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ABSTRACT 

This paper explores the mitigating effects of climate policies in addressing climate-induced health 

adversities. We first investigate the effect of in utero exposure to rainfall variations on child health 

outcomes in Bangladesh and find that in utero exposure to rainfall variations negatively affects 

children’s anthropometric outcomes. We then exploit the heterogeneity in location and timing of 

district-level allocations for climate projects under the Bangladesh Climate Change Trust Fund to 

identify that some of these rainfall-induced health adversities can be mitigated through climate 

policies. Our findings are robust to alternative empirical specifications and have important policy 

implications.  
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1. Introduction  

There is growing evidence suggesting that climate change and extreme weather events have 

detrimental effects on human health, lives, and livelihoods. Extreme temperature, sea-level rise, 

salinity, floods, storms, and droughts are some of the most common climate change-induced 

events (Frumkin et al. 2008, Patz et al. 2000). Available literature suggests that some climate 

events have a direct impact on healthcare infrastructure and thus indirect consequences on 

individual health. For example, several empirical papers have found extreme temperatures to 

predict mortality (Curriero et al. 2002; Hajat et al. 2006; Goldberg et al. 2011; Son et al. 2016; 

Rodrigues, Santana, and Rocha  2019) and hospitalization (Bobb et al. 2014; Schwartz, Samet, 

and Patz 2004; Son, Bell, and Lee 2014). The 2020 Lancet Countdown report (Watts et al. 2020) 

concludes that the health impacts of climate change are worsening over time with further 

deteriorating climate, and countries and populations with heterogenous attributes experience 

those impacts disproportionately. Similarly, climate events may reduce food production and 

hamper food distribution to have the same detrimental effects on people’s health. A systematic 

review of the evidence of health effects of droughts by Stanke et al. (2013), for example, reveals 

that droughts as a consequence of climate change can lead to adverse indirect health outcomes 

such as malnutrition and infectious disease. A recent study identified, inter alia, that there can be 

long-term sustained effects of climate extremes on the affected children including lower health 

status during adulthood (Eskander and Barbier 2022).  

While the literature documenting the health effects of climate change has been growing, 

rigorous empirical evidence focusing on the most vulnerable countries such as Bangladesh is still 

very limited. Furthermore, the existing research based on secondary, high-frequency data is 

limited to a few developed economies since the data required for such research is available for 

only these countries. For example, a recent study by Guimbeau et al. (2024) focused on ocean 

salinity and its impact on child anthropometric measures in Bangladesh. Mullins and White (2020) 

found that community health centers in the United States have been successful in reducing the 

heat-related mortality (but not cold) by 14.2%. More recently, Nyqvist et al. (2023) showed that in 

Uganda, access to community healthcare centers reduced infant mortality amid adverse weather 

shocks. However, there is a lack of evidence on mitigating the effects of climate actions to reduce 

health vulnerability in such a context, which remains a lacuna for policies.1 

 
1 Sustainable Development Goal 13 “Climate Action” emphasizes the need to strengthen resilience and adaptive 
capacity to climate-related extreme events. 
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In this paper, we consider the potential mitigating effects of climate finance on health 

adversities arising from frequent disaster exposures such as rainfall variations in the context of 

Bangladesh. Using three rounds of the household survey data from Bangladesh, we empirically 

estimate the childhood health effects of in utero exposure to rainfall variations and the mitigating 

effects of climate policy on these rainfall-induced health adversities. Our results first inform that 

in utero exposure to rainfall variations significantly reduces exposed children’s anthropometric 

outcomes, especially their height-for-age (stunting) and weight-for-age (underweight) z scores. 

We then identify that climate financing projects related to adaptation and mitigation have some 

mitigating effects on such adversities, by improving children’s anthropometric outcomes.  

Especially for developing economies like Bangladesh, these findings are very important since 

both the public and private sectors face repeated budget crises during and after a disaster and 

our findings, therefore, could at least be generalized to countries experiencing similar situations 

and impacts.  

While the climate risks are universal, the tradeoff that a developing economy like 

Bangladesh faces requires additional attention as these harmful effects of climate change and 

disasters are further heightened in such a context (Intergovernmental Panel on Climate Change 

2012). The scarcity, or often absence, of risk mitigation or insurance programs to protect life, 

property, and agricultural crops necessitates private coping strategies by the affected households. 

In such cases, the poorer households set their primary focus on meeting immediate subsistence 

needs while experiencing frequent climate events, and, therefore, may have to compromise on 

their preparation for facing such future climatic shocks. Climate policies such as climate 

legislation, action plans, and financing mechanisms adopted by governments toward risk 

mitigation and/or adaptation could limit the harmful effects of climate change in such a context.  

Due to its geographic location and land characteristics, Bangladesh is prone to recurrent 

flooding and frequent tropical storm events: 26% of the population are affected by cyclones and 

70% live in flood-prone regions (Cash et al. 2014). The Bangladesh Climate Change Trust Fund 

(BCCTF) is a national fund established in 2010 by the Government of Bangladesh to finance 

climate change activities in the country. It is supported by contributions from the government, 

international donors, and private sector organizations. The BCCTF is responsible for providing 

financial resources for a variety of climate change activities in Bangladesh. BCCTF supported 

projects such as the development of early warning systems for extreme weather events, the 

promotion of renewable energy sources, and the development of climate-resilient infrastructure. 

We exploit the heterogeneity in the location and timing of district-level allocations for climate 
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projects under the BCCTF to identify if rainfall-induced health adversities can be mitigated through 

climate policies. 

The outline of this paper is as follows: Section 2 describes our data and the empirical 

strategy and Section 3 reports the results of the health effects of rainfall variations. Section 4 

reports the results of the mitigating effects of climate policy. Finally, Section 5 concludes the 

paper.  

2. Data and Empirical Strategy 

We use three rounds of the Bangladesh Integrated Household Survey (BIHS), 2011–2012, 2015, 

and 2018–19, for the children’s health outcome variables. BIHS is a nationally representative rural 

household survey conducted by the International Food Policy Research Institute(IFPRI), details 

of which can be found in Ahmed (2013). Table 1 provides descriptive statistics.  

Table 1: Variable Description and Summary Statistics 

Variables Description Mean SD Minimum Maximum 
Child’s attributes      
Males Child’s gender: 1 if male, 0 if female 0.511 0.500 0 1 
Age Child’s age in (full) months  29.50 16.84 0 60 
Weight Child’s weight in kilogram 10.51 2.941 2.100 23.70 
Height Child’s height in centimeter 82.92 13.01 45.10 110 
      
Mother’s attributes      
Mother’s age  Mother’s age in (full) years 27.33 5.835 16 65 
Mother’s weight Mother’s weight in kilogram 48.26 9.094 26.90 94.30 
Mother’s height Mother’s height in centimeter 150.8 5.686 101.4 195.4 
Decision making  Indicator of empowerment: 1 if females are 

involved in food related decisions, 0 if not 
0.792 0.406 0 1 

Mother’s schooling Schooling indicator: 1 if the mother has 
some schooling, 0 if not 

0.795 0.404 0 1 

Household-level 
attributes 

     

      
Agriculture Proportion of working-age household 

members working in self-employed 
agriculture 

0.136 0.163 0 0.833 

Food insecurity Self-reported measure of extreme poverty: 1 
if the household frequently suffers from 
hunger, 0 if not.  

0.0911 0.288 0 1 

Child marriage Number of aged 18 or below currently 
married, widowed, divorced, or separated 
women in the household 

0.0163 0.131 0 2 

      
Regional attributes      
RWI Relative wealth index, district level measure -0.00453 0.356 -0.963 1.184 
Crop diversification Herfindahl–Hirschman index for value of 

agricultural production, district level measure 
0.260 0.0381 0 0.386 

Continued on the next page 
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Variables Description Mean SD Minimum Maximum 
Health outcomes      
HAZ Length/height-for-age (cm) -1.572 1.430 -10.62 8.301 
WAZ Weight-for-age (kg) -1.436 1.123 -8.609 3.566 
WHZ Weight-for-length (kg) -0.674 1.233 -12.10 9.057 
      
Climate measures      
Rainfall variations Deviation of average in utero rainfall from 

respective long-term average level 
-3.086 35.48 -92.00 185.2 

Rainfall variations 
T1 

Deviation of average first trimester rainfall 
from respective long-term average level 

-2.402 54.37 -236.0 404.9 

Rainfall variations 
T2 

Deviation of average second trimester 
rainfall from respective long-term average 
level 

-3.349 54.61 -236.3 407.3 

Rainfall variations 
T3 

Deviation of average third trimester rainfall 
from respective long-term average level 

-3.507 55.19 -185.9 372.3 

Flood Frequency of floods in district, 1990-2020: 0 
Low (0-5), 1 Medium (6-11) or 2 High (12-
18)  

0: 44.06% 
1: 31.45% 
2: 24.49% 

   

Storm Frequency of storms in district, 1990-2020: 0 
Low (0-5), 1 Medium (6-11) or 2 High (12-
18) 

0: 44.06% 
1: 39.94% 
2: 16.00% 

   

Extreme 
temperature 

Frequency of extreme temperature events in 
district, 1990-2020: 0 Low (0-4), 1 Medium 
(5-8) or 2 High (9-12) 

0: 9.82% 
1: 72.92% 
2: 17.26% 

   

      
Climate policy      
BCCTF District-level allocation under the BCCTF 

project, taka per capita 
81.37 115.9 0 607.7 

CC BCCTF treated cohorts: 1 if the cohort is 
treated by BCCTF climate funds (i.e., years 
2012-18), 0 if not (i.e., years 2007-11) 

0.504 0.500 0 1 

DD BCCTF treated districts: 1 if the district is 
treated by BCCTF climate funds, 0 if not 

0.850 0.357 0 1 

CC2 BCCTF treated child: 1 if the child is in a 
treated district in treated year (i.e., CC=1 
and DD=1), 0 if otherwise 

0.208 0.406 0 1 

No. of Obs.  6,802    
BCCTF = Bangladesh Climate Change Trust Fund, CC = child cohort, CC2 = child cohort 2, DD = district 
dummy, HAZ = height-for-age z-score, WAZ = weight-for-age z-score, WHZ = weight-for-length z-score. 
 
Notes: Summary statistics are for the estimated sample of 6,802 children aged 0–60 months whose mothers 
were surveyed in any of the three rounds of the Bangladesh Integrated Household Survey (BIHS) data.  
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 

 

2.1. Children’s Health Outcomes  

Among others, the BIHS dataset reports age, birth month, birth year, height, and weight of children 

aged 0-60 months whose mothers were interviewed during the three survey rounds. Complete 

data are available for a total of 6,802 children (3,475 males and 3,327 females), who were born 

between 2007 and 2018, with an average age of 29.50 months, weight of 10.51 kilograms (kg), 
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and height of 82.92 centimeters (cm). We use their height and weight as measured and reported 

by the BIHS enumerators to construct three anthropometric measures:2  

• HAZ: height-for-age z-score, expressed in centimeters.  

• WAZ: weight-for-age z-score, expressed in kilograms.  

• WHZ: weight-for-length z-score, expressed in kilograms.  

Figure 1 shows the distribution of these anthropometric measures.  

Figure 1: Distribution of Anthropometry Measures 

 

BIHS = Bangladesh Integrated Household Survey, HAZ = height-for-age z-score, IFPRI = International 
Food Policy Research Institute, WAZ = weight-for-age z-score, WHZ = weight-for-length z-score.  
 
Source: Authors’ calculations using the BIHS dataset (Ahmed 2013, IFPRI 2016, IFPRI 2020). 

 

As Table 1 reports, children in our sample have an estimated average HAZ of  

–1.572 (with a range between –10.62 and 8.301), WAZ of –1.436 (with a range between –8.609 

and 3.566), and WHZ of –0.674 (with a range between –12.10 and 9.057). 

In utero period is defined as all the 9 months before the birth of a child. We use children’s reported 

months and years of birth to calculate their respective in utero period. We also calculate first, 

 
2 To construct Z scores of child anthropometric measures, we use the Lambda Mu and Sigma (LMS) method 
summarizing growth standards considering the changing skewness of the distribution during childhood (Cole 1989).  
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second, and third trimesters of gestation as 7–9, 4–6, and 1–3 months before childbirth, 

respectively.  

2.2. Rainfall Variations  

Weather data comes from the Bangladesh Meteorological Department (BMD), which maintains 

historical weather and climate data since 1950 for station-month-year level for 35 weather stations 

across the country.3 We calculate in utero rainfall variations by taking differences of average 

monthly rainfall from respective long-term average rainfall for each of the 9 months before the 

birth of a child and then take their average. Following related literature (e.g., Auffhammer et al. 

2013; Zhang, Zhang, and Chen 2017; Guimbeau et al. 2024), we calculate the average of the 

rainfall data for the 5 closest stations for each household, weighing each point by the inverse of 

the squared distance from the household’s location as reported in the BIHS dataset.4 The 

construction of the variable is reported in Appendix.  

Figure 2 and Appendix Figure A1 plots the distribution of rainfall variations for our estimating 

sample of households.  

Figure 2: Rainfall Variations 

 

 
3 Bangladesh weather data is publicly available in the government website: http://barcapps.gov.bd/climate/. 
4 Monthly data is not suitable for measuring temperature variations such as growing degree days (GDD) and harmful 
degree days (HDD). We instead control for pre-existing conditions such as agro-ecological zones and historical level 
of exposure to flood, storm and extreme temparatures. 

Continued on the next page 

http://barcapps.gov.bd/climate/
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Notes: Rainfall data variations are calculated as the difference of monthly rainfall from long-term 
average rainfall data.  
Source: Authors’ calculations using the Rainfall data comes from the Bangladesh 
Meteorological Department (http://barcapps.gov.bd/climate/). 

 

Next, occurrences of disasters vary by region in Bangladesh. For example, coastal districts 

in southern Bangladesh are more prone to tropical storms, while the northern districts are 

frequently affected by widescale flooding events. These experiences have different implications 

for how the households from respective regions or communities may respond to and are affected 

by rainfall variations. Therefore, using the EM-DAT database5 (EM-DAT 2022), we develop 

categorical measures of historical disaster exposure for each sample district. As shown in Figure 

3, we consider the district-level frequency of floods and storms during 2000-2022 and categorize 

these districts into three groups as shown below:  

 Flood 

(𝑤𝑤𝑑𝑑
𝑓𝑓) 

Storm 

(𝑤𝑤𝑑𝑑𝑠𝑠) 

Extreme temperature (𝑤𝑤𝑑𝑑𝑥𝑥) 

1. Low exposure 0-5 0-5 0-4 

2. Medium 

exposure 

6-11 6-11 5-8 

3. High exposure 12-18 12-18 9-12 

 

 
5 EM-DAT. https://public.emdat.be/ (accessed 8 January 2023). 

http://barcapps.gov.bd/climate/
https://public.emdat.be/
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Figure 3: Occurrences of Disasters in Bangladesh, by District, 2000–2022 

 

Note: The boundaries, colors, denominations, and any other information shown on this map do not imply, 
on the part of the Asian Development Bank, any judgment on the legal status of any territory, or any other 
endorsement or acceptance of such boundaries, colors, denominations, or information. 

Source: Authors’ calculations using the disaster data from the EM-DAT dataset (EM-DAT 2022). 

2.3. Climate Policy Variable 

Our climate policy variable is constructed based on district-level BCCTF allocations. As of 2022, 

a total of 196 projects have been completed using BCCTF funding in different districts of 

Bangladesh. However, since different districts have completed their respective projects in 

different years (Figure 4A), and thereby enter our treatment (districts receiving BCCTF allocation) 

in different times, it is not possible to directly assign treatment and control child cohorts and 

regions especially in absence of child-level panel data. Therefore, we first construct a staggered 

indicator of child-level climate policy treatment, 𝑇𝑇𝑖𝑖, which is defined as 1 if the child was born in a 

district that was treated before her birth (i.e., the in utero period was considered treated) and 0 if 

otherwise.  
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Figure 4: District-Level Coverage of Bangladesh Climate Change Trust Fund 

 

Note: The boundaries, colors, denominations, and any other information shown on this map do not imply, 
on the part of the Asian Development Bank, any judgment on the legal status of any territory, or any other 
endorsement or acceptance of such boundaries, colors, denominations, or information. 

Source: Authors’ calculations using the Bangladesh Climate Change Trust Fund allocation data from the 
Government of Bangladesh website http://www.bcct.gov.bd/.  

 

However, since BCCTF allocations are not uniform across districts (Appendix Figure A2), 

we also include a continuous measure of climate policy, 𝐹𝐹𝑑𝑑, which is the inverse hyperbolic sine 

(IHS) transformation of per-capita district-level allocation under the BCCTF project (Appendix 

Figure 4B).  Therefore, our composite climate policy measure is given by the interaction term 𝑇𝑇𝑖𝑖𝐹𝐹𝑑𝑑 

where 𝐹𝐹𝑑𝑑 = 0 if 𝑇𝑇𝑖𝑖 = 0 and 𝐹𝐹𝑑𝑑 > 0 if 𝑇𝑇𝑖𝑖 = 1.  

2.4. Other Variables  

We also use various mother-, household- and region-level variables in the analysis. Surveyed 

mothers are on average 27.33 years old with an average weight of 48.26 kg and height of 150.8 

cm. More than 79% of them are involved in food-related decisions in their households, while 

around 80% have some schooling. Most 83.3% of working-age household members work in self-

employed agriculture. Moreover, around 9% of households reported frequently suffering from 

hunger or acute food insecurity, while there exists some prevalence of child marriage among 

them.  

http://www.bcct.gov.bd/
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There is considerable heterogeneity across regions in terms of relative wealth and crop 

diversification. The relative wealth index (RWI) measures the standard of living within countries 

using privacy protecting connectivity data, satellite imagery, and other novel data sources (Chi et 

al. 2022). In Bangladesh, RWI ranges between –0.963 and 1.184. On the other hand, we measure 

crop diversity in terms of a Herfindahl-Hirschman Index (HHI), which is a common measure of 

competitiveness. The HHI is calculated as the squared sum of the proportion of revenues from 

each crop so that 𝐻𝐻𝐻𝐻𝐻𝐻 ∈ (0,1), where 𝐻𝐻𝐻𝐻𝐻𝐻 ≅ 0 (i.e., lower index values) denotes high crop 

diversification, and 𝐻𝐻𝐻𝐻𝐻𝐻 ≅ 1 (i.e., higher index values) denotes low crop diversification.  

2.5. Empirical Strategies  

The main specfic hypotheses that we test in this paper are as follows:  

Hypothesis 1. Exposure to climate change and disasters reduces (child) health outcomes.  

Hypothesis 2. Targeted climate finance at least partially reduces such health adversities.  

Hypothesis 1 directly refers to the fetal origin hypothesis that states that in utero and 

neonatal exposure to adverse climatic shocks can reduce later-life health outcomes. Such 

adverse shocks directly affect agricultural production, livelihood, and income-earning 

opportunities. This could negatively impact affected households’ overall food and nutrition 

situations, including the pregnant women in the household, resulting in lower health outcomes for 

(in utero) children. Therefore, we focus on children aged 0–60 months to investigate whether their 

in utero exposure to climatic shocks (rainfall variation) affects their physical growth. 

To test for the effects of in utero weather variations on early-life health, we employ the 

following regression: 

ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
′ 𝛿𝛿 + 𝜎𝜎𝑚𝑚 + 𝜆𝜆𝑡𝑡 + 𝜌𝜌𝑟𝑟 + 𝜂𝜂𝑚𝑚𝑚𝑚 + 𝜃𝜃𝑚𝑚𝑚𝑚 + 𝜑𝜑𝑡𝑡𝑡𝑡 + 𝜔𝜔𝑑𝑑

𝑓𝑓 + 𝜔𝜔𝑑𝑑
𝑠𝑠 +𝜔𝜔𝑑𝑑

𝑥𝑥

+ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,                (1) 

where ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the health outcome for child 𝑖𝑖, born in month 𝑚𝑚 in year 𝑡𝑡, and whose mother was 

surveyed in district 𝑑𝑑. 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
′  is a vector of controls and 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the error term. We also include a 

full set of fixed effects to account for unobserved heterogeneties arising from month of birth (𝜎𝜎𝑚𝑚), 

year of birth (𝜆𝜆𝑡𝑡), agro-ecological zone (AEZ) of birth (𝜌𝜌𝑟𝑟), month-year interaction (𝜂𝜂𝑚𝑚𝑚𝑚), month-

AEZ interaction (𝜃𝜃𝑚𝑚𝑚𝑚), and year-AEZ interaction (𝜑𝜑𝑡𝑡𝑡𝑡).6 We also include fixed effects of district-

level historical level of exposure to flood (𝜔𝜔𝑑𝑑
𝑓𝑓), storm (𝜔𝜔𝑑𝑑

𝑠𝑠 ) and extreme temparatures (𝜔𝜔𝑑𝑑
𝑥𝑥). 

 
6 Controlling for these fixed effects allow causal interpretation of our main treatment estimates (Dell et al. 2014). 
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Following the hypothesis 1, we are interested in the estimated coefficient of 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑, and we 

expect that greater (smaller) climate risk (i.e., rainfall variations) decreases (increases) health 

outcomes, i.e., 𝛼𝛼�1 < 0.  

Hypothesis 2 then refers to the effects of public support aiming at mitigating the harms of 

climate shock considered in the paper. We focus on the 2010 BCCTF that provides the funding 

allocations for different climate change-related projects in Bangladesh. We investigate the 

mitigating effects of BCCTF on climate-induced health adversities described here. For this 

purpose, we employ the following regression: 

ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽2𝑇𝑇𝑖𝑖 + 𝛽𝛽3𝐹𝐹𝑑𝑑 + 𝛽𝛽4𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑖𝑖 + 𝛽𝛽5𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝐹𝐹𝑑𝑑 + 𝛽𝛽6𝑇𝑇𝑖𝑖𝐹𝐹𝑑𝑑 + 𝛽𝛽7𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑖𝑖𝐹𝐹𝑑𝑑 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
′ 𝛿𝛿 + 𝜎𝜎𝑚𝑚

+ 𝜆𝜆𝑡𝑡 + 𝜌𝜌𝑟𝑟 + 𝜂𝜂𝑚𝑚𝑚𝑚 + 𝜃𝜃𝑚𝑚𝑚𝑚 + 𝜑𝜑𝑡𝑡𝑡𝑡 +𝜔𝜔𝑑𝑑
𝑓𝑓 +𝜔𝜔𝑑𝑑

𝑠𝑠 + 𝜔𝜔𝑑𝑑
𝑥𝑥 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,                (2) 

where ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑, 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
′  and the set of fixed effects are as defined for equation (1). 𝑇𝑇𝑖𝑖 denotes a 

staggered measure of climate policy instrument (defined as 1 if child 𝑖𝑖 is treated by climate policy 

and 0 if not), whereas 𝐹𝐹𝑑𝑑 is a measure of actual allocation of BCCTF funding (defined as the 

inverse hyperbolic sine transformation of district-level per-capita BCCTF allocation).  

Therefore,, we are interested in the estimated coefficient of the interaction between 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑, 

𝑇𝑇𝑖𝑖, and 𝐹𝐹𝑑𝑑. Following hypothesis 2, we expect that climate policies reduce climate-induced health 

adversities so that 𝛽̂𝛽7 > 0. 

The vector of controls 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
′  includes selected child-, mother-, and household-level 

attributes that are identified in related literature to have potential confounding effects on the health 

adversities of rainfall variations and the mitigating effects of climate policies. In all regression 

specifications, we control for the child’s gender (i.e., 1 if male and 0 if female), age (in full months), 

and squared age. Mother-level controls include age (in full years), weight (in kg), and height (in 

cm) of the mother. We also control for household-level prevalence of food insecurity (i.e., 1 if the 

household has recently encountered an extreme poverty situation such as unavailability of food, 

0 if not). We additionally control for regional crop diversity and relative wealth index.  

Equations (1) and (2) include a series of temporal and spatial fixed effects to control for 

unobserved heterogeneity that might arise from seasonal and regional variations. In particular, 

month-of-birth fixed effects account for seasonal variations, whereas month- and year-of-birth 

fixed effects control for idiosyncratic changes that are common across survey clusters. AEZ fixed 

effects control for the unobserved time-invariant characteristics specific to the agroecological 

zone. In addition, AEZ-month fixed effects control for local seasonal variations, AE-year fixed 

effects control for AEZ-specific annual patterns in health outcomes, and month-year fixed effects 
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control for year-specific seasonal variations. Moreover, flood, storm, and extreme temperature 

fixed effects control for district-specific heterogeneity in the frequency of disasters.  

Controlling for above-fixed effects allows us to identify the causal effects of rainfall variations 

on health outcomes and also the mitigating effects of climate policies on rainfall-induced health 

adversities (e.g., Dell et al. 2014). Parameter 𝛼𝛼1 in equation (1) allows for differential effects of 

rainfall on child health outcome and we hypothesize that 𝛼𝛼�1 < 0. On the other hand, parameter 

𝛽𝛽7 allows for differential effects of climate policies in reducing rainfall-induced child health 

adversities and we hypothesize that 𝛽̂𝛽7 > 0. We assume that 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑|ℛ1) = 0
𝑐𝑐𝑐𝑐𝑐𝑐(𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑖𝑖𝐹𝐹𝑑𝑑|ℛ2) = 0,          (3) 

where ℛ1 and ℛ2 denote the set of explanatory variables in equations (1) and (2) respectively. 

Our identifying assumption, therefore, is the independence between the disturbances and the 

measure of rainfall variations, conditional on permanent differences between the districts of birth 

and other control variables. This implies that there are no omitted variables that could be 

correlated with rainfall variations, child health outcomes and climate policies. However, 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖, where 𝑢𝑢𝑖𝑖 is the white noise error term, but 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 may be correlated across 𝑖𝑖 within 𝑑𝑑. 

We cluster the standard errors at the sub-district or thana level to overcome this problem, which 

allows for village-level correlations in the error terms.  

We first adopt an ordinary least squares (OLS) method to estimate equations (1) and (2). 

However, this is highly likely that rainfall variations are collinear with some of the fixed effects. To 

address this, we also employ a double-lasso variable selection strategy to select the fixed effects 

(e.g., Belloni et al. 2014, Guimbeau et al. 2024). This strategy first regresses the variables of 

interest on the full set of control variables and fixed effects to select a subset of control variables, 

and then regresses the outcome variable on the variables of interest and selected controls and 

fixed effects in the second step. The double-lasso strategy is a robust model selection framework 

that selects a smaller subset of control variables from all potential controls.  

3. Health Effects of Rainfall Variations  

Table 2 reports the health effects of rainfall variations. Panels A and B report OLS and 

LASSO results, respectively. Overall, all models are statistically significant, and estimated 

coefficients have expected signs.  
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Table 2: Health Effects of Rainfall Variations 

 (1) (2) (3) (4) (5) (6) 
 A. OLS results B. LASSO results 
Variables HAZ WAZ WHZ HAZ WAZ WHZ 
       
Rainfall variations -0.0022*** -0.0018** -0.0009 -0.0015** -0.0014** -0.0008 
 (0.0008) (0.0007) (0.0008) (0.0007) (0.0006) (0.0007) 
Males -0.0438 0.0214 0.0084 -0.0596* 0.0056 -0.0012 
 (0.0373) (0.0295) (0.0322) (0.0321) (0.0255) (0.0300) 
Age -0.0913*** -0.0394*** 0.0024 -0.0912*** -0.0372*** 0.0049 
 (0.0066) (0.0056) (0.0077) (0.0073) (0.0058) (0.0073) 
Squared age 0.0013*** 0.0004*** -0.0001 0.0013*** 0.0004*** -0.0002 
 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
Food insecurity  -0.1954*** -0.1800*** -0.0782 -0.2270*** -0.1811*** -0.0541 
 (0.0576) (0.0508) (0.0567) (0.0552) (0.0443) (0.0510) 
Mother’s age -0.0043 -0.0082*** -0.0078** -0.0058** -0.0085*** -0.0068*** 
 (0.0038) (0.0027) (0.0030) (0.0030) (0.0023) (0.0026) 
Mother’s weight 0.0179*** 0.0267*** 0.0227*** 0.0178*** 0.0278*** 0.0245*** 
 (0.0021) (0.0020) (0.0023) (0.0020) (0.0016) (0.0019) 
Mother’s height 0.0423*** 0.0227*** -0.0050 0.0421*** 0.0221*** -0.0058* 
 (0.0036) (0.0028) (0.0037) (0.0033) (0.0025) (0.0031) 
Constant -7.4281*** -5.2635*** -0.7633    
 (0.5501) (0.4003) (0.5233)    
       
No. of Obs. 6,760 6,760 6,760 6,802 6,802 6,802 
R2 0.2887 0.2860 0.1687    
Chi2    680.5*** 830.6*** 190.6*** 
Birth year FE YES YES YES YES YES YES 
Birth month FE YES YES YES YES YES YES 
AEZ FE YES YES YES YES YES YES 
Birth year × Birth 
month FE 

YES YES YES YES YES YES 

Birth year × AEZ FE YES YES YES YES YES YES 
Birth month × AEZ 
FE 

YES YES YES YES YES YES 

Flood FE YES YES YES YES YES YES 
Storm FE YES YES YES YES YES YES 
Extreme 
Temperature FE 

YES YES YES YES YES YES 

AEZ = agro-ecological zone, FE = Fixed Effects, HAZ = height-for-age z-score, LASSO = least absolute 
shrinkage and selection Operator, OLS = ordinary least squares, WAZ = weight-for-age z-score, WHZ = 
weight-for-height z-score.  
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in column headers. We estimate the health effects of rainfall 
variations using OLS (columns 1–3) and LASSO (columns 4–6) regressions according to equation (1), 
where our estimated coefficient of interest is given by the coefficients of the variable “Rainfall variations.” 
All regressions include the full set of fixed effects and control variables.  
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 
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We only focus on the coefficients of LASSO estimates. Column (4) shows that a one-unit 

increase (decrease) in in utero rainfall variations leads to 0.0015-unit decrease (increase) in HAZ. 

Similarly, column (5) shows that a one-unit increase (decrease) in in utero rainfall variations leads 

to 0.0014-unit decrease (increase) in WAZ, while column (6) shows that a one-unit increase 

(decrease) in in utero rainfall variations leads to 0.0008-unit decrease (increase) in WHZ.  

We identify significant heterogeneity among male and female children in terms of HAZ: male 

children have lower HAZ than female children. In general, HAZ and WAZ indices decrease at an 

increasing rate with age, although the respective age coefficients are statistically insignificant for 

WHZ. As expected, children from food-insecure households, and those born to older mothers, 

have lower health status. Mother’s weight has significant and positive effects on all the measures 

of child health status, whereas the mother’s height affects HAZ and WAZ positively, but WHZ 

negatively.  

We also conduct several robustness analyses. Appendix Table A1 also reports the results 

for binary health outcome variables where we define “stunted” as HAZ<-2, “underweight” as 

WAZ<-2, and “wasted” as WHZ<-2. Overall, results confirm the presence of health adversities 

from exposure to rainfall variations and therefore support our main results in Table 2, i.e., rainfall 

variations increase the probability of stunting by 0.05%, underweight by 0.05%, and wasted by 

0.03%.  

Our results are broadly consistent with results for a specification with trimester rainfall 

variations. Appendix Table A2 reports the results where we divide total in utero rainfall variations 

for variations during three trimesters separately. Overall, we identify that HAZ is significantly 

affected by the second trimester rainfall variations, whereas WAZ is significantly affected by the 

second and third trimester rainfall variations. 

Considering the widescale use of irrigation for agriculture in Bangladesh, it is possible that 

negative rainfall variations may have low or zero adverse effects on agricultural outputs and 

therefore on health outcomes. Appendix Table A3 reports separate results for drought and flood 

situations that are defined as negative and positive rainfall variations, i.e., 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 < 0 and 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 > 0, 

respectively. As expected, we do not identify any statistically significant health adversities from 

rainfall variations during the drought situation. However, rainfall variations during flood situations 

have statistically significant negative effects on health outcomes.  

Appendix Table A4 reports quantile regression results. While we still observe the significant 

and negative effect of rainfall variations on HAZ, there are no such adversities for WAZ anymore. 
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Together with our main results and results for flood situations, it is possible that WAZ effects of 

rainfall variations might be more profoundly felt during heavy floods that create widespread food 

scarcities.  

3.1. Heterogenous Health Effects  

Table 3 reports the results of the heterogenous impact, where we interacted indicator variables 

for gender, food insecurity, mother’s health, and population density with rainfall variations to 

identify respective heterogeneity.  

Table 3: Heterogenous Health Effects 

 (1) (2) (3)   (4) (5) (6) 
 A. Gender   B. Food insecurity 
Variables HAZ WAZ WHZ  Variables HAZ WAZ WHZ 
         
Rainfall variations -0.0017** -0.0015** -0.0008  Rainfall variations -0.0014* -0.0013** -0.0007 
 (0.0008) (0.0007) (0.0008)   (0.0007) (0.0006) (0.0007) 
Males -0.0580* 0.0063 -0.0010  Food insecurity -0.2310*** -0.1879*** -0.0599 
 (0.0321) (0.0255) (0.0300)   (0.0554) (0.0454) (0.0520) 
Rainfall variations 
× Males 

0.0005 0.0002 -0.0000  Rainfall variations × 
Food insecurity 

-0.0007 -0.0009 -0.0006 
(0.0009) (0.0007) (0.0008)  (0.0017) (0.0014) (0.0016) 

         
No. of Obs.  6,802 6,802 6,802  No. of Obs.  6,802 6,802 6,802 
Set of FEs YES YES YES  Set of FEs YES YES YES 
Controls YES YES YES  Controls YES YES YES 
Chi2 682.7*** 832.0*** 190.7***  Chi2 680.5*** 830.8*** 190.7*** 
 (7) (8) (9)   (10) (11) (12) 
 C. Mother's health   D. Population density 
Variables HAZ WAZ WHZ  Variables HAZ WAZ WHZ 
         
Rainfall variations -0.0009 -0.0020** -0.0018**  Rainfall variations -0.0015* -0.0014** -0.0010 
 (0.0009) (0.0008) (0.0009)   (0.0008) (0.0006) (0.0007) 
Short -0.4663*** -0.2716*** 0.0098  High density 0.1568*** 0.1360*** 0.0522 
 (0.0454) (0.0367) (0.0442)   (0.0494) (0.0408) (0.0465) 
Rainfall variations 
× Short 

-0.0007 0.0006 0.0011  Rainfall variations × 
High density 

0.0013 0.0010 0.0007 
(0.0012) (0.0010) (0.0011)  (0.0010) (0.0008) (0.0009) 

Thin -0.3116*** -0.3892*** -0.2746***      
 (0.0471) (0.0377) (0.0446)      
Rainfall variations 
× Thin 

-0.0003 0.0021** 0.0031***      
(0.0012) (0.0010) (0.0012)      

Short × Thin 0.0124 -0.0106 -0.0274      
 (0.0655) (0.0526) (0.0624)      
Rainfall variations 
× Short × Thin 

-0.0003 -0.0025* -0.0033**      
(0.0018) (0.0015) (0.0017)      

         
No. of Obs.  6,802 6,802 6,802  No. of Obs.  6,802 6,802 6,802 
Set of FEs YES YES YES  Set of FEs YES YES YES 
Controls YES YES YES  Controls YES YES YES 
Chi2 622.4*** 673.3*** 108.5***  Chi2 687.7*** 823.3*** 191.6*** 

FE = Fixed Effect, HAZ = height-for-age z-score, LASSO = Least Absolute Shrinkage and Selection 
Operator, WAZ = weight-for-age z-score, WHZ = weight-for-length z-score. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in column headers. We explore the heterogeneity in the health 

Continued on the next page 
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effects of rainfall variations using LASSO regressions, where we extended equation (1) by introducing 
additional interaction terms with rainfall variations for each case in Panels A–D which provides our 
estimated coefficient of interest. All regressions include the full set of fixed effects and control variables.  
Source: Authors’ calculations using the BIHS dataset (Ahmed 2013, International Food Policy Research 
Institute [IFPRI] 2016, IFPRI 2020). 

 

Panel A reports heterogeneity impact on gender. While there are significant negative effects 

of rainfall variations on HAZ and WAZ and male children have significantly lower HAZ, male 

children having in utero exposure to rainfall variations do not have any significant additional health 

adversities. 

Panel B reports the heterogenous impact of the household’s food insecurity status. Like our 

main results in Table 2, these results confirm that there are significant negative effects of rainfall 

variations on HAZ and WAZ and food-insecure children have significantly lower HAZ and WAZ. 

However, we do not identify any exacerbating effects of food insecurity as the estimated 

coefficients of the interaction term, though negative, are statistically insignificant.  

Panel C reports the heterogenous impact of the mother’s health. We measure a mother’s 

health by median height (i.e., 1 if below median height or short, 0 if above median height) and 

median weight (i.e., 1 if below median weight or thin, 0 if not thin or above median weight). 

Interestingly, the results show that children born to short mothers have significantly lower HAZ 

and WAZ, and children born to thin mothers have significantly lower HAZ, WAZ and WHZ. There 

are no additional adversities from in utero rainfall variations for children of short or thin mothers. 

However, while children born to short and thin mothers have similar health status, those who 

experienced in utero rainfall variations and born to short and thin mothers have significantly lower 

WAZ and WHZ.  

Panel D reports heterogeneity by district-level population density per square kilometer. It is 

believed that regions with more facilities are inhabited by more people, and because of their 

proximity to big urban centers, they also receive disaster and climate risk reduction investments 

faster. Consistent with this narrative, our results confirm that children born in more densely 

populated districts have better health status. However, although positive, statistically insignificant 

coefficients of the interaction term inform that high density does not have any mitigating effects 

on rainfall-induced health adversities.   
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3.2.  Potential Mechanisms of Health Effects 

Disasters and climate events damage agricultural outputs and therefore create food shortages in 

affected regions. In utero exposure to such adversities therefore could affect the physical growth 

and development of exposed children. On the other hand, wealthier regions might have greater 

adaptive capacity to shocks and therefore may experience lower, if not zero, adversities. To 

confirm these notions, we consider relative wealth index and crop diversification as potential 

mechanisms behind rainfall-induced health adversities. Table 4 reports the results where we 

include relative wealth index and crop diversification as additional controls to see whether the 

estimated results vary from those in Table 2.  

Table 4: Health Adversity Mechanisms  

 (1) (2) (3)  (4) (5) (6) 
   Wealth Index    versification 
Variables HAZ WAZ WHZ  HAZ WAZ WHZ 
        
Rainfall variations -0.0016** -0.0014** -0.0008  -0.0015** -0.0013** -0.0008 
 (0.0007) (0.0006) (0.0007)  (0.0007) (0.0006) (0.0007) 
RWI 0.1787*** 0.1152*** 0.0031     
 (0.0493) (0.0384) (0.0464)     
Crop diversification     -0.9222 -0.3988 0.1323 
     (0.5799) (0.4754) (0.5531) 
Males -0.0592* 0.0057 -0.0009  -0.0598* 0.0060 -0.0024 
 (0.0321) (0.0256) (0.0301)  (0.0320) (0.0255) (0.0300) 
Age -0.0921*** -0.0379*** 0.0046  -0.0915*** -0.0375*** 0.0047 
 (0.0073) (0.0058) (0.0073)  (0.0072) (0.0058) (0.0072) 
Squared age 0.0013*** 0.0004*** -0.0001  0.0013*** 0.0004*** -0.0001 
 (0.0001) (0.0001) (0.0001)  (0.0001) (0.0001) (0.0001) 
Food insecurity  -0.2122*** -0.1764*** -0.0597  -0.2136*** -0.1781*** -0.0651 
 (0.0556) (0.0446) (0.0513)  (0.0555) (0.0445) (0.0512) 
Mother’s age -0.0052* -0.0082*** -0.0069***  -0.0057* -0.0087*** -0.0072*** 
 (0.0030) (0.0023) (0.0026)  (0.0030) (0.0023) (0.0026) 
Mother’s weight 0.0173*** 0.0273*** 0.0242***  0.0180*** 0.0278*** 0.0244*** 
 (0.0020) (0.0016) (0.0019)  (0.0020) (0.0016) (0.0019) 
Mother’s height 0.0428*** 0.0225*** -0.0057*  0.0422*** 0.0221*** -0.0060* 
 (0.0033) (0.0025) (0.0031)  (0.0033) (0.0025) (0.0031) 
        
Observations 6,802 6,802 6,802  6,802 6,802 6,802 
Chi2 689.4 833.2 186.3  687.9 822.8 187.8 
Birth year FE YES YES YES  YES YES YES 
Birth month FE YES YES YES  YES YES YES 
AEZ FE YES YES YES  YES YES YES 
Birth year × Birth month 
FE 

YES YES YES  YES YES YES 

Birth year × AEZ FE YES YES YES  YES YES YES 
Birth month × AEZ FE YES YES YES  YES YES YES 
Flood FE YES YES YES  YES YES YES 
Storm FE YES YES YES  YES YES YES 
Extreme Temperature FE YES YES YES  YES YES YES 

Continued on the next page 
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AEZ = agro-ecological Zone, FE = Fixed Effects, HAZ = height-for-age z-score, LASSO = Least Absolute 
Shrinkage and Selection Operator, RWI = relative wealth index, WAZ = weight-for-age z-score, WHZ = 
weight-for-length z-score. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in column headers. We explore the role of RWI and crop 
diversification as transmission mechanisms. Using LASSO regressions, we additionally include these 
variables in our specification in equation (1). Our estimated coefficient of interest is given by the coefficients 
of the variable “Rainfall variations.” All regressions include the full set of fixed effects and control variables. 
Source: Authors’ calculations using the Bangladesh Integrated Household Survey (BIHS) dataset (Ahmed 
2013, International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 

 

Panel A reports results where we include the relative wealth index as an additional control 

variable. As expected, children from wealthier regions have statistically significantly higher HAZ 

and WAZ, and higher but insignificant WHZ.  

Panel B reports results where we include regional crop diversification, a measure of 

agricultural diversity, as an additional control variable.  Although statistically insignificant, we 

observe negative relationships of HAZ and WAZ with crop diversification.  

3.3. Selection Issues  

It is possible that the health adversities from exposure to in utero rainfall variations arise from 

different sources of self-selection bias. For example, male child bias, the prevalence of child 

marriage, and the mother’s health, entitlement, and education might influence our estimates in 

Table 2. For this, we collapse data to the thana-birth-year level, calculate measures for these 

potential sources of selection bias, and then run two-way fixed effect regressions for them on 

rainfall variations.  

Table 5: Selection Issues 

 (1) (2) (3) (4) (5) 
Variables Male bias Selective 

fertility 
Entitled 
mother 

Educated 
mother 

Child 
marriage 

      
Rainfall variations -0.0002 0.0010 -0.0002 0.0001 0.0001 
 (0.0003) (0.0011) (0.0002) (0.0002) (0.0002) 
Constant  0.5107*** 2.6488*** 0.8058*** 0.8041*** 0.0433*** 
 (0.0078) (0.0013) (0.0056) (0.0055) (0.0042) 
      
No. of Obs. 2,569 2,569 2,569 2,569 2,569 
R2 0.1160 0.3971 0.2640 0.3156 0.1729 
No. of thana 271 271 271 271 271 
Set of FEs NO NO NO NO NO 
Controls NO NO NO NO NO 

FE = Fixed Effects, OLS = Ordinary Least Squares. 
 Continued on the next page 
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Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in the column headers. We explore the possibilities of different 
selection issues by collapsing data to thana-birth-year level, and then running OLS regressions on rainfall 
variations. We do not include any control variables or fixed effects.  
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 
 

 

Table 5 reports the results where we explore these possibilities. First, if there is a bias for 

male children, our results can be biased since there can be gendered differences in vulnerability 

to weather extremes (e.g., Arora-Jonsson 2011, Pearse 2017). To check this possibility, we run 

a regression for the -birth-year level average proportion of male children on average rainfall 

variations to see whether there is any systematic gender selection in our estimating sample. 

However, our estimated coefficient, reported in column (1), is statistically insignificant and 

therefore rules out the possibility of gender selection.  

Next, women may select their fertility and decide not to give birth during weather and 

economic adversities. If this is the case, there will be a significantly negative relationship between 

rainfall variations and incidences of birth. To check this possibility, we collapse data to the thana-

birth year level and count the total number of children born in a particular year in each locality. 

We then use this thana-birth year panel to regress the total number of children born in that year 

on exposure to rainfall variations. Statistically insignificant results in column (2) confirm that 

mothers in our estimating sample did not select their fertility decisions.  

Columns (3) and (4) report results for entitlement (measured by their participation in the 

household’s food-related decisions) and education (measured by having any schooling) of the 

mother. It is possible that pregnant women would receive priorities when women are involved in 

the household’s food-related decisions and when women are educated. If this is the case, then 

the mother’s entitlement and education should have some mitigating effects on their child’s 

rainfall-induced health adversities, and we would have to include them in our main specifications 

as additional controls. To explore these possibilities, we run regressions for thana-birth-year level 

average entitlement and education of mothers on average rainfall variations. Estimated 

coefficients are statistically insignificant, and therefore, confirm that mother’s entitlement and 

education do not necessarily have mitigating effects in our estimating sample.  

Finally, rainfall variations might affect the incidence of child marriage. The extent of teen 

pregnancy and other related problems might be greater in regions with greater incidences of child 

marriage. This might bias our main results since children born to younger mothers may be more 
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vulneable to climate and weather variabilities (e.g., Rylander et al. 2013). To explore this 

possibility, we collapse data to the thana-birth-year level and count the total number of married 

women aged below 18 years. We then use this thana-birth-year panel to regress total number of 

child marriages on rainfall variations. Statistically insignificant results confirm that there is no 

regional bias arising from excessive incidences of child marriage in our estimating sample.  

 
4. Mitigating Effects of Climate Policy  

4.1. Mitigating Effects of Climate Fund 

We now investigate the mitigating effects of climate policy with regard to health adversities from 

in utero exposure to rainfall variations according to equation (2). Since we use a staggered 

treatment for the measure of climate policy, it is important to check for balancing property and 

parallel trends. First, Appendix Table A5 shows that most of the control variables have significant 

variations across birth year and birth district. Therefore, it is important to include the components 

of the vector 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
′  as controls in all our regressions. Then, Appendix Table A6 shows the results 

for pre-treatment cohorts and untreated districts. Results for pre-treatment cohorts in Panel A 

show that the pre-treatment cohorts from treated districts with in utero exposure to rainfall 

variations have statistically significantly lower HAZ and WAZ. Results are statistically insignificant 

for untreated districts (Panel B). Together, these results imply that for any causal impact of climate 

policies in reducing rainfall-induced health adversities, estimated coefficients of interest must be 

positive and statistically significant.  

Table 6 reports the mitigating effects of climate policy on health adversities from in utero 

exposure to rainfall variations for three anthropometry measures according to equation (2). Panels 

A and B report OLS and LASSO results, respectively. Overall, all models have overall statistical 

significance, and estimated coefficients exhibit expected directions of relationship with the 

respective outcome variable. Since results are similar across estimating strategies, we only 

describe the coefficients from LASSO regressions. We also restrict our discussion to the main 

coefficients of our interest.   
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Table 6: Mitigating Effects of Climate Policies 

 (1) (2) (3)  (4) (5) (6) 
 OLS results  LASSO results 
Variables HAZ WAZ WHZ  HAZ WAZ WHZ 
        
Rainfall variations -0.0020 -0.0001 0.0008  -0.0014 0.0001 0.0007 
 (0.0012) (0.0011) (0.0013)  (0.0013) (0.0010) (0.0011) 
Treated children 0.1452 -0.0956 -0.2096  0.1065 -0.0978 -0.1987 
 (0.2408) (0.1947) (0.2176)  (0.2188) (0.1632) (0.1973) 
Rainfall variations × Treated 
children 

-0.0059 -0.0068* -0.0065  -0.0059 -0.0075** -0.0078** 
(0.0041) (0.0037) (0.0041)  (0.0040) (0.0035) (0.0037) 

IHS(BCCTF) -0.0004 0.0100 0.0158  -0.0018 0.0098 0.0168* 
(0.0153) (0.0115) (0.0118)  (0.0111) (0.0088) (0.0102) 

Rainfall variations × 
IHS(BCCTF) 

-0.0001 -0.0005** -0.0006*  -0.0002 -0.0005** -0.0005* 
(0.0003) (0.0002) (0.0003)  (0.0003) (0.0002) (0.0003) 

Treated children × IHS(BCCTF) -0.0298 0.0230 0.0443  -0.0189 0.0236 0.0387 
 (0.0499) (0.0378) (0.0441)  (0.0424) (0.0328) (0.0393) 
Rainfall variations × Treated 
children × IHS(BCCTF) 

0.0012 0.0017** 0.0017**  0.0012 0.0018** 0.0019** 
(0.0009) (0.0008) (0.0008)  (0.0008) (0.0007) (0.0008) 

Males -0.0427 0.0202 0.0064  -0.0619* 0.0064 0.0010 
 (0.0374) (0.0297) (0.0324)  (0.0324) (0.0259) (0.0303) 
Age -0.0913*** -0.0396*** 0.0021  -0.0923*** -0.0375*** 0.0050 
 (0.0066) (0.0056) (0.0077)  (0.0073) (0.0058) (0.0073) 
Squared age 0.0013*** 0.0004*** -0.0001  0.0013*** 0.0004*** -0.0001 
 (0.0001) (0.0001) (0.0001)  (0.0001) (0.0001) (0.0001) 
Food insecurity  -0.1948*** -0.1793*** -0.0772  -0.2162*** -0.1782*** -0.0601 
 (0.0577) (0.0506) (0.0566)  (0.0556) (0.0453) (0.0517) 
Mother’s age -0.0043 -0.0080*** -0.0075**  -0.0041 -0.0082*** -0.0078*** 
 (0.0038) (0.0027) (0.0030)  (0.0030) (0.0023) (0.0027) 
Mother’s weight 0.0179*** 0.0268*** 0.0227***  0.0173*** 0.0274*** 0.0243*** 
 (0.0022) (0.0020) (0.0023)  (0.0021) (0.0017) (0.0020) 
Mother’s height 0.0423*** 0.0227*** -0.0051  0.0424*** 0.0223*** -0.0058* 
 (0.0036) (0.0028) (0.0037)  (0.0033) (0.0025) (0.0031) 
Constant -7.4275*** -5.3121*** -0.8311     
 (0.5541) (0.3970) (0.5211)     
No. of Obs. 6,760 6,760 6,760  6,802 6,802 6,802 
R-squared 0.2890 0.2874 0.1705     
Chi2     662.5 805.7 196.9 
Birth year FE YES YES YES  YES YES YES 
Birth month FE YES YES YES  YES YES YES 
AEZ FE YES YES YES  YES YES YES 
Birth year × Birth month FE YES YES YES  YES YES YES 
Birth year × AEZ FE YES YES YES  YES YES YES 
Birth month × AEZ FE YES YES YES  YES YES YES 
Flood FE YES YES YES  YES YES YES 
Storm FE YES YES YES  YES YES YES 
Extreme Temperature FE YES YES YES  YES YES YES 

AEZ = agro-ecological Zone, BCCTF = Bangladesh Climate Change Trust Fund, FE = Fixed Effects, HAZ 
= height-for-age z-score, IHS = inverse hyperbolic sine, LASSO = Least Absolute Shrinkage and Selection 
Operator, OLS = ordinary least squares, WAZ = weight-for-age z-score, WHZ = weight-for-height z-score. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in the column headers. We estimate the mitigating effects of 
climate policy on the health effects of rainfall variations according to specification (2). Our estimated 
coefficients of interest are given by the coefficients of the interaction term “Rainfall variations × Treated 
children × IHS(BCCTF)”. All regressions include the full set of fixed effects and control variables. 
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 



22 

Table 6 first shows that the overall health adversities have disappeared once we introduce 

the climate treatments, although there are adverse health effects of in utero rainfall variations by 

both binary (i.e., treated children) and continuous (i.e., IHS(BCCTF)) treatments. Overall, treated 

children do not have any adverse health effects, but they do when exposed to in utero rainfall 

variations. However, our coefficient of interest is given by the coefficient of the triple interaction 

term “Rainfall variations × Treated children × IHS(BCCTF),” which is positive for all three 

anthropometry measures and statistically significant for HAZ and WAZ. A 1% increase in BCCTF 

allocation on treated children reduces the rainfall-induced health adversities, i.e., increases health 

status, by 0.12% in HAZ, 0.18% in WAZ and 0.19% in WHZ.  

These results are broadly consistent with results for binary health outcome variables 

(Appendix Table A7). Overall, results confirm that a 1% increase in BCCTF allocation on treated 

children reduces the probability of stunting by 0.02%, underweight by 0.08% and wasted by 

0.03%.  

4.2.  Climate Policy Mechanism Reducing Health Effects 

Since health adversities are transmitted through the damages to agricultural outputs due to rainfall 

variations, it is important to examine whether the implemented climate policies have benefited the 

agricultural sector. In the absence of reliable data on agricultural outputs, we instead focus on 

changes in the regional share of farm employment to answer this question. For this, we collapse 

data to district-birth-year, thana-birth-year and union-birth-year levels, calculate average share of 

farm employment 𝑎𝑎 for respective regional level 𝑧𝑧 in birthyear 𝑡𝑡, and then employ difference-in-

differences specification of the form:  

𝑎𝑎𝑧𝑧𝑧𝑧 = 𝛾𝛾0 + 𝛾𝛾1𝐶𝐶𝑡𝑡 + 𝛾𝛾2𝐷𝐷𝑧𝑧 + 𝛾𝛾3𝐶𝐶𝑡𝑡𝐷𝐷𝑧𝑧 + 𝜖𝜖𝑧𝑧𝑧𝑧 ,                (4) 

where 𝑎𝑎𝑧𝑧𝑧𝑧 denotes average share of farm employment, 𝐶𝐶𝑡𝑡 takes the value of 1 if the cohort is 

treated (i.e., years 2012–2018) and 0 if not (i.e., 2007–2011), and 𝐷𝐷𝑧𝑧 takes the value of 1 if the 

region is treated and 0 if not. The interaction term 𝐶𝐶𝑡𝑡𝐷𝐷𝑧𝑧 yields our parameter of interest 𝛾𝛾3, and 

we expect 𝛾𝛾�3 > 0, which implies a positive effect of climate policies on agricultural employment. 
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Table 7: Climate Policy Mechanism 

 (1) (2) (3) 
Variables District-level Thana-level Union-level 
    
Treated years -0.1144*** -0.1260*** -0.1218*** 
 (0.0158) (0.0140) (0.0120) 
Treated districts -0.0379 -0.0304* -0.0313* 
 (0.0230) (0.0169) (0.0162) 
Treated years × Treated districts 0.0300* 0.0448*** 0.0429*** 
 (0.0179) (0.0153) (0.0135) 
Constant 0.2169*** 0.2086*** 0.2078*** 
 (0.0214) (0.0157) (0.0149) 
    
No. of Obs. 754 2,569 2,837 
R2 0.2062 0.1101 0.1006 
Set of FEs NO NO NO 
Controls NO NO NO 

FE = fixed effects. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variable is the average share of farm employment at region levels as identified in 
column headers. We estimate the effect of climate policy on agriculture by collapsing data to respective 
region-birthyear levels, and then running difference-in-differences regressions for the share of farm 
employment on climate policy treatment. Our estimated coefficients of interest are given by the coefficients 
of the interaction term “Treated years × Treated districts”. We do not include any control variables or fixed 
effects.  
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016; IFPRI 2020). 
 

Table 7 reports the results. Overall, treated years and treated districts, separately, have a 

lower share of employment in agriculture. However, treated years in treated districts have a 

statistically significantly higher share of agricultural employment for all three regional levels. 

Therefore, we can assume that climate policy instruments have benefited agriculture and those 

benefits have then transmitted into reduced rainfall-induced health adversities.  

 

5. Conclusions  

This study contributes to the growing literature on the health effects of climate change and fills an 

important knowledge gap regarding the role of climate policies in addressing health vulnerabilities. 

We first show that in utero exposure to rainfall variations significantly reduces exposed children’s 

anthropometric outcomes, especially their height-for-age (stunting) and weight-for-age 

(underweight) z scores. We then identify that climate financing projects related to adaptation and 

mitigation do have some mitigating effects in terms of improving children’s anthropometric 
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outcomes. We therefore recommend more concerted efforts in allocating climate funding that can 

be used to reduce climate risks and consequently, climate-induced health adversities.  

Climate events such as rainfall and temperature variations and extreme weather events 

directly affect, among others, agricultural outputs, causing hunger and malnutrition. Different 

initiatives undertaken by the government to help the affected people can mitigate these covariate 

shocks to some extent. However, due to their apparent fragility, pregnant women suffer both 

directly from hunger and indirectly from stresses, therefore triggering the fetal origin hypothesis 

that describes that in utero exposure to adverse environments can adversely affect later life, 

including childhood health outcomes. Our investigation empirically confirms this notion by 

identifying a significant negative impact on child height-for-age and weight-for-age z-scores 

outcomes. Since such adversities might remain for longer, and can result in lower adulthood 

human capital outcomes (e.g., Eskander and Barbier 2022), policymakers must prioritize the 

welfare of pregnant women and children, especially during climate and weather shocks. 

Moreover, since agricultural outputs are directly affected by such adverse events, helping farmers 

to reduce those adversities is also equally important.  

Along this line, we then exploit the heterogeneity in location and timing of district-level 

allocations for climate projects under the BCCTF to identify that some of these rainfall-induced 

health adversities can be mitigated through climate policies. Combating climate change and 

associated harms requires directed investment toward mitigation and adaptation strategies. In 

this regard, our findings can be generalized for any climate-vulnerable economy, especially from 

the global south. Nevertheless,  our paper contributes to growing literature on the adverse impact 

of climate change on health and the effectiveness of climate policies reducing such climate 

vulnerability. Our definition of climate policy is generic since disaggregated expenditures on health 

and agriculture are not available. We hope to address this limitation in future research.   
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APPENDIX 

Construction of Rainfall Measures  

That is, let 𝑑𝑑𝑖𝑖𝑖𝑖 denotes the distance, in kilometers, between the household of a child 𝑖𝑖 and a 

weather station 𝑠𝑠 so that the respective weight 𝑊𝑊𝑖𝑖𝑖𝑖 assigned to a station is given by:  

𝑊𝑊𝑖𝑖𝑖𝑖 =
1 𝑑𝑑𝑖𝑖𝑖𝑖2⁄

∑ 1 𝑑𝑑𝑖𝑖𝑖𝑖2⁄5
𝑘𝑘=1

 

where 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 0 ∀𝑖𝑖, 𝑠𝑠 and ∑ 1 𝑑𝑑𝑖𝑖𝑖𝑖2⁄5
𝑘𝑘=1 > 0 ∀𝑖𝑖. For the long-term average level of rainfall, we first take 

30-year month-station average rainfall over 1990–2019, and then calculate separately household-

level average rainfall 𝑅𝑅�𝑖𝑖𝑖𝑖 for each of 5 closest stations (for 9 in utero months over 1990-2019). We 

then calculate the weighted long-term average rainfall 𝑅𝑅�𝑖𝑖 for a child 𝑖𝑖 according to: 

𝑅𝑅�𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖

5

𝑘𝑘=1

𝑅𝑅�𝑖𝑖𝑖𝑖 

where ∑ 𝑊𝑊𝑖𝑖𝑖𝑖
5
𝑘𝑘=1 = 1. On the other hand, for in utero rainfall, we first calculate separate household-

level average 𝑅𝑅𝑖𝑖𝑖𝑖 for each of 5 closest stations over 9 in utero months, and then calculate the 

weighted in utero average rainfall 𝑅𝑅𝑖𝑖 for a child 𝑖𝑖 according to: 

𝑅𝑅𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖

5

𝑘𝑘=1

𝑅𝑅𝑖𝑖𝑖𝑖 

where ∑ 𝑊𝑊𝑖𝑖𝑖𝑖
5
𝑘𝑘=1 = 1. Finally, rainfall variation, 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑, is defined as the difference between 𝑅𝑅𝑖𝑖 and 

𝑅𝑅�𝑖𝑖: 

𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑖𝑖 − 𝑅𝑅�𝑖𝑖 = �𝑊𝑊𝑖𝑖𝑖𝑖

5

𝑘𝑘=1

(𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅�𝑖𝑖𝑖𝑖) 

where ∑ 𝑊𝑊𝑖𝑖𝑖𝑖
5
𝑘𝑘=1 = 1. In principle, 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 = 0 denotes no deviation from the long-term rainfall trend, 

whereas 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 > 0 and 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 < 0, respectively, denote flooding and drought situations. 
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Figure A1: Trimester Rainfall Variations 

 

Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 
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Figure A2: Bangladesh Climate Change Trust Fund Allocation 

 

BCCTF = Bangladesh Climate Change Trust Fund. 

Source: Authors’ calculations using the BCCTF dataset. 
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Table A1: Health Effects of Rainfall Variations—Binary Outcome Variables 

 (1) (2) (3)  (4) (5) (6) 
 A. OLS results  B. LASSO results 
Variables Stunted Underweight Wasted  Stunted Underweight Wasted 
        
Rainfall variations 0.0007** 0.0007** 0.0002  0.0005* 0.0005** 0.0003* 
 (0.0003) (0.0003) (0.0002)  (0.0003) (0.0002) (0.0002) 
Males 0.0147 -0.0170 -0.0027  0.0201* -0.0110 -0.0004 
 (0.0133) (0.0120) (0.0079)  (0.0113) (0.0108) (0.0077) 
Age 0.0184*** 0.0096*** -0.0019  0.0188*** 0.0083*** -0.0020 
 (0.0022) (0.0023) (0.0020)  (0.0023) (0.0023) (0.0018) 
Squared age -0.0003*** -0.0001*** 0.0000  -0.0003*** -0.0001** 0.0000 
 (0.0000) (0.0000) (0.0000)  (0.0000) (0.0000) (0.0000) 
Food insecurity  0.0573*** 0.0781*** -0.0003  0.0613*** 0.0714*** 0.0005 
 (0.0220) (0.0228) (0.0148)  (0.0206) (0.0206) (0.0144) 
Mother’s age 0.0014 0.0020* 0.0005  0.0015 0.0026*** 0.0005 
 (0.0012) (0.0011) (0.0007)  (0.0010) (0.0010) (0.0007) 
Mother’s weight -0.0059*** -0.0080*** -0.0030***  -0.0058*** -0.0086*** -0.0034*** 
 (0.0008) (0.0008) (0.0005)  (0.0007) (0.0007) (0.0005) 
Mother’s height -0.0130*** -0.0087*** 0.0003  -0.0131*** -0.0083*** 0.0006 
 (0.0012) (0.0013) (0.0009)  (0.0011) (0.0010) (0.0008) 
Constant 2.3294*** 1.7744*** 0.2414*     
 (0.1872) (0.1737) (0.1314)     
        
No. of Obs. 6,760 6,760 6,760  6,802 6,802 6,802 
R2 0.2247 0.2093 0.1358     
Chi2     491.1*** 501.9*** 75.33*** 
Set of FEs YES YES YES  YES YES YES 

FE = fixed effects, HAZ = height-for-age z-score, LASSO = Least Absolute Shrinkage and Selection 
Operator, OLS = ordinary least squares, WAZ = weight-for-age z-score, WHZ = weight-for-height z-score. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in the column headers, where stunted is defined as HAZ<-2, 
underweight as WAZ<-2, and wasted as WHZ<-2. We estimate the health effects of rainfall variations using 
OLS (columns 1–3) and LASSO (columns 4–6) regressions according to equation (1), where our estimated 
coefficient of interest is given by the coefficients of the variable “Rainfall variations”. All regressions include 
the full set of fixed effects and control variables.  
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016; IFPRI 2020). 
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Table A2: Health Effects of Trimester Rainfall Variations 

 (1) (2) (3)  (4) (5) (6) 
 OLS results  LASSO results 
Variables HAZ WAZ WHZ  HAZ WAZ WHZ 
        
Rainfall variations T1 -0.0009 -0.0002 0.0003  -0.0000 0.0002 0.0004 
 (0.0005) (0.0004) (0.0005)  (0.0004) (0.0003) (0.0004) 
Rainfall variations T2 -0.0009* -0.0007* -0.0005  -0.0008* -0.0007** -0.0005 
 (0.0005) (0.0004) (0.0005)  (0.0004) (0.0003) (0.0004) 
Rainfall variations T3 -0.0005 -0.0009** -0.0007  -0.0006 -0.0008** -0.0005 
 (0.0005) (0.0004) (0.0005)  (0.0004) (0.0003) (0.0004) 
Males -0.0439 0.0218 0.0090  -0.0529 0.0074 -0.0041 
 (0.0373) (0.0295) (0.0322)  (0.0322) (0.0254) (0.0299) 
Age -0.0913*** -0.0394*** 0.0024  -0.0891*** -0.0370*** 0.0048 
 (0.0066) (0.0056) (0.0077)  (0.0073) (0.0059) (0.0074) 
Squared age 0.0013*** 0.0004*** -0.0001  0.0012*** 0.0004*** -0.0001 
 (0.0001) (0.0001) (0.0001)  (0.0001) (0.0001) (0.0001) 
Food insecurity  -0.1949*** -0.1811*** -0.0801  -0.2311*** -0.1849*** -0.0574 
 (0.0574) (0.0509) (0.0570)  (0.0552) (0.0444) (0.0512) 
Mother’s age -0.0043 -0.0082*** -0.0078**  -0.0058* -0.0086*** -0.0070*** 
 (0.0038) (0.0027) (0.0030)  (0.0030) (0.0023) (0.0026) 
Mother’s weight 0.0179*** 0.0267*** 0.0227***  0.0179*** 0.0276*** 0.0241*** 
 (0.0021) (0.0020) (0.0023)  (0.0020) (0.0016) (0.0019) 
Mother’s height 0.0423*** 0.0227*** -0.0051  0.0421*** 0.0222*** -0.0056* 
 (0.0036) (0.0028) (0.0037)  (0.0033) (0.0025) (0.0031) 
Constant -7.4250*** -5.2569*** -0.7513     
 (0.5490) (0.4009) (0.5251)     
        
No. of Obs. 6,760 6,760 6,760  6,802 6,802 6,802 
R2 0.2888 0.2861 0.1691     
Chi2     670.5*** 817.8*** 184.8*** 
Birth year FE YES YES YES  YES YES YES 
Birth month FE YES YES YES  YES YES YES 
AEZ FE YES YES YES  YES YES YES 
Birth year × Birth month 
FE 

YES YES YES  YES YES YES 

Birth year × AEZ FE YES YES YES  YES YES YES 
Birth month × AEZ FE YES YES YES  YES YES YES 
Flood FE YES YES YES  YES YES YES 
Storm FE YES YES YES  YES YES YES 
Extreme Temperature FE YES YES YES  YES YES YES 

AEZ = agro-ecological zone, BCCTF = Bangladesh Climate Change Trust Fund, FE = fixed effects, HAZ = 
height-for-age z-score, IHS = inverse hyperbolic sine, LASSO = least absolute shrinkage and selection 
operator, OLS = ordinary least squares, WAZ = weight-for-age z-score, WHZ = weight-for-length z-score. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in column headers.  We estimate the health effects of rainfall 
variations using OLS (columns 1–3) and LASSO (columns 4–6) regressions according to equation (1), 
where our estimated coefficient of interest is given by the coefficients of the variables “Rainfall variations 
T1”, “Rainfall variations T2” and “Rainfall variations T3”. All regressions include the full set of fixed effects 
and control variables.  
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016; IFPRI 2020). 
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Table A3: Health Effects During Drought and Flood Situations 

 (1) (2) (3)  (4) (5) (6) 
 Drought situation  Flood situation  
Variables HAZ WAZ WHZ  HAZ WAZ WHZ 
        
Rainfall variations 0.0011 0.0001 -0.0008  -0.0041*** -0.0017* 0.0011 
 (0.0016) (0.0013) (0.0015)  (0.0012) (0.0010) (0.0011) 
Males -0.0470 0.0194 0.0057  -0.0734 0.0081 0.0102 
 (0.0417) (0.0336) (0.0398)  (0.0509) (0.0403) (0.0471) 
Age -0.1004*** -0.0455*** 0.0034  -0.0761*** -0.0250*** 0.0044 
 (0.0088) (0.0072) (0.0091)  (0.0121) (0.0091) (0.0119) 
Squared age 0.0014*** 0.0005*** -0.0001  0.0010*** 0.0002 -0.0001 
 (0.0001) (0.0001) (0.0001)  (0.0002) (0.0001) (0.0002) 
Food insecurity  -0.1897*** -0.1279** -0.0118  -0.3741*** -0.3568*** -0.1975** 
 (0.0724) (0.0553) (0.0635)  (0.0873) (0.0750) (0.0857) 
Mother’s age -0.0011 -0.0030 -0.0023  -0.0099** -0.0151*** -0.0127*** 
 (0.0039) (0.0031) (0.0035)  (0.0047) (0.0035) (0.0040) 
Mother’s weight 0.0153*** 0.0283*** 0.0271***  0.0232*** 0.0277*** 0.0199*** 
 (0.0026) (0.0021) (0.0025)  (0.0032) (0.0026) (0.0030) 
Mother’s height 0.0401*** 0.0191*** -0.0091**  0.0474*** 0.0268*** -0.0029 
 (0.0044) (0.0032) (0.0043)  (0.0048) (0.0040) (0.0044) 
        
No. of Obs. 4,109 4,109 4,109  2,693 2,693 2,693 
Chi2 393.7*** 489.1*** 129.4***  321.3*** 351.6*** 66.49** 
Birth year FE YES YES YES  YES YES YES 
Birth month FE YES YES YES  YES YES YES 
AEZ FE YES YES YES  YES YES YES 
Birth year × Birth month FE YES YES YES  YES YES YES 
Birth year × AEZ FE YES YES YES  YES YES YES 
Birth month × AEZ FE YES YES YES  YES YES YES 
Flood FE YES YES YES  YES YES YES 
Storm FE YES YES YES  YES YES YES 
Extreme Temperature FE YES YES YES  YES YES YES 

AEZ = agro-ecological zone, FE = fixed effects, HAZ = height-for-age z-score, IHS = inverse hyperbolic 
sine, LASSO = least absolute shrinkage and selection operator, OLS = ordinary least squares, WAZ = 
weight-for-age z-score, WHZ = weight-for-height z-score. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in the column headers. We estimate the health effects of rainfall 
variations using LASSO regressions according to equation (1) for drought and flood situations that are 
defined as negative and positive rainfall variations, i.e., 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 < 0 and 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 > 0, respectively. Our estimated 
coefficient of interest is given by the coefficients of the variable “Rainfall variations”. All regressions include 
the full set of fixed effects and control variables. 
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 
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Table A4: Health Effects of Rainfall Variations: Quantile Regressions 

 (1) (2) (3) 
Variables HAZ WAZ WHZ 
Rainfall variations -0.0010** 0.0001 -0.0000 
 (0.0005) (0.0006) (0.0005) 
Males 0.0998** 0.0000 0.0690* 
 (0.0418) (0.0519) (0.0359) 
Age -0.0146*** -0.0204*** -0.0229*** 
 (0.0054) (0.0052) (0.0029) 
Squared age 0.0001 0.0002*** 0.0002*** 
 (0.0001) (0.0001) (0.0000) 
Food insecurity  -0.0136 0.0138 0.0462 
 (0.0544) (0.0628) (0.0842) 
Mother’s age 0.0019 0.0027 -0.0011 
 (0.0047) (0.0029) (0.0036) 
Mother’s weight -0.0033 -0.0011 0.0015 
 (0.0033) (0.0020) (0.0024) 
Mother’s height 0.0029 0.0044 -0.0001 
 (0.0046) (0.0028) (0.0036) 
Constant 1.4330** 0.9430** 1.7823*** 
 (0.6831) (0.4261) (0.5297) 
No. of Obs. 6,802 6,802 6,802 
Set of FEs NO NO NO 

FE = fixed effects, HAZ = height-for-age z-score, WAZ = weight-for-age z-score, WHZ = weight-for-height 
z-score. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in the column headers.  Quantile regressions follow the 
specification (1) excluding the fixed effects. Our estimated coefficient of interest is given by the coefficients 
of the variable “Rainfall variations”. 
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 
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Table A5: Balancing Properties 

 (1) (2) (3) (4) (5) (6) (7) 
 CC 0 CC 0 CC 1 CC 1    
Variables DD 0 DD 1 DD 0 DD 1 (2) – (1) (3) – (1) (4) – (1) 
        
Males 0.526 

(0.500) 
0.496 

(0.500) 
0.496 

(0.501) 
0.525 

(0.499) 
-0.0299 -0.0298 -0.0006 

Age 34.25 
(16.93) 

33.57 
(17.20) 

25.48 
(15.37) 

25.37 
(15.47) 

-0.6814 - 8.7756*** -8.8840*** 

Weight 11.03 
(2.901) 

10.93 
(2.965) 

10.07 
(2.844) 

10.09 
(2.869) 

-0.0922 -0.952*** -0.936*** 

Height 85.56 
(12.78) 

84.91 
(13.18) 

80.89 
(12.46) 

80.86 
(12.59) 

-0.6495 -4.6717*** -4.6951*** 

Mother’s age  27.10 
(5.941) 

27.73 
(5.973) 

27.33 
(5.537) 

26.99 
(5.707) 

0.6328** 0.2304 -0.1047 

Mother’s weight 46.76 
(8.460) 

46.78 
(8.490) 

49.65 
(9.562) 

49.72 
(9.416) 

0.0271 2.8970*** 2.9660*** 

Mother’s height 150.3 
(5.216) 

150.6 
(5.886) 

150.7 
(5.608) 

151.0 
(5.577) 

0.3101 0.4348 0.7184*** 

Decision making  0.687 
(0.464) 

0.722 
(0.448) 

0.845 
(0.363) 

0.871 
(0.336) 

0.0356* 0.1577*** 0.1838*** 

Mother’s schooling 0.705 
(0.456) 

0.732 
(0.443) 

0.853 
(0.355) 

0.862 
(0.344) 

0.0268 0.1478*** 0.1573*** 

Agriculture 0.201 
(0.193) 

0.175 
(0.178) 

0.0841 
(0.123) 

0.0950 
(0.131) 

-0.0259*** -0.1170*** -0.1060*** 

Food insecurity 0.101 
(0.301) 

0.118 
(0.323) 

0.0714 
(0.258) 

0.0667 
(0.250) 

0.0174 -0.0293* -0.0340*** 

Child marriage 0.00549 
(0.0740) 

0.00530 
(0.0774) 

0.0294 
(0.181) 

0.0268 
(0.166) 

-0.0002 0.0239*** 0.0213*** 

RWI -0.0382 
(0.355) 

-0.00870 
(0.355) 

-0.0414 
(0.370) 

0.0116 
(0.354) 

0.0295* -0.0032 0.0499*** 

Crop diversification 0.246 
(0.0355) 

0.261 
(0.0377) 

0.249 
(0.0405) 

0.262 
(0.0377) 

0.0154 0.0034 -0.0161*** 

HAZ -1.824 
(1.386) 

-1.820 
(1.397) 

-1.394 
(1.280) 

-1.317 
(1.443) 

0.0043 0.4301*** 0.5065*** 

WAZ -1.644 
(1.100) 

-1.607 
(1.099) 

-1.320 
(1.061) 

-1.252 
(1.128) 

0.0377 0.3242 0.3920*** 

WHZ -0.742 
(1.193) 

-0.679 
(1.196) 

-0.678 
(1.119) 

-0.657 
(1.290) 

0.0631 0.0644 0.0856 

        
No. of Obs. 546 2,828 476 2,952    

BCCTF = Bangladesh Climate Change Trust Fund, HAZ = height-for-age z-score, IHS = inverse hyperbolic 
sine, OLS = ordinary least squares, RWI = relative wealth index, WAZ = weight-for-age z-score, WHZ = 
weight-for-height z-score. 
 
Notes: Balancing properties are for the estimating sample of 6,802 children aged 0–60 months whose 
mothers were surveyed in any of the three rounds of the Bangladesh Integrated Household Survey (BIHS) 
data. CC denotes BCCTF-treated cohorts, i.e., 1 if the cohort is treated by BCCTF climate funds (i.e., years 
2012–2018), 0 if not (i.e., years 2007–2011), whereas DD denotes BCCTF treated districts, i.e., 1 if the 
district is treated by BCCTF climate funds, 0 if not.  
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI 2016], IFPRI 2020). 
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Table A6: Parallel Trends 

 (1) (2) (3)  (4) (5) (6) 
 Pre-treatment cohorts  Untreated districts 
Variables HAZ WAZ WHZ  HAZ WAZ WHZ 
        
Rainfall variations 0.0019 0.0026 0.0019  0.0019 0.0026 0.0019 
 (0.0020) (0.0016) (0.0018)  (0.0020) (0.0016) (0.0018) 
Treated districts -0.0237 0.0026 0.0454     
 (0.0829) (0.0579) (0.0614)     
Rainfall variations × Treated 
districts 

-0.0045** -0.0056*** -0.0029     

 (0.0022) (0.0018) (0.0020)     
Treated cohorts     0.4217*** 0.3058*** 0.0491 
     (0.0870) (0.0650) (0.0615) 
Rainfall variations × Treated 
cohorts 

    -0.0038 -0.0010 0.0006 

     (0.0027) (0.0021) (0.0023) 
Constant -1.8123*** -1.6283*** -0.7310***  -1.8123*** -1.6283*** -0.7310*** 
 (0.0758) (0.0510) (0.0544)  (0.0767) (0.0516) (0.0550) 
        
No. of Obs. 3,374 3,374 3,374  1,022 1,022 1,022 
R2 0.0026 0.0060 0.0012  0.0274 0.0258 0.0051 
Set of FEs NO NO NO  NO NO NO 
Controls NO NO NO  NO NO NO 

FE = fixed effects, HAZ = height-for-age z-score, WAZ = weight-for-age z-score, WHZ = weight-for-height 
z-score. 
 
Notes: Robust standard errors in parentheses. ***, **, and * represent statistical significance at 1-, 5-, and 
10-percent levels, respectively. All variables follow their respective definitions in Table 1. Dependent 
variables are reported in the column headers. The estimated sample is restricted to the untreated 
households only, therefore providing a test for parallel trend assumption.  
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016; IFPRI 2020). 

 
  



34 

Table A7: Mitigating Effects of Climate Policies: Binary Outcome Variables 

 (1) (2) (3)  (4) (5) (6) 
 OLS results  LASSO results 
Variables Stunted Underweight Wasted  Stunted Underweight Wasted 
        
Rainfall variations 0.0007 0.0002 -0.0001  0.0005 0.0000 0.0000 
 (0.0005) (0.0005) (0.0003)  (0.0005) (0.0004) (0.0003) 
Treated children -0.0050 -0.0340 0.0206  -0.0097 0.0019 0.0093 
 (0.0740) (0.0720) (0.0459)  (0.0694) (0.0623) (0.0502) 
Rainfall variations × Treated 
children 

0.0011 0.0030** 0.0017  0.0014 0.0035** 0.0017 

 (0.0014) (0.0013) (0.0011)  (0.0015) (0.0014) (0.0011) 
IHS(BCCTF) -0.0058 -0.0060 -0.0022  -0.0044 -0.0044 -0.0017 
 (0.0051) (0.0041) (0.0028)  (0.0040) (0.0039) (0.0026) 
Rainfall variations × IHS(BCCTF) -0.0000 0.0002 0.0001  0.0000 0.0002* 0.0001 
 (0.0001) (0.0001) (0.0001)  (0.0001) (0.0001) (0.0001) 
Treated children × IHS(BCCTF) 0.0087 0.0146 0.0006  0.0074 0.0067 0.0018 
 (0.0160) (0.0139) (0.0094)  (0.0139) (0.0125) (0.0099) 
Rainfall variations × Treated 
children × IHS(BCCTF) 

-0.0002 -0.0006** -0.0003  -0.0002 -0.0008*** -0.0003 

 (0.0003) (0.0003) (0.0002)  (0.0003) (0.0003) (0.0002) 
Males 0.0146 -0.0169 -0.0026  0.0194* -0.0118 -0.0010 
 (0.0134) (0.0121) (0.0079)  (0.0115) (0.0110) (0.0078) 
Age 0.0184*** 0.0098*** -0.0019  0.0189*** 0.0083*** -0.0021 
 (0.0022) (0.0023) (0.0020)  (0.0023) (0.0023) (0.0018) 
Squared age -0.0003*** -0.0001*** 0.0000  -0.0003*** -0.0001** 0.0000 
 (0.0000) (0.0000) (0.0000)  (0.0000) (0.0000) (0.0000) 
Food insecurity  0.0568** 0.0773*** -0.0008  0.0585*** 0.0699*** -0.0030 
 (0.0220) (0.0227) (0.0148)  (0.0208) (0.0209) (0.0143) 
Mother’s age 0.0015 0.0021* 0.0005  0.0014 0.0023** 0.0007 
 (0.0012) (0.0011) (0.0007)  (0.0010) (0.0010) (0.0007) 
Mother’s weight -0.0059*** -0.0080*** -0.0030***  -0.0058*** -0.0083*** -0.0034*** 
 (0.0008) (0.0008) (0.0005)  (0.0007) (0.0007) (0.0005) 
Mother’s height -0.0129*** -0.0086*** 0.0003  -0.0131*** -0.0086*** 0.0006 
 (0.0012) (0.0013) (0.0009)  (0.0011) (0.0010) (0.0008) 
Constant 2.3373*** 1.7869*** 0.2422*     
 (0.1898) (0.1728) (0.1305)     
        
No. of Obs. 6,760 6,760 6,760  6,802 6,802 6,802 
R2 0.2252 0.2107 0.1367     
Chi2     480.7*** 489.5*** 76.05** 
Set of FEs YES YES YES  YES YES YES 

BCCTF = Bangladesh Climate Change Trust Fund, FE = fixed effects, HAZ = height-for-age z-score, IHS 
= inverse hyperbolic sine, LASSO = least absolute shrinkage and selection operator, OLS = ordinary least 
squares, WAZ = weight-for-age z-score, WHZ = weight-for-height z-score. 
 
Notes: Robust standard errors clustered at thana level in parentheses. ***, **, and * represent statistical 
significance at 1-, 5-, and 10-percent levels, respectively. All variables follow their respective definitions in 
Table 1. Dependent variables are reported in the column headers, where stunted is defined as HAZ<-2, 
underweight as WAZ<-2, and wasted as WHZ<-2. We estimate the mitigating effects of climate policy on 
the health effects of rainfall variations using OLS (columns 1–3) and LASSO (columns 4–6) regressions 
according to equation (2). Our estimated coefficients of interest are given by the coefficients of the 
interaction term “Rainfall variations × Treated children × IHS(BCCTF)”. All regressions include the full set 
of fixed effects and control variables. 
Source: Authors’ calculations using the Bangladesh Integrated Household Survey dataset (Ahmed 2013, 
International Food Policy Research Institute [IFPRI] 2016, IFPRI 2020). 
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