherwise. The S×S penalty matrix K is given by kss = ws+

and kss′ = −wss′ if s and s′ are neighbors and zero otherwise. Therefore K has the form
of an adjacency matrix.

Gaussian random field priors

If exact locations s = (sx, sy) are available, we can use two-dimensional surface estimators
to model spatial effects. One option are two-dimensional P-splines, see Section 2.3.4.
Another option are Gaussian random field (GRF) priors, originating from geostatistics.
They can be seen as two-dimensional surface smoothers based on special basis functions,
e.g. radial basis functions, and have been used by Kammann and Wand (2003) to model
the spatial component in Gaussian regression models. The spatial component fstr(s) =: βs

is then assumed to follow a zero mean stationary Gaussian random field {βs : s ∈ R
2} with

variance τ 2
str and isotropic correlation function cov(βs, βs+h) = C(||h||). This means that

correlations between sites that are ||h|| units apart are the same, regardless of direction
and location of the sites. For a finite array s ∈ {1, . . . , S} of sites as in image analysis or
in our application to forest health data, the prior for βj = (β1, . . . , βs)

′ is of the general
form (11) with K = C−1 and

C[i, j] = C(||si − sj||), 1 ≤ i, j ≤ n.
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The design vector zstr is again a 0/1 incidence vector.

Several proposals for the choice of the correlation function C(r) have been made. In the
kriging literature, the Matérn family C(r; ρ, ν) is highly recommended (e.g. Stein (1999)).
For prechosen values ν = m + 1/2, m = 0, 1, 2, . . . of the smoothness parameter ν simple
correlation functions C(r; ρ) are obtained, e.g.

C(r; ρ) = exp(−|r|)(1 + |r|) (18)

with ν = 1.5. The parameter ρ controls how fast correlations die out with increasing
distance r = ||h||. It can be determined in a preprocessing step or may be estimated with
variance components by restricted maximum likelihood. A simple rule to choose ρ is

ρ̂ = max
i,j

||si − sj||/c (19)

ensuring scale invariance. The constant c > 0 is chosen in such a way, that C(c) is small,
e.g. 0.001. Therefore the different values of ||si − sj||/ρ̂ are spread out over the r-axis of
the correlation function. This choice of ρ has proved to work well in our experience.

Although we described them separately, approaches for exact locations can also be used
in the case of connected geographical regions, e.g. based on the centroids of the regions.
Conversely, we can also apply MRFs to exact locations if neighborhoods are defined based
on a distance measure. Furthermore GRFs may be approximated by MRFs, see Rue and
Tjelmeland (2002). In general, it is not clear which of the different approaches leads to the
”best” fits. For data observed on a discrete lattice, MRFs seem to be most appropriate.
If the exact locations are available, surface estimators may be more natural, particularly
because predictions for unobserved locations are available. However, in some situations
surface estimators lead to an improved fit compared to MRF’s even for discrete lattices
and vice versa. A general approach that can handle both situations is given by Müller et
al. (1997).

The main difference between GRFs and MRFs, considering their numerical properties, is
the dimension of the penalty matrix. For MRFs the dimension of K equals the number of
different regions S and is therefore independent from the sample size. On the other side,
for GRFs, the dimension of K is given by the number of distinct locations, which usually
is close to or equal to the sample size. So the number of regression coefficients used to
describe a MRF is usually much smaller than for a GRF and therefore the estimation
of GRFs is computationally more expensive. To overcome this difficulty, Kammann and
Wand (2003) propose low-rank kriging to approximate stationary Gaussian random fields.
Note first, that we can define GRFs equivalently based on a design vector zstr with
entries zstr = (C(||s − s1||), . . . , C(||s − sn||))′ and penalty matrix K = C. To reduce the
dimensionality of the estimation problem we define a subset of knots D = {κ1, . . . , κM}
of the set of distinct locations C. These knots can be chosen to be ”representative” for
the set of distinct locations based on a space filling algorithm. Therefore consider the
distance measure

d(s,D) =

(∑
κ∈D

||s − κ||p
) 1

p

,

with p < 0, between any location s ∈ C and a possible set of knots D. Obviously this
distance measure is zero for all knots. Using a simple swapping algorithm to minimize
the overall coverage criterion (∑

s∈C
d(s,D)q

) 1
q
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with q > 0 (compare Johnson et al. (1990) and Nychka and Saltzman (1998) for details)
yields an optimal set of knots D. Based on these knots we define the approximation
fstr(s) = z′strβ with the M -dimensional design vector zstr = (C(||s − κ1||), . . . , C(||s −
κM ||)′, penalty matrix K = C and C[i, j] = C(||κi−κj||). The number of knots M allows
us to control the trade-off between the accuracy of the approximation (M close to the
sample size) and the numerical simplification (M small).

2.3.3 Group indicators, individual-specific effects and unstructured spatial
effects

In many situations we observe the problem of heterogeneity among clusters of observations
caused by unobserved covariates. Suppose c ∈ {1, . . . , C} is a cluster variable indicating
the cluster a particular observation belongs to. A common approach to overcome the
difficulties of unobserved heterogeneity is to introduce additional Gaussian i.i.d. effects
f(c) =: βc with

βc ∼ N(0, τ 2), c = 1, . . . , C. (20)

The design vector z is again a C-dimensional 0/1 incidence vector and the penalty matrix
is the identity matrix, i.e. K = I. From a classical perspective, (20) defines i.i.d. random
effects.

For longitudinal data, clusters are often defined by the repeated observations on individ-
uals. Then the cluster index c is the individual index i ∈ {1, . . . , n}, and βi are i.i.d.
individual-specific effects.

Another special case are spatial clusters. Identifying a cluster index c with the spatial
index s, the unstructured spatial effects funstr(s) =: βs are assumed to be i.i.d. random
effects βs ∼ N(0, τ 2

unstr).

2.3.4 Interactions

Varying coefficient models are commonly used to incorporate interactions of the form
g(x)u between a binary variable u and a continuous covariate x, which may also be a time
scale. We also allow models with space-varying effects g(s)u. For the smooth nonlinear
functions g we assume the same priors defined already in Sections 2.3.1 and 2.3.2.

Suppose now that both interacting covariates are metrical. In this case, a flexible ap-
proach for modelling interactions can be based on (nonparametric) two dimensional sur-
face fitting. Here, we follow an approach based on two dimensional P-splines described
in more detail in Lang and Brezger (2003). The assumption is that the unknown surface
fj(xj1 , xj2) can be approximated by the tensor product of two one dimensional B-splines,
i.e.

fj(xj1 , xj2) =

Mj∑
m1=1

Mj∑
m2=1

βj,m1m2Bj,m1(xj1)Bj,m2(xj2).

Similar to one-dimensional P-splines, the M2
j -dimensional design vector zj is composed

of products of basis functions. The coefficients βj = (βj,11, . . . , βj,MjMj
)′ are defined on a

two-dimensional regular array of knots in the (xj1 , xj2)-plane. Following the idea of one-
dimensional P-splines, we assign two-dimensional random walk priors to enforce smooth-
ness of the surface. These priors are a special case of MRF prior (16) for a regular lattice,
consisting of the knots in the (xj1 , xj2)-plane, and with the four next neighbors s′ of a
knot s defining the neighborhood δs.
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3 Inference

Inference in structured additive regression models is not performed on the basis of the
original parameterization in (7) or (8), since there is no easy rule on how to choose the
variance parameters. For univariate responses, a popular idea to get around this is to
represent models with penalties as mixed models with i.i.d. random effects. This idea
goes back to Green (1987) for smoothing splines and has been used in a variety of settings
throughout the last five years (e.g. Fahrmeir et al. (2004), Kammann and Wand (2003),
Ruppert et al. (2003), Wand (2003) or Lin and Zhang (1999)). In mixed model representa-
tion we obtain a variance components model, and techniques for estimating the variance
parameters are already available (at least for univariate response). Probably the most
common approach is to estimate them via restricted maximum likelihood, also termed
marginal likelihood in the literature. In the following we will extend this approach to
multicategorical STAR models. Before discussing the estimation of regression coefficients
and variance parameters in a multicategorical mixed model in detail (Section 3.2), we will
first show how to rewrite our models as variance components models.

3.1 Mixed model representation

To rewrite the models in (7) and (8) as mixed models, we first take a closer look on the
general prior (11). To simplify notation, we will again discuss only the case of ordinal
responses explicitly. For nominal responses results are summarized briefly at the end of
the section.

Prior (11) specifies a multivariate Gaussian distribution for the parameter vector βj.
However, in most cases the precision matrix Kj is rank deficient and therefore (11) is
an improper distribution. Assuming that Kj is known and does not depend on further
parameters to be estimated, we can express βj via a one-to-one transformation in terms of
a parameter vector βunp

j with flat prior and a parameter vector βpen
j with i.i.d. Gaussian

prior. While βunp
j captures the part of function fj that is not penalized by Kj, βpen

j

captures the deviation from this unpenalized part. The dimensions of both vectors depend
on the rank of the penalty matrix Kj. If Kj had full rank, the unpenalized part would

vanish completely and if we choose βpen
j = K

1/2
j βj we directly obtain βpen

j ∼ N(0, τ 2
j I).

For the general case of rank deficient Kj things are somewhat more complicated. If we
assume that the j-th parameter vector has dimension dj and the corresponding penalty
matrix has rank kj the decomposition of βj into a penalized and an unpenalized part is
of the form

βj = Zunp
j βunp

j + Zpen
j βpen

j (21)

with a dj × (dj − rkj) matrix Zunp
j and a dj × rkj matrix Zpen

j . The decomposition of βj

leads to a similar decomposition for fj(vitj) into a penalized and an unpenalized part:

fj(vitj) = z′itjZ
unp
j βunp

j + z′itjZ
pen
j βpen

j = z̃unp
itj

′βunp
j + z̃pen

itj
′βpen

j . (22)

Requirements for decomposition (21) are:

(i) The composed matrix (Zunp
j Zpen

j ) has full rank to make the transformation in (21)
a one-to-one transformation. This also implies that both Zunp

j and Zpen
j have full

column rank.

(ii) Zunp
j and Zpen

j are orthogonal, i.e. Zunp′
j Zpen

j = 0.
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(iii) Zunp′
j KjZ

unp
j = 0, resulting in βunp

j being unpenalized by Kj.

(iv) Zpen′
j KjZ

pen
j = I, resulting in an i.i.d. Gaussian prior for βpen

j .

In general the matrices defining (21) can be obtained as follows: Zunp
j contains a dj − kj

dimensional basis of the null space of Kj. Therefore requirement (iii) is automatically
fulfilled. Zpen

j can be obtained by Zpen
j = Lj(L

′
jLj)

−1 where the full column rank dj × kj

matrix Lj is determined by the decomposition of the penalty matrix Kj into Kj = LjL
′
j.

This ensures requirements (i) and (iv). If we choose Lj such that L′
jZ

unp
j = 0 and

Zunp
j L′

j = 0 hold, we finally obtain requirement (ii). The decomposition Kj = LjL
′
j

of the penalty matrix can be based on the spectral decomposition Kj = ΓjΩjΓ
′
j. The

(kj ×kj) diagonal matrix Ωj contains the positive eigenvalues ωjm, m = 1, . . . , kj, of Kj in
descending order, i.e. Ωj = diag(ωj1, . . . , ωj,rkj

). Γj is a (dj ×kj) orthogonal matrix of the

corresponding eigenvectors. From the spectral decomposition we can choose Lj = ΓjΩ
1/2
j .

Note, that the factor Lj is not unique and in many cases numerical superior factorizations
exist.

Although the previous paragraph may sound rather technical, the decomposition is quite
intuitive in most cases, as we will show for some specific examples at the end of this
section.

We finally obtain
p(βunp

jm ) ∝ const, m = 1, . . . , dj − kj

and
βpen

j ∼ N(0, τ 2
j I). (23)

For ordinal responses this allows us to rewrite the additive predictor (7) as

η
(r)
it = θ(r) −

[
p∑

j=1

z′itjβj + u′
itγ

]
= θ(r) −

[
p∑

j=1

(z̃unp
itj

′βunp
j + z̃pen

itj
′βpen

j ) + u′
itγ

]

For nominal responses we obtain an equivalent representation for the predictor in (8):

η
(r)
it =

p∑
j=1

(z̃unp
itj

′βunp(r)
j + z̃pen

itj
′βpen(r)

j ) + u′
itγ

(r),

where z̃unp
itj and z̃pen

itj are constructed in complete analogy to the ordinal case.

In both cases the structured additive regression model can now be understood as a mul-
ticategorical GLMM with fixed effects βunp

j and β
unp(r)
j , respectively. The random effects

βpen
j have distribution N(0, Λj) with Λj = diag(τ 2

j , . . . , τ 2
j ) for ordinal responses and

β
pen(r)
j ∼ N(0, Λ

(r)
j ) for nominal responses. Hence, we can utilize methodology for multi-

categorical GLMMs for simultaneous estimation of the functions fj(vitj) and the variance
parameters, see the next section.

Let us now discuss some special cases of (21). As described above, for parameters βj with
proper prior, decomposition (21) is just some kind of standardization such that elements of
βpen

j are independent and have a common variance. This case includes stationary Gaussian
fields and i.i.d. random effects. For P-splines, the decomposition yields an unpenalized
part z̃unp

itj
′βunp

j representing a polynom of degree k − 1. Therefore the unpenalized part
for a P-spline with second order random walk prior is a straight line and for a P-Spline
with first order random walk prior it is a horizontal line. The same statement holds
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for random walk priors themselves. In both cases the factor Lj derived on the basis of
a spectral decomposition may be replaced by Lj = D′ where D denotes the difference
matrix defining the penalty matrix for the corresponding function.

Considering flexible seasonal components, we obtain a fixed seasonal effect as the unpe-
nalized part of fj(vitj). The factor Lj can be derived from a general decomposition of Kj

for autoregressive processes, compare e.g. Knorr-Held (1996). In all other cases discussed
in Section 2.3 the unpenalized part is simply a constant effect. So we have the general
result, that the fixed part z̃unp

itj
′βunp

j equals what we obtain for fj(vitj) if the corresponding
smoothing parameter 1/τ 2

j goes to infinity.

The mixed model representation also allows for a different perspective on the identification
problem inherent to nonparametric regression models. For all model components with
improper prior, z̃unp

itj contains a one representing the mean level of the corresponding
function. Therefore, provided that there is at least one such term and that we have an
intercept included in the model, which is always the case for ordinal responses, where the
intercept is given by the threshold, we observe linear dependencies in the predictor η

(r)
it .

To get around this, we delete all the ones from the vectors z̃unp
itj which has a similar effect

as centering the functions fj(vitj).

3.2 Restricted maximum likelihood inference for multicategor-
ical models

Representing multicategorical structured additive regression models as multicategorical
mixed models significantly reduces the complexity of the estimation problem. This is
mainly due to the fact that all special cases of structured additive regression can be
combined into one single model allowing to apply the same estimation procedure to all
estimation problems. To describe algorithms in compact matrix notation we rewrite Yit

as a vector of dummy variables yit = (y
(1)
it , . . . , y

(q)
it )′ with

y
(r)
it =

{
1 if Yit = r,

0 else.

Therefore we have
P (Yit = r) = P (y

(r)
it = 1) = π

(r)
it .

The probabilities πit = (π
(1)
it , . . . , π

(q)
it )′ are connected to the linear predictors ηit =

(η
(1)
it , . . . , η

(q)
it )′ by the (multivariate) response function h : R

q → [0, 1]q via h(ηit) =
(h(1)(ηit), . . . , h

(q)(ηit))
′ = E(yit|ηit) = πit. The specific form of the response function

is derived from expressions (1) and (2), compare Fahrmeir and Tutz (2001), ch. 3. To
write the q-dimensional vector ηit in matrix notation, define the matrices

Qit =

⎛
⎜⎝

z̃unp
it 0

. . .

0 z̃unp
it

⎞
⎟⎠ Pit =

⎛
⎜⎝

z̃pen
it 0

. . .

0 z̃pen
it

⎞
⎟⎠

for nominal responses and

Qit =

⎛
⎜⎝

1 z̃unp
it

. . .
...

1 z̃unp
it

⎞
⎟⎠ Pit =

⎛
⎜⎝

z̃pen
it
...

z̃pen
it

⎞
⎟⎠
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for ordinal responses. In both cases the design vectors z̃unp
it and z̃pen

it are composed as
follows:

z̃unp
it = (zunp

it1
′, . . . , zunp

itp
′, u′

it)
′ z̃pen

it = (zpen
it1

′, . . . , zpen
itp

′)′

Based on these definitions we have ηit = Ũitβ
unp+Xitβ

pen for both types of multicategorical
models. The structure of the vectors of regression coefficients βunp and βpen depends on
the specific model and is given by

βunp = (β
unp(1)
1

′, . . . , βunp(1)
p

′, γ(1)′, . . . , βunp(q)
1

′, . . . , βunp(q)
p

′, γ(q)′)′

βpen = (β
pen(1)
1

′, . . . , βpen(1)
p

′, . . . , βpen(q)
1

′, . . . , βpen(q)
p

′)′

for nominal responses and

βunp = (θ(1), . . . , θ(q), βunp
1

′, . . . , βunp
p

′, γ′)′

βpen = (βpen
1

′, . . . , βpen
p

′)′

for ordinal responses. The composed vector of random effects βpen now follows a multi-
variate Gaussian distribution defined by (23), i.e. βpen ∼ N(0, Λ) with

Λ = blockdiag(Λ
(1)
1 , . . . , Λ(1)

p , . . . , Λ
(q)
1 , . . . , Λ(q)

p )

for nominal responses and
Λ = blockdiag(Λ1, . . . , Λp)

for ordinal responses.

Finally, we define the stacked vectors and matrices

y =

⎛
⎜⎝

y11
...

ynTn

⎞
⎟⎠ π =

⎛
⎜⎝

π11
...

πnTn

⎞
⎟⎠ η =

⎛
⎜⎝

η11
...

ηnTn

⎞
⎟⎠ P =

⎛
⎜⎝

P11
...

PnTn

⎞
⎟⎠ Q =

⎛
⎜⎝

Q11
...

QnTn

⎞
⎟⎠

resulting in
η = Qβunp + Pβpen

and E(y|η) = π. Based on these definitions we are now able to describe estimation in
a compact form. Estimating multicategorical mixed models can be performed in largely
two steps: Alternately the regression coefficients are updated given the current values of
the variance parameters and vice versa.

Posterior mode estimates for the regression coefficients βunp and βpen given the variance
parameters in Λ are obtained by maximizing the posterior

p(βunp, βpen|y) ∝ L(βunp, βpen)p(βunp)p(βpen),

where L(βunp, βpen) denotes the likelihood of the model, which in fact equals the likelihood
in (9). The special form of the likelihood depends on the specific model (ordinal or nominal
responses) and the choice of the response function. Equivalently we can maximize the
log-posterior. Utilizing the flat prior of βunp we obtain

lpen(βunp, βpen) = l(βunp, βpen) − 1

2
βpen′

Λ−1βpen (24)
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to be maximized with respect to βunp and βpen. Note again, that (24) has the form of a
penalized likelihood and therefore – for given variances – posterior mode estimates and
penalized likelihood estimates coincide.

In principle, maximization of (24) is carried out through a Fisher scoring type algorithm
(compare also Fahrmeir and Tutz (2001), chapter 3). Similar to estimation in GLMs, the
Fisher scoring algorithm can be rewritten as iteratively weighted least squares (IWLS),
yielding the following system of equations(

Q′WQ Q′WP
P ′WQ P ′WP + Λ−1

)(
βunp

βpen

)
=

(
Q′Wỹ
P ′Wỹ

)
. (25)

to be solved to obtain updated estimates. The main differences between IWLS for uni-
variate GLMs and (25) are the special structure of the design matrices Q and P and the
fact that the weight matrix W is no longer diagonal. Instead W = DΣ−1D has a block
diagonal structure defined by the block diagonal matrices D = blockdiag(D11 . . . DnT )
and Σ = blockdiag(Σ11 . . . ΣnT ) and the q × q matrices

Dit =
∂h(ηit)

∂η
=

⎛
⎜⎜⎝

∂h(1)(ηit)

∂η(1) . . . ∂h(q)(ηit)

∂η(1)

...
. . .

...
∂h(1)(ηit)

∂η(q) . . . ∂h(q)(ηit)

∂η(q)

⎞
⎟⎟⎠

and

Σit = cov(yit) =

⎛
⎜⎜⎜⎜⎝

π
(1)
it (1 − π

(1)
it ) −π

(1)
it π

(2)
it . . . −π

(1)
it π

(q)
it

−π
(1)
it π

(2)
it

. . .
...

...
. . . −π

(q−1)
it π

(q)
it

−π
(1)
it π

(q)
it . . . −π

(q−1)
it π

(q)
it π

(q)
it (1 − π

(q)
it )

⎞
⎟⎟⎟⎟⎠

The working observations ỹ are defined by

ỹ = η̂ + (D−1)′(y − π).

Note, that iteratively solving the system of equations (25) is equivalent to approximating
the likelihood L(βunp, βpen) of a multinomial distribution with the likelihood of a mul-
tivariate Gaussian distribution having an iteratively reweighted covariance matrix W−1.
This approximation will also be used to obtain estimates of the variance parameters.

In Gaussian mixed models, a common way to estimate the variance parameters is max-
imum likelihood. Here, estimates are defined to be the maximizers of the likelihood
L(βunp, Λ) =

∫
L(βunp, βpen, Λ)dβpen. For Gaussian responses this likelihood has a closed

form, which can be maximized with respect to βunp and the variance parameters itera-
tively. However, maximum likelihood estimates of the variance parameters do not take
into account the loss in degrees of freedom caused by the estimation of βunp. To get
around this, Patterson and Thompson (1971) introduced restricted maximum likelihood
estimates based on error contrasts of the original data. The distribution of these error
contrasts does no longer depend on βunp.

Unfortunately this approach can not be extended to more general responses directly,
since in these cases no such error contrasts are available. But, as Harville (1974) showed,
the concept of restricted maximum likelihood is equivalent to maximizing the marginal
likelihood

L∗(Λ) =

∫
L(βunp, βpen, Λ)dβpendβunp. (26)
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This allows to extend REML estimation to generalized mixed models and even to multi-
categorical mixed models. Because of (26), REML is also termed marginal likelihood in
the literature.

Since direct evaluation of the integral in (26) is not possible in general, we use a quadratic
approximation to L(βunp, βpen, Λ), which is in fact equivalent to the approximation made
in IWLS. This approximation results in the restricted log-likelihood

l∗(Λ) ≈ −1

2
log(|V |) − 1

2
log(|Q′V −1Q|) − 1

2
(ỹ − Qβ̂unp)′V −1(ỹ − Qβ̂unp), (27)

where V = W−1 + P ′ΛP is an approximation to the marginal covariance of ỹ|βpen. Max-
imization of (27) can now be conducted by Newton Raphson or Fisher Scoring, compare
Harville (1977) or Fahrmeir et al. (2004) for formulae of the score vector and the ex-
pected Fisher information. Fahrmeir et al. also derive numerical superior expressions for
these formulae, allowing the computation of REML estimates even for fairly large data
sets. Although these expressions are derived for univariate responses, they can also be
used within a multicategorical setting. One should however keep in mind that the weight
matrix W is no longer diagonal but blockdiagonal.

Now we are able to define estimates for the function fj based on β̂unp and β̂pen. Applying
(22) to the estimates yields

f̂j(vitj) = z̃unp
itj

′β̂unp
j + z̃pen

itj
′β̂pen

j .

This also forms the basis for constructing credible intervals for f̂j. Since the covariance

matrix of the regression coefficients β̂unp and β̂pen is given by H−1, where H denotes the
coefficient matrix on the left hand side of (25), we get

se(f̂j(vitj)) =

√
(z̃unp

itj
′ z̃pen

itj
′)Cov

(
(β̂unp

j )′ (β̂pen
j )′

)
(z̃unp

itj
′ z̃pen

itj
′)′. (28)

The covariance matrices Cov
(
(β̂unp

j )′ (β̂pen
j )′

)
can be obtained from the corresponding

blocks in H−1.

4 Simulation studies

To investigate the performance of the presented approach, we performed simulation studies
for models with ordinal and multinomial responses. In both cases the additive predictor
was defined to be the sum of a nonparametric effect and a spatial effect and the number
of possible response categories is three. Nonparametric effects were estimated by cubic
P-splines with second order random walk penalty and 20 inner knots, while spatial effects
were assumed to follow the MRF prior (16).

A second approach, allowing to estimate structured additive regression models for mul-
ticategorical responses is the fully Bayesian approach presented in Fahrmeir and Lang
(2001b) and Brezger and Lang (2003). Here, all unknown parameters, including the vari-
ance parameters, are assumed to be random. While priors for nonparametric effects are
essentially the same as in section 2.3, priors for the variances are weakly informative
inverse gamma distributions IG(a, b). We chose a = b = 0.001, which is an often rec-
ommended standard choice approximating Jeffrey’s prior. This choice has also proved to
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work better in sparse data situations than the second standard choice a = 1 and b = 0.005
(compare Fahrmeir et al. (2004)). Estimation in the fully Bayesian approach is based on
Markov Chain Monte Carlo simulation techniques, see the references above for a detailed
description.

The simulation for ordinal responses is based on a cumulative probit model with predictors

η
(r)
i = θ(r) − f1(xi) − f2(si)

and

f1(x) = sin[π(2x − 1)],

f2(s) = 0.5(sx + sy).

Function f1 is a smooth function of the continuous covariate x and can be interpreted
as a nonlinear time trend. The values of x where chosen from an equidistant grid of 100
values between -1 and 1. The spatial function f2 is defined on the centroids (sx, sy) of the
124 districts s of the two southern states of Germany. Figure 1 a) and d) display these
functions.

For multinomial responses we chose a multinomial logit model with predictors

η
(r)
i = f

(r)
1 (xi) + f

(r)
2 (si)

and category specific functions f
(r)
1 (x) and f

(r)
2 (s) defined by

f
(1)
1 (x) = sin[π(2x − 1)] f

(2)
1 (x) = sin[2π(2x − 1)],

f
(1)
2 (s) = −0.75|sx|(0.5 + sy) f

(2)
2 (s) = 0.5(sx + sy).

Again the values of x were chosen from 100 equidistant points between -1 and 1 and the
spatial functions f2 are defined on the centroids (sx, sy) of the 124 districts s of Bayern
and Baden-Württemberg. The smooth functions are shown in Figure 1 a) and b), the
spatial functions are reproduced in Figure 1 c) and d).

To evaluate the impact of increasing information in the data, we considered three different
sample sizes, namely n = 500, n = 1000 and n = 2000. Correspondingly, each value of x
was assigned 5, 10 an 20 times. For the districts s, most values were assigned 4, 8 and
16 times, only some (randomly chosen) districts were assigned once more to achieve the
total sample size. For each of the different sample sizes the simulation was repeated over
250 runs. Performance of the different approaches was compared in terms of bias, average
coverage probabilities, and MSEs.

One first important observation is that the presented mixed model approach failed to
converge in several cases. The number of iterations needed for the estimation is displayed
in Figure 2. Note, that the estimation procedure terminates after 100 iterations regardless
of whether convergence was achieved or not. Obviously the number of iterations reduces
with increasing sample size, at least for ordinal responses. For nominal responses this
trend is present but less clear cut.

A closer inspection of the convergence problems showed that variances for the nonpara-
metric functions converged to a fixed value in a moderate number of iterations while at
least one of the variances for spatial effects kept switching between to values relatively
close to each other. This is consistent with the findings in Fahrmeir et al. (2004) for uni-
variate responses. However, using the estimates based on the variances of the last (100th)
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iteration in the case of no convergence lead to reasonable results. Therefore we used
results from all 250 simulation runs to compute MSEs, bias and coverage probabilities,
regardless of whether convergence was achieved or not.

The convergence problems seem to be a specific problem of models with spatial effects.
In a similar simulation study, where the predictors consisted only of two nonparametric
effects of continuous covariates we never observed any problems of this kind. Probably the
likelihood is less well behaved in the case of spatial effects because one variance parameter
is used for a relatively large number of regression parameters.

For ordinal responses, bias was ignorable for both approaches and all sample sizes, so we do
not show any figures here. For nominal responses bias was more obvious for small sample
sizes but decreased with increasing information. MCMC estimates performed slightly
better in this case because REML estimates tend to oversmooth effects, especially for
small samples. As an example we show results on f

(2)
1 (x) in Figure 3.

Considering MSEs, a general but not surprising results is that the quality of the estimates
is improved when sample sizes are extended. Figures 4 and 5 show boxplots of the
log(MSE)s for ordinal and nominal responses, respectively. In all cases, REML estimates
have a somewhat smaller median MSE, with more obvious differences for the spatial
effects. Similar as for the bias, differences almost vanish for larger sample sizes.

The final comparison concentrates on average coverage probabilities. Tables 1 and 2 show
average coverages based on nominal levels of 80% and 95%. In most cases, the coverage
probabilities are almost identical for both REML and MCMC estimates, with MCMC
estimates being slightly closer to the nominal levels. Except for the nonparametric effects
in the nominal case with the smallest sample size, coverage probabilities are above the
nominal level, indicating a more conservative behavior. This is most clear for coverages
of the spatial effects where coverages for a nominal level of 95% are rather close to 1.

5 Application: A space-time study on forest health

These space-time data have been collected in yearly visual forest health inventories carried
out in a forest district in the northern part of Bavaria from 1983 to 2001. The observation
area extends 15 km from east to west and 10 km from north to south, with 83 stands of
trees as observation points. In the following application, we consider beeches. For each
tree, the degree of defoliation serves as an indicator for its damage state, which is given
as an ordered response with three categories and Yit = 1 (no damage of tree i in year t),
Yit = 2 (medium damage) and Yit = 3 (severe damage) i = 1, . . . , 83, t = 1983, . . . , 2001.
Figure 6 shows the temporal development of the frequency of the three damage categories,
and the spatial distribution of trees together with the percentage of time points for which
a tree was classified to be damaged (damage state 2 or 3), averaged over the entire
observation period.

In addition to the temporal and spatial information, the data set includes a number of
covariates describing the stand and the site of the tree, and the soil at the stand. In a
first exploratory analysis based on an ordinal probit model, all continuous covariates were
modelled nonparametrically. Furthermore the predictor contained an interaction term
between age of the tree Ait and calendar time and different types of spatial effects. These
first analyzes suggested some simplifications of the model, especially to model the effects
of some continuous covariates in a parametric way. These were mostly variables that do

19



not vary over time and are therefore constant for each tree. This lead to the final model

P (Yit ≤ r) = Φ(θr − [u′
itγ + f1(t) + f2(Ait) + . . . + f3(t, Ait) + fspat(si)]),

where Φ denotes the standard normal distribution function. Covariates modelled in a
parametric way are subsumed in the vector uit consisting of both categorical and contin-
uous covariates. Categorical covariates are moisture (3 categories), percentage of alkali
(4 categories), thickness of the humus layer (5 categories), type of the forest (deciduous
forest or mixed forest) and fertilizing (yes or no). Continuous covariates are the gradient
of slope (in %), elevation above sea level, depth of soil (above rock in cm) and the canopy
density (in %). To shorten the discussion, we will only show results for the continuous
covariates in uit.

We examined various parameterizations for the spatial effect fspat including models with
only structured or unstructured effects and the combination of both. In the following
we will concentrate the discussion on the latter case. For the structured part of fspat

we compared Markov random fields and stationary Gaussian random fields. For Markov
random fields two trees were considered as neighbors if their distance was less than 1.2km.
The correlation function of the GRF was chosen to be Matérn with ν = 1.5 and the scale
parameter ρ was determined in a preprocessing step using the rule in (19).

For interpretation of estimation results note the following: In accordance with our defini-
tions (2) – (6), higher (lower) values of covariate effects correspond to worse (healthier)
state of the trees.

Figure 7 shows the nonlinear effects f1 and f2 of calendar time and age of the tree for both
models with MRF or GRF as structured spatial component. Additionally, we include
nonlinear effects from a model that neglects spatial correlations and therefore has no
spatial effect at all. Obviously, effects for models with MRF and GRF are virtually
identical and the temporal effect reflects quite well the trends shown in Figure 6, with an
increased frequency of damaged trees in the mid-eighties. For the model without spatial
effects, the time trend is less pronounced, but the functional form remains almost the
same. For the effect of age differences become more noticeable. Here, estimates without
spatial effects are more wiggly with an additional peak around 100 years.

Figure 8 contains the estimated spatial effects. Surprisingly, MRFs and GRFs lead to
quite different results for the structured part of the spatial function. While for MRFs
structured and unstructured effects are nearly equally pronounced, the unstructured effect
almost totally outweighs the structured effect when using a GRF. This is in contrast to
the situation, when only a structured effect is considered. Here, both approaches showed
very similar results for the spatial effect.

Figure 9 shows the interaction between calendar time and age of the tree for the model
with a MRF as structured spatial effect. For all other models the interaction effect looked
almost the same. Obviously, young trees were in poorer health state in the eighties but
recovered in the nineties unlike the older trees which showed the contrary behavior. A
possible interpretation is that it takes longer until older trees are affected by harmful
environmental circumstances while younger trees are affected nearly at once but manage
to accommodate when they grow older.

Table 4 shows estimates for the continuous covariates that were modelled in a parametric
way and the thresholds. For all three models, canopy density has a strong negative effect,
indicating that a dense stand of the tree decreases the probability of being damaged. This
conclusion depends on the type of the tree and can be quite different for other species.
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All other parametric effects are not significant, if a spatial component is included in the
model. For the model without spatial effect, depth of soil has a small negative effect.
Here, depth of soil seems to cover some of the spatial effect, since the covariate itself
obeys a spatial structure. This was even more obvious in the exploratory analyzes, where
all continuous covariates were modelled nonparametrically. In this case some covariates
showed very wiggly effects if the spatial component was excluded from the model, and
were therefore no longer interpretable. These effects also seemed to absorb some of the
effects covered by the spatial component.

A last comparison of the three models is based on the classification of the trees according
to the respective model. Table 3 shows these classifications and also provides misclassi-
fication rates. Here, models with MRF and GRF behave quite comparably again with
a slight improvement based on a MRF. Both models are clearly superior to the model
without spatial effect, confirming that inclusion of the spatial information is substantial.

6 Conclusions

Due to the increasing availability of space-time regression data in connection with complex
scientific problems, flexible semiparametric regression models of the type considered in
this paper are of substantial interest in empirical research. Compared to fully Bayesian ap-
proaches relying on MCMC sampling techniques, the mixed model approach is a promising
alternative and can also be understood as penalized likelihood inference from a frequentist
point of view.

For multicategorical response models, some extensions are desirable. First, we intend
to include category-specific effects into ordinal models. For example, the thresholds θ(r)

might be time-varying, i.e., we have to consider category-specific trend functions f
(r)
time(t)

in the predictors η(r). Similarly, inclusion of category-specific covariates in nominal models
is often needed in practice.

A more challenging extension concerns models for correlated categorical responses. So
far we analyze the health status of trees with separate models for beeches, spruces, etc.
Instead we might use a joint model in simultaneous analyzes for all tree species observed
at the stands.
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Figure 1: True functions for the simulation studies. Functions a) and d) are used for
ordinal response models. Functions a) - d) are used for nominal response models.

Ordinal responses

13

100

a) n=500 b) n=1000 c) n=2000

Nominal responses

13

100

a) n=500 b) n=1000 c) n=2000

Figure 2: Convergence properties of the REML estimate: Boxplots of the number of iter-
ations needed until convergence for ordinal responses (left panel) and nominal responses
(right panel). The estimation procedure was stopped after 100 iterations.
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Figure 3: Nominal responses: Bias for f (2)(x) based on REML estimates (left panel)
and MCMC estimates (right panel). Average estimates are indicated by solid lines, true
functions by dashed lines.

f1(x) f2(s)
80% 95% 80% 95%

n = 500 0.855 0.969 0.939 0.995
REML n = 1000 0.865 0.976 0.931 0.994

n = 2000 0.870 0.978 0.920 0.991
n = 500 0.848 0.967 0.940 0.995

MCMC n = 1000 0.849 0.968 0.932 0.994
n = 2000 0.849 0.972 0.920 0.991

Table 1: Ordinal responses: Average coverage probabilities based on nominal levels of 80%
and 95%.
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Figure 4: Ordinal Responses: Boxplots of log(MSE).

f1(x) f2(x) f1(s) f2(s)
80% 95% 80% 95% 80% 95% 80% 95%

n = 500 0.764 0.899 0.791 0.939 0.890 0.975 0.942 0.994
REML n = 1000 0.837 0.962 0.833 0.964 0.896 0.983 0.944 0.994

n = 2000 0.866 0.974 0.849 0.973 0.897 0.986 0.946 0.996
n = 500 0.788 0.947 0.797 0.949 0.896 0.986 0.962 0.998

MCMC n = 1000 0.829 0.962 0.826 0.961 0.910 0.989 0.959 0.998
n = 2000 0.855 0.973 0.829 0.964 0.905 0.988 0.949 0.996

Table 2: Nominal responses: Average coverage probabilities based on nominal levels of
80% and 95%.
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Figure 5: Multinomial Responses: Boxplots of log(MSE)
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Figure 6: Forest health data: The left panel shows the temporal development of the fre-
quency of the three different damage states. The solid line represents damage state ’1’ (no
damage), the dashed line damage state ’2’ (medium damage) and the dotted line damage
state ’3’ (severe damage). The right panel displays the percentage of years for which a
tree was in damage state ’2’ or ’3’, averaged over the entire observation period.

ŷ
y 1 2 3
1 906 62 0
2 107 427 5
3 0 16 24

12.3%

ŷ
y 1 2 3
1 904 64 0
2 108 426 5
3 0 16 24

12.5%

ŷ
y 1 2 3
1 850 118 0
2 150 386 3
3 0 34 6

19.7%

Table 3: Forest health data: Classification tables. The left and the middle table show
classifications for models with structured and unstructured spatial effects. The structured
spatial effect is modelled as MRF in the left table and as GRF in the middle table. The
right table shows classifications in the absence of any spatial effect. Misclassification rates
are displayed below the tables.

MRF + Random Effect GRF + Random Effect No spatial effect
mode std p-val mode std p-val mode std p-val

θ(1) 0.1890 1.5489 0.9033 0.7137 1.4914 0.6318 0.9429 0.4913 0.0545
θ(2) 4.0142 1.5472 0.0098 4.5211 1.4928 0.0029 3.5164 0.4976 0.0000
Gradient of slope 0.0062 0.0156 0.6917 0.0025 0.0158 0.8744 -0.0011 0.0045 0.8128
Elevation -0.0001 0.0035 0.9748 0.0015 0.0033 0.6450 0.0007 0.0010 0.4451
Depth of soil -0.0117 0.0155 0.4503 -0.0202 0.0159 0.2050 -0.0111 0.0049 0.0234
Canopy density -2.3830 0.4181 0.0000 -2.3030 0.4222 0.0000 -2.1756 0.2101 0.0000

Table 4: Forest health data: Estimates for thresholds and parametric effects of continuous
covariates.

27



a)
MRF + RE

 

calendar time
1983 1989 1995 2001

-2.5

0

2.5

b)
MRF + RE

 
age in years

7 39 71 103 135 167 199 231

-6

-3

0

3

c: f(time)

 

calendar time
1983 1989 1995 2001

-2.5

0

2.5

d: f(age)

 

age in years
7 39 71 103 135 167 199 231

-6

-3

0

3

d: f(time)

 

calendar time
1983 1989 1995 2001

-2.5

0

2.5

e: f(age)

 

age in years
7 39 71 103 135 167 199 231

-6

-3

0

3

Figure 7: Forest health data: Effects of calendar time (left) and age of the tree (right)
together with pointwise 95% credible intervals. The upper and the middle panel show es-
timates for models with structured and unstructured spatial effects. The structured spatial
effect is modelled as MRF in the upper panel and as GRF in the middle panel. The lower
panel shows estimates in the absence of any spatial effect.
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Figure 8: Forest health data: Structured spatial effects (left) and unstructured spatial
effects(right). The structured spatial effect is modelled as MRF in the upper panel and as
GRF in the lower panel.
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Figure 9: Forest health data: Interaction between calendar time and age of the tree for
a model with structured and unstructured spatial effects. The structured spatial effect is
modelled as MRF.
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