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ABSTRACT 

 
Although agriculture is often considered vulnerable to climate change, recent gridded crop growth 
modelling intercomparison exercises have found that staple crop yields will be modestly affected 
by global warming. However, those crop growth models also do not fully reflect impacts of 
increasing climate extremes. This paper uses global remote sensing-derived yield and 
agrometeorological reanalysis data to construct a grid cell panel at 0.1-degree resolution for 
2003–2015. Regressions that control for grid cell-specific intercepts and time trends, temperature, 
rainfall, and cloudiness empirically estimate the relationship between yields and precipitation-
evapotranspiration extremes for each growing season of rice, wheat, and maize by subregion. 
Estimated coefficients are applied to projections from an ensemble of global circulation models to 
project potential losses from climate change. All crops are found as having substantial potential 
future global yield reductions, but reductions are highest for wheat and maize, with losses most 
pronounced in Southern Asia and Southern Africa. 
 
Keywords: agriculture, climate change, drought, yield loss 
 
JEL codes: Q12, Q15, Q54, D22   
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I. BACKGROUND 
 
Agriculture is often considered one of the most vulnerable sectors to the impacts of climate 

change. Crop production is directly dependent on environmental conditions, with water provided 

by rainfall and solar radiation through cloud cover as essential inputs, temperatures shaping heat 

and cold stress, as well as the pace of plant geochemistry and water use, and growing periods 

defined by seasonal transitions. Early attempts to model the impacts of climate change on 

agricultural production confirmed the vulnerability of staple crop production to global warming, 

especially in tropical and subtropical regions. For example, Hasegawa et al. (2022) compiled a 

database of 8,703 simulations from 202 studies published between 1984 and 2020 of crop growth 

modelling. Mean results imply yield losses of 14% for rice, 44% for wheat, and 24% for maize in 

India; and losses of 4% for rice and 10% for maize in the People’s Republic of China (PRC) under 

a high-end emissions scenario by 2050, relative to 2000. 

 

More recent modelling studies, however, find much more limited impact of pronounced climate 

change. The latest 3b round of the Intersectoral Impact Modelling Intercomparison Project 

(ISIMIP), which involved 13 crop growth models applied to five downscaled global circulation 

models, forcing datasets, and tens of thousands of simulations, finds mean yield gains under a 

high-end emissions scenario for rice and wheat in India and the PRC through late in the century 

and more modest losses for maize, as well as broader patterns of rice and wheat gains (Orlov et 

al. 2024). The positive and less damaging effects compared with previous exercises are driven, 

in part, by increased estimates of the effects of carbon dioxide (CO2) fertilization, or the increase 

in photosynthesis that results as CO2 concentrations rise in high end emissions scenarios. At the 

same time, the process-based crop growth models used in these exercises have limited ability to 

replicate the effects of extreme climatic events, such as drought or excessive rainfall.   

 

The models have typically been initially developed to ascertain yield potential, or the maximum 

yield possible under temperature and solar radiation constraints, without water or nutrient 

constraints imposed. They are typically further calibrated to replicate crop performance in yield 

trials under favorable conditions. For example, models used in ISIMIP3b were unable to explain 

more than 80% of yield variance in major Asian producers’ yields of rice, wheat, or maize and 

consistently overestimated production during drought events (Heinicke et al. 2022). Under climate 

change, there is general agreement among global circulation models that drought will increase in 

frequency and intensity (IPCC 2021). Even though in many regions rainfall will increase, as 



 
 

3 

warmer air can contain more water vapor, higher temperatures increase evaporation and 

evapotranspiration rates even more, so that conditions are often drier. In addition, climate change 

makes seasonal variations stronger and amplifies weather variability in many regions, which 

compounds the effects of higher temperatures. Higher rainfall is often through increased 

precipitation intensity in short periods, creating additional losses through water stagnation in 

fields. 

 

While many studies have shown that drought and inundation are damaging to crop yields, few 

studies have quantified the damage in manner that can be reconciled with climate projections to 

show global and regional yield loss under climate change. A number of studies have used the 

standardized precipitation index (e.g., Hendrawan, Komori, and Kim 2023; Vogel at al. 2019), but 

this index only captures precipitation rather than other determinants of drought related to 

evapotranspiration. Other prior studies either use country-level data (Matiu, Ankerst, and Menzel 

2017), which give few and coarse observations, or data for a single country (e.g., Mohammed et 

al. 2022; Leng 2021), which reveal only country-specific relationships. Santini et al. (2022) 

perform somewhat similar analysis to this study by using global spatial yield data, but at 0.5-

degree resolution, which is 25 times coarser compared with the data used in the study, and with 

only dummy representation of extreme events. None of these studies use estimated coefficients 

with climate projections to show implications of future climate change. 

 

With the availability of global remote sensing-derived crop yield data at 0.1-degree resolution over 

successive years, along with climatic data for the same units and periods, it becomes possible to 

empirically estimate the effect of drought and inundation on yield using hundreds of thousands of 

observations that are much more broadly representative. The empirical estimates can then be 

applied to geospatial projections of drought and inundation under a high emissions climatic 

scenario to determine implications for crop production in specific regions. These effects of 

extreme climatic events can be considered as additional to the effects typically captured in global 

grided crop modelling exercises, which do not replicate extreme climatic events well and can 

potentially alter conclusions that climate change impacts on agriculture are modest or beneficial. 
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II. OBJECTIVES 
 
The purpose of this research is to quantify how the production of rice, wheat, and maize, globally 

and in specific regions, will be impacted by the increased frequency and intensity of climatic 

extremes under climate change using large, globally representative, spatial data spanning more 

than a decade. Such an approach has become possible because of the increasing availability of 

earth-observation based data for both agricultural production and meteorological conditions. The 

empirical approach to estimate the effects of extreme events on yields relies on panel data 

regression, with spatial grid cells as the panel unit. The approach employed uses fixed effects to 

control for time invariant differences in grid cells and variables that account for common trends 

over time. Moreover, the preferred specification accounts for grid cell-specific trends over time to 

eliminate effects of local-level time trends in both independent and dependent variables, so that 

the analysis is derived from exogenous anomalies. In addition to drought indicators, climatic 

variables that reflect less extreme changes are included, so as to control for the effects of 

variables that typically determine yields in gridded crop growth modelling exercises. Additional 

control variables, such as local CO2 variations, local air pollution, and irrigation are also tested to 

determine if they enhance model performance. Once coefficients for climatic extremes are 

empirically estimated, they are applied to projections of climatic extremes under climate changes 

to determine overall implications for crop production. 

 

 
III. METHODS 
 
A. Data 
 
A range of different data sources have been obtained and processed for use in the empirical 

analysis and future projections.1 This section begins by presenting the raw datasets and then 

explaining how they were aggregated and processed. All datasets have been obtained or 

harmonized to a resolution of 0.1-degree cells, which are approximately 11 kilometers (km) by 11 

km at the equator, unless already noted. 

 
  

 
1  The following sections describe the various datasets accessed on 23 July 2024, unless otherwise noted. 
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1.  Raw Data2 
 
Crop yield. Yield data are obtained from the Copernicus Climate Change Project (Wit et al. 2022). 

This dataset provides insights into the spatio-temporal variations of crop yield at 0.1-degree 

spatial resolution for different crop types. The data are from a 1-km grid cell fraction of absorbed 

photosynthetic active radiation (FAPAR) derived from satellite observations on a 10-day basis, 

interpreted via a crop-specific light use efficiency and temperature function for the reduction 

assimilation rate of photosynthesis, with growth apportioned between stems, leaves, and grains 

depending on the growth stage. As FAPAR is the major time-varying observed variable (crop 

parameters are constant) driving the estimates, water stress is reflected through reductions in leaf 

area that determine observed FAPAR. These yield data have been confirmed to replicate 

interannual variability well for areas dominated by the observed crops (Chevuru et al. 2023). 

 

This research focuses on rice, wheat, and maize yields for the period from 2003 to 2015. The 

crops were chosen for the reason that they are the most important staple food sources globally 

and account for more than half of all calories consumed by people. This reference period is 

chosen because data for all variables in the preferred specification and robustness checks are 

consistently available for this period. More specifically, rice crops often have two cropping seasons 

within a single campaign year, which is defined as the calendar year of the harvest. The data 

separate these two growing periods. In the same way, winter and spring wheat are treated as 

separate within the same campaign year. For each of these crops, data are provided on (i) crop 

development stage, as a time-series with dekadal (10-day) intervals, indicating whether the crop 

is in the emergence phase, flowering phase, or at physiological maturity; and (ii) the total weight 

of storage organs (TWSO), which represents crop yield. 

 

Meteorological. The Copernicus Climate Change Project enables access to agrometeorological 

indicators derived from reanalysis (AgERA5) at daily and 0.1-degree resolution for use in agro-

ecological studies (Boogaard et al. 2020).3 Based on the hourly European Centre for Medium-

Range Weather Forecasts (ECMWF) “fifth generation reanalysis for the global climate and 

weather” (ERA5; Hersbach et al. 2020) data at surface level, the AgERA5 dataset is aggregated 

to daily time steps and interpolated to the 0.1-degree resolution using regression equations 

trained on the ECMWF “high resolution atmospheric model.” From the AgERA5 dataset, daily 

 
2   Additional data used in robustness checks are described in Appendix 2. 
3  C3S (Copernicus Climate Change Service) Climate Data Store. 2020. Agrometeorological Indicators from 1979 to 

Present Derived from Reanalysis (accessed 10 May 2024). 

https://doi.org/10.24381/cds.6c68c9bb
https://doi.org/10.24381/cds.6c68c9bb
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data on precipitation, temperature, and cloud cover have been obtained. Precipitation represents 

the total volume of liquid water (cubic millimeter) falling per unit area (square millimeter), 

temperature refers to maximum air temperature (Kelvin) recorded at 2 meters above the surface, 

and cloud cover is a dimensionless value indicating the proportion of hours with clouds. 

 

Standardized Precipitation–Evapotranspiration Index. The Standardized Precipitation–

Evapotranspiration Index (SPEI) is determined by comparing monthly realization of water balance 

to long-term average and is normalized to zero mean and unit standard deviation in each cell 

(Gebrechorkos et al. 2023b).  A value of SPEI below zero means drier weather compared to the 

historic sample, whereas a value above zero means wetter weather. The Centre for 

Environmental Data Analysis provides historical SPEI data at a monthly and 5 km spatial 

resolution (Gebrechorkos et al. 2023b). For consistency with available climate projection data, 

this analysis uses the 6-month period SPEI computed based on monthly precipitation from the 

Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) and potential 

evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) estimates. 

This combination shows good agreement with other SPEI databases covering Asian regions 

(Gebrechorkos et al. 2023a). 

 

Harvested area. CROPGRIDS provides harvested areas (in hectares) for 173 crops (including 

maize, wheat, and rice) for the year 2020, at a resolution of 0.05-degree (Tang et al. 2023). It 

builds on the previously most comprehensive crop area geospatial product from Monfreda, 

Ramankutty, and Foley (2008) by augmenting it with data from 27 selected published gridded 

datasets, subnational official statistical data from 52 countries, and 2020 national-level statistics 

from the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). This 

CROPGRIDS harvested area information is used along with the Copernicus Climate Change 

Project yield data to compute the total production of each crop during projections. 

 

SPEI projection. SPEI projection data are sourced from the Copernicus Interactive Climate 

Atlas,4 which disseminates data that are also underpinning the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change. The platform provides monthly projections of the 6-

month period SPEI for the years 2030, 2050, and 2090 at a spatial resolution of 1 degree under 

the high-end emissions scenario used by the Intergovernmental Panel on Climate Change, 

 
4  C3S. Copernicus Interactive Climate Atlas (accessed 15 May 2024). 

https://atlas.climate.copernicus.eu/atlas
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termed Representative Concentration Pathway (RCP) 8.5 (also known as Shared Socioeconomic 

Pathway 5-8.5).  The values are the median of those generated from outputs of 25 different global 

circulation models run within the Coupled Model Intercomparison Project 6. These data are 

generated using the Thornthwaite method, with a reference period of 1971–2010 for each grid 

cell and month. SPEI-6 trends are broadly negative according to these data globally, as 

evapotranspiration increases outpace precipitation increases where they occur (Figure below). 

 

Figure: Historical and Projected Changes in 6-Month Standardized Precipitation–
Evapotranspiration Index 

 
Note: Data are from the Coupled Model Intercomparison Project 6 under a high-end emissions scenario. 
Source: Copernicus Climate Change Service (accessed 15 May 2024). 
 
Table 1 summarizes the temporal and spatial resolutions, as well as the observation periods, of 

the different datasets.  All data used in the regressions have a 0.1 degree or higher resolution. 

 

Table 1: Resolution Summary and Observation Periods of the Raw Datasets 

 
Dataset Period 

Resolution 
Time Spatial 

Crop 2003 to 2015 Annual 0.1 degree 
Meteorological 2002 to 2015 Daily 0.1 degree 
SPEI-6 2002 to 2015 Monthly 5 km 
Harvested area 2020 Annual 0.05 degree 
SPEI-6 Projection 2030, 2050, 2090 Monthly 1 degree 

km = kilometer, SPEI = Standardized Precipitation–Evapotranspiration Index. 
Source: Authors. 

 
 
  

https://atlas.climate.copernicus.eu/atlas
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2.  Data Aggregation 
 
Two aspects are involved in data aggregation. One aspect is to harmonize the grid cell definition 

so that the data refer to the same geographic area. The other is to reconcile the periods of 

observation with the growing season for each crop. This process is done separately for each crop 

type (maize, spring and winter wheat, and wet rice across both growing seasons), as the growing 

phase, which is central to the analysis, depends on the type of crop. 

 

Crop productivity and climate conditions. The collection of information on meteorological 

conditions and SPEI comprise climate datasets, while the crop dataset provides information 

about crop yield and growing phase calendar. 

 

Each grid cell of the crop data is linked to climate dataset grid cells with centroids that fall within 

the corresponding crop cell. When a crop cell is associated with multiple climate grid cells (as it 

is the case for the SPEI), the mean of the values across the associated climate cells is used.  As 

a result, each crop cell is associated with daily meteorological data and (average) monthly SPEI 

data. 

 

Then, for each grid crop cell and for every year from 2003 to 2015, the growing phase is 

determined (composed by the emergence and flowering stages) to compute the average values 

of the climate data during this phase.5 For the monthly SPEI data, and given that the growing 

phase is recorded in dekadal (10-day) intervals, a month’s value is included in the mean 

calculation only if the growing phase starts on or before the 20th of the month or ends after the 

10th.6 

 

The resulting dataset is structured on an annual grid at a spatial resolution of 0.1 degree and 

covers the period 2003–2015. It provides information on yield productivity and environmental 

statistics during crop-growing phases for maize, spring and winter wheat, and wet rice across 

both growing seasons. 

 

Overall quantity of the crop harvested. Every crop data grid cell is matched to harvested area 

dataset grid cells with centroids that lie within the crop cell. When a crop cell is linked to several 

 
5  The growing phases differ depending on the geographic location, year, and the type of crop (maize, rice, and wheat). 
6   For example, if the growing phase spans from 20 November 2012 to 10 March 2013, values from November, 

December, January, and February will be included in the mean computation. 
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harvested area grid cells, the values from these associated cells are summed. This results in a 

dataset, organized on an annual grid at a spatial resolution of 0.1 degree and covering the period 

2003–2015, which provides total harvested quantity of crops (yield × harvested area) for maize, 

wheat, and wet rice. 

 

Two limits to this approach may be mentioned. First, using the crop data from the Copernicus 

Climate Change Project enables detailed observation of agricultural productivity at a very fine 

spatial scale,7 but comes with the limitation of incomplete observations. Indeed, some locations 

that have reported harvested areas according to data from CROPGRIDS are missing from the 

Copernicus dataset, particularly those with smaller harvested areas or mixed cropping 

composition. As a result, the overall quantity of crop harvested is underestimated. Second, the 

harvested area dataset only provides information for the year 2020. As a result, the overall 

quantity of crops harvested is calculated annually by combining yearly productivity time series 

with the harvested area data from 2020. The implications of these limitations are that (i) losses 

are more representative of those occurring in more monocropped and larger contiguous 

conditions than conditions where production is more diversified; and (ii) losses do not account for 

any dynamism of cropping calendars or crop choice over time to reduce the impacts of SPEI-6 

changes. This means that the results are essentially reflecting no climate adaptation. 

 
SPEI projection. Each crop data grid cell centroid is identified to find the nearest centroid from 

the SPEI projection dataset grid cells. The crop data grid cell is then linked to this closest SPEI 

projection grid cell. Due to the coarser spatial resolution of the SPEI projection dataset, multiple 

crop data grid cells may correspond to the same SPEI projection grid cell. 

 

Next, for each crop data grid cell, the average values of the corresponding linked SPEI projection 

grid cell are computed for the years 2030, 2050, and 2090 during the crop’s growing phase, using 

the growing phase observed in 2015 as a reference. This process provides SPEI projections for 

the crop data grid cells (during the growing phase) for the years 2030, 2050, and 2090. 

 
  

 
7  This facilitates a detailed analysis of how meteorological variations influence productivity across locations. 
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B. Econometric Analysis 
 
The main specification of this study is to estimate the impact of extreme climatic events on crop 

yield by estimating the following equation for the five crop-seasons presented in the data section: 

ln TWSOc,t = X’c,t βi + αc0 + αc1t + εc,t   (1) 
 
The subscripts c and t denote the cell and the campaign year (i.e., the calendar year of the 

harvest), respectively. The dependent variable ln TWSOc,t is the logarithm of crop yield in cell c at 

year t. Xc,t includes a constant and the environmental conditions in cell c during the growing phase 

of the year t, with the growing phase specific to the cell c, the year t, and the crop type.  

 

The analysis considers the mean of the maximum temperature and its square (temp_max_mean 

and temp_max_mean2), the mean of precipitation and its square (precipitation_mean and 

precipitation_mean2), the mean of cloud cover (cloud_mean), and the mean of the SPEI-6 and its 

square value (spei_6_mean and spei_6_mean2) during the growing phase.  

 

Equation (1) also includes a comprehensive set of fixed effects. The cell fixed effect αc0 captures 

unobserved heterogeneity in crop yield across different cells, such as the possibility that one 

specific area may be more productive than another. The term αc1t represents cell-specific linear 

time trends to account for particular developments in crop yield over time within each cell. Last, 

εc,t  is the error term. 

 

Quadratic terms are used for temperature and precipitation because crops typically have an 

optimal level at which yield is maximized, after which yields fall from increases. The same applies 

to SPEI-6, as a value around 0 indicates typical conditions, negative values indicate more drought, 

and positive values indicate excess rainfall. Both drought and excess rainfall are expected to 

reduce yields. Higher cloud cover, ceteris paribus, reduces solar radiation, a key input for 

photosynthesis, and thus reduces yields. Table 2 shows descriptive statistics for the 

environmental variables for the five crops: maize, winter wheat, spring wheat, wet rice 1 (for first 

growing season), and wet rice 2 (for second growing season). 
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Table 2: Descriptive Statistics 

Crop 
temp_max_mean (°K) precipitation_mean (mm) cloud_mean (fract) spei_6_mean 

min max min max min max min max 
Maize 284 312 0 74.2 0 0.33 -2.8 3.7 
Winter Wheat 284 310 0 10.62 0 0.15 -2.49 2.5 
Spring Wheat 282 310 0 27.52 0 0.21 -2.54 2.52 
Wet Rice 1 289 314 0 79.97 0 0.71 -2.81 2.62 
Wet Rice 2 288 310 0 31.53 0 0.26 -2.83 2.44 

K =  Kelvin, mm = millimeters, SPEI = Standardized Precipitation–Evapotranspiration Index. 
Source: Authors. 
 
 
 
IV. RESULTS 

A.  Regression Coefficients 
 
Table 3 reports the estimated coefficients of Equation (1) from regressions for the five crop–

season combinations. This utilizes the linear estimator proposed by Correia (2016), which is a 

computationally efficient estimator for large datasets in the presence of multiple fixed effects. To 

account for the potential autocorrelation of the error terms within cells, the standard errors are 

clustered at the cell level. It can be noted that all models achieve relatively large explanatory 

power, with R2 between 0.87 and 0.94. 

 

The relationship between crop yield and SPEI generally follows an inverse U-shape, with highest 

yields around SPEI value of 0 and yield reductions as SPEI increases in absolute terms. This 

corresponds to expectations, as an SPEI of 0 indicates a balance between precipitation and 

evapotranspiration that is in line with historical averages under which the crops have been 

cultivated; whereas, negative values indicate drier conditions and positive wetter conditions. It 

can be expected that agronomic practices and crop varieties are optimized for typical conditions. 

However, an exception is observed for wet rice during the second growing season, where crop 

yields increase with SPEI. Rice has a unique production system and is typically cultivated either 

under irrigation (providing unobserved moisture) or in intense monsoon conditions where rainfall 

may be excessive, and often is under puddled conditions that improve water retention, which may 

explain the difference. In addition, crop yields decrease with temperatures, precipitation, and 

cloud cover. However, wheat demonstrates an exception to this trend, as yields increase with 

precipitation, provided that precipitation levels remain low. Appendix 1 illustrates the marginal 

effects of SPEI, temperature and precipitation on crop yield. 
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Table 3: Estimates of Climate and Weather Effects on Log Global Crop Yields 

Statistics Maize Winter Wheat Spring Wheat Wet Rice 1 Wet Rice 2 
spei_6_mean 0.027*** 0.032*** 0.080*** -0.007*** 0.033*** 
 (0.0003) (0.001) (0.001) (0.0003) (0.001) 
spei_6_mean2 -0.016*** -0.024*** -0.059*** -0.004*** -0.006*** 
 (0.0003) (0.0004) (0.001) (0.0002) (0.0004) 
temp_max_mean 2.307*** 3.229*** 0.1 5.300*** 4.053*** 
 (0.027) (0.058) (0.070) (0.055) (0.086) 
temp_max_mean2 -0.004*** -0.006*** -0.0002** -0.009*** -0.007*** 
 (0.00005) (0.0001) (0.0001) (0.0001) (0.0001) 
precipitation_mean -0.006*** 0.153*** 0.066*** -0.013*** 0.046*** 
 (0.0004) (0.002) (0.003) (0.0005) (0.004) 
precipitation_mean2 -0.00004* -0.022*** -0.004*** 0.00005** -0.005*** 
 (0.00003) (0.0004) (0.0005) (0.00002) (0.0005) 
cloud_mean -0.172** -0.818*** -0.369* -0.577*** -0.759*** 

 (0.068) (0.120) (0.199) (0.031) (0.056) 
Cell fixed effects Yes Yes Yes Yes Yes 
Cell linear time trends Yes Yes Yes Yes Yes 
Adjusted R squared 0.87 0.87 0.87 0.93 0.94 
Observations 637511 267605 266093 343794 169091 

SPEI = Standardized Precipitation–Evapotranspiration Index. 
Notes: This table presents the estimation results of Equation (1) for the crops at the head of each column. All regressions 
include constant, cell-fixed effects, and cell-specific linear time trends. Standard errors clustered by cell appear in parentheses. 
* p<0.10, ** p<0.05, *** p<0.01. The models are estimated using the Stata reghdfe package developed by Correia (2016). 
Source: Authors. 
 
 

Robustness of the findings. The preferred specification is superior to tested alternatives, 

including (i) a regression that omits temperature, precipitation, and cloud cover variables; (ii) a 

regression that uses time and unit dummies, but not time by unit interactions (as Equation 2 

below); (iii) a regression that also controls for CO2 (at 5-degree resolution), irrigation, and air 

pollution;8 and (iv) a regression that also controls for irrigation. The results are presented in 

Appendix 2. Regression (i) achieves nearly the same R2 as the preferred specification, but has 

larger coefficients, suggesting that small differences in temperature and rainfall are also being 

captured by the SPEI-6 variables. This makes it difficult to consider as additional to gridded crop 

growth model results. Regression (ii) has a lower R2 than the preferred specification, but similar 

coefficients. Regression (iii) has implausible coefficients on CO2 (reverse of the expected sign 

from CO2 fertilization) and an R2 that is not improved. CO2 and pollution variables are, however, 

 
8  See Appendix 2 for a detailed presentation of these variables. 
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observed with low granularity and temporal resolution.9 Regression (iv) also does not improve R2 

by including irrigation. Notably, the results, particularly the effect of SPEI on crop yields, remain 

consistent whether year dummy variables are used instead of cell-specific linear time trends or 

regressions control for additional factors. 

 
ln TWSOc,t = X’c,t βi + αc0 + αt + εc,t  (2) 

    
Results by subregion. Effects of climatic extremes are estimated on crop yield for different 

subregions. Table 4 presents the estimated coefficients from Equation (1), derived from 

regressions for maize, winter wheat, spring wheat, wet rice 1, and wet rice 2 across different 

subregions of the world. For simplicity, only the estimated coefficients associated with SPEI are 

reported: column (a) for the variable spei_6_mean and column (b) for the variable spei_6_mean2. 

However, all regressions include the variables temp_max_mean, temp_max_mean2, 

precipitation_mean, precipitation_mean2, and cloud_mean, as well as the fixed effects described 

above. The coefficients suggest substantial variation in drought vulnerability for crops cross 

subregions.  For example, maize is more vulnerable to drought in Northern America than the 

Caribbean, and wheat is more vulnerable in Southern Asia than in Western Asia. 

 
B.  Projection of Future Losses Under a High-End Emissions Scenario 
 

To translate the coefficients presented in Table 4 into effects on crop production under climate 

change, they are used with SPEI-6 projections and historical SPEI-6 observations to calculate 

effects on yield. These projections take into account both the subregion-specific relationship 

between yield and SPEI-610 and the grid cell-specific changes in SPEI-6 expected under climate 

change. First, for each grid cell, the historical average SPEI-6 value over 2003–2015 is calculated 

as a point of reference. Yield loss from reference SPEI-6 is then calculated using linear and 

squared term coefficients from Table 4. Yield losses under SPEI-6 projected values are 

subsequently calculated for 2030, 2050, and 2090, from which historical losses are netted, so as 

to give the effects of climate change on yield. Climate change effects on yield are then multiplied 

by average historical 2003–2015 production in each grid cell (area of each crop multiplied by the 

average 2003–2015 yield), summed by subregion, and divided by total historical 2003–2015 

 
9  Pollution and irrigation are observed annually, while CO2 levels are measured at a resolution of 5 degrees. In the 

case of CO2 levels, which are observed with much less detail (i.e., have much larger cells) compared to the crop 
data, the crop data are matched to the CO2 data using the centroid of the crop data. Specifically, this matching occurs 
when the centroid of a crop grid cell falls within the area of a CO2 data cell. 

10  Subregions lacking enough observations for coefficient estimation use global SPEI-6 coefficients from Table 3. 
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production in each subregion to give relative effects on subregional production. Similar results 

have been generated by the authors on a country basis and interpolated annually, but are not 

included in the paper for ease of presentation. The results show high yield vulnerability to the 

effects of pronounced climate change on precipitation-evapotranspiration extremes (Table 5). In 

contrast to gridded crop growth model results showing yield gains or modest reductions of only a 

few percent under a high-end emissions scenario, these results show reductions that exceed 50% 

for selected subregions and staples within the 21st century. Maize is the crop most vulnerable to 

changes under climate change, followed by wheat and rice. Losses are highest in tropical and 

subtropical regions, especially those that have the lowest food security, such as Southern Asia 

and Southern Africa. The rate of loss appears to accelerate with time, as the 40 or so years from 

the reference period to 2050 lead to losses that are generally far below additional losses from 

2050 to 2090. 
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Table 4: Estimates of Effects of SPEI-6 on Crop Yields by Subregion 

Region 

Maize Winter Wheat Spring Wheat Wet Rice 1 Wet Rice 2 
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

spei6_mean spei6_mean2 spei6_mean spei6_mean2 spei6_mean spei6_mean2 spei6_mean spei6_mean2 spei6_mean spei6_mean2 
Australia and New 
Zealand 

    0.159 -0.035     
    (0.003)*** (0.001)***     

Caribbean 0.000 0.003         
 (0.003) (0.003)         
Central America 0.045 -0.011         
 (0.003)*** (0.002)***         
Central Asia   0.077 -0.020 0.116 0.026     
   (0.003)*** (0.002)*** (0.006)*** (0.007)***     
Eastern Africa 0.011 -0.014         
 (0.002)*** (0.002)***         
Eastern Asia -0.002 -0.020 0.025 -0.014 0.000 -0.005 -0.016 -0.012 0.000 -0.010 
 (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.004) (0.004) (0.000)*** (0.000)*** 0 (0.000)*** 
Eastern Europe 0.018 -0.002 0.013 -0.005 0.036 -0.017     
 (0.001)*** (0.001)* (0.001)*** (0.001)*** (0.003)*** (0.002)***     
Middle Africa           
           
Northern Africa     0.115 0.001 0.011 -0.005   
     (0.004)*** (0.002) (0.002)*** (0.003)**   
Northern America 0.040 -0.019 0.126 -0.041 0.049 -0.037 0.024 -0.009   
 (0.001)*** (0.000)*** (0.004)*** (0.002)*** (0.002)*** (0.001)*** (0.002)*** (0.001)***   
Northern Europe   0.071 -0.022       
   (0.003)*** (0.002)***       
South America 0.003 -0.013   0.071 -0.065 0.020 0.000   
 (0.001)*** (0.001)***   (0.003)*** (0.001)*** (0.002)*** (0.001)   
South-eastern Asia 0.019 -0.010     -0.018 0.001 0.067 -0.007 
 (0.001)*** (0.001)***     (0.001)*** (0.000)*** (0.001)*** (0.001)*** 
Southern Africa -0.006 -0.023         
 (0.003)** (0.003)***         
Southern Asia 0.024 -0.015 0.008 -0.031 0.042 -0.033 0.002 0.000 0.046 -0.003 
 (0.001)*** (0.001)*** (0.004)** (0.003)*** (0.001)*** (0.001)*** (0.001)** (0.000) (0.002)*** (0.002)* 
Southern Europe 0.030 0.001 0.045 -0.052 0.023 -0.027     
 (0.002)*** (0.001) (0.002)*** (0.002)*** (0.005)*** (0.003)***     
Western Africa 0.011 -0.006     0.001 -0.003   
 (0.003)*** (0.001)***     (0.002) (0.002)*   
Western Asia 0.001 0.004 -0.013 -0.007 0.124 -0.088     
 (0.005) (0.004) (0.001)*** (0.001)*** (0.005)*** (0.004)***     
Western Europe 0.025 0.001         

 (0.002)*** 0         
SPEI = Standardized Precipitation–Evapotranspiration Index. 
Note: This table presents the estimation results of Equation (1) across different regions of the world for the crops at the head of each 
column. Only the results associated to the variables spei_6_mean (column (a)) and spei_6_mean2 (column (b)) are displayed. All 
regressions include constant, temp_max_mean, temp_max_mean2, precipitation_mean, precipitation_mean2, cloud_mean, as well as 
cell-fixed effects and cell-specific linear time trends. Standard errors clustered by cell appear in parentheses. * p<0.10, ** p<0.05, *** 
p<0.01. The models are estimated using the Stata reghdfe package developed by Correia (2016). The geographic regions follow the 
grouping system utilized by the United Nations Statistical Division. 
Source: Authors. 
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Table 5: Effects on Crop Production of Precipitation-Evapotranspiration Extremes  
Under a High-End Emissions Scenario 

  
 Region 

Rice Production Wheat Production Maize Production 
2030 2050 2090 2030 2050 2090 2030 2050 2090 

Australia and New Zealand     -9.2% -21.4% -49.8%       
Caribbean -4.0% -8.1% -19.2%       1.1% 3.2% 10.6% 
Central America -1.3% -4.8% -16.6% -3.7% -8.9% -26.3% -11.0% -21.8% -46.9% 
Central Asia       -0.6% -1.3% -3.8% -3.5% -8.9% -23.8% 
Eastern Africa -3.5% -10.7% -33.4% -0.8% -3.4% -14.0% -4.6% -13.4% -40.5% 
Eastern Asia -6.0% -13.2% -32.5% -7.5% -16.4% -37.0% -3.3% -10.3% -33.7% 
Eastern Europe             -2.6% -4.4% -9.7% 
Middle Africa -5.3% -12.2% -28.6%       -8.6% -22.0% -54.4% 
Northern Africa -5.8% -12.2% -30.0% -11.9% -19.6% -36.6% -2.4% -7.1% -23.5% 
Northern America -4.8% -11.1% -30.3% -4.0% -9.1% -23.3% -7.9% -17.6% -43.6% 
Northern Europe       -4.8% -15.9% -46.4%       
South America -2.9% -5.2% -10.0% -1.4% -5.6% -18.0% -1.9% -7.7% -29.1% 
South-eastern Asia 4.3% 8.0% 17.5%       -6.4% -14.5% -34.3% 
Southern Africa       -10.4% -27.7% -65.0% -1.6% -10.0% -41.0% 
Southern Asia -0.2% -0.2% 0.3% -6.1% -23.7% -65.2% -4.2% -14.7% -43.6% 
Southern Europe 0.5% -0.4% -5.1% -2.5% -7.3% -27.1% -4.0% -6.2% -10.8% 
Western Africa -1.5% -4.8% -14.7%       -4.2% -10.4% -27.2% 
Western Asia       -13.9% -35.5% -73.4% 0.3% 1.3% 5.8% 
Western Europe       -2.1% -7.2% -27.5% -2.7% -4.3% -7.7% 

Note: This table presents the difference in yields predicted by coefficients presented in Table 4 applied to ensemble mean values 
of SPEI-6 under RCP8.5 generated by 25 general circulation models in each future period from yields predicted for the mean 
2003–2015 reference period SPEI-6, divided by yields predicted for the mean 2003–2015 reference period. The geographic 
regions follow the grouping system utilized by the United Nations Statistical Division. 
Source: Authors. 

 
 
The patterns of results are generally consistent with previous findings on the effects of drought 

and extreme climatic events. Matiu, Ankerst, and Menzel (2017); Hendrawan et al. (2022); and 

Santini et al. (2022) also empirically find limited impact of drought on rice, compared with wheat 

and maize. Here, similarly, rice is positively impacted in South-eastern Asia and hardly impacted 

in Southern Asia, which are two core production breadbaskets. The unique puddled production 

system for rice, which creates a soil hardpan that reduces percolative water losses; the use of 

transplanting, which enables adaptation to delayed onset of rains; and the production in intensive 

wet seasons, may explain the relatively lower vulnerability of rice to drought. In contrast, wheat is 

negatively impacted in the top producing regions of Eastern Asia and Southern Asia, with impacts 

especially large in the latter. Large impacts in Eastern Asia are consistent with findings of Yao et 

al. (2022), while large impacts in Southern Asia are consistent with findings of Kumari et al. (2023). 
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V. CONCLUSION 

 
It long has been conventional wisdom that agriculture is directly vulnerable to the effects of climate 

change, especially large levels of change under a high emissions scenario. This research 

empirically affirms this perspective by taking into account both the subregion-specific relationship 

between climate extremes and yields and the location-specific predictions of climate extremes 

under a high-end emissions scenario. In so doing, the regressions find that a quadratic 

specification of the climate extreme indicator, along with grid cell trends and intercepts, explains 

a vast majority of yields observed by remote sensing. The research is the first study to estimate 

yield effects of climate extremes in a manner that is applied to climate projections to show future 

yield loss globally. 

 

The study’s findings of large yield losses under climate change across all three cereals stand in 

stark contrast to those of recent gridded crop growth modelling studies that yield changes are 

positive for wheat and rice and modestly negative for maize because of the overwhelming effects 

of CO2 fertilization. An attempt to include the effects of CO2 concentration anomalies finds 

negative coefficients, rather than positive coefficients consistent with CO2 fertilization 

expectations. This may be an artefact of reverse causality, as faster growing crops may deplete 

CO2 faster during photosynthesis, creating CO2 reduction anomalies. It may be noted that the 

ISIMIP3b yield gains under a high-end emissions scenario are mostly below 10% for rice and 

below 20% for wheat by 2070 in all regions, which is generally a fraction of the magnitude of 

losses from this study. As the magnitude of precipitation-evapotranspiration extreme induced 

losses is far larger than the magnitude of gains found by ISIMIP3b from changes to temperature, 

rainfall, and CO2, they imply that crop production is still likely to experience strongly negative 

effects of climate change. It should be noted that the analysis here is of effects of the changes to 

the mean of an index of extremes. Effects in future extreme years will be far more pronounced, 

as what is considered now extreme will be typical in many locations.  
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APPENDIXES 

Appendix 1 
The results presented in Table 3 are illustrated graphically in Figures A1.1, A1.2 and A1.3. These 
figures illustrate the marginal effects of the Standardized Precipitation–Evapotranspiration Index 
(SPEI), temperature and precipitation on crop yield, using the minimum and maximum observed 
values of these variables (as shown in Table 2) as the relevant lower and upper bounds for 
analyzing these effects. 
 

Figure A1.1: Marginal Effects of SPEI on Crop Yields for Various Crops 

 
SPEI = Standardized Precipitation–Evapotranspiration Index. 
Source: Authors. 



 
 

19 

Figure A1.2: Marginal Effects of Temperature (° Kelvin) on Crop Yields for Various Crops 

 
Source: Authors. 
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Figure A1.3: Marginal Effects of Precipitation (Millimeters) on Crop Yields  
for Various Crops 

 
Source: Authors. 
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Appendix 2 
Equation (2) is estimated considering year dummy variables instead of cell-specific linear time 

trends, along with cell-fixed effects. Furthermore, this incorporates additional explanatory factors: 

pollution, irrigation, and carbon dioxide (CO2) levels. 

• Pollution data come from the NASA’s Socioeconomic Data and Applications Center 

(Hammer et al. 2022). This platform offers global annual PM2.5 microgram per cubic meter 

concentration grids at a spatial resolution of 0.01 degrees (Hammer et al. 2020; Hammer 

et al. 2022). 

• The irrigation dataset provided by Nagaraj et al. (2021) is included. The data are in the 

form of annual grids at 5 arc-minute spatial resolution and take values between 0 and 2, 

where 0 represents no irrigation, 1 is low to medium irrigation, 2 is high irrigation. 

• CO2 data comes from the Copernicus Climate Change Project. The column-average dry-

air mole fraction of atmospheric carbon dioxide (XCO2) grids are applied, which are 

monthly parts per million concentration data at a spatial resolution of 5 degrees. 

 

More specifically, the average irrigation (irrigation_mean), the logarithm of the average XCO2 

(lnxco2_mean), and the average PM2.5 pollution (pollution_mean) during the growing phase are 

used.  

 

The results are presented in Tables A2.1 through A2.5 for maize, winter wheat, spring wheat, wet 

rice 1, and wet rice 2, respectively. Columns [1] and [2] show the results using year dummy 

variables instead of cell-specific linear time trends. Columns [3] and [4] present the results with 

additional explanatory variables included. Column [5] displays the results from the primary 

specification used in the main body of the paper for comparison. 
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Table A2.1: Results for Maize 

Statistics [1] [2] [3] [4] [5] 
spei6_mean 0.032 0.027 0.028 0.027 0.027 
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
spei6_mean2 -0.017 -0.014 -0.016 -0.016 -0.016 
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
temp_max_mean  2.252 2.298 2.306 2.307 
  (0.027)*** (0.028)*** (0.027)*** (0.027)*** 
temp_max_mean2  -0.004 -0.004 -0.004 -0.004 
  (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
precipitation_mean  -0.005 0.001 -0.006 -0.006 
  (0.000)*** (0.001) (0.000)*** (0.000)*** 
precipitation_mean2  0 -0.001 0 -0.000 
  (0.000)** (0.000)*** (0.000)* (0.000)* 
cloud_mean  -0.375 -0.366 -0.168 -0.172 
  (0.063)*** (0.075)*** (0.069)** (0.068)** 
irrigation_mean   0 -0.002  
   (0.001) (0.001)  
lnxco2_mean   -2.866   
   (0.080)***   
pollution_mean   0   
   (0.000)   
Cell fixed effects Yes Yes Yes Yes Yes 
Cell linear time trends No No Yes Yes Yes 
Year dummy Yes Yes No No No 
Adjusted R squared 0.86 0.87 0.87 0.87 0.87 
Observation 637,524 637,511 590,407 636,679 637,511 

Note: This table presents the estimated effect of environmental variables on maize yield for different specifications. All 
regressions include constant. In columns [3] to [5] cell-fixed effects and cell-specific linear time trends are included. In 
columns [1] and [2] cell-fixed effects and time dummy variables are included. Standard errors clustered by cell appear 
in parentheses. * p<0.10, ** p<0.05, *** p<0.01. The models are estimated using the Stata reghdfe package developed 
by Correia (2016). 
Source: Authors. 
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Table A2.2: Results for Winter Wheat 

Statistics [1] [2] [3] [4] [5] 
spei6_mean 0.084 0.045 0.032 0.032 0.032 
 (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** 
spei6_mean2 -0.028 -0.023 -0.025 -0.024 -0.024 
 (0.001)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
temp_max_mean  3.651 3.333 3.225 3.229 
  (0.059)*** (0.060)*** (0.058)*** (0.058)*** 
temp_max_mean2  -0.006 -0.006 -0.006 -0.006 
  (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
precipitation_mean  0.131 0.153 0.153 0.153 
  (0.002)*** (0.002)*** (0.002)*** (0.002)*** 
precipitation_mean2  -0.019 -0.022 -0.022 -0.022 
  (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
cloud_mean  -0.431 -0.729 -0.826 -0.818 
  (0.120)*** (0.126)*** (0.119)*** (0.120)*** 
irrigation_mean   0.02 0.021  
   (0.002)*** (0.002)***  
lnxco2_mean   -1.567   
   (0.143)***   
pollution_mean   0.001   
   (0.000)***   
Cell fixed effects Yes Yes Yes Yes Yes 
Cell linear time trends No No Yes Yes Yes 
Year dummy Yes Yes No No No 
Adjusted R squared 0.85 0.86 0.87 0.87 0.87 
Observation 267,605 267,605 261,762 267,605 267,605 

Note: This table presents the estimated effect of environmental variables on winter wheat yield for different 
specifications. All regressions include constant. In columns [3] to [5] cell-fixed effects and cell-specific linear time trends 
are included. In columns [1] and [2] cell-fixed effects and time dummy variables are included. Standard errors clustered 
by cell appear in parentheses. * p<0.10, ** p<0.05, *** p<0.01. The models are estimated using the Stata reghdfe 
package developed by Correia (2016). 
Source: Authors. 
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Table A2.3: Results for Spring Wheat 

Statistics [1] [2] [3] [4] [5] 
spei6_mean 0.114 0.076 0.084 0.08 0.080 
 (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** 
spei6_mean2 -0.06 -0.059 -0.059 -0.059 -0.059 
 (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** 
temp_max_mean  -0.04 0.522 0.113 0.102 
  (0.075) (0.070)*** (0.070) (0.070) 
temp_max_mean2  0 -0.001 0 -0.000 
  (0.000) (0.000)*** (0.000)** (0.000)** 
precipitation_mean  0.055 0.06 0.066 0.066 
  (0.003)*** (0.003)*** (0.003)*** (0.003)*** 
precipitation_mean2  -0.004 -0.004 -0.004 -0.004 
  (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
cloud_mean  -0.576 -0.32 -0.387 -0.369 
  (0.190)*** (0.246) (0.199)* (0.200)* 
irrigation_mean   0.03 0.027  
   (0.004)*** (0.004)***  
lnxco2_mean   2.343   
   (0.203)***   
pollution_mean   -0.004   
   (0.000)***   
Cell fixed effects Yes Yes Yes Yes Yes 
Cell linear time trends No No Yes Yes Yes 
Year dummy Yes Yes No No No 
Adjusted R squared 0.86 0.86 0.87 0.87 0.87 
Observation 266,093 266,093 258,321 262,856 266,093 

Note: This table presents the estimated effect of environmental variables on spring wheat yield for different 
specifications. All regressions include constant. In columns [3] to [5] cell-fixed effects and cell-specific linear time trends 
are included. In columns [1] and [2] cell-fixed effects and time dummy variables are included. Standard errors clustered 
by cell appear in parentheses. * p<0.10, ** p<0.05, *** p<0.01. The models are estimated using the Stata reghdfe 
package developed by Correia (2016). 
Source: Authors. 
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Table A2.4: Results for Wet Rice 1 

Statistics [1] [2] [3] [4] [5] 
spei6_mean -0.039 -0.013 -0.006 -0.007 -0.007 
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
spei6_mean2 -0.002 -0.003 -0.004 -0.005 -0.004 
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
temp_max_mean  5.062 5.275 5.305 5.300 
  (0.055)*** (0.059)*** (0.055)*** (0.055)*** 
temp_max_mean2  -0.008 -0.009 -0.009 -0.009 
  (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
precipitation_mean  -0.011 -0.008 -0.013 -0.013 
  (0.000)*** (0.001)*** (0.000)*** (0.000)*** 
precipitation_mean2  0 0 0 0.000 
  (0.000) (0.000)*** (0.000)** (0.000)** 
cloud_mean  -0.199 -0.678 -0.572 -0.577 
  (0.029)*** (0.034)*** (0.031)*** (0.031)*** 
irrigation_mean   -0.002 -0.006  
   (0.001) (0.001)***  
lnxco2_mean   -1.608   
   (0.066)***   
pollution_mean   -0.001   
   (0.000)***   
Cell fixed effects Yes Yes Yes Yes Yes 
Cell linear time trends No No Yes Yes Yes 
Year dummy Yes Yes No No No 
Adjusted R squared 0.91 0.92 0.93 0.93 0.93 
Observation 343,872 343,794 257,330 342,663 343,794 

Note: This table presents the estimated effect of environmental variables on wet rice yield (1st growing season) for 
different specifications. All regressions include constant. In columns [3] to [5] cell-fixed effects and cell-specific linear 
time trends are included. In columns [1] and [2] cell-fixed effects and time dummy variables are included. Standard 
errors clustered by cell appear in parentheses. * p<0.10, ** p<0.05, *** p<0.01. The models are estimated using the 
Stata reghdfe package developed by Correia (2016). 
Source: Authors. 
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Table A2.5: Results for Wet Rice 2 

Statistics [1] [2] [3] [4] [5] 
spei6_mean 0.011 0.02 0.039 0.033 0.033 
 (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** 
spei6_mean2 -0.002 -0.001 -0.006 -0.006 -0.006 
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
temp_max_mean  4.254 3.87 4.076 4.053 
  (0.082)*** (0.076)*** (0.086)*** (0.086)*** 
temp_max_mean2  -0.007 -0.006 -0.007 -0.007 
  (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
precipitation_mean  0.047 0.057 0.046 0.046 
  (0.004)*** (0.001)*** (0.004)*** (0.004)*** 
precipitation_mean2  -0.005 -0.006 -0.005 -0.005 
  (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
cloud_mean  -0.788 -0.696 -0.752 -0.759 
  (0.051)*** (0.054)*** (0.056)*** (0.056)*** 
irrigation_mean   -0.008 -0.009  
   (0.002)*** (0.002)***  
lnxco2_mean   -1.973   
   (0.123)***   
pollution_mean   -0.002   
   (0.000)***   
Cell fixed effects Yes Yes Yes Yes Yes 
Cell linear time trends No No Yes Yes Yes 
Year dummy Yes Yes No No No 
Adjusted R squared 0.93 0.93 0.94 0.94 0.94 
Observation 169,117 169,091 150,592 168,545 169,091 

Note: This table presents the estimated effect of environmental variables on wet rice yield (2nd growing season) for 
different specifications. All regressions include constant. In columns [3] to [5] cell-fixed effects and cell-specific linear 
time trends are included. In columns [1] and [2] cell-fixed effects and time dummy variables are included. Standard 
errors clustered by cell appear in parentheses. * p<0.10, ** p<0.05, *** p<0.01. The models are estimated using the 
Stata reghdfe package developed by Correia (2016). 
Source: Authors. 
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