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A Continuous Time GARCH Pro
ess Driven by a L�evyPro
ess: Stationarity and Se
ond Order Behaviour�Claudia Kl�uppelberg Alexander Lindner y Ross Maller z
Abstra
tWe use a dis
rete time analysis, giving ne
essary and suÆ
ient 
onditions forthe almost sure 
onvergen
e of ARCH(1) and GARCH(1,1) dis
rete time models,to suggest an extension of the (G)ARCH 
on
ept to 
ontinuous time pro
esses. Our\COGARCH" (
ontinuous time GARCH) model, based on a single ba
kgrounddriving L�evy pro
ess, is di�erent from, though related to, other 
ontinuous timesto
hasti
 volatility models that have been proposed. The model generalises theessential features of dis
rete time GARCH pro
esses, and is amenable to furtheranalysis, possessing useful Markovian and stationarity properties.
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1 Introdu
tionCertain time series models known as ARCH (autoregressive 
onditionally heteros
edasti
)and GARCH (Generalised ARCH) models are popular in �nan
ial e
onometri
s wherethey are designed to 
apture some of the distin
tive features of asset pri
e, ex
hangerate, and other series. So-
alled stylised fa
ts 
hara
terise �nan
ial returns data as heavy-tailed, un
orrelated, but not independent, with time-varying volatility and a long rangedependen
e e�e
t evident in volatility, this last also being manifest as a \persisten
e involatility". Various attempts have been made to 
apture these features in a 
ontinuoustime model, a natural extension being given by di�usion approximations to the dis
retetime GARCH as in Nelson [21℄ and Duan [10℄ or also in de Haan and Karandikar [8℄.These lead to sto
hasti
 volatility models of the typedYt = �tdB(1)t ; d�2t = �(
 � �2t )dt+ ��2t dB(2)t ; t > 0 ; (1.1)where B(1) and B(2) are independent Brownian motions. For a review paper on su
h
ontinuous time GARCH models we refer to Drost and Werker [9℄.Various related models have been suggested and investigated, many generalisationsbeing based on L�evy pro
esses repla
ing the Brownian motions and on relaxing the in-dependen
e property. We refer here to Barndor�-Nielsen and Shephard [2, 3℄ and Anh,Heyde and Leonenko [1℄ for quite sophisti
ated models.The main di�eren
e between models like (1.1) and the original GARCH setup is thefa
t that in the GARCH modelling one single sour
e of randomness suÆ
es; all stylizedfeatures are then 
aptured by the dependen
e stru
ture of the model.We adopt this idea of a single noise pro
ess and suggest a new 
ontinuous time GARCHmodel, whi
h 
aptures all the stylized fa
ts as the dis
rete time GARCH does. As noisepro
ess, any L�evy pro
ess is possible, its in
rements repla
ing the innovations in the dis-
rete time GARCH model. The volatility pro
ess is modelled by a sto
hasti
 di�erentialequation, whose solution displays the \feedba
k" and \autoregressive" aspe
t of the re-
ursion formula for the dis
rete time GARCH model.Our paper is organised as follows. We start in Se
tion 2 with the basi
s, giving ne
es-sary and suÆ
ient 
onditions (NASC) for the existen
e of stable solutions to the dis
retetime GARCH(1,1) model, assuming no a priori 
onditions whatsoever; in parti
ular, nomoment or log-moment assumptions are made.In Se
tion 3, motivated by the stru
tural results of the previous se
tion, we suggesta new 
ontinuous time GARCH(1,1) model taking a general L�evy pro
ess as the drivingpro
ess. The resulting volatility pro
ess satis�es a sto
hasti
 di�erential equation andis stationary under analogous 
onditions as for the dis
rete time GARCH model. More-over, it is Markovian. For the 
ontinuous time GARCH model a bivariate state spa
e2



representation exists and is Markovian, again in analogy to the dis
rete time GARCH.Se
tion 4 is devoted to an investigation of the stylized fa
ts for the volatility pro
ess asmentioned above. The se
ond order properties of the 
ontinous time GARCH mat
h thoseof the dis
rete time model, as 
al
ulated moments and auto
orrelation fun
tions reveal.Moreover, the stationary volatility is heavy-tailed in the sense that not all moments existin a given parametrisation.Finally, in Se
tion 5 we summarize some moment properties of the GARCH pro
essitself, showing in parti
ular that its squared in
rements are positively 
orrelated undersome 
onditions.2 Dis
rete time ARCH(1) and GARCH(1,1) pro
essesWe write the dis
rete time GARCH(1,1) pro
ess in the formYn = "n�n; where �2n = � + �Y 2n�1 + Æ�2n�1 ; n 2 N : (2.1)The random variable (rv) �n is the positive square root of �2n and the "n, n = 1; 2; : : :, areindependent and identi
ally distributed (i.i.d.) non-degenerate rvs with Pf"1 = 0g = 0.The parameters �, � and Æ satisfy � > 0, � � 0 and Æ � 0. When Æ = 0 in (2.1),GARCH(1,1) redu
es to ARCH(1), and if Æ = � = 0, (Yn)n2N is simply a sequen
e ofi.i.d. rvs, so we assume Æ + � > 0 to ex
lude this 
ase. We assume some initial almostsurely (a.s.) �nite (random, in general) values for "0 and �0, independent of ea
h otherand independent of ("n)n�1, and let Y0 = "0�0. For general ba
kground on ARCH we referto Engle [13℄, and for GARCH to Bollerslev, Engle and Nelson [6℄; see also Shephard [29℄.There have been many empiri
al and theoreti
al investigations into properties of themodels. Of major theoreti
al importan
e are 
onditions on the parameters in the modelunder whi
h a stationary version of the pro
ess exists. De�ne the rvs�n = �n(�; Æ) := nYi=1(Æ + �"2i ) ; n 2 N :The next result will be used to motivate our 
ontinuous time model. Throughout, \ D!"means \
onvergen
e in distribution", \ P!" means \
onvergen
e in probability", and \D="means \has the same distribution as".Theorem 2.1. (a) (GARCH(1,1)) Assume the above setup with Æ > 0 and � � 0, butno further restri
tions. SupposeEj log(Æ + �"21)j <1 and E log(Æ + �"21) < 0: (2.2)3



Then we have stability of the mean and varian
e pro
esses, that is, Yn D! Y and �n D! �,as n!1, for �nite rvs Y and �. Conversely, if (2.2) does not hold, then �n P!1 andjYnj P!1 as n!1.(b) (ARCH(1)) Suppose Æ = 0 and � > 0. Then we have stability of (Yn)n�0 and (�n)n�0if (b1) (2.2) holds with Æ = 0, or (b2)E(log(�"21))� =1 and Z 10 x�Z x0 P (log(�"21) < �y) dy��1 dP (log(�"21) � x) <1 :(2.3)Conversely, if (2.2) with Æ = 0, and (2.3) both fail, then �n P! 1 and jYnj P! 1 asn!1.Proof. Take Æ � 0, � � 0. From (2.1) we have�2n = � + �Y 2n�1 + Æ�2n�1 = � + (Æ + �"2n�1)�2n�1 ; n 2 N ; (2.4)where "n�1 is independent of �2n�1. Iterate this to get (
f. Goldie [16℄, Nelson [22℄ Eq. (6))�2n = � n�1Xi=0 n�1Yj=i+1(Æ + �"2j) + �20 n�1Yj=0(Æ + �"2j) ; n 2 N (2.5)(take �bj=a = 1 when a > b). This relation shows that the distribution of �n has the formof the distribution of a dis
rete time perpetuity, as in Goldie and Maller [17℄. SettingMj = Mj(Æ; �) = Æ + �"2j , and Qi = 1 in their notation, we 
an apply their Theorem 2.1to see that �2n D! �2 for a �nite rv �, provided limn!1 �n = 0 a.s. Assuming limn!1 �n =0 a.s., and taking limits in (2.4) shows that � satis�es �2 D= � + (Æ + �"2)�2, with "and � independent. From (2.1) we then get Yn D! Y , satisfying Y D= �", with " and �independent. If �n does not tend to 0 a.s., then Theorem 2.1 of [17℄ shows that �n P!1,and then jYnj P! 1 be
ause Pf"1 = 0g = 0. Thus, a NASC for stability of the dis
reteARCH(1) and GARCH(1,1) pro
esses is �n ! 0 a.s. as n!1.Now de�neS0 = 0 ; Sn = nXi=1 Xi ; n 2 N ; for Xi = � log(Æ + �"2i ) ; i 2 N :Sin
e Pf"i 6= 0g = 1, the Xi and Sn are a.s. �nite rvs for any Æ � 0, � � 0, Æ + � > 0.Further, �n ! 0 a.s. if and only if Sn ! 1 a.s. Let X = X1, X+ = max(0; X) andX� = �X +X+. Then, by Kesten and Maller [18℄ and Eri
kson [14℄, a NASC for �n ! 0a.s., or, equivalently, Sn !1 a.s., is:EjXj <1 and EX > 0 ; (2.6)4



or else EX+ =1 and Z[0;1)� xE(X+ ^ x)� dPfX� � xg <1 : (2.7)(a) Keep Æ > 0, � � 0. Now (2.6) is exa
tly (2.2), so we only have to 
he
k that 
ondition(2.7) 
annot o

ur in this 
ase. We do this by showing EX+ <1. Note that (2.2) impliesÆ < 1, as does limn!1 �n = 0 a.s. So we may keep 0 < Æ < 1. Then for x > 0,P (X > x) = P (� log(Æ + �"21) > x) = P (log(Æ + �"21) < �x) 1fx<� log Æg ;so EX+ = Z � log Æ0 P (log(Æ + �"21) < �x) dx;whi
h is always �nite, 
ompleting the proof of (a).(b) Next, keep Æ = 0, � > 0. This time (2.7) 
an o

ur, the 
ondition being equivalent to(2.3). Alternatively, (2.6) is equivalent to (2.2) with Æ = 0 in this 
ase. This proves (b).2Remark 2.1. (i) Under the a priori assumption that the expe
tations of the positive andnegative parts of log(Æ+�"21) are not both in�nite, Nelson [22℄ gives a NASC for stabilityof the ARCH(1) and GARCH(1,1) volatility pro
esses as E log(Æ + �"21) < 0 (see alsoSampson [26℄). In the GARCH 
ase, Æ > 0 and � � 0, we always have E(log(Æ+�"21))� <1, and so (2.2) re
overs Nelson's suÆ
ient 
ondition. Nelson 
laims that if (2.2) fails,then �n !1 a.s., but his proof is in
orre
t in the 
ase E log(Æ+�"21) = 0. Only the weakdivergen
es, that �n P!1 and jYnj P!1 (n!1) as stated in our Theorem 2.1, 
an be
laimed in general. This distin
tion is important in some appli
ations.In the ARCH 
ase, Æ = 0 and � > 0, then it is easy to 
onstru
t ("n)n2N su
h thatE(log(�"21))� = E(log(�"21))+ = 1, but (2.3) still holds. Thus Theorem 2.1 extendsNelson's result for the ARCH(1) 
ase.(ii) Condition (2.2) obviously implies Æ < 1. Conversely, if Æ > 0 andÆ + �E("21) < 1;then (2.2) holds by an appli
ation of Jensen's inequality. Under the �nite varian
e 
ondi-tion E("21) <1, Bougerol and Pi
ard [7℄ give NASC for stri
t stationarity of GARCH(p,q)models.(iii) Note that limn!1 �n(�; Æ) = 0 a.s. for � > 0, Æ > 0 implies limn!1 �n(�; 0) = 0 a.s.for � > 0. Thus, the GARCH(1,1) stability 
ondition implies stability of ARCH(1). 2Remark 2.2. When Y and � exist in Theorem 2.1 they satisfy the random equationsY D= �"; where �2 D= � + (Æ + �"2)�2;5



with " D= "1 independent of �, as shown in the proof. Also, � has an expli
it representationas an in�nite (absolutely 
onvergent) random series:�2 D= � 1Xi=0 iYj=1(Æ + �"2j): (2.8)Equation (2.8) makes it 
lear why limn!1 �n = 0 a.s. is ne
essary for the stability ofGARCH(1,1), but the suÆ
ien
y 
omes about using deeper properties of random walks,as exploited in Goldie and Maller [17℄. 2For 
onditions guaranteeing various useful properties of a stationary solution (existen
eof moments, tail behavior, extremal behavior, et
.) when it exists, Mikos
h and Stari
a [20℄provide the most general investigation so far. Su
h results of 
ourse have great pra
ti
alimportan
e as well. Conne
tions between GARCH models and the random di�eren
eequation literature have been noted by various authors, among them Goldie [16℄; seeEmbre
hts et al. [12℄, Se
tion 8.4 for further referen
es. Rather than pursue these here,we turn to a 
ontinuous time setting.3 A 
ontinuous time GARCH pro
essOur aim now is to 
onstru
t a kind of GARCH pro
ess in 
ontinuous time. We want topreserve the essential features of (2.1), that innovations feed into the volatility pro
ess,whi
h has in addition an autoregressive aspe
t. We pro
eed from the representation (2.5).The summation in (2.5) 
an be written as� Z n0 exp0� n�1Xj=bs
+1 log(Æ + �"2j)1A ds; (3.1)whi
h suggests repla
ing the noise variables "j by in
rements of a L�evy pro
ess. A

ord-ingly, let L be a (
�adl�ag) L�evy pro
ess with jumps �Lt = Lt � Lt�, t � 0, de�ned on aprobability spa
e with appropriate �ltration, satisfying the \usual 
onditions". We re
allsome of its properties. For ea
h t � 0 the 
hara
teristi
 fun
tion of Lt 
an be written inthe formE(ei�Lt) = exp�t�i
L� � � 2L �22 + Z(�1;1) �ei�x � 1� i�x1fjxj�1g��L(dx)�� ; � 2 R ;(3.2)(Sato [27℄, Theorem 8.1, Bertoin [4℄, p. 13). The 
onstants 
L 2 R, � 2L � 0 and themeasure �L on R form the 
hara
teristi
 triplet of L; as usual, the L�evy measure �L isrequired to satisfy RRmin(1; x2)�L(dx) < 1. If in addition RRmin(1; jxj)�L(dx) < 1,6



then 
L;0 := 
L� R[�1;1℄ x�L(dx) is 
alled the drift of L. We will only be interested in thesituation where �L is nonzero.Keep 0 < Æ < 1, � � 0, and, with (3.1) in mind, de�ne a 
�adl�ag pro
ess (Xt)t�0 byXt = �t log Æ � X0<s�t log(1 + (�=Æ)(�Ls)2); t � 0 : (3.3)Then, with � > 0 and �0 a �nite rv, independent of (Lt)t�0, de�ne the left-
ontinuousvolatility pro
ess analogously with (2.5) by�2t = �� Z t0 eXsds+ �20� e�Xt�; t � 0; (3.4)and de�ne the Integrated Continuous Time GARCH (\COGARCH") Pro
ess (Gt)t�0 asthe 
�adl�ag pro
ess satisfyingdGt = �t dLt ; t � 0 ; G0 = 0 : (3.5)Thus G jumps at the same times as L does, and has jumps of size �Gt = �t�Lt, t � 0.Here �Lt is to play the role of the innovation "n in the dis
rete time GARCH, andthe intention is that (Gt)t�0 and (�2t )t�0 display a kind of 
ontinuous time GARCH-likebehaviour. This indeed turns out to be the 
ase.We begin our analysis by �rst investigating the pro
ess (Xt)t�0, whi
h has a spe
ialstru
ture.Proposition 3.1. (Xt)t�0 is a spe
trally negative L�evy pro
ess of bounded variation withdrift 
X;0 = � log Æ, Gaussian 
omponent � 2X = 0, and L�evy measure �X given by�X([0;1)) = 0 and �X((�1;�x℄) = �L(fy 2 R : jyj �p(ex � 1)Æ=�g) ; x > 0 :Proof. That (Xt)t�0 is a L�evy pro
ess with no positive jumps is 
lear. The L�evy measureof (Xt)t�0 has negative 
omponent given by�Xf(�1;�x℄g = E X0<s�1 1f� log(1+(�=Æ)(�Ls)2)��xg= E X0<s�1 1fj�Lsj�p(ex�1)Æ=�g= �Lfy : jyj �p(ex � 1)Æ=�g ; x > 0 :This means that �X is the image measure of �L under the transformation T : R !(�1; 0℄, x 7! � log(1 + (�=Æ)x2). This shows in parti
ular thatZ[�1;1℄ jxj�X(dx) = Zfjyj�p(e�1)Æ=�g log(1 + (�=Æ)y2) �L(dy)7



is �nite, be
ause R[�1;1℄ y2�L(dy) is �nite. Thus (Xt)t�0 is a L�evy pro
ess of boundedvariation (e.g., Sato [27℄, Theorem 21.9), having 
hara
teristi
 fun
tionE(ei�Xt) = exp��it� log Æ + t Z(�1;0) �ei�x � 1��X(dx)� ; � 2 R; (3.6)(e.g. Sato [27℄, Theorem 19.3), showing that 
X;0 = � log Æ and � 2X = 0. (In fa
t (Xt)t�0is the negative of a subordinator together with a positive drift.) 2We now pro
eed to investigate (Gt)t�0 and (�2t )t�0 given by (3.4) and (3.5).Proposition 3.2. The pro
ess (�2t )t�0 satis�es the sto
hasti
 di�erential equationd�2t+ = �dt+ �2t eXt�d(e�Xt) ; t > 0 ; (3.7)and we have �2t = �t+ log Æ Z t0 �2sds+ (�=Æ) X0<s<t�2s(�Ls)2 + �20; t � 0: (3.8)Proof. Set Kt := t log Æ, St :=Q0<s�t(1+(�=Æ)(�Ls)2) and f(k; s) := eks. Then use Itô'slemma in two variables (e.g., Protter [23℄, Theorem 33, p. 81) to get, from (3.3),e�Xt = f(Kt; St)= 1 + log Æ Z t0 e�Xsds+ (�=Æ) X0<s�t e�Xs�(�Ls)2 ; t � 0 : (3.9)Integration by parts givese�Xt Z t0 eXsds = Z t0+ e�Xs�d�Z s0 eXydy�+Z t0+�Z s0 eXydy� d(e�Xs)+�e�X� ; Z �0 eXsds�t ;wherein the quadrati
 
ovariation is, in view of (3.9),�log Æ Z �0 e�Xs�ds; Z �0 eXsds�t = Z t0 d[s log Æ; s℄ = 0; t � 0:Thus d�e�Xt Z t0 eXsds� = dt+ �Z t0 eXsds� d(e�Xt); t � 0;by the asso
iativity of the sto
hasti
 integral. So we obtain from (3.4) that (3.7) holds,from whi
h (3.8) follows after appli
ation of (3.9). 2Equation (2.4) shows that the dis
rete GARCH(1,1) satis�es�2n+1 � �2n = � � (1� Æ)�2n + ��2n"2n; n 2 N0 ;8



whi
h by summation yields�2n = �n� (1� Æ) n�1Xi=0 �2i + � n�1Xi=0 �2i "2i + �20 ; (3.10)analogously to (3.8). (Note that we use (�2n)n2N0 to denote the squared dis
rete timeGARCH volatility pro
ess, and (�2t )t�0 to denote the 
ontinuous time pro
ess de�ned by(3.4); these are quite di�erent pro
esses but this should 
ause no 
onfusion.) Thus (3.8)
aptures the \feedba
k" and \autoregressive" aspe
ts of the GARCH volatility pro
esswhi
h are important features of its appli
ation.By 
omparison with Theorem 2.1 we are now led to:Theorem 3.1. Suppose ZR log(1 + (�=Æ)y2) �L(dy) < � log Æ (3.11)(whi
h, sin
e Æ > 0, in
orporates the requirement that the integral be �nite.) Then �2t D!�21, as t!1, for a �nite rv �1 satisfying�21 D= � Z 10 e�Xtdt(thus, the improper integral exists as a �nite rv, a.s.). Conversely, if (3.11) does not hold,then �2t P!1 as t!1.Proof. By a 
ontinuous time analogue to the Goldie and Maller [17℄ theorem, due toEri
kson and Maller [15℄, R10 e�Xs ds 
onverges a.s. to a �nite rv if Xt ! 1 a.s., and�2t P!1 as t!1 otherwise. By the stationarity of the in
rements of (Xt)t�0,e�Xt Z t0 eXsds D= Z t0 e�Xsds ; t � 0:Hen
e we only need to show that (3.11) is equivalent to Xt ! 1 a.s. as t ! 1. Sin
e�Xf[0;1)g = 0, EX1 always exists (possibly, EX1 = �1) and Xt=t ! EX1 a.s. ast ! 1 (e.g., Sato [27℄, Theorem 36.3). If EX1 � 0 then Xt ! �1 a.s. or (Xt)t�0os
illates, so we need to show that EX1 > 0 if and only if (3.11) holds. From (3.6) we getEX1 = � log Æ + Z(�1;0) x�X(dx) = � log Æ � ZR log(1 + (�=Æ)y2) �L(dy);implying the equivalen
e of EX1 > 0 and (3.11). 2Next we show that (�2t )t�0 is Markovian and further that, if the pro
ess is started at�20 D= �21, then it is stri
tly stationary. 9



Theorem 3.2. The squared volatility pro
ess (�2t )t�0, as given by (3.4), is a time ho-mogeneous Markov pro
ess. Moreover, if the limit variable �21 in Theorem 3.1 exists and�20 D= �21, independent of (Lt)t�0, then (�2t )t�0 is stri
tly stationary.Proof. Let (Ft)t�0 be the �ltration generated by (�2t )t�0. Then for 0 � y < t�2t = � Z y0 eXsds e�Xy� e�(Xt��Xy�) + � Z ty eXsds e�Xt� + �20e�Xt�= (�2y � �20e�Xy�)e�(Xt��Xy�) + � Z ty eXsds e�Xt� + �20e�Xt�= �2yAy;t +By;t; say; (3.12)where Ay;t := e�(Xt��Xy�) and By;t := � Z ty e(Xs�Xy�)ds e�(Xt��Xy�)are independent of Fy. This means that, 
onditional on Fy, �2t depends only on �2y, fromwhi
h it follows easily that (�2t )t�0 is a Markov pro
ess.Next, let D[0;1) be the spa
e of 
�adl�ag fun
tions on [0;1) and de�ne gy;t : D[0;1)!R2 ; x 7! �e�(xt��xy�) ; � R ty e�(xt��xs) ds�: Sin
e (Xt)t�0 is a L�evy pro
ess, (Xs)s�0 D=(Xs+h � Xh)s�0 for any h > 0. Further, we have that (Ay;t; By;t) = gy;t((Xs)s�0) and(Ay+h;t+h; By+h;t+h) = gy;t((Xs+h � Xh)s�0). This shows that the joint distribution of(Ay;t; By;t) depends only on t � y. By independen
e of �2y and (Ay;t; By;t) the transitionfun
tions are thus time homogeneous.It remains to show that �2t D= �21 for all t > 0, provided �20 D= �21. For 
al
ulating thedistribution of �2t+ = � Z t0 eXs��Xt ds+ e�Xt�20;we 
an take any version of �20, independent of (Ls)0�s�t, and with the distribution of �21.A suitable 
hoi
e is �20 := � R10 e�(Xs+t�Xt) ds. Then�2t+ = � Z t0 e(X(t�s)��Xt) ds+ e(X(t�t)��Xt)� Z 10 e�(Xs+t�Xt) ds:By the time reversal property of L�evy pro
esses (e.g. Bertoin [4℄, Lemma II.2, p. 45),(X(t�s)� � Xt)0�s�t D= (�Xs)0�s�t and both pro
esses are independent of �20 as 
hosen.Hen
e, �2t+ D= � Z t0 e�Xs ds+ e�Xt� Z 10 e�(Xs+t�Xt) ds= � Z t0 e�Xs ds+ � Z 1t e�Xs ds D= �20 :10



Sin
e �2t+ = �2t a.s. (�2t has no �xed points of dis
ontinuity, a.s.), �2t D= �20 follows for allt > 0. 2For the pro
ess Gt = R t0 �s dLs, t � 0, note that for any 0 � y < t,Gt = Gy + Z ty+ �s dLs ; t � 0 :Here, (�s)y<s�t depends on the past until time y only through �y, and the integrator isindependent of this past. From Theorem 3.2 we thus obtain:Corollary 3.1. The bivariate pro
ess (�t; Gt)t�0 is Markovian. If (�2t )t�0 is the stationaryversion of the pro
ess with �20 D= �21, then (Gt)t�0 is a pro
ess with stationary in
rements.Remark 3.1. (i) The analogy between (3.8) and (3.10) is not exa
t, in that the param-eterisation is slightly di�erent; (1� Æ) is repla
ed by � log Æ in the 
ontinuous version.(ii) The value � = 0 is permissible in (3.3), in whi
h 
aseXt = �t log Æ, t � 0, (0 < Æ < 1),and by (3.4) we have the trivial solution�2t = �(1� Æt)� log Æ + �20Æt ; t � 0 :For the dis
rete GARCH, from (2.5), when � = 0,�2n = � n�1Xi=0 Æn�1�i + �20Æn = �(1� Æn)1� Æ + �20Æn ; n 2 N ;again demonstrating the 
orresponden
e between the dis
rete and 
ontinuous time version.(The same results if we take L � 0.)(iii) Only Æ > 0 is allowed in (3.3) { (3.9). Thus our 
ontinuous time GARCH does not
ontain a 
ontinuous time ARCH as a submodel. To a

ommodate the 
ase Æ = 0, whi
his the ARCH situation, we have to go ba
k to (3.1). Then Xt should be taken asXt = �t log�� X0<s�t log(�Ls)21f�Ls 6=0g; t � 0;and this is only a well-de�ned (L�evy) pro
ess, if L is 
ompound Poisson. 2We treat this important example in the more general GARCH setup.Example 3.1. (Compound Poisson COGARCH(1,1) model)Let (Lt)t�0 be a 
ompound Poisson pro
ess, with jumps "n at the times Tn of an in-dependent Poisson pro
ess (Nt)t�0. Thus, Lt = PNti=1 "i, with L0 = T0 = 0 and Nt =maxfn � 1 : Tn � tg, t � 0. Suppose Pf"1 = 0g = 0. Evaluated at Tn, L has jumps11



�LTn = LTn � LTn� = "n, so �XTn = XTn � XTn�1 = (1 � �Tn) log Æ � log(Æ + �"2n),where the �Tn = Tn�Tn�1 are i.i.d. exponential rvs. This shows that the 
ontinuous timeGARCH pro
ess evaluated at the jump times di�ers from a dis
rete GARCH pro
ess, dueto the term (1��Tn) log Æ, though it evidently has similar 
hara
teristi
s. A simulationof su
h a pro
ess, driven by a 
ompound Poisson pro
ess with rate 1 and standard nor-mally distributed jump sizes, is given in Figure 1. The parameters were 
hosen as � = 1,Æ = 0:95 and � = 0:045. For these values, a stationary distribution of (�2t )t�0 exists andhas �nite se
ond, but not third, moment (by (4.12) below). The parameters were 
hosenso the simulated series is 
lose to non-stationarity, as is often observed for �nan
ial timeseries. 2Of 
ourse, the 
lass of 
ontinuous time pro
esses given by our model is mu
h larger thanthe 
ompound Poissons. Examples 
urrently of great interest in �nan
ial modelling arethe pure jump pro
ess generated by a normal inverse Gaussian or hyperboli
 (Barndor�-Nielsen and Shephard [2℄ and Eberlein [11℄), a varian
e gamma (VG) pro
ess (Madanand Seneta [19℄), a Meixner pro
ess (e.g., S
houtens and Teugels [28℄), or simply a stablepro
ess (e.g., Samorodnitsky and Taqqu [25℄). These pro
esses are not 
ompound Poisson{ they have in�nitely many jumps, a.s., in �nite time intervals { and have been su

essfullyused for �nan
ial modelling in various appli
ations.It is instru
tive to 
ompare the pro
ess de�ned in (3.4) with the sto
hasti
 volatilitymodel of Barndor�-Nielsen and Shephard [2, 3℄, whi
h spe
i�esd�2t = ���2t dt+ dz�t; t � 0 ; (3.13)(with � > 0) for a subordinator (in
reasing L�evy pro
ess) (zt)t�0. The solution to (3.13)is the Ornstein-Uhlenbe
k-type pro
ess�2t = e��t Z t0 e�sdz�s + e��t�20 ; t � 0 : (3.14)By 
omparison with (3.4), the L�evy pro
ess is in the integrator rather than in the in-tegrand. A 
lass of pro
esses whi
h in
ludes both models is to let �2t have the samedistribution as e��t�20 + Z t0 e��s�d�s; t � 0; (3.15)where (�; �) is a bivariate L�evy pro
ess. When (�t)t�0 is pure drift we get (3.4) and when(�t)t�0 is pure drift (to 1) we get an rv with the same distribution as the one in (3.14).Conditions for 
onvergen
e of (3.15) as t!1 are in Eri
kson and Maller [15℄, but we donot investigate further at this stage. 12



An alternative sto
hasti
 volatility model is introdu
ed in Anh, Heyde and Leo-nenko [1℄, Se
tion 5, who propose as volatility the stationary pro
ess�(t) = Z t�1M(t� s)dL(s) ; t � 0 ;where M is a \memory" fun
tion and (Lt)t�0 is a L�evy pro
ess su
h that L(1) is a rvwith positive support. In this paper, as well as in [2, 3℄, the logarithmi
 pri
e pro
ess ismodelled by the SDEdx�(t) = (�+ b�2(t))dt+ �(t)dW (t) ; t > 0 ;where � and b are 
onstants and (W (t))t�0 is standard Brownian motion, independent ofthe L�evy pro
ess (Lt)t�0. The Itô solution of this SDE is given byx�(t) = Z t0 �(u)dW (u) + �t+ b�2�(t) ; t � 0 ;where �2�(t) = R t0 �2(u)du. For � > 0 the rvsyn = x�(n�)� x�((n� 1)�) ; n 2 N ;model the logarithmi
 asset returns over time periods of length �.4 Se
ond order properties of the volatility pro
essIn this se
tion we derive moments and auto
orrelation fun
tions of the squared sto
hasti
volatility pro
ess (�2t )t�0. It is obvious from equation (3.4) that moments of (�2t )t�0 
or-respond to 
ertain exponential moments of (Xt)t�0. To spe
ify the relationships exa
tly,we give Lemma 4.1.Lemma 4.1. Keep 
 > 0 throughout.(a) Let � > 0. Then the Lapla
e transform Ee�
Xt of Xt at 
 is �nite for some t > 0, or,equivalently, for all t > 0, if and only if EL2
1 <1.(b) When Ee�
X1 <1, de�ne 	(
) = 	X(
) = logEe�
X1 . Then j	(
)j <1, Ee�
Xt =et	(
), and 	(
) = 
 log Æ + ZR �(1 + (�=Æ)y2)
 � 1� �L(dy): (4.1)(
) If EL21 < 1 and 	(1) < 0, then (3.11) holds, and �2t 
onverges in distribution to a�nite rv.(d) If 	(
) < 0 for some 
 > 0, then 	(d) < 0 for all 0 < d < 
.13



Proof. (a) By Sato [27℄, Theorem 25.17, the Lapla
e transform Ee�
Xt is �nite for someand hen
e all t � 0 if and only ifZfjxj>1g e�
x�X(dx) = Z(�1;�1) e�
x�X(dx) = Zfjyj>p(e�1)Æ=�g(1 + (�=Æ)y2)
�L(dy)is �nite, giving (a) (see e.g. Sato [27℄, Theorem 25.3).(b) follows from Sato [27℄, Theorem 25.17, and (3.6).(
) From (4.1) we see that 	(1) < 0 is equivalent to(�=Æ) ZR y2�L(dy) < � log Æ:Sin
e log(1 + (�=Æ)y2) < (�=Æ)y2, this implies (3.11).(d) Let 	(
) < 0. From (a) and (b) we 
on
lude that 	(d) is de�nable for 0 < d � 
.From (4.1) it then follows that 	(d) < 0 if and only if�1d�ZR�(1 + ��Æ� y2)d � 1� �L(dy) < � log Æ:Sin
e the fun
tion (0;1)! R, d 7! (1=d)((1 + (�=Æ)y2)d � 1) is in
reasing for any �xedy, the result follows. 2The next result gives the �rst two moments and the auto
ovarian
e fun
tion of (�2t )t�0in terms of the fun
tion 	, showing in parti
ular that the auto
ovarian
e fun
tion de-
reases exponentially fast with the lag.Proposition 4.1. Let � > 0, t > 0, h � 0.(a) E�2t <1 if and only if EL21 <1 and E�20 <1. If this is so, thenE�2t = ��	(1) + �E�20 + �	(1)� et	(1); (4.2)where for 	(1) = 0 the righthand side has to be interpreted as its limit as 	(1)! 0, i.e.E�2t = �t+ E�20.(b) E�4t <1 if and only if EL41 <1 and E�40 <1. In that 
ase, the following formulaehold (with a suitable interpretation as a limit if some of the denominators are zero):E�4t = 2�2	(1)	(2) + 2�2	(2)� 	(1) �et	(2)	(2) � et	(1)	(1)�+2�E�20 �et	(2) � et	(1)	(2)� 	(1) �+ E�40 et	(2); (4.3)Cov(�2t ; �2t+h) = Var(�2t ) eh	(1): (4.4)14



Proof. (a) We start with the 
al
ulation of E�2t . Using Fubini's Theorem and the fa
tthat �20 is independent of all the other quantities, we 
on
lude from equation (3.4) andLemma 4.1 thatE�2t = �E Z t0 eXs�Xt� ds+ E�20 Ee�Xt� = � Z t0 Ee�Xs ds+ E�20 Ee�Xtis �nite if and only if EL21 <1 and E�20 <1. Then (4.2) follows fromE�2t = � Z t0 es	(1) ds+ E�20et	(1):(b) Assume EL41 <1 and E�40 <1. We 
al
ulate E�4t as follows:E�4t = �2E �Z t0 eXs�Xt ds�2 + 2� E�20 E Z t0 eXs�2Xt ds + E�40 Ee�2Xt=: �2EI1 + 2�E�20 EI2 + E�40 et	(2) ; say.Using the stationarity of in
rements, we get�Z t0 eXs�Xt ds�2 D= �Z t0 e�Xs ds�2= Z t0 Z t0 e�Xs e�Xu du ds = 2 Z t0 Z s0 e�(Xs�Xu) e�2Xu du ds:Then by the independen
e of in
rements,EI1 = 2 Z t0 Z s0 �Ee�(Xs�Xu)� �Ee�2Xu� du ds= 2 Z t0 Z s0 e(s�u)	(1) eu	(2) du ds= 2	(1)	(2) + 2	(2)�	(1) �et	(2)	(2) � et	(1)	(1)� :By similar arguments,EI2 = E Z t0 eXs�2Xt ds = E Z t0 e�2(Xt�Xs)e�Xs ds= Z t0 e(t�s)	(2)es	(1) ds = et	(2) � et	(1)	(2)�	(1) :Putting all this together, we see that E�4t <1, and we obtain (4.3). The 
onverse followssimilarly.For the proof of (4.4), let (Ft)t�0 be the �ltration generated by (�2t )t�0. Then it followsfrom (3.12) and (4.2) thatE(�2t+hjFt) = �2t eh	(1) + � Z h0 es	(1)ds= (�2t � E�20)eh	(1) + E�2h: (4.5)15



Then E(�2t+h�2t ) = E ��2t ((�2t � E�20)eh	(1) + E�2h)�= �E�4t � E�2t E�20� eh	(1) + E�2t E�2h: (4.6)Cal
ulations using (4.2) show thatE�2t E�2h � E�2t E�2t+h = (E�2t E�20 � (E�2t )2)eh	(1):Then (4.4) follows immediately from (4.6). 2The following results hold for the stationary version of the volatility pro
ess. Re
allfrom Theorem 3.2 that this is (�t)t�0 for �0 D= �1, where �1 is the limit rv from Theo-rem 3.1. Results related to the following proposition 
an be found in Bertoin and Yor [5℄,see also the referen
es therein.Proposition 4.2. Let � > 0. Then the k-th moment of �21 is �nite if and only if EL2k1 <1 and 	(k) < 0, k 2 N. In this 
ase,E�2k1 = k! �k kYl=1 1�	(l) : (4.7)Proof. Using Fubini's Theorem and the independent and stationary in
rements property,it follows from Theorem 3.1 that for k 2 NE�2k1 = �kE �Z 10 e�Xt dt�k= �kE Z 10 : : :Z 10 e�Xt1 � � � e�Xtk dtk : : : dt1= k! �kE Z 10 Z t10 : : :Z tk�10 e�(Xt1�Xt2)e�2(Xt2�Xt3) � � � e�(k�1)(Xtk�1�Xtk ) e�kXtk dtk : : : dt1= k! �k Z 10 Z t10 : : :Z tk�10 et1	(1)et2(	(2)�	(1)) � � � etk(	(k)�	(k�1)) dtk : : : dt1= k! �k kYl=1 1�	(l) ;provided that 	(1); : : : ;	(k) are all de�ned and negative. The last equality follows fromanalyti
 
al
ulations. If j 2 f1; : : : ; kg is the �rst index for whi
h 	(j) � 0, or Ee�jX1 =1, then the 
al
ulation shows that E�2j1 = 1. Sin
e E�2k1 < 1 implies E�2j1 < 1 forj < k, it follows from Lemma 4.1 that E�2k1 < 1 if and only if 	(k) is de�ned (i.e.EL2k1 <1) and negative. 2From this result we obtain the mean and se
ond moment of �21; we also 
al
ulate theauto
ovarian
e fun
tion of the stationary pro
ess (�2t )t�0.16



Corollary 4.1. If (�2t )t�0 is the stationary pro
ess with �20 D= �21, thenE�21 = ��	(1) ; (4.8)E�41 = 2�2	(1)	(2) ; (4.9)Cov(�2t ; �2t+h) = �2� 2	(1)	(2) � 1	2(1)� eh	(1) ; t; h � 0 ; (4.10)provided EL2k1 <1 and 	(k) < 0, with k = 1 for (4.8), and k = 2 for (4.9), (4.10).Proof. (4.8) and (4.9) are immediate from (4.7) for � > 0, and (4.10) follows by inserting(4.8) and (4.9) into (4.4). 2Of 
ourse it is our goal to express the quantities 	X in terms of the driving L�evypro
ess (Lt)t�0. We obtain the following results for the existen
e of moments.Theorem 4.1. Let k 2 N, 0 < Æ < 1, � � 0. Then the limit variable �21 exists and has�nite k-th moment if and only if�1k�ZR �(1 + �Æ y2)k � 1� �L(dy) < � log Æ: (4.11)Proof. By Lemma 4.1, EL2k1 < 1 and 	(k) < 0 imply EL21 < 1 and 	(1) < 0, whi
himplies the stability 
ondition (3.11). Now the 
ondition for E�2k1 <1 is EL2k1 <1 and	(k) < 0, whi
h is (4.11). 2As for the dis
rete GARCH model, also the 
ontinuous time GARCH turns out to beheavy-tailed. This is an impli
ation of the fa
t that the volatility pro
ess never has mo-ments of all orders.Proposition 4.3. Let k 2 N, 0 < Æ < 1, � � 0.(a) For any L�evy pro
ess (Lt)t�0 with nonzero L�evy measure su
h that RR log(1+y2) �L(dy)is �nite, there exist parameters Æ; � 2 (0; 1) for whi
h �21 exists, but E�21 =1.(b) For any L�evy pro
ess (Lt)t�0 su
h that EL2k1 <1 and for any Æ 2 (0; 1) there exists�Æ > 0 su
h that the limit variable �21 exists with E�2k1 < 1 for any pair of parameters(Æ; �) su
h that 0 � � � �Æ.(
) Suppose 0 < Æ < 1, � > 0. Then for no L�evy pro
ess (Lt)t�0 (with nonzero L�evymeasure) do the moments of all orders of �21 exist. In parti
ular, the Lapla
e transformof �21 does not exist for any negative argument.17



Proof. (a) Let Æ0 := exp(� RR log(1 + y2)�L(dy)) and Æ1 := exp(� RR y2�L(dy)). Then0 � Æ1 < Æ0 < 1, and for any � = Æ 2 (Æ1; Æ0), (3.11) holds, but (4.11) does not.(b) Let 0 < Æ < 1 be �xed. Sin
e EL2k1 <1, the lefthand side of (4.11) is �nite for any� > 0, and goes to zero as �! 0. Choosing � suÆ
iently small then implies (4.11).(
) Let � > 0 be su
h that q := �L(fy : jyj � �g) > 0. Then for k 2 N ,ZR �(1 + (�=Æ)y2)k � 1� �L(dy) � q ��1 + (�=Æ)�2�k � 1� :If all moments of �21 existed, this would imply that�1 + ��Æ� �2�k � 1 < k�� log Æq � 8 k 2 N ;a 
ontradi
tion. 2Example 4.1. (Compound Poisson GARCH(1,1) model)Let (Lt)t�0 be a 
ompound Poisson pro
ess with Poisson rate 
 > 0 and jump distribution#. Then �L = 
#. Let Y be a random variable with distribution # and set Z := �Y 2=Æ.Then for k 2 N , ZR((1 + (�=Æ)y2)k � 1)�L(dy) = 
E((1 + Z)k � 1);and (�2t )t�0 is a stationary Markov pro
ess whose stationary distribution has �nite k-thmoment if and only if E(1 + Z)k � 1 + (k=
) log Æ < 0; (4.12)whi
h is equivalent to (4.11) in this 
ase. 25 Se
ond order properties of the GARCH pro
essIn (3.5), the integrated GARCH pro
ess was de�ned to satisfy dGt = �tdLt, t > 0, i.e. Gjumps at the same time as L does and has jumps of size �Gt = �t�Lt. This de�nitionimplies that for any �xed timepoint t all moments of �Gt are zero. It makes sense, however,to 
al
ulate moments for the in
rements of G in arbitrary time intervals. Consequently,for r > 0 set G(r)t := Gt+r �Gt = Z t+rt+ �s dLs ; t � 0 :We shall restri
t ourselves to the 
ase of stationary (�2t )t�0. Re
all from Corollary 3.1,that this implies stri
t stationarity of (G(r)t )t�0.18



Proposition 5.1. Suppose (Lt)t�0 is a quadrati
 pure jump pro
ess (i.e. � 2L = 0 in (3.2))with EL21 < 1, EL1 = 0, and that 	(1) < 0. Let (�2t )t�0 be the stationary volatilitypro
ess with �20 D= �21. Then for any t � 0 and h � r > 0,EG(r)t = 0; (5.1)E(G(r)t )2 = �r�	(1)EL21; (5.2)Cov (G(r)t ; G(r)t+h) = 0: (5.3)Assume further that EL41 <1 and 	(2) < 0. ThenCov((G(r)t )2; (G(r)t+h)2) = �e�r	(1) � 1�	(1) � EL21 Cov(G2r; �2r ) eh	(1): (5.4)Assume further that � > 0, that EL81 <1,  (4) < 0, that R[�1;1℄ jxj�L(dx) <1 and thatRR x3�L(dx) = 0. Then the righthand side of (5.4) is stri
tly positive.Proof. Sin
e (Lt)t�0 is quadrati
 pure jump, its quadrati
 variation pro
ess is given by[L℄t = X0<s�t(�Ls)2; t � 0(e.g. Protter [23℄, p. 71). Then, by the properties of the sto
hasti
 integral,EG2r = E Z r0 �2s d[L℄s = E X0<s�r �2s(�Ls)2:The last 
an be 
al
ulated from the 
ompensation formula (e.g. Bertoin [4℄, p. 7) and(4.8) as the righthand side of (5.2). This shows square integrability of Gr and (5.2) thenfollows from stationarity of the in
rements of (Gt)t�0.From the Itô isometry for square integrable martingales as integrators (e.g. Rogers andWilliams [24℄, IV 27) followsE(G(r)t G(r)t+h) = E Z t+h+r0 �2s 1(t;t+r℄(s) 1(t+h;t+h+r℄(s) d[L℄s = 0for h � r. By the martingale property of (Lt)t�0 we have (5.1), and hen
e also (5.3)follows.For the proof of (5.4), assume further that EL41 < 1 and 	(2) < 0, and let Er denote
onditional expe
tation given Fr, the �{algebra generated by (�2s)0�s�r. Integration by
19



parts, the 
ompensation formula and the use of (3.12) and (4.5) giveEr�G(r)h �2 = Er �2 Z h+rh+ Gs�dGs + [G℄h+rh �= Er �2 Z h+rh+ Gs��sdLs�+ Er Z h+rh+ �2sd[L℄s= 0 + Er Xh<s�h+r ��2rAr;s +Br;s� (�Ls)2= EL21 Z h+rh ��2rEAr;s + EBr;s� ds= EL21 Z h+rh Er(�2s) ds= EL21 Z h+rh [(�2r � E�20)e(s�r)	(1) + E�2s�r℄ ds= (�2r � E�20)EL21 Z r0 e�s	(1) ds eh	(1) + E�20EL21 r:Conditioning on Fr givesE�(G(r)0 )2(G(r)h )2� = E �G2rEr(G(r)h )2�= EL21 �e�r	(1) � 1�	(1) �E �G2r�2r �G2rE�20� eh	(1) + E�20EL21 r EG2r:This showsCov(G2r; (G(r)h )2) = �e�r	(1) � 1�	(1) � EL21 Cov(G2r; �2r) eh	(1) + EG2r � �r�	(1)EL21 � EG2r� :Equation (5.4) then follows from (5.2).Finally, assume that EL81 <1, 	(4) < 0 and that R[�1;1℄ jxj�L(dx) <1 and RR x3�L(dx) =0, and we prove that Cov(G2t ; �2t ) > 0. First, we 
al
ulate E(G2t�2t ). Using integration byparts, G2t = [G℄t + 2 Z t0 Gs�dGs = X0<s�t �2s(�Ls)2 + 2 Z t0 Gs��sdLs:Substituting from (3.8) gives(�=Æ)G2t = �2t+ � �t� log Æ Z t0 �2sds� �20 + 2(�=Æ) Z t0 Gs��sdLs; (5.5)whi
h we will multiply through by �2t and take expe
tations. Sin
e R[�1;1℄ jxj�L(dx) <1,(Lt)t�0 is of bounded variation, and the last term in (5.5) gives rise via (3.12) to�2t Z t0 Gs��sdLs = Z t0+Gs��s ��2sAs;t +Bs;t� dLs; (5.6)20



wherein we substituteAs;t = eXs��Xt� and Bs;t = � Z ts eXu�Xt�du:Let It := R t0+ eXs�Gs��3sdLs. Sin
e Xt has no �xed points of dis
ontinuity, a.s., to showthat the A-
omponent in (5.6) has expe
tation 0 it will suÆ
e to show that E(e�XtIt) = 0.Integration by parts givese�XtIt = Z t0+ e�Xs�dIs + Z t0+ Is�d(e�Xs) + Ct; (5.7)where Ct is the quadrati
 
ovariation. Sin
e EL1 = 0 and  (4) < 0, It is a lo
ally squareintegrable zero-mean martingale and hen
e the �rst term on the righthand side of (5.7)has expe
tation 0. Substitutingd(e�Xt) = et	(1)d(e�Xt�t	(1) � 1) + e�Xt	(1)dt;we 
an write the se
ond term on the righthand side of (5.7) as an integral with re-spe
t to a lo
ally square integrable zero-mean martingal, hen
e having expe
tation 0,plus 	(1) R t0 e�XsIsds. Sin
e Lt is pure jump,�Ct = (�e�Xt)(�It) = ��Æ�Gt��3t (�Lt)3(using (3.9)). Letting Mt =P0<s�t(�Ls)3, the quadrati
 
ovariation isCt = ��Æ�Z t0+Gs��3sdMs;and sin
e Mt is a lo
ally square integrable martingale, with mean zero as a result of ourassumption that RR x3�L(dx) = 0, we see that Ct has expe
tation 0. Taking expe
tationsin (5.7) thus gives E(e�XtIt) = 	(1) R t0 E(e�XsIs)ds, implying E(e�XtIt) = 0.Write the B-
omponent in (5.6) as� �Z t0 eXu�Xt�du��Z t0+Gs��sdLs�� � Z t0+Gs��s�Z s0+ eXu�Xt�du� dLs:After integration by parts this equals� Z t0 �Z s0+Gu��udLu� e�(Xt��Xs)ds+ � ~Ct; (5.8)where� ~Ct = ��(e�Xt Z t0 eXudu)� (Gt��t�Lt) = ��Æ� e�Xt� �Z t0 eXudu�Gt��t(�Lt)3:21



Here ~Ct has expe
tation 0 again as a result of RR x3�L(dx) = 0, so (5.8) has expe
tation0. Thus the last term in (5.5) 
ontributes 0 to the expe
tation.To deal with the other integral in (5.5), use (4.6) to writeE(�2t �2s) = Var(�20)e(t�s)	(1) + (E(�20))2;sin
e we are using the stationary version. Thus, from (5.5),��Æ�E(G2t�2t )= E�40 � �tE�20 � log Æ Z t0 �Var(�20)e(t�s)	(1) + (E(�20))2� ds� E(�20�2t ) + 0= Var(�20)(1� et	(1))� �tE�20 � log ÆVar(�20)�1� et	(1)�	(1) �� t log Æ (E�20)2: (5.9)Note that (�=Æ)EL21 = 	(1)� log Æ (see (4.1)). Thus from (5.2)��Æ�EG2tE�2t = ��tEL21E�20�Æ	(1) = ��tE�20 � �t log Æ E�20�	(1)= ��tE�20 � t log Æ (E�20)2(using (4.8)). Subtra
ting this from (5.9) gives��Æ�Cov(G2t ; �2t ) = Var(�20)�1� et	(1) � log Æ�1� et	(1)�	(1) �� ;whi
h is positive. 2In Figure 2 we show the simulated auto
orrelation fun
tions of �t and of the in
rementG(1)t , and of their squares, for the same pro
ess simulated in Figure 1. A feature of the� and �2 auto
orrelations is their very slow de
rease with in
reasing lag. As expe
ted,the sample auto
orrelation fun
tions of the in
rement G(1)t , and its square, are zero, andpositive, respe
tively, within sampling errors.A
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Figure 1: Simulated 
ompound Poisson pro
ess (Lt)0�t�10 000 with rate 1 and standard normally dis-tributed jump sizes (�rst) with 
orresponding COGARCH pro
ess (Gt) (se
ond), volatility pro
ess (�t)(third) and di�eren
ed COGARCH pro
ess (G(1)t ) of order 1, where G(1)t = Gt+1�Gt (last). The param-eters were: � = 1, Æ = 0:95 and � = 0:045. The starting value was 
hosen as �0 = 10.
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Figure 2: Sample auto
orrelation fun
tions of �t (top left), �2t (top right), G(1)t (bottom left) and (G(1)t )2(bottom right), for the pro
ess simulated in Figure 1. The dashed lines in the bottom graphs show the
on�den
e bounds �1:96=p9999.
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