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Simultaneous Selection of Variables and
Smoothing Parameters by Genetic Algorithms

Riidiger Krause' and Gerhard Tutz

Department of Statistics,
Ludwig-Maximilians University, Akademiestr.1, 80799 Miinchen, Germany

Summary. In additive models the problem of variable selection is strongly linked to the
choice of the amount of smoothing used for components that represent metrical variables.
Many software packages use separate toolsto solve the different tasks of variable selection
and smoothing parameter choice. The combinationof these tools often leads to inappro-
priate results. In this paper we propose a simultaneous choice of variables and smoothing
parameters based on genetic algorithms. Common genetic algorithms have to be modified
since inclusion of variables and smoothing have to be coded separately but are linked in the
search for optimal solutions. The basic tool for fitting the additive model is the penalized
expansion in B-splines.

Keywords

Genetic algorithm, Additive model, Variable selection, Penalized regression splines,
B-splines, Improved AIC, BIC.

1 Introduction

The problem of variable selection (Miller (2002)) arises when the relationship be-
tween a response variable and a subset of potential explanatory variables is to be
modelled, but there is substantial uncertainty about the relevance of the variables.
In many statistical applications (e.g. analysis of gene expression data) there are large
sets of explanatory variables which contain many redundant or irrelevant variables.
Hence these applications depend crucially on approaches of variable selection.

Beside variable selection we are also interested in appropriate estimation of the
various terms in an additive model (e.g. Hastie & Tibshirani (1990)). In this paper
we choose the approach of using a large number of basis functions with penalization
of the coefficients. The danger of overfitting, resulting in wiggly estimated curves,
is avoided by introducing a penalty term, characterized by a smoothing parameter
A (Eilers & Marx (1996)). The smoothing parameter controls the influence of the
penalty term and hence the smoothness of the estimated function. A large parameter
value yields smooth estimates (e.g. A\ = oo leads to a linear estimator). In contrast, a
small parameter value yields wiggly estimated curves. To prevent over- respectively
underfitting of data accurate choice of the smoothing parameter is essential.

! krause@stat.uni-muenchen.de



2 Krause and Tutz

Many software packages have separate tools for variable selection and smoothing
parameter choice which are applied successively. The disadvantage of separate tools
can be described in the following way: if the user is interested e.g. in a vari-
able selection smoothing parameters have to be chosen previously. Usually these
“roughly” chosen parameters are unchanged during variable selection. Fine tuning
of the smoothing parameters is subsequently done by another tool. The problem is
that the selection of a variable subset is based on the default smoothing parameters;
however other smoothing parameters usually yield different variable subsets. Thus a
subsequent choice of smoothing parameters by another software tool can often lead
to limited improvements, only. An approach which selects variables and smoothing
parameters simultaneously should yield significantly improved results.

To our knowledge no common statistical software program contains a complete au-
tomatic procedure which simultaneously selects variables and smoothing parameters
without restrictions. Here we propose the simultaneous selection of variables and
smoothing parameters based on genetic algorithms.

The paper is organized as follows: in the next section we generally describe the class
of additive models and the flexible representation of functions by expansions in B-
spline basis functions. Section 3 presents the penalization concept of Eilers & Marx
(1996) and adapts it to our problem. In section 4 we introduce the genetic algorithm
for simultaneous selection of variables and smoothing parameters. In section 5 the
suggested approach is compared to alternative methods proposed in literature. Fi-
nally in section 6 our approach is applied to a real dataset, the “rental guide” of
Munich.

2 Expansion of Additive Models in Basis Functions

A very popular and flexible approach which assumes a rather weak structure in the
predictor space is the additive model discussed in detail by Hastie and Tibshirani
(1990). Suppose that we have observations (y;,x;),% = 1,...,n, where each x; is a
vector of p components x; = (1,...,Zip). Then it is assumed that the response
variable y; depends on x; by

P
yi=Bo+ Y filzi) +e (1)

j=1
where €; ~ N'(0,0%) and f1,..., f, are unknown smooth functions which have to be

estimated. It is obvious that the additive model replaces the problem of estimating
a function f of a p-dimensional variable x; by one of estimating p separate one-
dimensional functions f;(z;;). The advantage of (1) is its potential as a data analytic
tool: since each variable is represented separately one can plot the p co-ordinate
functions separately and thus evaluate the roles of the single predictors.

The additive model in (1) is easily extended to categorical variables z; = (z;1, ...,
Zig),t =1,...,n, as well as interactions between two (categorical or metrical) vari-
ables. Then the additive model has the form

p p=1 p q p
yi=Bo+ Y filwy) +zlai+ > D> frs@irwi) + Yz Y filw) e (2)
j=1 r=1s=r+1 k=1 j=1
The term z! a; contains the categorical variables and possible interactions between

two categorical variables.
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Figure 1. The left panel shows one-dimensional B-splines of degree 3 respectively order 4.
The different polynomials of one B-spline are ezemplarily plotted. The right panel illustrates
a two-dimensional cubic B-spline and the respective one-dimensional B-splines which are
comparable with the corresponding ones in the left panel.

An approach which allows flexible representations of the functions f;(z;;),7 =
1,...,p in (2) is the expansion in basis functions, i.e. f;(x;;) is represented by
a linear combination

K;
Fi@) = Biv dju(is) (3)
v=1
where (3, are unknown coefficients and {¢;,(zi;),v = 1,...,K;} is a set of basis

functions. Each basis function ¢, (z;;) is characterized by a knot £;,, from the range
of the jth covariate.

As basis functions we use B-splines of degree 3 respectively order 4. A cubic B-spline
is generated by four polynomials of degree 3 which are joint at the inner knots. The
first and the second derivatives are equal at the joining points (Figure 1). Generally
B-splines of degree d have the following general properties:

e B-splines consist of d + 1 polynomial pieces, each of degree d;
e they have d inner knots where the polynomial pieces become joined;

e B-splines have an overlap with 2d neighboring B-splines. Of course the leftmost
and the rightmost B-splines have less overlap;

e at the joining points, derivatives up to order d — 1 are continuous;

e B-splines are positive on a domain spanned by d+ 2 knots; outside of this domain
the B-spline is zero.

The basis functions ¢;, is characterized by one knot only. When using a knot to
identify a specific B-spline we take the leftmost knot at which the spline becomes
non-zero. For computation of B-splines see e.g. de Boor (1978).

The interaction term f,.s(z;, zis) in (2) can also be expanded in B-splines. In this
case the two-dimensional function f,s(z;, z;s) is represented as a tensor product of
two one-dimensional B-splines, i.e.

K, Ks
frs(xir; xis) = Z Z'%‘s,lip ¢rn(xir)¢sp(xis) ) (4)

k=1 p=1
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where the numbers of B-splines K., K for the two metrical variables can be un-
equal.Figure 1 shows a two-dimensional cubic B-spline. For illustration we have
also plotted the respective one-dimensional B-splines which generate the two-
dimensional B-spline. For further details compare de Boor (1978) and Dierckx
(1995).

3 Estimation with Penalized Shrinkage

In the case of an additive model without interactions and metrical variables x; =
(a1, - .., Tip), the parameters may be estimated by minimizing the penalized residual
sum of squares (pRSS) criterion

n p K;
mgin Z;(yZ —Bo — Z:l Z:lﬂju¢ju($ij))2 +7({A"}) ) (5)

where 3;,,7 = 1,...,p,v = 1,...,K;, are unknown coefficients and K is the
number of B-splines for the jth covariate. The expression

p K;
T =D D Au(4AFB,)? (6)
J=1v=k+1

represents the penalization term. Eilers & Marx (1996) suggested to penalize the
difference of adjacent coefficients. Hence in (6) the expression AF3;,, k = 1,2,...,
denotes the kth difference, e.g. the second difference has the form A 3;, = A'(3;, —
ﬂjl/—l) = (ﬂjl/ — Qﬂju—l + ﬂj,,_g). The parameters )\jy Z 0, v==k+ 1, ey Kj, with
k=1,2,..., are local smoothing parameters that control the amount of shrinkage
locally at knot =i, ;: the larger the values of Aj,, the larger the amount of local
shrinkage. If A\jr41 = ... = Ajx; = A; we have a global smoothing parameter for
the jth covariate.

Writing (5) in matrix form we obtain

pRSS(A) = (y —-BB)"(y —BB) + 8" DTADg, (7)

where B is an x [(K; — 1) + ... + (K, — 1)] + 1-design matrix, D is a [(K; —
k) + ...+ (Kp —k)]+1x[(Ky —1)+ ...+ (K, — 1)] + 1- penalization matrix
and A = diag(0, A\ k11,...,A1,K,,--+5Ap,K,) IS @ smoothing matrix of dimension
(Ki—k)+...+ (Kp—k)]+1x[(Ki—k)+ ...+ (K, — k)] + 1. It can be shown
(Krause & Tutz (2003)) that the estimator 3(A) which minimizes (7) has the form

3(A) = (BTB + DTAD)'BTy. (8)

For interactions between two metrical variables z;- and ;5 a comparable expression
for the pRSS criterion in matrix form is

pRSS(A;,As) = (y — B7)T(y - By) +
1 1
+5 7'D7A,Dyy +5 7'DJADyy ,

penalization in penalization in
first direction second direction
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with the penalization term splitting into two parts: the first term yields the pe-
nalization of B-splines in the direction of the rth variable. Here A, is a diagonal
matrix which has dimension (K, — k)K; x (K, — k)K;. B = diag(¢, ® ¢,) is a
block matrix with tensor products ¢, ® ¢, of two-dimensional B-splines and have
dimension n x (K, Ky — 1). The form of the penalization matrices D; respectively
D, is given in Appendix A.

The estimator which minimized (9) is given by
(A, Ay) = (BB +DIA,D, + DIA,D,) 'By. (10)

If we have to estimate an additive model, containing metrical and categorical vari-
ables respectively diverse interactions, the pRSS criterion can be generally written
as

pRSS(A) = (y — Aw) (y — Aw) + w/'PTAPw. (11)

The design matrix A = (1, B* B* B** B*? B??) has the form of a block matrix.
Here B* and B* are the design matrices for metrical and categorical variables.
B*?,B** and B** yield the respective interaction terms. The matrices B* and B**
only contain values 0 or 1. The vector w contains the estimators of weights for the
single terms of (2), i.e. W = (8o, 3, &,%,6)”. The penalization matrix P is a block
matrix P = (0,D?%, 0%, (D{*, D%%), 0%, D**), where 0° and 0%* are zero matrices
for the categorical variables (because they have no penalization terms). Df* and
D2?® are the penalization matrices (two directions) for the interactions between
metrical variables. Finally A = diag(0, A®,0%, A** 0%%, A*#) is a block matrix,
where (similar to the penalization matrix P) A*® is splitted into two matrices AT*
and A3®.

The performance of the penalized estimate strongly depends on the choice of the
smoothing parameters Aj,. Two common used criteria are the improved Akaike
information criterion (AIC;n,) proposed by Hurvich & Simonoff (1998)

i ], @) 1)
AICin, = log ng(y N I Rt s (12)

and the Bayesian information criterion (BIC) of Schwarz (1978)

(1 2 ] tr(H
L =1

where H = A(ATA + PTAP) ' AT is the hat matrix. The smoothing parameters
have to be chosen such that the criterion becomes minimal. Compared with AICjy,,
the BIC' leads to a stronger penalization.

4 The Concept of Simultaneous Selection with Genetic
Algorithms

Genetic Algorithms (Holland (1975), Goldberg (1989)) are originally based on Dar-
win’s evolution theory which refers to the principle that better adapted (fitter) in-
dividuals win against their competitors under equal external conditions. Like their
biological model, genetic algorithms use biological components (or operators) like
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selection, crossover, or mutation to model the natural phenomenon of genetic in-
heritance and Darwinian strife of survival. For some background on the biological
processes of genetics and the origin of the terminology see Haupt and Haupt (1998)
and Mitchell (1996).

4.1 Operators of a genetic algorithm for variable selection and
smoothing parameter choice

The smallest units linked to relevant information of a genetic algorithm are called
genes. The genes are either single units or short blocks of adjacent units and the in-
formation is coded in form of numbers, characters, or other symbols. Usually several
genes are arranged in a linear succession which is called string (also chromosome,
individual). The genetic algorithm always uses several strings as a potential solu-
tion of an optimization problem. This collection of strings is called population. If we
apply operators to strings we generate a population with new different strings. This
new population of strings is called offspring. We denote the particular populations
as generations, or more precisely as parent- respectively offspring generation.

Accurate coding is of high interest for genetic algorithms. In our case of simul-
tanous selection the strings of the population are a combination of a 0 — 1 string ¢
coding the presence of the diverse variables and a real-valued string A of smooth-

ing paramters. Suppose we have p metrical variables xi,...,%, and ¢ categorical
variables z1,...,z,. Then the coding of the inclusion of metrical variables is given
by

5% — 1 if variable x; is included 1.

J 0 else R
In case of categorical variables we have

5 = 1 if variable z; is included _ 1 ¢

J 0 else e

Interactions are coded in the same way by 6}”,?, 6;,5, 6;”,5 and thus for example 5;”,2” is
given by

er |1 i f the interaction between x; and xy, is included
k00 else

where j,k =1,...,p,j # k. It should be noted that only interactions with 677, j < k
and 077, j < k are used. For interaction between metrical and categorical variables
all combinations 5;-”,?,]' =1,...,p, k=1,...,q, have to be considered. The indica-
tors may be collected into one string

0 = ({07 1, {071, {07 > {05} {074 1)-

Each component of § can only take the value 0 or 1. For the sake of interpretability
hierarchical models are preferred. Thus the model term is restricted by

ik < 05 0% (14)

which implies that an interaction can only be included if both variables x; and
xy, are included. The same is postulated for categorical variables respectively their
interactions with metrical variables.

Each indicator string § in the population is connected to a smoothing parameter
string
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A= (A7 L G
which contains the smoothing parameters for the corresponding variables. {)\f }i=
1,...,p, describes the set of smoothing parameters corresponding to the metrical
variables (without interactions) xi,...,Xp. In case of interactions we have similar
expressions {A7} and {Aj;}. In contrast to §, A only contains three elements. Since
categorical variables as well as their interactions are not connected to smoothing

parameters which have to be optimized. In the following the combined string is
denoted as (9, A).

For the design of a powerful genetic algorithm operators like crossover and mutation
are important. Many authors (e.g. Oliveira, Benahmed, Sabourin, Bortolozzi & Suen
(2001); Wallet, Marchette, Solka & Wegman (1996); Yang & Honavar (1997)) use
operators which have constant influence during the whole application of the genetic
algorithm. However, better results are obtained if different aspects of the search are
differently weighted at various times: first we are generally interested in exploring
the search space and aquire information about the nature of the space. Later we try
to obtain information near the global optimum by utilizing the local possibilities
of upgrade. Therefore diverse adaptive and non-uniform operators. In context with
variable selection we use the following two operators

(i) Adaptive binary crossover (ABC) operator: suppose we have two 0 — 1 strings
with indicator variables 6 = (01 ...6;...0;) and 6 = (61 ...0;...0). A pair of
bits (d;,0;) of the parent strings swap their places if for a random number r;

from r € [0, 1] .
i < peo(l —r3=T)7), (15)

=g(t)

Here r € [0, 1] is a uniform random number which does not depend on the com-
ponent, p., is the crossover probability (of the variables), ¢ is the number of the
current generation, 7' is the maximum number of generations and b is a user-
dependent system parameter which determines the degree of non-uniformity.
Which strings are selected for crossover process is controlled by a similar ex-
pression as (15).

In contrast to the conventional crossover operators the ABC operator considers
the diverse objectives which have different relevance during the application of
the genetic algorithm. We can distinguish between two extreme cases (compare
also Figure 2): if ¢ is small the exponent of r is close to zero and hence g(t)
is primarily influenced by a suitable choice of the random number r. Figure 2
illustrates this context: for generation number ¢ = 5 we receive approximatively
a straight line with slope —1. As random number r is uniformly distributed each
value g(t) can be (approximatively) accepted with the same probability. If we
have chosen p., = 1, diverse strings show many swaps of corresponding bits (if r
is small) during crossover process. By suitable choice of p., the number of swaps
between corrsponding bits can be varified. A small value of p., also decreases the
number of swaps between two strings (e.g. a decrease of 0.5 reduces the number
of swaps by a half during crossover process).

If the generation number ¢ is large, the exponent of g(t) is close to zero and hence
g(t) also yields values close to zero for a wide range of random numbers r. This
fact is illustrated in Figure 2 for ¢ = 95. At the end of the genetic algorithms’
application there are only a few swaps between corresponding bits. In addition
a decrease of p., increases the effect.

(ii) Adaptive binary mutation (ABM) operator: for each bit of a string we generate
a random number r; and if
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Dependence of g(t) and P, ona random number r
1 T T T T T

Function g(t)
o ° o ° o
@ > S © ©
% T
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Random number r

Figure 2. Here function g(¢) is shown subject to a uniformly distributed random number
r for two sizes of the generation number ¢ and crossover probabilities p., = 1 respectively
pev = 0.5. The user-dependent system parameter b is chosen as 1.

r < pmo(1—r0- 1)) (16)

holds, the bits mutate, i.e. 0 is changed to 1 and vice versa. Here p,;, is the mu-
tation probability (of the variables). The idea and functionality of this operator
are the same as described for the ABC operator.

Here we only introduce the binary operators. For optimization of a real-valued string
A of smoothing parameters we use the modified improved arithmetical crossover
(modIAC) operator and the non-uniform mutation operator as described in Krause
& Tutz (2004).

4.2 Structure of the combined genetic algorithm

In order to receive a genetic algorithm for simultaneous selection of variables and
smoothing parameters the tools and operators from section 4.1 have to be combined
appropriately into a selection procedure.

Generally an indicator string § contains of elements with values 0 and 1, i.e. only
some variables (expressed by value 1) are contained in the string. Hence for the
smoothing parameter string A smoothing parameters are used only in case the cor-
responding indicator takes value 1. In the genetic algorithm presented here in case
of 67 = 0 the smoothing parameter A} is not chosen as 0 but retains the value of the
former string. This has the advantage: if the indicator variable again changes from
0 to 1 (e.g. by mutation) the respective smoothing parameter has not been ran-
domly selected which generally leads to results far away from any optima. Instead
the actual smoothing parameter which is already determined in former iterations
should be close to an optimum. Further application of the genetic algorithm tries
to find more fit offsprings which are more close to the optimum. Thus we do not
permanently have to explore the whole search space for better solutions.

In the simultaneous genetic algorithm the mutation operators for selection of vari-
ables respectively smoothing parameters are linked. In the mutation procedure first
randomly chosen elements of the indicator string § are mutated by use of the adap-
tive binary mutation (ABM). Then the non-uniform mutation operator is applied
to the elements of the smoothing parameters A which correspond to the mutated
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elements of §. The rest of the smoothing parameters remains unchanged. Different
from mutation the crossover operators (ABC and TAC) run simultaneously but in-
dependently from each other. Simulation trials have shown that it is favourable to
use different crossover rates for variables and parameters. Here the crossover rate
for the variables is lower than that for smoothing parameters, i.e. the number of
crossover processes for variables is lower.

As selection procedure we use a modification of the stochastic universal sampling
method (Baker (1985)), called modified selection procedure (modSP). This procedure
consists of 9 steps and is illustrated in Figure 3:

Step 1: In iteration step t population P(t) of m = r + s strings (4, \) is gen-
erated by selecting from the previous population. Then the worst u
percent strings of P(t).

Step 2: From the remaining strings of step 1 randomly r strings (J,\) are
selected. These strings do not necessarily have to be distinct.

Step 3: From the remaining strings of step 1 randomly select s = m —r parent
strings (0, ) are selected. These have not to be distinct from the r
selected strings in step 2.

Step 4: If identical strings are in the population (i.e. all genes of the strings
are identical) the copies will be mutated by using the ABM operator
on the indicator strings §. How many genes of a string are randomly
selected and mutated is controlled by a random number (at least one
gene is mutated). After mutation there arer different indicator strings.
This operation is also executed for the s parent strings.

Step 5: Check of the restriction 6;”,? < 070y (respectively their equipollent for
categorical variables) and deletion of illegal interactions.

Step 6: The non-uniform mutation operator is applied to copies of param-
eter strings A\ which correspond to the indicator strings 6. Here only
smoothing parameters are mutated for which the value is 1. How many
genes of a string are randomly selected and mutated is controlled by a
random number (at least one gene is mutated). After mutation, there
are r different parameter strings. This operation will also be executed
for the s parent strings.

Step 7: The ABC operator is applied to the r indicator strings 6 and thus
generate r indicator offsprings. Apply the modIAC operator to the
r parameter strings A simultaneously and thus generate r parameter
offsprings. Both crossover operators run independently.

Step 8: Check of the restriction 6;”,? < 050 (respectively their equipollent for
categorical variables) and deletion of illegal interactions.

Step 9: Let r offsprings and s parent strings form the new population P(t+1).
Hence their are again r+ s indicator strings and r + s parameter strings
in the new population (J, A).

The selection in step 2,3,4,6 and 7 is implemented with respect to a probability
distribution based on the strings’ fitness (see e.g. Michalewicz (1996) for further
details).

5 Simulation Study

In this section we present two simulations which base on additive models containing
different numbers of components:
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Figure 3. The flowchart shows the structure of the modified selection procedure (modSP)
which has been adapted to the problem of simultaneous selection of variables and smoothing

Krause and Tutz

Population P(t)

r + s strings (4, A)

Step 1

of the worst u percent
strings of P(t)

Step 2

Selection of
r strings (4, \)

Step 3

Step 4

Selection of
s strings (4, A)

Change of identical
indicator strings ¢ by
ABM operator

Step 4

Change of indentical
indicator strings by
ABM operator

Step 5

Check of restriction ‘

Step 5

Step 6

Check of restriction

Change of identical
parameter strings A\ by non-
uniform mutation operator

Step 7

Simultaneous crossover of
indicator strings 0 with

ABC operator and
parameter strings A with
modIAC operator

Step 6

Change of identical
parameter strings A by non-
uniform mutation operator

Step 8

Check of restriction ‘

Step9\

Step 9

/

Population P(t + 1)

r +s strings (4, \)

parameters. Details in the text.

(i) In the first simulation we use an additive model containing 18 different compo-
nents: 10 functions f;(z;;),j = 1,..., 10, depend on metrical covariates where 5
functions (see Figure 4) have no effect, i.e. f;(z;;) = 0. Furthermore 8 functions
fi(zij), = 11...,18, depend on binary covariates, where 5 functions have no
effect. The default parameters of the genetic algorithm used are: popsize = 38
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Figure 4. The left panel shows the five original functions for metrical variables with
effect. For the simulation of the additive model with n = 200 observations and noise of
o = 0.2 the right panel yields the number (respectively portion) of datasets with incorrectly
specified variables.

strings, crossover probability (of the variables) p., = 0.25, crossover probability
(of the parameters) p. = 0.5, mutation probability (of the variables) p,, = 0.1,
deletion of u = 60 percent of the worst strings, selection of r = 28 and s = 10
strings, v = 0.5, T = 1000, and b = 1. As information criterion we use BIC.

(i) In the second simulation we analyse an additive model consisting of 4 metrical
and 4 categorical variables. Furthermore we have 6 interactions between metri-
cal variables as well as 6 interactions between categorical variables. Altogether
8 variables respectively interactions have an effect (hence the other variables
and interactions are without any effect). As default parameters we have chosen:
popsize = 32, pey = 0.25, p. = 0.5, Py = 0.5, u =60, r =22, s = 10, v = 0.5,
T = 1000, and b = 1. As information criterion we use the improved AIC.

In all cases we simulate 200 datasets each one consisting of 200 independently and
uniformly distributed observations with noise of ¢ = 0.2. For estimation the single
functions f;(z;;) are expanded in 20 (first simulation) respectively 15 (second sim-
ulation) one-dimensional cubic B-splines. For the interactions terms f.s(x;., z;s) we
choose two-dimensional cubic B-splines on a grid of 10 by 10 knots. The smooth-
ing parameters are chosen from the interval [10~*,10%] and the penalty is of third
difference order.

To compare the performance of the genetic algorithm to alternative approaches we
have chosen software tools implemented in S-Plus and R:

e The software package S-Plus offers a restricted possibility of variable selection
and simultaneous function estimation. First one calculates AIC for an initial
model which contains each covariate as a linear term. Then one has to specify
a list with other modelling alternatives. Each covariate can be dropped or in-
tegrated in the model as a linear term or as a cubic smoothing spline with a
specified smoothing parameter. Starting with the initial model the implemented
function step successively calculates the AIC for all alternative models. If a
current model yields a better AIC the previous model is replaced. Because of its
implementation S-Plus can only run a relatively small number of different mod-
els. In the simulation each covariate is modelled linearly or as a cubic smoothing
spline with degrees of freedom df = 2,6, 10, 14. In case of the interaction terms
frs(@ir, xis) the S-Plus procedure uses locally weighted regression smoothers
with parameters automatically chosen (for further details see the manual of S-
Plus).



12 Krause and Tutz

Prediction accuracy of the function with 6,=0.2 Prediction accuracy of the function with ,=0.2

—_—

log(MSE)
)

log(MSE)
| !

-5.5¢ . . 4 -54r

Genetic Splus - Stepwise R - Stepwise Genetic R - Stepwise
Algorithm Regression Regression Algorithm Regression

Figure 5. These two panels show the prediction accuracy of the approaches for the sim-
ulation of the additive model. In the panel to the right the S-Plus approach is left out.

o The software package R offers the following approach to variable selection. The
function stepAIC implemented in the package MASS chooses a model by AIC
in a stepwise algorithm. This procedure is comparable with the step-function
in S-Plus. But in R each covariate can be dropped or integrated in the current
model as a linear term or as a polynomial up to degree 4. The user has the
possibility to choose BIC as criterion. In the simulations below we have applied
AIC and BIC. After variable selection the R-package mgev (Wood (2000)) yields
an automatic smoothing parameter selection based on a method first proposed
by Gu & Wahba (1991).

In case of the first simulation Figure 4 shows the number respectively portion of
datasets with incorrectly specified variables (where incorrectly means the variable
has an effect but is not chosen and vice versa). While the genetic algorithm and
the stepwise procedure in S-Plus yield comparable results in variable selection the
stepwise procedure in R leads to significantly worse error rates: 88% of the datasets
have at most one misclassified variable and only 1% of the datasets are completely
correctly classified. The stepwise procedure in R also contains datasets with up to
five misclassified variables. It should be noted that in case of all three approaches in
each dataset all variables with effect are correctly classified. Thus the errors occur
in the variables without effect, i.e. more variables than necessary are included in
the model.

The two panels of Figure 5 show the prediction accuracy of the diverse approaches.
The left panel illustrates all three methods, i.e. the genetic algorithm and the step-
wise procedures. The right panel is restricted to the genetic algorithm and the
stepwise procedure in R. It is obvious that the worst performance is found for the
S-Plus approach. This result depends on the limited choice of the models. Genetic
algorithm and stepwise procedure in R lead to comparable estimations. However the
right panel of Figure 5 shows that the genetic algorithm outperforms the procedure
in R.

In case of the second simulation Figure 6 shows the results for the additive model
with interactions between metrical respectively categorical variables. In this simu-
lation the S-Plus procedure also yields one misclassified variable in each dataset. It
should be noticed that in this context the expression variable includes main effect
variables and interactions. In approximately 35% of the datasets the genetic algo-
rithm shows no misclassified variable and in only 15% of the datasets we have more
than 2 incorrectly classified variables. The procedure in R generates significantly
worse results, because approximately 60% of the datasets have more than 2 mis-
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Figure 6. The simulation results of the additive model with interactions (n = 200 obser-
vations, noise of o = 0.2) are shown here. The top panel yields the number (respectively
portion) of datasets with incorrectly specified variables. The left panel below yields the re-
spective results of incorrectly classified variables with effect . The right panel below shows
the prediction accuracy of the genetic algorithm and the stepwise procedure in R.

classified variables. Furthermore in only 8% of the datasets the stepwise procedure
in R leads to completely correctly classified datasets.

The left panel of Figure 6 below yields the number respectively portion of datasets
with incorrectly classified variables with effect. We realize comparable results for
genetic algorithm and S-Plus procedure. Hence for these two approaches the errors
essentially occur in the variables without effect, i.e. more variables than necessary
are included in the model. In case of the stepwise procedure in R significantly more
errors occur for variables with effect: only 40% datasets yield completely correctly
classified variables with effect.

The right panel of Figure 6 below shows the prediction accuracy for the genetic algo-
rithm and the procedure in R. Because S-Plus leads to worse prediction accuracy we
restrict ourselves to a comparison between genetic algorithm and stepwise procedure
in R. Again we realize a significant difference between the two approaches. Further-
more the genetic algorithm shows a smaller variance in the estimations compared
with the stepwise procedure in R.
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6 Application of the Simultaneous Genetic Algorithm to
Rents for Flats

In the last years many large cities have published “rental guides” assisting renter
respectively owner of flats to calculate their rents. Furthermore, according to the
German rental law, owners are only allowed to increase the rents in dependence on
“average rents” of comparable flats. To generally determine “average rents” several
thousends of owners and renters are randomly chosen and interviewed in reference
to the special equipment of the flat (e.g. bath equipment, kitchen, quality of heating
or warm water system). Using further informations like e.g. rent, location of the flat
or year of construction we have the possibility of determine the “average rent” (after
specification of the respective criteria of the flat).

As basis of the statistical analysis in this chapter we have a random sample of 2055
flats from the census of the rental guide of the year 1998 in Munich. As response
variable we choose

y; = monthly net rent per square meters in Euro (this is calculated by the
difference between the monthly rent and the estimated utility costs),

where ¢ = 1,...,2055. Out of the approximately 200 variables of the original sample
we use 3 metrical variables z;;,7 = 1...,3 and 7 categorical variables z;;,j =
1,...,7, as described in the Table 1. In context with this dataset we assume an
additive model

3 2 3
yi=Bo+ Y filwy) +zlai+ > D> frelwiwis) v e,

j=1 r=1s=r+1
where €;,7 = 1,...,2055, is independently and normally distributed.

To receive a selection of necessary variables respectively simultaneous estimation
of the dataset we use the genetic algorithm for simultaneous selection of variables
and parameters. Here the default parameters of the genetic algorithm are chosen
as: popsize = 32, pey = 0.25, p. = 0.5, pmy = 0.5, u = 60,r = 22, s = 10, v = 0.5,
T = 1000, and b = 1. The main effects of the 3 metrical variables are modelled
by cubic B-splines with 20 knots; for the respective 3 interactions between metrical
variables we choose two-dimensional cubic B-splines on a grid of 10 by 10 knots. In
both cases the penalty is of third difference order. As model selection criterion we
use improved AIC and BIC.

|Variable| Brief description | Scale |
Ti1 floor space (in square meters) metrical
Ti2 year of construction metrical
Ti3 term of tenancy (in months) metrical
Zi1 good location binary
Zi2 best location binary
Zis simple warm water supply binary
Zi4 no warm water supply binary
Zis no central heating binary
Zi6 special auxiliary equipment in the bath| binary
Zi7 bath not tiled binary

Table 1. Used variables in the real dataset which basis on the rental guide of Munich
(1998).
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Figure 7. Here the estimations of the main effects “floor space” and “year of construction”
are shown. The plots on the left side yield the results for the genetic algorithm with BIC;
the plots on the right side show the respective results for the gemetic algorithm including
the improved AIC.

Application of the genetic algorithm with improved AIC (respectively BIC) yields
the following results: variables z;;,7 = 1,...,3 and #;;,7 = 1,...,4,6,7 are con-
tained in the model in both cases. Hence the categorical variable z;; and the in-
teractions ;1 - x;3 respectively z;s - ;3 are not included in the model. However in
case of the interaction term between z;; and z;» the two criteria lead to a different
result: only the genetic algorithm with improved AIC selects this interaction.

Figure 7 shows the effects of “floor space” and “year of construction” for the ge-
netic algorithm with BIC respectively improved AIC. We realize that the main
effect “floor space” shows comparable curves for both criteria: small flats are more
expensive than larger ones but this effect becomes smaller with increasing floor
space.

In case of the main effect “year of construction” the genetic algorithm also yields
similar estimations for the two information criteria. The effect on the rents increases
with more modern flats. Compared with flats before 1960 the effect on the rent
is significantly larger for flats which have been built after 1960. With a year of
construction later than 1990 there is a difference for flats between the respective
curves of the genetic algorithm with BIC and improved AIC: while BIC yields
further increase of the rent the improved AIC stabilizes the effect on the high level
(respectively even decreases). This little difference in the curves is given by the
stronger penalization of the BIC. Comparable results can also be found in Lang &
Brezger (2003).

In Figure 8 we illustrate the effect of interaction between “floor space” and “year of
construction” which is included in the model by application of the genetic algorithm
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Figure 8. Here is shown the effect of interaction between “floor space” and “year of
construction” which is included in the model by application of the genetic algorithm with
improved AIC.

with improved AIC. The plot shows that the monthly net rent per square meters
has a significant dependence on floor space. However the monthly net rent depends
slightly on the year of construction, only. Because the effect “year of construction”
is relatively small we can understand that the BIC with its stronger penalization
has not included this interaction in the model.

From the plot we realize that old flats built before 1940 with a floor space below
50m? are cheaper than the average. Otherwise modern flats built in the year 1970
and later are more expansive than the average. The maximal rent have to be paid
for small (50m?) respectively modern (year of construction: 1992) flat; otherwise
large flats (160m?) built before World War II are the cheapest ones.

7 Conclusions

In this paper we have presented an approachfor the simultaneous selection of vari-
ables and parameters. The approach is based on a combination of genetic algorithms
for continous and binary parmeters. In section 5 the genetic algorithm is applied
to different additive models for which a simultaneous selection of variables and
smoothing parameters is executed. Compared with packages in the statistic pro-
grams S-Plus and R in all simulations the genetic algorithm shows distinctly better
results with respect to the error rate of the selected variables as well as prediction
accuracy.

For function estimation we followed the concept of penalization of regression splines.
Here each function is expanded in a generally large number of basis functions (in
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our case we use B-splines as basis functions). A possible overfit is prevented by a
penalization term. Another possibility is the estimation of functions by adaptive
selection of knots and hence the use of respective genetic algorithms for knot se-
lection. First approaches in this direction are published by Pittman (2002). In this
context a genetic algorithm for simultaneous selection of variables and knots could
be an interesting alternative to the concept presented in section 4.
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A Penalized Regression Splines with Interactions

The matrices D; = diag(D, ) and Dy = diag(Ds ) with r = 1,...,p—1,s =
r+1,...,p,r # s in formula (9) are diagonal matrices. Here k yields the difference
order and r respectively s symbolise the two directions of the metrical variables z;,
and z;5. The penalization matrices D, and D, for differences of first (k = 1)
order can be generally written as

[ D,_; ®I, O(k,—2)K, x (K. —1)] -
D1 = O[(K.—1)x (K, —2)K.] DT E()[(Ks—l)xl] : L1 ’
(k1K) ~ (-] ixe-ny
[ I,_; ® D, Ok, —1)(K,—1)x(K.~1)] _
Dot =1 0k, ), 1)6,] Dy
L m-yr) oo~ ®ixw-n)
Here I; denotes the j x j identity matrix and —eaxj] = (0,...,0,1) is a unit vector

of length j with 1 at position (1,). The matrices D, and D, have dimensions
(K, — 1) x K, respectively (K — 1) x K and have the form

110 - 0 110 - 0

0-1 1 0 - 0-1 1 0
Dr: . Ds:

0...... -1 1 0...... -1 1

Using the matrices D, ; and D, ; we can also specify penalization matrices for
differences of order 1 < k < min{K,, K;} — 1, in fact

Dr,k = (Dr—k+1 ' Dr—k+2 et Dr—l) ®Is| -Dpy

which has dimension (K, — k)K, x (K,.Ks; — 1) and

Dsr=|I.® (Dskarl . Dsfk+2 Tt Dsfl) -Dy1

)

with dimension K, (K — k) x (K, Ks; —1).
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