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Abstract: Background: In this paper, a new closed-loop supply chain (CLSC) network model, including
economic, social and environmental goals, is designed. This paper’s primary purpose is to meet cus-
tomers’ uncertain demands in different scenarios where the new robust-fuzzy-probabilistic method
has been used to estimate the exact demand. Furthermore, strategic and tactical decisions, such as
vehicle routing, facility location and optimal flow allocation in the CLSC network, are considered,
and features such as queuing system in product distribution and time window in product delivery
are considered. Methods: To solve the problem, NSGA II and MOPSO have been used. Results:
The results of solving numerical examples in larger sizes show that as the environmental effects
decrease and the social effects increase, the design costs of the total supply chain network (SCN)
increase. Moreover, the NSGA II is more efficient than the MOPSO in problem-solving and achieving
comparison indicators. Conclusions: The results of sensitivity analysis show that with increasing
network uncertainty rate, the total costs of the SCN, the amount of greenhouse gas emissions and the
maximum vehicle traffic time increase.

Keywords: closed-loop supply chain; pick-up delivery routing problem; robust-fuzzy-probabilistic
optimization; multi-depot vehicle routing

1. Introduction

In a CLSC, the emphasis on green, fewer emissions progressively came to researchers’
notice [1]. CLSC may decrease emissions and energy consumption via long-term design,
maintenance, reuse, re-manufacturing and recycling. A CLSC is not a means to cut costs,
but progressively generates additional options for manufacturers to enhance the efficiency
of utilizing resources, especially rare materials [2]. A forward supply chain (SC) is a set of
activities that satisfy consumer demands, including manufacturers, suppliers, warehouses,
transporters, retailers and customers [3]. The reverse SC may begin at any level, depending
on the points of collecting old materials, garbage, end-of-life items and their components.
However, it generally starts with the gathering of items used by end users, which are then
utilized in the SC again or another SC [4]. Second-hand materials may be returned to the
SC via reuse, repair or re-manufacturing. Reverse logistics (RL) oversees all the reverse
flows—a cost-effective technique for recovering and inventorying materials [5]. Uncertainty
is a state that cannot be represented with a specific quantity of knowledge [6]. It is difficult
to analyze or quantify the uncertainty—nevertheless, it is feasible to compute the risk, a
portion of the uncertainty. If so, a portion of the uncertainty is feasible to anticipate, while
a part fluctuates randomly.

Moreover, each possible case corresponds to a specific probability. Therefore, uncer-
tainty is an inherent feature of a CLSC. This feature increases the complexity of CLSC
management [7]. Pokharel et al. examined the uncertainty in CLSC/RL. They analyzed the
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entire RL field [8]. Govindan et al. conducted a review of CLSC published before 2013 [4].
In reviewing the literature, CLSC uncertainty factors such as quantity, quality, the timing of
scrapped goods, demand for recycled products and system costs are expressed in CLSC
design and planning. Various parameters’ uncertainty is mainly considered random and
vague [9].

A comprehensive planning of the SC is required since there is a growing rivalry
between businesses both internationally and domestically, as well as growing demands on
the part of customers. In this kind of setting, the expansion of SCs amplifies the significance
of potential disruptions and the geographical dispersion of supply system facilities [10].
Even though various sectors have successfully cut SC costs by implementing a variety
of strategies, these sectors are still vulnerable to disruptions [11], such as Black Swans,
which are unexpected events that cannot be predicted but have a significant impact on
the economy of the entire world. These considerations point to the need of putting into
action a complete strategy in order to properly handle all of the goals. Therefore, the best
strategy would be to construct an SC that is both sustainable and robust [12]. Companies
may enhance their economic share in global marketplaces and retain their market value by
paying attention to the rivalry that exists within their SCs [11]. In addition, firms have been
compelled to place a greater emphasis on equipping themselves with new methods for
efficient SC management [13] as a result of the competitive market. Demand risk, supply
disruptions and other operational risks are the three primary types of SC risks. Demand
risk is the most common kind of SC risk.

The important decisions that are made in the SCN include strategic decisions, such
as facility location and tactical decisions, such as determining the transportation method,
optimal allocation and vehicle routing. If these decisions are not adopted at the same time
in the SCN, it can increase the costs of the SC, so that the incorrect location of the facilities
leads to an increase in the transportation time between the levels of the SCN. In addition to
increasing transportation costs, this leads to an increase in greenhouse gas emissions and
ultimately increases transportation time. This issue also affects social aspects, including
driver fatigue. Therefore, strategic and tactical decisions, if they are taken correctly, can
help the better performance of the SCN.

In this paper, the location of the distribution/collection, production, supplier and
destruction centers is performed, and the optimal flow allocation between the selected
facilities is performed. The purpose of the optimal allocation is to determine the type of
transportation of products between both levels of the SCN. Moreover, vehicle routing is
performed between the two levels of the distribution/collection center and the customers.
The reason for using vehicle routing between these two levels is to reduce transportation
costs and greenhouse gas emissions.

One of the most important factors influencing the design of SCNs is decisions related
to transportation planning. Transportation and optimal allocation of vehicles to mate-
rial transfer routes are among the most important decisions to be addressed in the real
world [14]. The more accurate and realistic the transportation planning, the lower the
costs incurred by the SCN. Moreover, with the reduction of transportation costs, the cost
of the products is also reduced and leads to a reduction in the selling price. Therefore,
transportation planning can be considered an important factor for product pricing, which
leads to competitive advantage. The existence of different time periods in the supply
networks adds to the transportation planning; therefore, due to the uncertainty of the trans-
portation costs in different periods, the planning of these types of issues for transportation
is difficult and requires control methods. It is suitable. Another factor that affects the
costs of the total SCN is uncertainty in demand. The more uncertain this parameter is, the
more difficult it is to plan the transportation of products. Uncertainty control methods,
including the fuzzy-probabilistic robust method, should be used for more realistic work
transportation planning.
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The purpose of this research Is to provide a new solution for solving location-routing
issues that arise in sustainable CLSC networks. The economic, social and environmental
concerns of the future are concurrently taken into account by this network. This article’s
major objective is to provide a response to the unpredictability of the demand placed by
consumers in a variety of contexts in which the recently developed fuzzy-probabilistic
robust approach is employed to estimate the precise demand. Several considerations,
both strategic and tactical, such as the ideal flow allocation in the CLSC network, the
routing of vehicles and the positioning of facilities, are also taken into consideration. This
network takes into consideration features, such as queue systems in product distribution
and time windows in product delivery, both of which contribute to the capabilities of the
CLSC network.

The following outline describes the format of this article: The literature review is
discussed in the second section. The final section discusses the ideal configuration for the
network. The findings are dissected in the fourth section. The fifth and last portion is
dedicated to the discussion of the conclusion.

2. Literature Review
2.1. Closed-Loop Supply Chain

In order to include several levels of decision-making in an SCN design challenge, Key-
vanshokooh et al. came up with an MIP model and used a dynamic pricing technique. As
a direct result of this, they were able to cut the total costs associated with the development
of an integrated logistics network [15]. In order to take into account the unpredictability
of a variety of data prices, supply issues or demand, Zukai et al. developed a brand new
robust model [16]. Vahdani et al. also published a two-objective strategy for constructing a
CLSC network under undetermined conditions, which may be seen on their website [17].
A scenario-based approach was proposed by Lalmazloumian et al. [18] as a method for ad-
dressing the uncertainties that are associated with multi-echelon SCN models. Hernandez
et al. introduced a multi-objective, three-level model [19] that uses a systematic method
for facility allocation due to interruption. Ghomi-Avii et al. constructed a price-dependent
demand model that included two objectives and two levels specifically for a CLSC network.
The outsourcing techniques model that they provide generates pricing options that, in a
competitive environment such as this one, maximize overall revenues and minimize CO2
emissions from industrial operations [20].

According to the research that was conducted, there are the following two distinct sorts
of product returns: (1) the return of faulty items and (2) the return of waste products, which
might include things that have reached the end of their useful lives. These two categories
serve as the foundation for the model that Zhang et al. investigated. They devised a
revenue-sharing agreement in order to encourage further efforts on the part of shops to
recycle unwanted items. They showed that the coordination mechanism was successful in
lowering the level of retail price rivalry and raising the overall profitability of two-channel
CLSCs [21]. The concept of a CLSC came up as a result of concerns over the destruction of
the environment. Pazhani et al. built strategic decision models for two distinct CLSCs, each
of which offered a variety of items throughout a number of time periods. The first network
has six levels, the second network has six levels and the third network has four levels. All
three networks may be used throughout the inspection and reconstruction processes for
items that have varying levels. In order to aid with transportation, location/allocation
and inventory management [22], SCNs were represented as integer linear programs. The
authors Mehrjerdi and others evaluated adaptability and long-term viability in a CLSC.
They came up with an innovative concept for a CLSC that took into account many objectives.
They were successful in solving the model by using a revised version of the constraint
augmentation approach known as AUGMECON2 [23].

The first implementation of the reverse channel was made by Fu et al. in a dynamic
CLSC system that included both merchants and manufacturers as participants. In this
work, we analyze the choices and benefits of CLSC members in various inverse channels
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that take into consideration the quantitative aspects of the goods [24]. This research was
based on a dynamic model of the CLSC, and it was designed to guide our investigation. A
two-stage technique was presented by Khorshidvand et al. in order to model and solve a
sustainable CLSC. In the first stage, they select the most advantageous possibilities with
regard to price, environmental impact and marketing. Then, in the second stage, they use a
fuzzy MILP model in order to maximize overall profit while simultaneously reducing CO2
emissions [25]. CLSC models were supplied by Zheng et al., and these models accounted
for three inverted channel designs in addition to the two competitive sales channels [26].

2.2. Pick-Up and Multi-Depot Vehicle Routing

Hornstra et al. developed a solution that took into account the costs of pick-up,
delivery and transportation while analyzing vehicle routing challenges. They came up
with a MIP model and demonstrated how to put it into action in order to resolve issues
associated with it. In order to find out a solution to the problem, [27] they conducted
something that was termed an extensive comparative logical search (ALNS). Olgun
et al. brought out the issue of a challenge with environmentally friendly vehicle routing
that involves simultaneous pick-up and delivery. The suggested model’s purpose is to
reduce expenses associated with gasoline use while simultaneously catering to delivery
requirements and accommodating consumer preferences. The amount of fuel used
is directly proportional to the amount of greenhouse gases emitted [28]. Agra et al.
presented a problem with inventory routing for transferring things from supply sites
to demand locations. They took into consideration two models, each of which was
described in a constructed network using a distinct set of criteria. Both models’ pathways
are derived from a time-based formulation that runs continuously [29]. Improving a
company’s ability to compete effectively in its industry may be accomplished in a number
of ways, one of the most important being the reduction of distribution costs. The multi-
depot vehicle routing issue was created by Fan et al. under the road network with time
and proposed fuel costs and impacts [30].

In order to meet the requirements of the Multi-depot Green Vehicle Routing (MDGVRP)
challenge, which was posed by Sadati et al., a fleet of alternative fuel vehicles (AFVs) is
being used to offer customer service. The GVRP hopes to cut down on the total amount
of miles that have to be traveled. They designed MDGVRP as a complex MILP model in
order to deliver unique neighborhood structures for efficient solutions. This was performed
in order to meet the need. In addition to that, they used a search strategy that included
neighborhood variables and tabu [31]. Wang et al. designed a multi-depot routing problem
as a multi-objective planning model. Their system cuts down on the number of cars
needed at different times, as well as the amount of time spent waiting for service and the
expenditures associated with logistical operations. In order to solve the model, they used
an enhanced point-based genetic sorting technique called IR-NSGA-III in conjunction with
a meta-heuristic hybrid strategy that included three-dimensional k-means clustering [32].
Zhen et al. developed a vehicle routing problem that included time frames and release
dates, and it included many depots and multiple trips. Their proposed model’s objective
is to cut down on the total amount of time spent traveling. In order to solve the model,
they used a hybrid particle swarm optimization approach in conjunction with a hybrid
genetic algorithm [33]. A strategy that is based on cost-effective learning was provided
by Soeanu et al. with the hope of reducing the costs connected with routing as well as
the potential costs that are associated with the risk of a vehicle breaking down or failing
to deliver goods. Both the planning phase and other active and responsive program
adaption actions in reaction to the occurrence of events may benefit from the utilization
of the heuristic solution-generating approach to reduce the risk of vehicle routing [34]. In
addition, the planning phase may benefit from the utilization of the heuristic solution-
generating approach. Bezerra et al. proposed an issue known as the multi-depot vehicle
routing problem (MDVRP), which was eventually solved with the help of the meta-heuristic
approach GVNS [35].
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One of the core areas of transportation science is the vehicle routing problem (VRP),
which lowers prospective expenses and opens up chances to enhance services. By op-
timizing income and decreasing expenses, time and emissions, Li et al. developed the
MDGVRP. They solved the model using an ant colony optimization (ACO) [36]. A difficulty
with urban transportation routing was presented by Nguyen et al. They take into account
time-dependent journey times, several trips per vehicle and simultaneous loading times
at the warehouse in their suggested model. While maintaining the time frames, vehicle
capacity and maximum journey duration requirements, their methodology attempts to
reduce the overall travel distance [37].

In the field of public transportation, Wang et al. created a multi-depot electric vehicle
scheduling problem, often known as MD-EVSP. For the MD-EVSP project, they developed
a column generation technique that was based on a genetic algorithm (GA-CG) [38]. An
integrated strategy was used by Sherif and colleagues in order to optimize a two-level
green SCN. They built an MINLP model in order to minimize the impact of their actions
on the environment and the economy, as well as to make judgments on the transportation,
inventory and routing of vehicles. In the end, they arrived at the best possible choices via
the use of the GAMS program and the simulated annealing technique [39]. The challenges
of order picking and storage location were highlighted by Silva et al. in the context of
warehouse design. They devised nonlinear programming methods to address the issue
as a whole as well as four particular examples. They were able to solve the problem by
using a general variable meta-heuristic [40]. Araghi and colleagues came up with a fresh
idea for a closed-loop location routing issue. The reduction of CO2 emissions is one of the
primary focuses of their model. They regarded hybrid automobiles as a possible solution to
satisfy the needs of their consumers, given the uncertainty. They looked at the issue from
the perspective of many depots and multiple vehicles [41].

The issue of pick-up delivery with time constraints was put out by Bruni et al. To meet
consumer requests, they made use of a variety of vehicles, each of which had a distinct
purpose. This included delivering items from one supplier to the customer. The issue
of profitable delivery and delivery within time frames with erratic journey times was
raised. Finding a solution that optimizes net profit is the goal [42]. Sitek et al. considered
optimizing the vehicle routing problem with alternative delivery windows, delivery and
time. They used constraint programming (CP), genetic algorithm (GA) and mathematical
programming (MP) for the model implementation [43]. Martins et al. introduced the
delivery problem as a new “omnichannel” to the retail industry. They completed a series of
retail stores and shipped products directly to customers in an integrated VRP formula. They
proposed a heuristic savings-based approach to solving large VRP cases in omnichannel
retail [44].

In another study, Manousakis et al. proposed a vehicle routing (VRP) problem called
load-dependent VRP (LDVRP). LDVRP is used for transportation activities where the
weight of the cargo is a significant part of the vehicle’s gross weight. LDVRP minimizes the
product of the total distance traveled and the gross weight carried over that distance. They
used a local search algorithm to solve the model [45]. A novel solution to the multi-depot
warehouse routing issues was put out by Bektaş et al. They examined two different sorts of
issues, one including depot selection judgments and the other without such a judgment.
The formulae were thoroughly compared theoretically and practically [46]. A difficulty
with multi-depot inventory routing was highlighted by Bertazzi et al. Their suggested
approach aims to reduce routing expenses. Inventory and routing choices are optimized by
the multi-depot inventory routing issue [47].

2.3. Location-Allocation Problem

A location-allocation issue for convalescent plasma banks was researched by Manu-
pati et al. By taking into account two opposing goal functions, namely, the reduction
of overall plasma transportation time and total plasma SCN cost, with the latter ad-
ditionally incorporating inventory costs to avoid waste, they created a reliable MILP
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model. Additionally, they solved the model using NSGA II [48]. A bi-level two-echelon
mathematical model was presented by Khalili-Damghani et al. to reduce pre-disaster
expenses and increase the post-disaster aid coverage area. The program classified the
disaster region using a geographic information system (GIS) and determined the ideal
number and the location of distribution centers while reducing the inventory costs for the
aid supplies [49]. In order to design an SC of perishable goods encompassing suppliers,
plants, distributors and consumers under sustainable development, Aghaei Fishani et al.
presented a multi-objective formulation. Direct shipments between producers and con-
sumers, as well as the potential of alternative items, are permitted in addition to studies
of the literature. The goals in this issue are concurrently optimized for the following:
constant and variable employment rates, transportation costs, adverse environmental
consequences and social impact [50].

2.4. Uncertainty in Supply Chain

In today’s competitive world, uncertainty is an integral part of all optimization prob-
lems. One of the cases where uncertainty has the greatest impact on optimization issues is
SCN design. In most of the conducted studies, parameters such as demand, transportation
cost and capacity of tehsils have been published in an uncertain manner [51–53]. In this
type of problem, various methods have been used to control these uncertainty parameters,
which can be referred to as fuzzy programming [54,55], robust optimization [56,57], two-
stage stochastic programming [58], multi-stage stochastic programming [59,60], multi-stage
fuzzy stochastic programming [61], fuzzy robust optimization [62]. Each of the mentioned
methods has limitations in terms of its implementation. For example, in the fuzzy pro-
gramming method, there is no deviation from the data collected by experts’ opinions.
In probabilistic methods, it is very difficult to determine the exact type of distribution
function. Therefore, many researchers have investigated the strengths and weaknesses of
each method in their studies, some of which are mentioned below.

Fathollahi-Fard et al. propose using a dual-channel CLSC network model to analyze
the tire industry in the presence of uncertainty. In order to deal with the unclear inputs
that the issue presents (such as price and demand), a fuzzy technique that is known
as the Jimenez’s method is used [63]. Tavana et al. came up with a novel bi-objective
MILP model in order to handle the location-inventory-routing difficulties that arise in
uncertain green SCs with the goal of producing the fewest amount of carbon emissions
possible. When it comes to selecting suppliers and allocating orders, the strategy that has
been recommended takes into consideration a number of factors, including geographical
preferences, various vehicle routing, storage needs, the unpredictability of demand and
the scarcity of backorders. The mentioned two-objective model is addressed by using
a weighted fuzzy multi-objective solution strategy in conjunction with a cutting-edge
intelligent simulation method [64]. This is performed so that the viability of the solution
space may be guaranteed. Ghahremani-Nahr et al. devised a multi-objective network
design for the blood SC while also taking unpredictability into consideration [65]. Seyed
Bathaee et al. came up with a mathematical model to address the problem of distributing
production loads in a collaborative production system that is based on order as well as
fairness. The model’s primary goals were to distribute production loads evenly under
unpredictable situations by minimizing the overall production costs and maximizing the
resource consumption. Uncertain parameters were controlled via fuzzy programming [66].

A review of the literature is shown in Table 1.



Logistics 2023, 7, 3 7 of 33

Table 1. Literature review results.

Reference Year
Objective Function

Uncertain
Pick up

Delivery
Routing

Multi-
Depot

Control
Method

Solving Method Multi-
Product

Multi-
LevelTime CO2 Cost Profit

Govindan et al. [3]. 2020 - -
√

-
√

-
√

Fuzzy FANP
√

-
Pazhani et al. [22]. 2021 - -

√
- - - - - Relaxation

√ √

Hornstra et al. [27]. 2020 - -
√

- -
√

- - ALNS
Meta-heuristic - -

Olgun et al. [28]. 2021 - -
√

- -
√

- - Meta-heuristic - -

Agra et al. [29]. 2021
√

- - - -
√

- - Branching
algorithm - -

Sadati et el. [31]. 2021
√

- - - - -
√

- Tabu search - -
Wang et al. [32]. 2021 - -

√
- - -

√
- Heuristic -

√

Zhen et al. [33]. 2020
√

- - - - -
√

- Particle
Swarm/genetic - -

Soeanu et al. [34]. 2020
√ √ √ √

- -
√

- Heuristic - -

Li et al. [36]. 2019
√ √ √

- - - - - Ant colony
optimization - -

Wang et al. [38]. 2021 - - - - -
√

- Genetic - -
Araghi et al. [41]. 2021 - - -

√
-

√
Robust ICA and VNS - -

Bruni et al. [42]. 2021 - - -
√ √

- Fuzzy Heuristic -
√

Zachariadis et al. [45]. 2015
√

- - - -
√

- - Local search - -
Bektaş et al. [46]. 2020 - - -

√
-

√
- Heuristic - -

Bertazzi et al. [47]. 2019 - - - - - - Clustering - -
Manupati et al. [48]. 2021

√ √
- - - - Robust NSGA II

√

This research
√ √ √ √ √ √ √ Stochastic-

fuzzy-
robust

√ √ √

According to the studies conducted and the research gap, it can be stated that the
comprehensive model of the design of the CLSC network in which there are issues related
to location-routing-allocation, as well as queuing theory, has not been studied. So that in
most studies, only issues related to location-allocation have been examined. While today,
the presence of uncertain demand in the SCN leads to uncertain transportation planning;
therefore, the best uncertainty control method should be used. On the other hand, there has
always been a queuing system in the distribution of items to customers, and depending
on the number of servers, the waiting time to receive the goods decreases or increases. So
that this queue length can also affect the costs of the SCN. In some studies, only inventory
management has been investigated without considering transportation. Surveys show that
each issue has been investigated separately, but there is no model that includes all issues.
As a result, taking into consideration the limitations of previous studies, the authors of
this paper present a model of a CLSC network. In this model, strategic decisions include
facility location, while tactical decisions simultaneously include optimal flow allocation
and transportation routing. This model was developed by researchers. Due to the fact
that the demand for the commodities being distributed by cars at the distribution center
is unsure, the model takes into account a queuing system for the delivery of these goods.
The robust-fuzzy-probabilistic approach has been implemented in this network in order to
bring the level of uncertainty under control.

As a result, the contribution of this paper can be stated in the following cases:

∗ Considering location-routing and allocation simultaneously in the CLSC;
∗ Considering the queuing system in the distribution of products;
∗ Using the robust-fuzzy-probabilistic method to control uncertainty parameters;
∗ Designing an initial solution to solve the model.

3. Modelling Process and Methods

In this section, a CLSC problem is examined. In this model, according to Figure 1, a
7-echelon SCN consisting of raw material suppliers, warehouses (silos), production centers,
distribution centers, end customers, collection centers and disposal centers is considered.
In this model, customers send their demand for different products to distribution centers.
As a result, distribution/collection centers are responsible for the distribution of products
and the collection of returned products from customers. This action is performed in
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the form of vehicle routing. That is, a vehicle collects the returned product at the same
time as delivering the product to the customer and transfers it to the collection center.
The production centers also produce the products needed by the distribution centers
after receiving the raw materials from the warehouse and sending them to that center
with different vehicles. Suppliers are also responsible for supplying raw materials and
transporting them to warehouses. Moreover, in the reverse SC, after inspection, the collected
products are either sent to the production center for reuse or sent to disposal centers for
destruction. In addition, due to the limited number of vehicles, a queuing system has
been considered in the distribution centers. So that the vehicles wait to receive the cargo
in distribution centers. This issue is caused by the presence of uncertain demand in the
SCN. Moreover, after receiving the cargo, the vehicles must deliver the products and pick
them up within a specific time window. Otherwise, the penalty cost will be added to the
objective function (OBF). The main goal of this network is to minimize the costs of the total
SCN, including location, allocation and routing. In this problem, the parameters of the
problem are considered uncertainty.
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In the rest of this section, the definitions of symbols used in modeling are discussed.
Due to the existence of uncertainty in the SCN, a non-deterministic model has been de-
signed first. Then the equations related to the M/M/C queuing system in the distribution
center have been added to the main model. Finally, the uncertainty parameters have
been controlled using the robust-fuzzy-probabilistic method. In this way, each uncer-
tainty parameter is first considered as fuzzy data in different scenarios and then the robust
optimization method is used to justify the problem-solving space.

Sets
i Supplier (i = 1,2, . . . ,I)
j Production center (j = 1,2, . . . ,J)
k Candidate locations for crude oil silos (k = 1,2, . . . ,K)
l Candidate locations for distribution/collection center (l = 1,2, . . . ,L)
c Fixed locations of customer (c = 1,2, . . . ,C)
n Collection/distribution centers and customers
(n,n’ = 1,2, . . . ,L,L + 1, . . . ,L + C)
o Fixed locations of disposal center (o = 1,2, . . . ,O)
r Raw materials (crude oil) scrap product (r = 1,2, . . . ,R)
p Final product (p = 1,2, . . . ,P)
t Time period (t = 1,2, . . . ,T)
v Transportation mode (v = 1,2, . . . ,V)
s Scenario (s = 1,2, . . . ,S)
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Parameters
FixIi Supplier selection cost i
FixJj Production center establishment cost j
FixLl Distribution/collection center Establishment cost l
FixKk Warehouse establishment cost k
FixVv Fixed cost of using the vehicle v
Dcpts Product delivery amount p to customer c in period t under scenario s
Rcpts Product pick up amount p from customer c in period t under scenario s
CapVv Vehicle capacity v
CapLlp Maximum distribution center capacity l of product distribution p
CapIir Maximum supplier capacity i of raw material supply r
CapKkr Maximum storage capacity k of raw material storage r
CapJjp Maximum production center capacity p from the production of product p
Disnn′ Distance between nodes n and n’
Trnn′vs Transportation cost between nodes n and n’ with mode of transport v under scenario s
Trikvs Transportation cost between node i and k with mode of transport v under scenario s
Trkjvs Transportation cost between nodes k and j with mode of transport v under scenario s
Trjlvs Transportation cost between nodes j and l with mode of transport v under scenario s
Trl jvs Transportation cost between nodes l and j with mode of transport v under scenario s
Trlovs Transportation cost between node l and o with mode of transport v under scenario s
Tnn′ Transportation time between nodes n and n’
Sc Unloading and loading time of the vehicle in the node c
Clp Distribution cost per unit of product p by the distribution center l
[ASc, BSc] Soft time window for pick up delivery of customer products c
α Penalty cost of soft time window
H Product-dependent greenhouse gas emissions
ps Probability of occurrence of scenario s
ωrp Number of raw materials r used per unit of product p
rc

p Average fraction of product recycling p
ϑl Number of employees in the distribution center l
CTl Waiting time cost to serve in the distribution center l
µl Distribution center service rate l (exponential distribution)
Bl Upper limit of queue length for service in the distribution center l
θl High limit probability for excessive service queue length at the distribution center l

Decision variables

Vlpvts
Product amount total p that can be distributed from the distribution center l by vehicle
v under scenario s in period t

Zl If distribution center l is established/selected, 1 and otherwise 0.

Zlcvts
If the distribution center l is assigned to customer c and the vehicle v is assigned under
scenario s in period t, 1 and otherwise 0.

Xnn′vts
If node n’ is visited after node n by vehicle v under scenario s in period t, 1 and
otherwise 0. l, c ∈ L∪C.

Ucvts Auxiliary variable for sub-tour deletion limit

Tclcvts
Vehicle arrives time v at customer c and exits the distribution center l under scenario s
in period t

Lclcpvts
Product amount p in the vehicle load v in the customer node c and out of the
distribution center l under scenario s in period t

Tecvts Time exceeds the vehicle time window v in customer node c under scenario s in period t

Twlvts
Maximum vehicle visit time vehicle v out of distribution center l under scenario s in
time period t

Qs
rikvts

Raw material amount r transferred from the supplier i to the warehouse (silo) k with
the transportation mode v in period t under scenario s

Qh
rkjvts

Raw material amount r transferred from the warehouse (silo) k to the production
center j with the transportation mode v in time period t under scenario s

Q f
pjlvts

Product amount p transferred from the production center j to the distribution
collection center l with the transportation mode v in period t under scenario s
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Qc
rljvts

Raw material amount r transferred from the distribution/collection center l to the
production center j with the transportation mode v in period t under scenario s

Qd
rlovts

Raw material amount/scrap product r transferred from distribution center/collection
l to disposal center o with the transportation mode v in period t under scenario s

ys
r If supplier i is selected to supply raw materials, 1 and otherwise 0.

yd
l

If distribution/collection center l is constructed for product distribution/collection, 1
and otherwise 0.

yh
k If a warehouse (silo) k is constructed for the storage of raw materials, 1 and otherwise 0.

yc
j If the production center j is constructed to produce the product, 1 and otherwise 0.

Minω1 =
L
∑

l=1
FixLlyd

l +
I

∑
i=1

FixIiys
r +

J
∑

j=1
FixJjyc

j +
K
∑

k=1
FixKkyh

k+

S
∑

s=1
Ps

N
∑

n=1

N
∑

n′=1

V
∑

v=1

T
∑

t=1
Trnn′vsXnn′vts +

S
∑

s=1
Ps

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1
ClpVlpvts+

S
∑

s=1
Ps

L
∑

l=1

C
∑

c=1

V
∑

v=1

T
∑

t=1
FixVvXlcvts +

S
∑

s=1
Ps

C
∑

c=1

V
∑

v=1

T
∑

t=1
αTecvts +

S
∑

s=1
Ps

I
∑

i=1

K
∑

k=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
TrikvsQs

rikvts+

S
∑

s=1
Ps

K
∑

k=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
TrkjvsQh

rkjvts +
S
∑

s=1
Ps

J
∑

j=1

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1
TrjlvsQ f

pjlvts

+
S
∑

s=1
Ps

L
∑

l=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Trl jvsQc

rljvts +
S
∑

s=1
Ps

L
∑

l=1

O
∑

o=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
TrlovsQd

rlovts

(1)

Minω2 =
N

∑
n=1

N

∑
n′=1

V

∑
v=1

P

∑
p=1

V

∑
v=1

P

∑
p=1

Ps.H.Disnn′Lcnn′pvts (2)

Minω3 = max{Twlvts}s.t. :

V

∑
v=1

N

∑
n=1

Xlcvts = 1, ∀c, t, s (3)

C

∑
c=1

N

∑
n=1

P

∑
p=1

DcptsXncvts ≤ CapVv.Fv, ∀v, t, s (4)

Ucvts −Umvts + C.Xcmvts ≤ C− 1, ∀m, c, v, t, s (5)

N

∑
n=1

Xncvts =
N

∑
n=1

Xcnvts, ∀v, n, t, s (6)

L

∑
l=1

C

∑
c=1

Xlcvts ≤ 1, ∀v, t, s (7)

− Zlcvts +
N

∑
n=1

(Xlnvts + Xncvts) ≤ 1, ∀l, c, v, t, s (8)

Vlpvts =
C

∑
c=1

DcptsZlcvts, ∀l, p, v, t, s (9)

V

∑
v=1

Vlpvts ≤ CapLlp.yd
l , ∀l, p, t, s (10)

Lclcpvts ≥ Vlpvts − Dcpts + Rcpts −M.(1− Xlcvts), ∀l, p, c, v, t, (11)

Lclmpvts ≥ Lclcpvts − Dmpts + Rmpts −M.(1− Xcmvts), ∀l, p, c, m, v, t, s (12)

Tclcvts ≥ Tlc −M.(1− Xlcvts), ∀l, c, v, t, s (13)

Tclmvts ≥ Tclcvts + Tcm + Sm −M.(2− Xcmvts − Zlcvts), ∀l, c, m, v, t, s (14)
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Tecvts ≥ ASc.Zlcvts − Tclcvts, ∀l, c, v, t, s (15)

Tecvts ≥ Tclcvts − BSc.Zlcvts, ∀l, c, v, t, s (16)

Twlvts ≥ Tclcvts + ScXclvts + TclXclvts, ∀l, c, v, t, s (17)

∑
j

∑
v

Q f
pjlvts = ∑

v
Vlpvts, ∀l, p, t, s (18)

∑
k

∑
v

Qh
rkjvts = ∑

l
∑
v

∑
p

ωrp.Q f
pjlvts, ∀r, j, t, s (19)

∑
i

∑
v

Qs
rikvts = ∑

j
∑
v

Qh
rkjvts, ∀r, k, t, s (20)

Relpvts ≥ Lclcpvts −M.(2− Xclvts − Zlcvts), ∀l, c, p, v, t, s (21)

∑
v

∑
p

rc
p.Relpvt−1s = ∑

j
∑
v

∑
p

ωrp.Qc
rljvts, ∀r, l, t, s (22)

∑
v

∑
p

(
1− rc

p

)
.Relpvt−1s = ∑

o
∑
v

∑
p

ωrp.Qd
rlovts, ∀r, l, t, s (23)

∑
k

∑
v

Qs
rikvts ≤ CapIir.ys

r, ∀r, i, t, s (24)

∑
v

∑
j

Qh
rkjwts ≤ CapKkr.yh

k , ∀r, k, t, s (25)

∑
v

∑
l

Q f
pjlvts ≤ CapJjp.yc

j , ∀j, p, t, s (26)

P{Queue length at the center o f distribution l under scenario S in period t > Bl} ≤ θl , ∀l, t, s (27)

Vlpvts, Ucvts, Tclcvts, Lclcpvts, Tecvts, Twlvts, Qs
rikvts, Qh

rkjvts, Q f
pjlvts, Qc

rljvts, Qd
rlovts ≥ 0 (28)

Zl , Zlcvts, , ys
r, yd

l , yh
k , yc

j ∈ {0, 1} (29)

The overall expenses of the CLSC network can be reduced to their lowest possible level
using Equation (1). These costs consist of the expenditures associated with the location,
transportation and distribution, in addition to the costs associated with going over the
allotted time window. The emission of greenhouse gases caused by the transportation of
goods is reduced as much as possible by Equation (2). The maximum number of hours
that drivers are allowed to work is cut down significantly by Equation (3). Equation (4)
provides reassurance that just a single distribution center should be responsible for serving
a given consumer. Because of Equation (5), we know that the total quantity of cargo that
may be carried by the vehicle cannot exceed its carrying capacity.

In the process of vehicle routing, Equation (6) is known as the sub-tour elimination
equation. Equation (7) ensures that every vehicle leaves after visiting a customer by
requiring them to do so. Equation (8) ensures that each customer should have only one
vehicle assigned to them. Based on Equation (9), it is clear that the vehicle must make its
way back to the center after making its rounds to the various clients. The sum of all the
products that were dispersed can be found in Equation (10). The solution to Equation (11)
ensures that the distribution center can operate at its full capacity in the event that it is
constructed. The quantities of merchandise delivered to each consumer by vehicle are
shown by Equations (12) and (13), respectively.

The time that the car will arrive to each individual consumer is represented by
Equations (14) and (15). The amount of time it takes for each truck to return to the dis-
tribution center is represented by Equations (16) and (17). The quantity of commodities
that were moved from the production center to the distribution center is represented by
Equation (19). It reveals the quantity of raw materials that were moved from the storage
facility to the production center in order to facilitate the manufacturing of new goods.



Logistics 2023, 7, 3 12 of 33

The quantity of items that were moved from the supplier to the warehouse is represented
by Equation (21). (silo). The quantity of returned commodities in the reverse SC can
be calculated using Equation (22). The quantities of commodities that were transported
to the collecting center and the destruction facility, respectively, are accounted for by
Equations (23) and (24). The limits associated with the capacity of the centers are repre-
sented by Equations (25)–(27). The constraint that is related to the length of the line in
the middle of the distribution is represented by Equation (28). Equations (29) and (30)
demonstrate the variables involved in decision making.

3.1. Jackson Network

In the SCN, goods are usually sent from distribution centers where parallel service
providers are responsible for packing, loading, etc. The existence of different demands from
customers makes it difficult to manage the distribution of goods. Therefore, a queue system
is usually created in the distribution centers. Determining the number of servers can reduce
the queue length while it can change the overall SCN costs. Therefore, in the optimization
of SCN problems, it is very important to consider the queuing system in order to reduce
costs and reduce queue length. The distribution centers chosen for research in Figure 2 of
the Jackson network and the suggested network equations are presented below [67]:

π2λ2 = λ1 (30)
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In above the Equation, λ1 and λ2 are input rates and π2 is the output rate for k center.
Therefore, according to the values mentioned in the figure, the input rate to the distribution
center is obtained as follows:

λ2 = λ1 (31)

As a result, in the designed SCN, the queuing system in the distribution center is
considered, whose entry rate includes the number of products sent from the production
center for distribution to customers, and its exit rate is equal to all the products that are
being is distributed. Therefore, due to uncertain demand, a queue system is formed as
follows:

λlts =
P

∑
p=1

J

∑
j=1

V

∑
v=1

Q f
pjlvts, ∀l, t, s (32)

The model must be changed to a specific condition in order to satisfy Equation (28);
therefore, this constraint is changed to a definite constraint using an M/M/C queue model.
The input rate equal to λ (Poisson distribution) and the service time are used in this model
to construct the M/M/C queue for the distribution center µ (exponential distribution).
There are m servers with a constrained capacity C in the queue model.

C

∑
k′=ϑl+Bl+1

Pl′ lts ≤ θl or 1−
ϑl+Bl

∑
l′=0

Pl′ lts ≤ θl , ∀l, t, s (33)

The first expression of Equation (34) shows that the likelihood that there are fewer
than n customers in the service queue of the distribution center l with ϑl of the server is less
than θl , and the second equation demonstrates that the total of all probabilities is equivalent
to 1. The rate of service may be derived by doing the following:

µnl =

{
nµl n ≤ ϑl

ϑlµl ϑl < n < C
, ∀l (34)
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By combining the above constraints π0lts (the probability of selecting a node as the
distribution center l under scenario s in period t) is obtained as follows:

π0lts =

[
ϑl − 1

∑
l′=0

1
l′!

(
λlts
µl

)l′

+
1

ϑl!

(
λlts
µl

)ϑl
(

ϑlµl
ϑlµl − λlts

)]−1

, ∀l, t, s (35)

In the results, the probability of a robust condition for n customers in the service queue
of distribution center l (Equation (28)) is as follows [67,68]:

Pnlts =


λn

lts
n!µn

l
π0lts 1 ≤ n ≤ ϑl

λn
ltsϑl

n−ϑl

n!µn
l

π0lts ϑl < n ≤ C
∀l, t, s (36)

Pl′ lt =
ϑl

∑
l′=0

λl′
lts

l′!µl′
l

π0lts +
ϑl+Bl

∑
l′=ϑl+1

λl′
ltsϑl

l′−ϑl

l′!µl′
l

π0lts ≥ 1− θl , ∀l, t, s (37)

Pl′ lts =

(
ϑl

∑
l′=0

λl′
lts

l′!µl′
l
+

ϑl+Bl

∑
l′=ϑl+1

λl′
ltsϑl

l′−ϑl

l′!µl′
l

)
π0lts ≥ 1− θl , ∀l, t, s (38)

Moreover, according to the above, the customer waiting time in the l distribution
center can be obtained, as described in Equation (39) as follows:

Wlts =

[
π0lts
ϑl!

(
λlts
µl

)ϑl ! ϑlµl

(ϑlµl − λlts)
2 +

1
µl

]
yd

l , ∀l, t, s (39)

The amount of customer waiting time cost in the distribution center l,
∑L

l=1 ∑T
t=1 ∑S

s=1 Ps.Wlts.CTl is also added to the first OBF as an additional cost.

3.2. Robust-Fuzzy-Probabilistic Method

Because of the unpredictable nature of a number of important factors (such as the
costs of transportation and demand), which are not amenable to planning, as well as the
unavailability and even the unavailability of historical data that is necessary during the
design stage, these characteristics are largely dependent on points of view. Since the mental
experiences of experts are also approximated, the previously described hazy parameters
are given as uncertain data in the form of trapezoidal fuzzy numbers. It is essential to keep
in mind that calculating the production facility’s capacity, demand and transportation costs
for long-term decisions may be difficult, if not impossible. This is why it is crucial to keep
this in mind. Even if it is possible to estimate a distribution function for these parameters,
it is possible that they will not behave in the same manner as the data from earlier times.
As a consequence of this, the data obtained from these variables, which change over an
extended period of time, are considered to be fuzzy [69].

Furthermore, uncertain (probable) restrictions are often handled using indefinite finite
programming where uncertain data on the left or right side is equal. The notion of decision-
making may accomplish the lowest degree of certainty as an acceptable safe margin for
imposing any of these restrictions if this approach is utilized to regulate the confidence
level in generating these indefinite limits. Two regularly used standard fuzzy method
actions, with optimistic fuzzy and pessimistic fuzzy names, are utilized to accomplish
this. It is noteworthy that the pessimistic fuzzy represents the pessimistic choice of the
uncertain event, while the optimistic fuzzy reflects the degree of optimistic probability of
the occurrence of an uncertain event, including unknown parameters. We presume that
decision-making has a pessimistic and optimistic attitude while concurrently imposing
indefinite limits; thus, we utilize a pessimistic-optimistic combination fuzzy; this is more
cautious. Currently, the obvious counterpart of the original indefinite model can be stated
using the ambiguous parameters mentioned above, the anticipated value for the OBF and
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the pessimistic-optimistic action for the indefinite constraints. To start, think about the
model’s condensed version given in [70] as follows:

minZ = F.y + C̃s.xs
s.t. :

Axs ≥ D̃s
Bx < Sy

y ∈ {0, 1}, xs ≥ 0

(40)

D̃s, C̃s, F and s indicate the fixed cost of construction, variable cost (transportation),
demand and facility capacity, respectively. A and E are coefficient matrices, while xs and y
are continuous variables, zero and one for scenario s. In the given model, the vectors D̃s
and C̃s are indeterminate parameters. The general form of uncertain restricted planning
requires the anticipated value of the OBF and the pessimistic fuzzy to handle the OBF
and indefinite constraint, respectively. The acronym’s pessimistic fuzzy basic model is
as follows:

minZ = E[Z] = F.y + E
[
C̃s

]
.xs

s.t. :
NEC

{
Axs ≥ D̃s

}
≥ αs

Bx < Sy
y ∈ {0, 1}, xs ≥ 0

(41)

where αs (pessimistic) decision-making controls the lowest degree of confidence of uncer-
tain constraint. Equation (42) is given by the trapezoidal probability distribution for the
following conditions [69]:

minZ = F.y +
(

C1
s + C2

s + C3
s + C4

s
4

)
xs

s.t. :
Axs ≥ (1 − αs)D3

s + αsD4
s

Bx < Sy
y ∈ {0, 1}, xs ≥ 0

(42)

Moreover, the general form of Uncertain limited planning, OBF expected value and
the optimistic fuzzy to deal with the OBF and the uncertain constraint, respectively, are
as follows:

minZ = E[Z] = F.y + E
[
C̃s

]
.xs

s.t. :
POS

{
Axs ≥ D̃s

}
≥ αs

Bx < Sy
y ∈ {0, 1}, xs ≥ 0

(43)

The optimistic fuzzy’s pessimistic controls the indefinite constraint’s minimal degree of
confidence. Equation (44) is given by the trapezoidal probability distribution for ambiguous
parameters as follows [59]:

minZ = F.y +
(

C1
s + C2

s + C3
s + C4

s
4

)
xs

s.t. :
Axs ≥ (1 − αs)D1

s + αsD2
s

Bx < Sy
y ∈ {0, 1}, xs ≥ 0

(44)
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According to the relationships expressed in this paper, a new pessimistic-optimistic
fuzzy hybrid model has been used to control uncertain parameters. Therefore, the pessimistic-
optimistic fuzzy base model is as follows:

minZ = E[Z] = F.y + E
[
C̃s

]
.xs

s.t. :

(1 − ν1)
[

NEC
{

Axs ≥ D̃s

}
≥ αs

]
+ (ν1)

[
POS

{
Axs ≥ D̃s

}
≥ αs

]
Bx < Sy

y ∈ {0, 1}, x ≥ 0

(45)

In the pessimistic-optimistic fuzzy basic model and Equation (46), ν1 is parameter zero
and one; If ν1 takes 1, the hybrid fuzzy model becomes an optimistic fuzzy model and if
ν1 takes 0, the hybrid fuzzy model becomes a pessimistic fuzzy model. Moreover, if ν1
takes the value 0.5, the combined fuzzy model becomes the moderate fuzzy model, so to
solve the final model in this paper, ν1 will be defined as parameters with three values 0, 0.5
and 1. Finally, the main model for controlling uncertain parameters in hybrid fuzzy is as
follows [71]:

minZ = F.y +
(

C1
s + C2

s + C3
s + C4

s
4

)
xs

s.t. :
Axs ≥ (1 − ν1)

[
(1 − αs)D3

s + αsD4
s
]
+ (ν1)

[
(1 − αs)D1

s + αsD2
s
]

Bx < Sy
y,∈ {0, 1}, xs ≥ 0, αs, βs ∈ [0.5, 1]

(46)

Decision preferences establish the lowest confidence level for unknown constraints
in probabilistic models. The OBF in the suggested models is not sensitive to variation
from its predicted value; hence, robust solutions in the base model are not guaranteed. In
such instances, the excessive risk may affect decision-making in many practical scenarios,
particularly strategic ones when solution consolidation is most important. To address
this inefficiency, robust-stochastic uncertain planning is utilized. Robust and stochastic
planning make this uncertainty planning technique stand out. The following suggested
model is used for uncertainty planning in this study:

minω1 = E[Z] + ξ
(

Z(max) − Z(min)

)
+ ω ∑

s
Ps{E[Z] − E[Zs] + 2θs}

η1 ∑
s

Ps

[
D4

s −
(αs − λ)D4

s + (1 − αs)D3
s

1 − λ

]
s.t. :

Axs ≥ (1 − ν1)
[
(1 − αs)D3

s + αsD4
s
]
+ (ν1)

[
(1 − αs)D1

s + αsD2
s
]

Bx < Sy
y,∈ {0, 1}, xs ≥ 0, αs, βs ∈ [0.5, 1]

(47)

where M is a huge non-negative number and Z(max), Z(min) and E[Zs] can be expressed as
follows:

Z(max) = F.y + ∑
s

PsC4
s xs

Z(min) = F.y + ∑
s

PsC1
s xs

E[Zs] = F.y +
[

1 − λ
2
(
C1

s + C2
s
)
+ λ

2
(
C3

s + C4
s
)]

.xs

(48)

The first equation in Equation (48)’s first OBF is the expected value using the model’s
mean uncertain parameters. The cost of the penalty for deviating from the anticipated
value of the first OBF is the second statement. The third phrase displays the overall demand
deviation penalty cost (uncertain parameter). Thus, the OBF weight coefficient is ξ, and η1
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the penalty for not predicting demand is 1. The coefficients of correction in fuzzy number
surfaces should be between 0.5 and 1. The queuing system-controlled SCN model is [72].

Minω1 = E[Z] + ξ(Zmax− Zmin) + ω ∑
s

Ps{E[Z]− E[Zs] + 2θs}

+η1∑
c

∑
p

∑
t

∑
s

Ps

[
D4

cpts −
(αs− ψ)D4

cpts+(1−αs)D3
cpts

1−λ

]
+η2∑

c
∑
p

∑
t

∑
s

Ps

[
R4

cpts −
(αs− ψ)R4

cpts+(1−αs)R3
cpts

1−λ

] (49)

Minω2 =
N

∑
n=1

N

∑
n′=1

V

∑
v=1

P

∑
p=1

V

∑
v=1

P

∑
p=1

Ps.H.Disnn′Lcnn′pvts (50)

Minω3 = max{Twlvts} (51)

s.t. :
V

∑
v=1

N

∑
n=1

Xlcvts = 1, ∀c, t, s (52)

C

∑
c=1

N

∑
n=1

P

∑
p=1

[
(1− ν1)

[
(1− αs)D3

cpts + αsD4
cpts

]
+ (ν1)

[
(1− αs)D1

cpts + αsD2
cpts

]]
Xncvts ≤ CapVv.Fv, ∀v, t, s (53)

Ucvts −Umvts + C.Xcmvts ≤ C− 1, ∀m, c, v, t, s (54)

N

∑
n=1

Xncvts =
N

∑
n=1

Xcnvts, ∀v, n, t, s (55)

L

∑
l=1

C

∑
c=1

Xlcvts ≤ 1, ∀v, t, s (56)

− Zlcvts +
N

∑
n=1

(Xlnvts + Xncvts) ≤ 1, ∀l, c, v, t, s (57)

Vlpvts =
C

∑
c=1

[
(1− ν1)

[
(1− αs)D3

cpts + αsD4
cpts

]
+ (ν1)

[
(1− αs)D1

cpts + αsD2
cpts

]]
Zlcvts, ∀l, p, v, t, s (58)

V

∑
v=1

Vlpvts ≤ CapLlp.yd
l , ∀l, p, t, s (59)

Lclcpvts ≥ Vlpvts −
[
(1− ν1)

[
(1− αs)D3

cpts + αsD4
cpts

]
+ (ν1)

[
(1− αs)D1

cpts + αsD2
cpts

]]
+
[
(1− ν1)

[
(1− αs)R3

cpts + αsR4
cpts

]
+ (ν1)

[
(1− αs)R1

cpts + αsR2
cpts

]]
−M.(1− Xlcvts), ∀l, p, c, v, t,

(60)

Lclmpvts ≥ Lclcpvts −
[
(1− ν1)

[
(1− αs)D3

cpts + αsD4
cpts

]
+ (ν1)

[
(1− αs)D1

cpts + αsD2
cpts

]]
+
[
(1− ν1)

[
(1− αs)R3

cpts + αsR4
cpts

]
+ (ν1)

[
(1− αs)R1

cpts + αsR2
cpts

]]
−M.(1− Xcmvts), ∀l, p, c, m, v, t, s

(61)

Tclcvts ≥ Tlc −M.(1− Xlcvts), ∀l, c, v, t, s (62)

Tclmvts ≥ Tclcvts + Tcm + Sm −M.(2− Xcmvts − Zlcvts), ∀l, c, m, v, t, s (63)

Tecvts ≥ ASc.Zlcvts − Tclcvts, ∀l, c, v, t, s (64)

Tecvts ≥ Tclcvts − BSc.Zlcvts, ∀l, c, v, t, s (65)

Twlvts ≥ Tclcvts + ScXclvts + TclXclvts, ∀l, c, v, t, s (66)

∑
j

∑
v

Q f
pjlvts = ∑

v
Vlpvts, ∀l, p, t, s (67)
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∑
k

∑
v

Qh
rkjvts = ∑

l
∑
v

∑
p

ωrp.Q f
pjlvts, ∀r, j, t, s (68)

∑
i

∑
v

Qs
rikvts = ∑

j
∑
v

Qh
rkjvts, ∀r, k, t, s (69)

Relpvts ≥ Lclcpvts −M.(2− Xclvts − Zlcvts), ∀l, c, p, v, t, s (70)

∑
v

∑
p

rc
p.Relpvt−1s = ∑

j
∑
v

∑
p

ωrp.Qc
rljvts, ∀r, l, t, s (71)

∑
v

∑
p

(
1− rc

p

)
.Relpvt−1s = ∑

o
∑
v

∑
p

ωrp.Qd
rlovts, ∀r, l, t, s (72)

∑
k

∑
v

Qs
rikvts ≤ CapIir.ys

r, ∀r, i, t, s (73)

∑
v

∑
j

Qh
rkjwts ≤ CapKkr.yh

k , ∀r, k, t, s (74)

∑
v

∑
l

Q f
pjlvts ≤ CapJjp.yc

j , ∀j, p, t, s (75)

λlts =
P

∑
p=1

J

∑
j=1

V

∑
v=1

Q f
pjlvts, ∀l, t, s (76)

Wlts =

[
π0lts
ϑl!

(
λlts
µl

)ϑl ! ϑlµl

(ϑlµl − λlts)
2 +

1
µl

]
yd

l , ∀l, t, s (77)

π0lts =

[
ϑl−1

∑
l′=0

1
l′!

(
λlts
µl

)l′

+
1

ϑl!

(
λlts
µl

)ϑl
(

ϑlµl
ϑlµl − λlts

)]−1

, ∀l, t, s (78)

(
ϑl

∑
l′=0

λl′
lts

l′!µl′
l
+

ϑl+Bl

∑
l′=ϑl+1

λl′
ltsϑl

l′−ϑl

l′!µl′
l

)
π0lts ≥ 1− θl , ∀l, t, s (79)

Zmin =
L
∑

l=1
FixLlyd

l +
I

∑
i=1

FixIiys
r +

J
∑

j=1
FixJjyc

j +
K
∑

k=1
FixKkyh

k+

S
∑

s=1
Ps

N
∑

n=1

N
∑

n′=1

V
∑

v=1

T
∑

t=1
Tr1

nn′vsXnn′vts +
S
∑

s=1
Ps

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1
ClpVlpvts+

S
∑

s=1
Ps

L
∑

l=1

C
∑

c=1

V
∑

v=1

T
∑

t=1
FixVvXlcvts +

S
∑

s=1
Ps

C
∑

c=1

V
∑

v=1

T
∑

t=1
αTecvts+

S
∑

s=1
Ps

I
∑

i=1

K
∑

k=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Tr1

ikvsQs
rikvts +

S
∑

s=1
Ps

L
∑

l=1

O
∑

o=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Tr1

lovsQd
rlovts+

S
∑

s=1
Ps

K
∑

k=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Tr1

kjvsQh
rkjvts +

S
∑

s=1
Ps

J
∑

j=1

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1
Tr1

jlvsQ f
pjlvts

+
S
∑

s=1
Ps

L
∑

l=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Tr1

ijvsQc
rljvts +

L
∑

l=1

T
∑

t=1

S
∑

s=1
Ps.Wlts.CTl

(80)
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Zmax =
L
∑

l=1
FixLlyd

l +
I

∑
i=1

FixIiys
r +

J
∑

j=1
FixJjyc

j +
K
∑

k=1
FixKkyh

k+

S
∑

s=1
Ps

N
∑

n=1

N
∑

n′=1

V
∑

v=1

T
∑

t=1
Tr1

nn′vsXnn′vts +
S
∑

s=1
Ps

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1
ClpVlpvts+

S
∑

s=1
Ps

L
∑

l=1

C
∑

c=1

V
∑

v=1

T
∑

t=1
FixVvXlcvts +

S
∑

s=1
Ps

C
∑

c=1

V
∑

v=1

T
∑

t=1
αTecvts+

S
∑

s=1
Ps

I
∑

i=1

K
∑

k=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Tr4

ikvsQs
rikvts +

S
∑

s=1
Ps

L
∑

l=1

O
∑

o=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Tr4

lovsQd
rlovts+

S
∑

s=1
Ps

K
∑

k=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Tr4

kjvsQh
rkjvts +

S
∑

s=1
Ps

J
∑

j=1

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1
Tr4

jlvsQ f
pjlvts

+
S
∑

s=1
Ps

L
∑

l=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1
Tr4

ijvsQc
rljvts +

L
∑

l=1

T
∑

t=1

S
∑

s=1
Ps.Wlts.CTl

(81)

E[Zs] =
L
∑

l=1
FixLlyd

l +
I

∑
i=1

FixIiys
r +

J
∑

j=1
FixJjyc

j +
K
∑

k=1
FixKkyh

k+

S
∑

s=1
Ps

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1
ClpVlpvts +

L
∑

l=1

T
∑

t=1

S
∑

s=1
Ps.Wlts.CTl

S
∑

s=1
Ps

L
∑

l=1

C
∑

c=1

V
∑

v=1

T
∑

t=1
FixVvXlcvts +

S
∑

s=1
Ps

C
∑

c=1

V
∑

v=1

T
∑

t=1
αTecvts+

S
∑

s=1
Ps

N
∑

n=1

N
∑

n′=1

V
∑

v=1

T
∑

t=1

[(
1− ψ

2

)(
Tr1

nn′vs + Tr2
nn′vs

)
+
(
ψ
2

)(
Tr3

nn′vs + Tr4
nn′vs

)]
Xnn′vts+

S
∑

s=1
Ps

I
∑

i=1

K
∑

k=1

R
∑

r=1

V
∑

v=1

T
∑

t=1

[(
1− ψ

2

)(
Tr1

ikvs + Tr2
ikvs
)
+
(
ψ
2

)(
Tr3

ikvs + Tr4
ikvs
)]

Qs
rikvts+

S
∑

s=1
Ps

L
∑

l=1

O
∑

o=1

R
∑

r=1

V
∑

v=1

T
∑

t=1

[(
1− ψ

2

)(
Tr1

lovs + Tr2
lovs
)
+
(
ψ
2

)(
Tr3

lovs + Tr4
lovs
)]

Qd
rlovts+

S
∑

s=1
Ps

K
∑

k=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1

[(
1− ψ

2

)(
Tr1

kjvs + Tr2
kjvs

)
+
(
ψ
2

)(
Tr3

kjvs + Tr4
kjvs

)]
Qh

rkjvts+

S
∑

s=1
Ps

J
∑

j=1

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1

[(
1− ψ

2

)(
Tr1

jlvs + Tr2
jlvs

)
+
(
ψ
2

)(
Tr3

jlvs + Tr4
jlvs

)]
Q f

pjlvts+

S
∑

s=1
Ps

L
∑

l=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1

[(
1− ψ

2

)(
Tr1

l jvs + Tr2
l jvs

)
+
(
ψ
2

)(
Tr3

l jvs + Tr4
l jvs

)]
Qc

rljvts

(82)

E[Z] =
L
∑

l=1
FixLlyd

l +
I

∑
i=1

FixIiys
r +

J
∑

j=1
FixJjyc

j +
K
∑

k=1
FixKkyh

k+

S
∑

s=1
Ps

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1
ClpVlpvts +

L
∑

l=1

T
∑

t=1

S
∑

s=1
Ps.Wlts.CTl

S
∑

s=1
Ps

L
∑

l=1

C
∑

c=1

V
∑

v=1

T
∑

t=1
FixVvXlcvts +

S
∑

s=1
Ps

C
∑

c=1

V
∑

v=1

T
∑

t=1
αTecvts+

S
∑

s=1
Ps

N
∑

n=1

N
∑

n′=1

V
∑

v=1

T
∑

t=1

(
Tr1

nn′vs+Tr2
nn′vs+Tr3

nn′vs
+Tr4

nn′vs
4

)
Xnn′vts+

S
∑

s=1
Ps

I
∑

i=1

K
∑

k=1

R
∑

r=1

V
∑

v=1

T
∑

t=1

(
Tr1

ikvs+Tr2
ikvs+Tr3

ikvs+Tr4
ikvs

4

)
Qs

rikvts+

S
∑

s=1
Ps

L
∑

l=1

O
∑

o=1

R
∑

r=1

V
∑

v=1

T
∑

t=1

(
Tr1

lovs+Tr2
lovs+Tr3

lovs+Tr4
lovs

4

)
Qd

rlovts+

S
∑

s=1
Ps

K
∑

k=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1

(
Tr1

kjvs+Tr2
kjvs+Tr3

kjvs+Tr4
kjvs

4

)
Qh

rkjvts+

S
∑

s=1
Ps

J
∑

j=1

L
∑

l=1

P
∑

p=1

V
∑

v=1

T
∑

t=1

(
Tr1

jlvs+Tr2
jlvs+Tr3

jlvs+Tr4
jlvs

4

)
Q f

pjlvts+

S
∑

s=1
Ps

L
∑

l=1

J
∑

j=1

R
∑

r=1

V
∑

v=1

T
∑

t=1

(
Tr1

l jvs+Tr2
l jvs+Tr3

l jvs+Tr4
l jvs

4

)
Qc

rljvts

(83)

Vlpvts, Ucvts, Tclcvts, Lclcpvts, Tecvts, Twlvts, Qs
rikvts, Qh

rkjvts, Q f
pjlvts, Qc

rljvts,≥ 0 (84)
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Zl , Zlcvts, , ys
r, yd

l , yh
k , yc

j ∈ {0, 1} (85)

αs, βs ∈ [0.5, 1], λlts, Wlts, π0lts ≥ 0 (86)

3.3. Psedou Code of Meta Heuristics Algorithm

In the designed SCN, there is a combination of different decisions, such as facility
location, routing and optimal flow allocation under uncertainty. Therefore, the model can
be called an Np-Hard problem [73]. Because it is very hard and impossible to solve these
problems with exact methods, and as the size of the problem increases, its calculation time
also increases [74]. For this reason, two non-dominated sorting genetic algorithms (NSGA
II) and multi-objective particle swarm optimization (MOPSO) algorithms have been used
in this research, and their pseudocodes are presented in Figures 3 and 4.
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4. Analysis of Results

In this part of the article, the issue is addressed according to Table 2 in order to
satisfy the requirements of a small sample according to Table 3 and on the basis of random
parameters. Because we do not have access to data taken from the actual world and because
we are in the process of developing a mathematical model, we have been using random
data that is based on the uniform distribution function.

Table 2. The value of parameters.

Scenario Parameter Interval Limits

All Scenario

FixIi, FixJj, FixLl , FixKk ∼ U[10, 000, 12, 000]
FixVv ∼ U[300, 400]
CapVv ∼ U[100, 120]

CapLlp, CapIir, CapKkr, CapJjp, µl ∼ U[200, 220]
Disnn′ ∼ U[10, 100]

CTl ∼ U[120, 150]
µl ∼ U[140, 180]

θl , ps, rc
p 0.5

Tnn′ ∼ U[15, 20]
Sc, Clp ∼ U[2, 5]

[ASc, BSc] ∼ U[20, 50]
α 6
H 3

ωrp ∼ U[1, 2]
ϑl ∼ U[3, 4]
Bl ∼ U[250, 300]

Scenario 1
Trnn′vs, Trikvs, Trkjvs, Trjlvs, Trl jvs, Trlovs ∼ U([10, 20], [20, 30], [30, 40], [40, 50])

Dcpts ∼ U([15, 20], [20, 25], [25, 30], [30, 35])
Rcpts ∼ U([5, 10], [10, 15], [15, 20], [20, 25])

Scenario 2
Trnn′vs, Trikvs, Trkjvs, Trjlvs, Trl jvs, Trlovs ∼ U([12, 24], [24, 36], [36, 48], [48, 60])

Dcpts ∼ U([20, 25], [25, 30], [30, 35], [35, 40])
Rcpts ∼ U([10, 15], [15, 20], [20, 25], [25, 30])

Table 3. Small sample problem size.

I − J − K− L− C− N −O− R− P− T −V − S

2− 2− 2− 2− 3− 2− 2− 2− 1− 2− 2− 2

The three-objective model is solved using the comprehensive multi-objective decision-
making approach with the Baron solver in GAMS software once the issue has been designed
and the problem range has been presented. Before attempting to solve the model, an
exhaustive approach to making decisions that take into account several objectives is first
described. When making decisions based on comprehensive criteria, it is necessary to do
individual optimization in order to acquire the greatest possible value for each OBF. To put
it another way, the program has to first determine the value of each OBF on its own without
taking into account any of the other functions that will be utilized in the computations. The
multi-objective decision-making process is represented as a complete one in Equation (88),
which may be found below.

Lp = w1

((
f1 − f ∗1

)(
f ∗1
) )

+ w2

(
( f2 − f ∗2 )(

f ∗2
) )

+ w3

(
( f3 − f ∗3 )(

f ∗3
) )

(87)

In the above relation, fi=1,2,3 the OBF of the i th problem, f ∗i=1,2,3 the best value of the
OBF obtained from the individual optimization method and wi=1,2,3 is the weight assigned
to each OBF. In this research, linear softness, i.e., p = 1 and random weights based on the
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Monte Carlo method, have been used. Table 4 shows the optimal value of each OBF by
individual optimization methods.

Table 4. OBFV and CPU-time obtained by individual optimization method.

OBF Value CPU-Time

OBFV1 347,389.77 285.54
OBFV2 12,822.22 360.46
OBFV2 37.54 188.39

From solving the small-size numerical example, 8 efficient solutions in 30 consecutive
repetitions of the Monte Carlo method are obtained, which are shown in Table 5. Figure 5
also shows the Pareto front created between different target functions.

Table 5. The set of efficient solutions obtained from solving the small size problem.

Efficient Solutions OBFV1 OBFV2 OBFV3

1 352,373 131,062 41
2 351,263 131,054 54
3 350,043 130,998 63
4 348,895 130,983 74
5 348,849 130,897 89
6 347,795 130,839 103
7 346,218 129,746 112
8 345,233 128,864 120
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According to Table 5 and Figure 5, vehicles with higher speeds and higher costs should
be used, and the route of product transfer between centers should be changed to reduce the
maximum traffic time of vehicles. This has led to an increase in shipping costs. According
to this model, with the reduction of greenhouse gas emissions, transmission costs have also
increased due to changes in the design of the network structure.
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To examine the output variables of the problem, one of the efficient solutions (work
solution number one out of the eight work solutions obtained) is examined to obtain
changes in the problem decision variables. Based on the results of Table 5, it can be
seen that the efficient solutions have not reached their optimal value and have a relative
difference from the best value of the OBF. Table 6 shows the location and routing of the
vehicle in the first efficient solution obtained.

Table 6. Locating and routing the vehicle in the small size problem for the first efficient solution.

Centers Location

Supplier 2 centers with number 2–3
Crude oil silo 1 center with number 2

Production center 1 center with number 2
Distribution/collection center 2 centers with number 1–2

Vehicle routing-scenarion1-period1 L1→ N2→ N3→ L1 L2→ N1→ L2
Vehicle routing-scenarion1-period2 L1→ N2→ N3→ L1 L2→ N1→ L2
Vehicle routing-scenarion2-period1 L1→ N1→ N2→ L1 L2→ N3→ L2
Vehicle routing-scenarion2-period2 L1→ N1→ N2→ L1 L2→ N3→ L2

The sensitivity of the issue that is being analyzed, as well as the influence of changes in
some of the problem parameters on the values of the OBFs, will be examined in more detail
in the following paragraphs. As a result, the total quantity of greenhouse gas emissions
produced by the SCN has been analyzed, and the results show that these emissions are
30%, 20% and 10% lower than their base value, respectively. The changes that take place
in the values of the problem’s goal functions as a result of shifts in the total quantity of
greenhouse gas emissions is outlined in Table 7, which may be found below.

Table 7. OBFVs in changing effect of parameter H.

Changes of H (%) OBFV1 OBFV2 OBFV3

−30 349,666 130,672 41
−20 350,471 130,727 41
−10 350,993 130,783 41

0 352,373 131,062 41
10 352,817 131,204 41
20 353,614 131,467 41
30 353,836 131,543 41

According to Table 7, it can be seen that the overall quantity of greenhouse gas
emissions rose as a result of the direct influence that this parameter had on the second OBF
of the issue. As a consequence of this, the total cost of the SCN design increased as well.
despite the fact that the maximum amount of time spent in traffic did not change. The
pattern of shifts in the values of the goal functions that occur in exchange for changes in
the total quantity of greenhouse gas emissions is shown in Figure 6.

In the following, the the fine due to exceeding the time window is examined and its
amount is 30%, 20% and 10% less and more than its base amount. Table 8 shows the change
in the values of the OBFs of the problem in exchange for the change in the amount of the
fine due to exceeding the time window.

According to Table 8, it can be seen that the overall cost of network design, as well
as the amount of greenhouse gas emissions, has grown with the growing fines that have
resulted from going over the allotted time frame. In addition, because this parameter does
not have any impact on the third OBF of the issue, the maximum amount of time spent
in traffic caused by vehicles does not change. Figure 7 illustrates the pattern of how the
values of the goal functions shift over time in response to alterations in the total amount of
the time window penalty.
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Table 8. OBFVs in changing effect of parameter α.

Changes of α (%) OBFV1 OBFV2 OBFV3

−30 348,961 129,263 41
−20 350,009 129,938 41
−10 351,060 130,395 41

0 352,373 131,062 41
10 353,162 131,256 41
20 353,489 131,449 41
30 354,230 132,280 41

In the end, an investigation is carried out to determine the pattern of shifts that occur
in the values of the OBFs of the issue in exchange for shifts in the rate of uncertainty in
a number of different problem situations. The goal of this investigation is to determine
how these shifts come about. In this section, the changes that take place in the values of
the issue’s goal functions in exchange for the changes that take place in the uncertainty
rate are presented. The values range from 0.1 to 0.9. These results are derived from an
examination of the issues in question that was carried out with an uncertainty rate of 0.5.
Table 9 displays, for a variety of uncertainty rates, the pattern of shifts that take place in the
values of OBFs as they go through their lifetimes.

According to Table 9, it can be shown that the quantity of demand in the network
grows with the rate of uncertainty. This, in turn, has a direct influence on the expenses of
the whole network, the amount of greenhouse gas emissions and the maximum amount of
time a vehicle spends in traffic. Figure 8 also demonstrates the effects of the uncertainty
rate on the values of the goal functions and explains how those changes occurred.
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Table 9. OBFVs in changing effect of parameter αs.

Changes of αs OBFV1 OBFV2 OBFV3

0.1 347,647 128,829 38
0.3 350,470 130,183 39
0.5 352,373 131,062 41
0.7 353,742 133,330 43
0.9 356,462 134,240 44

Following the completion of the analysis of the sample problem in its small size, the
NSGA II and MOPSO are used to complete the solution of the sample issue in its big size.
As a result, before attempting to solve the issue, the parameters of the algorithms that have
been stated are first specified and then an initial solution to the problem is presented.

The Taguchi technique requires that first the important components be recognized,
then the levels of each element be decided, and finally the suitable test design for these
control factors must be defined. The Taguchi method was developed by Kaoru Taguchi.

After the test design has been decided upon, the tests are carried out and then examined
to see which combination of factors produces the best results. According to Table 10, there
have been three degrees of consideration given to each aspect during the course of this study.
The design of the experiment and the manner in which it is to be carried out for each algorithm
are both defined by the number of factors and the number of levels each factor has. In light of
the fact that the proposed model incorporates three different goal functions, it is necessary to
begin by deriving the value of each experiment from Equation (89). In this regard, in the case
of subtraction of the indicators used in the comparison of meta-heuristic algorithms, including
(the average of the first to third OBF, number of efficient solutions, maximum expansion index,
metric distance index and computational time), has been used. Specifically, the average of the
first to third OBF. In order to conduct an analysis of the design of the Taguchi experiment, the
first step is to determine the value of each experiment. Subsequently, the scaled value of each
experiment (RPD) is determined using Equation (89).
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Si =

∣∣∣∣MeanZ1 + MeanZ2 + MeanZ3 + NPF + MSI + SM + CPU_time
7

∣∣∣∣ (88)

RPD =
Si − S∗i

S∗i
(89)
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parison of meta-heuristic algorithms, including (the average of the first to third OBF, num-

ber of efficient solutions, maximum expansion index, metric distance index and compu-

tational time), has been used. Specifically, the average of the first to third OBF. In order to 

conduct an analysis of the design of the Taguchi experiment, the first step is to determine 

the value of each experiment. Subsequently, the scaled value of each experiment (RPD) is 

determined using Equation (89). 

𝑆𝑖  =  |
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7
| (88) 
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Npop 50 100 200 200 

Figure 8. Trend of changes in the OBFVs in different value of parameter αs.

Table 10. Proposed parameter levels for tuning of NSGA II and MOPSO.

Algorithm Parameter Level 1 Level 2 Level 3 Best Value

NSGA II

Max it 100 150 200 200
Npop 50 100 200 200

Pc 0.75 0.80 0.85 0.80
Pm 0.03 0.035 0.04 0.03

MOPSO

Max it 100 150 200 200
NParticle 50 100 200 200

C1 1 1.5 2 1
C2 1 1.5 2 2

Based on the results of the Taguchi method in the parameterization of meta-heuristic
algorithms, it is observed that the maximum number of iterations and also the number
population in the two algorithms is equal to 200. After parameterizing the meta-heuristic
algorithms, a primary chromosome is presented to solve the problem. Therefore, in this
section, two different chromosomes are considered. The first part of the chromosome is
related to the routing of the vehicle between the distribution centers and the customers, and
the second part is related to the optimal location and the allocation of goods between other
levels of the SC. Therefore, in the first part, assuming five customers and three distribution
centers, the primary chromosome is presented according to Figure 9. In this chromosome,
in the first level of the SCN, the substitution of natural numbers is first produced for the
total number of customers.
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Figure 9. Initial solution of the problem.

The next step in the design of the chromosome is to decide which clients will be
assigned to which intermediary warehouses. Therefore, the entire number of clients is
arbitrarily distributed among the total number of distribution centers, and the path that the
vehicle takes is determined by the numbers generated in the first level of the chromosome’s
initial solution. Figure 8 demonstrates how customers are assigned to distribution locations,
and Figure 9 illustrates how chromosomes are used to determine truck routing.

According to Figure 10, it is observed that customers 5 and 3 are allocated to distri-
bution center 1, customer 4 is allocated to distribution center 3, and customers 2 and 1
are allocated to distribution center 2. Moreover, vehicle routing from distribution center
1 is L1→ N5→ N3→ L1 , vehicle routing from distribution center 2 is L3→ N4→ L3 .
The second part of the chromosome discusses the location of the facility as well as the
optimal allocation of flow between the selected facility. Hence another chromosome will be
generated and decoded for each level of the SCN as follows. This encryption is based on a
permutation of natural numbers to the number of nodes in each level of the two levels of
the SCN. Figure 11 shows the priority-based encoding for one of the network levels with
3 major distribution centers and 4 fixed demand centers.
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Encoding (6-1-4-7-3-5-2) that illustrates the priorities (7-4-1-6) for fixed demand centers
and how (2-5-3) is connected to the distributor center is shown in Figure 9. In order to
successfully decode anything, you will need to complete the following two steps:
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Step 1—To begin, the donor with the highest number (priority) from the selected major
distribution centers (priority 5 for the second major distribution center), and if this donor
can meet all of the demands of the customer centers, the priority of the other donation
centers will be reduced to zero. Step 2—If this donor cannot meet all of the demands of
the customer centers, the donor with the next highest number (priority) from the major
distribution centers will. Figure 11 presents an example in which the capacity of the main
distribution center is shown to be two times 950; however, the total demand from the
stationary client centers is shown to be 1300. In this instance, the distribution hub with
the second greatest priority on the list is chosen to be the subsequent main one (priority
3 related to the third major distribution center). Now, the combined total capacity of the
two main distribution centers, which is 1650, is more than the combined total demand of
the client centers (amount 1300). In such a scenario, the priority of just the very first big
distribution center will be lowered all the way to zero.

Step 2: The ideal allocation is established between the main distribution centers
that have been chosen and the demand centers once it has been determined how many
prospective major distribution centers there are and where they are located. In this stage,
the highest priority is selected (priority 7, which is related to the first demand center),
and the lowest transportation cost related to this customer is identified with the major
distribution center that was selected from the first stage (the third donor center at a cost of
15), along with the distribution center’s minimum capacity. The ideal allocation amount
is computed, and it is decided to go to the chosen major and the given consumer. After
increasing the available capacity or satisfying any remaining unmet demand, the priority
will be lowered to zero. The second step is performed several times until the values of all
the priorities have been brought down to zero.

According to the findings for large sample (see Table 10) presented in Tables 11–13,
it has been observed that the value of the first OBF all the way up to the third OBF has
increased as the size of the problem has grown. This is because the number of customers
has grown and estimates of their demand have been made. Moreover, as the size of the
issue has grown, the amount of time required to solve the problem has risen exponentially,
which is an indication of the rigidity of the model that has been provided. It has also
been noticed that in terms of algorithm performance, NSGA II has a better average of
the second and third OBFs, maximum spread index (MSI) and spacing metric (SM) index,
when compared to MOPSO. These indices refer to maximum spread index and spacing
metric, respectively. Figure 12 presents a comparison of the results that were achieved
when large-scale numerical cases were solved using two different techniques.

Table 11. Large-size sample problem.

Sample Problem I J K O C R S L P V T

1 10 10 10 10 12 2 2 10 6 6 4
2 10 10 10 10 14 2 2 12 6 6 4
3 10 10 10 10 16 2 2 14 6 6 4
4 12 12 12 12 18 2 3 16 7 8 5
5 12 12 12 12 20 3 3 18 7 8 5
6 12 12 12 12 22 3 3 20 7 8 5
7 15 15 15 15 24 3 4 22 8 9 6
8 15 15 15 15 26 3 4 24 8 9 6
9 15 15 15 15 28 4 4 26 9 10 6
10 20 20 20 20 30 4 4 28 10 12 7
11 20 20 20 20 32 4 4 30 12 14 7
12 20 20 20 20 34 4 5 35 14 15 7
13 30 30 30 30 36 4 5 40 16 18 8
14 30 30 30 30 38 5 5 45 18 20 8
15 30 30 30 30 40 5 5 50 20 20 8
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Table 12. The results of solving the large-size problem by NSGA II.

Sample Problem OBFV1 OBFV2 OBFV3 NPF MSI SM CPU-Time

1 5,171,405.41 2,185,833.07 111.22 78 13,812.22 0.47 49.50
2 5,398,994.99 2,762,386.33 154.71 82 15,289.78 0.35 54.96
3 6,019,488.06 3,177,521.50 172.35 78 13,967.83 0.49 72.67
4 6,423,286.41 4,097,302.32 181.45 86 25,449.48 0.70 127.99
5 6,538,955.89 4,479,863.43 241.63 99 21,730.77 0.53 211.19
6 6,785,707.08 5,184,306.28 281.41 83 25,579.07 0.35 293.14
7 7,158,871.09 5,171,757.20 307.80 90 11,585.14 0.45 417.93
8 7,510,548.53 5,866,537.72 332.89 84 19,542.07 0.58 531.23
9 8,203,753.18 6,163,001.94 357.24 87 13,608.73 0.41 651.28

10 8,752,921.66 7,404,421.13 382.46 82 24,953.18 0.50 800.82
11 9,632,491.97 7,679,581.39 418.87 89 15,643.39 0.45 946.15
12 9,964,265.20 7,753,593.48 430.39 93 20,804.43 0.33 1090.87
13 10,331,524.82 8,802,996.24 459.11 100 16,704.49 0.48 1288.36
14 10,898,039.49 9,128,745.36 481.50 88 17,739.98 0.32 1484.07
15 11,591,974.13 10,023,438.99 498.64 100 12,786.59 0.38 1741.28

Mean 8,025,481.86 5,992,085.76 320.78 87.93 17,946.48 0.45 650.76

Table 13. The results of solving the large-size problem by MOPSO.

Sample Problem OBFV1 OBFV2 OBFV3 NPF MSI SM CPU-Time

1 4,848,705.20 2,246,354.07 112.48 87 13,893.62 0.11 36.12
2 5,105,061.04 2,774,160.60 156.37 87 15,360.07 0.84 40.26
3 6,154,917.34 3,229,399.79 173.93 73 14,187.67 0.06 67.47
4 6,348,347.09 4,077,913.22 184.79 95 24,971.92 0.00 110.46
5 6,186,380.36 4,385,821.23 240.44 93 21,266.31 0.93 192.41
6 6,495,843.04 5,102,888.86 277.56 96 24,068.86 0.64 259.46
7 7,013,609.31 5,301,333.88 315.55 76 11,096.09 0.84 378.08
8 7,469,621.09 6,087,316.25 346.42 90 19,320.87 0.20 484.95
9 8,055,298.63 6,615,262.62 371.42 97 13,565.07 0.99 599.87

10 8,759,362.34 7,444,580.76 396.65 96 23,552.83 0.81 702.82
11 9,823,948.57 8,024,997.44 416.51 78 15,517.71 0.81 828.01
12 9,709,571.06 8,182,310.00 435.42 96 21,184.23 0.80 953.14
13 9,828,373.25 8,925,208.72 457.80 99 15,826.70 0.47 1093.42
14 10,171,326.13 9,752,619.14 480.31 83 17,106.66 0.58 1298.98
15 11,678,009.44 9,990,665.72 502.79 95 12,995.98 0.86 1565.99

Mean 7,843,224.93 6,142,722.15 324.56 89.40 17,594.31 0.60 574.10
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According to the diagram in Figure 12, it can be seen that as the size of the problem
increases, the computational time increases exponentially, which is proof that the problem
is NP-Hard. Moreover, with increasing the computational time, the mean of the OBFs has
increased and the most significant increase has been in the changes of periods.

Since each of the algorithms has been successful in obtaining a specific index and the
weighted average of the results has been close to each other. Therefore, a t-test at a 95%
confidence level was used to evaluate the significant difference between the mean results.
Table 14 summarizes these results.

Table 14. Results of t-test.

Index Difference of Mean 95% CI for Mean Different T-Value p-Value

OBFV1 182,257 (45,034 319,480) 2.85 0.013
OBFV2 150,636 (30,215 271,057) 2.68 0.018
OBFV3 3.78 (0.42 7.15) 2.41 0.030

NPF 1.47 (−3.43 6.36) 0.64 0.531
MSI 352 (36 668) 2.39 0.031
SM 0.143 (−0.084 0.371) 1.35 0.198

CPU-Time 76.7 (38.7 114.7) 4.33 0.001

According to the results of Table 14 and the value of p-value, it is observed that
there is a significant difference between the means of the OBFs, the maximum expansion
and computational time between the two algorithms, and therefore, it is not possible to
prefer the algorithms to each other. Therefore, using the TOPSIS method, a more efficient
algorithm has been selected (see Table 15).

Table 15. The results of TOPSIS method.

Algorithm OBFV1 OBFV2 OBFV3 NPF MSI SM CPU-Time

NSGA II 8,025,481.86 5,992,085.76 320.78 87.93 17,946.48 0.45 650.76
MOPSO 7,843,224.93 6,142,722.15 324.56 89.40 17,594.31 0.60 574.10
weight 0.2 0.2 0.2 0.1 0.1 0.1 0.1

After the above analysis, the NSGA II with a gain weight of 0.6832 and the MOPSO
with a gain weight of 0.3168, respectively, are recognized as the most efficient algorithm for
solving the problem.

5. Conclusions

The ever-increasing growth of urbanization, as well as industries, particularly support
sectors, has resulted in the movement of both people and things, which has led to an issue
whose complexity is continually growing. The growth of cities has led to an increase in
the demand placed on the transportation sector. This, in turn, has led to an increase in
the number of challenges faced by cities and large industries, including an increase in the
amount of time wasted traveling, an increase in the amount of fuel used and an increase
in the value of vehicles. It is necessary to have a transportation system that is both well-
equipped and efficient in order to alleviate traffic difficulties and the subsequent economic,
social and environmental issues that they cause in big cities, manufacturing enterprises
and service-oriented businesses. The transportation industry is both a substantial and
crucial component of every nation’s economy, as well as one of the most important factors
in determining the final price of completed goods. Because of the significance of product
transfer, this investigation was undertaken to simulate and find a solution to a challenge
posed by a CLSC operating in an unpredictable environment. The researchers took into
account the queuing system, as well as simultaneous delivery and harvesting. In light
of this, the study in question takes into account a seven-tiered SCN, which includes raw
material suppliers, storage facilities (silos), production centers, distribution centers, end
customers, collecting centers and destruction centers. In this scenario, the suppliers of
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raw materials provided to the warehouses the raw materials that are required for the
production of the final goods (silos). At the next level of the SC network (SCN), production
centers take the raw materials that they receive from silos and collection centers and
use those commodities to make finished goods, which are then distributed to customers
through distribution centers. After the items have been sorted into their appropriate
categories, distribution facilities next send them on to clients via the appropriate method
of transportation.

When it comes to the return chain, consumers end up throwing away a certain propor-
tion of the things they purchase after using them. Following the collection and inspection
of the products as well as their transformation into raw materials or scrap, the collection
centers allocate a certain percentage of the products for reproduction to production centers
and a certain percentage of the products for destruction centers. The primary objective
of this network is to reduce overall SCN costs as much as possible. These costs include
location, allocation and routing expenses. In order to address the issue, a simplified model
was developed, and then that model was solved with the use of an all-encompassing multi-
objective decision-making process. The end result was the production of eight effective
solutions. After looking at the output variables of the problem, it was discovered that the
value of the first and second OBFs has increased as the amount of the fine for exceeding
the time window and the amount of greenhouse gas emissions have increased. This was
one of the observations that were made after the examination of the output variables of
the problem. Following that, NSGA II and MOPSO were used since the GAMS program
proved to be ineffective. As a result, 15 different sample issues were devised and tested on
bigger scales.

When the magnitude of the issue expanded, the amount of time needed to solve
it also climbed exponentially. Therefore, the issue at hand is one that falls within the
NP-Hard category of problems. The conclusion that could be drawn from the findings
of the study that compared the two algorithms was that the NSGA II is more effective at
finding solutions to problems. The findings that were acquired from the presentation of the
mathematical model in this article may be of assistance to managers in cutting expenses
and lowering the amount of dispersion that is brought about by the SC of manufacturing
units. Within this model, a variety of efficient solutions have been presented, and as a
result, managers may be able to improve their decision-making abilities, both in terms
of the choices they make at the strategic and tactical levels. Additionally, the fact that
the mathematical model has an uncertainty rate is of great assistance to the managers of
production units in predicting the costs that are likely to be incurred on the SC under the
most pessimistic and optimistic scenarios. It is proposed as a future study that the OBF of
dependability in the distribution of goods to consumers and the problem of resilience in
the CLSC network be both studied. Additionally, it is advised that the issue of resilience in
the CLSC network be considered. Additionally, the optimization of one’s capacity to fulfill
one’s societal duties has to be included in the mathematical model as well. In order to speed
up the process of issue-solving, it has also been recommended that hybrid meta-heuristic
algorithms be developed.
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