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Abstract: Background: Due to the growing demand for energy and environmental issues related
to using fossil fuels, it is becoming tremendously important to find alternative energy sources.
Bioethanol produced from switchgrass is considered as one of the best alternatives to fossil fuels.
Methods: This study develops a two-stage supply chain modeling approach that first determines
feasible locations for constructing switchgrass-based biorefineries in the state of North Dakota
by using Geographic Information Systems (GIS) analysis. In the second stage, the profit of the
corresponding switchgrass-based bioethanol supply chain is maximized by developing a mixed-
integer linear program that aims to commercialize the bioethanol production while impacts of
energy use and carbon emission costs on the supply chain decisions and siting of biorefineries
are included. Results: The numerical results show that carbon emissions and energy consumption
penalties affect optimal biorefinery selections and supply chain decisions. Conclusions: We conclude
that there is no need to penalize both emissions and energy use simultaneously to achieve desirable
environmental benefits, otherwise, the supply chain becomes non-profitable. Moreover, imposing
emissions or energy consumption penalties makes the optimization model closer to supply sources
while having higher land rental costs. Such policies would promote sustainable second-generation
biomass production, thus decreasing reliance on fossil fuels.

Keywords: biomass supply chain; optimization; GIS; emissions; energy use

1. Introduction

The transportation sector’s reliance on nonrenewable fuel sources, as well as the
severe social and environmental implications, raised research motives in the field of bio-
fuel production [1–3]. Biofuels, such as bioethanol, are made from renewable biomass
feedstocks, such as energy crops, forest wastes, and agricultural residues. Because of
their tremendous potential to reduce environmental pollution, biofuels were regarded as
promising alternatives to fossil-based fuels for the sustainable development of the global
economy [4]. Biofuels rely heavily on biomass feedstock, a dispersed resource whose
availability depends on geographical location. However, due to their lower carbon emis-
sion generation compared to fossil-based fuels, they are considered important sources of
renewable energy [5].
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As a type of biofuel, bioethanol can be used as a fuel in various percentages when blended
with gasoline [6]. Over the past decade, there was a significant increase in the production of
first-generation bioethanol from food crops such as corn. However, the growing production
raised serious concerns regarding the shortage of corn-based foods [7]. Thus, researchers
and practitioners recently considered producing bioethanol from second-generation biomass
(especially lignocellulosic biomass), such as switchgrass. Switchgrass is known as one of the
most promising resources to produce second-generation bioethanol [8,9]. With its high yields,
low soil erosion, low incidence of pests and diseases, and low water and nutrient require-
ments, switchgrass has great potential for bioethanol production in different geographical
regions (marginal lands) [2]; hence, its cultivation creates new jobs in locations where there is
insufficient fertile soil for agricultural production [9,10].

The United States enacted several legislations to encourage the production of second-
generation bioethanol and to cap production of first-generation bioethanol from corn
starch [11]. According to the Renewable Fuel Standard (RFS), 36 billion gallons of biofuels
must be produced annually, while only 15 billion gallons can be produced from corn
starch. Of the remaining 21 billion gallons per year (BGPY), cellulosic bioethanol should
account for at least 16 BGPY [7]. With the second-generation bioethanol being essential, it
is crucial to make its production profitable. In addition to economic benefits, maximizing
environmental performance, such as reducing energy consumption and emission levels,
is becoming increasingly important [12,13]. Therefore, it is necessary to balance activities
across a bioethanol supply chain to maximize its profit while minimizing environmental
and energy costs. The biofuel supply chain network design approach provided solutions to
the analytical needs mentioned above.

In a comprehensive review, Ghaderi et al. [14] concludes that the literature focuses pri-
marily on processing and manufacturing sites, whereas new research is needed to consider
all the echelons of the supply chain, as well as the interactions between them. As biomass
feedstocks are widely dispersed and low density, transporting them will be costly, which
will complicate the design of biofuel supply chains. To ensure the sustainability of a biofuel
supply chain, it is imperative that biorefineries are located within a reasonable distance of
both their supply and demand nodes. There were several studies conducted to determine
optimal designs of the biofuel supply chain networks. Babazadeh et al. [15] developed a
model for designing a biodiesel supply chain, which determined the optimal numbers, loca-
tions, and capacities of production facilities, as well as transportation modes, technologies,
and production plans. Ebrahimi et al. [16] developed a supply chain network to produce
renewable jet fuel in Alabama, Florida, and Georgia. The optimal locations for setting
up biorefineries were found while maximizing supply chain profits. The optimization of
biofuel supply chains with consideration of economic, energy, and environmental aspects,
emerged as a more holistic approach to designing biofuel supply chain networks, as it can
assist decision makers in developing sustainable biofuel supply chains that meet multiple
objectives [4]. By including emissions costs in their model, Haji Esmaeili et al. [17] designed
a supply chain network to find optimal locations for biorefineries in North Dakota. Their
results indicate that switchgrass is an economically and environmentally better alternative
to corn stover for the production of bioethanol. Ghaderi et al. [6] proposed a multi-objective
robust possibilistic programming model for designing a sustainable switchgrass-based
bioethanol supply chain (SBSC) network under epistemic uncertainties, while considering
environmental and social life cycle analyses. However, only a few studies examined energy
consumption and CO2e emissions simultaneously in designing a biofuel supply chain.
Gonela et al. [18] proposed stochastic mixed-integer linear programing (MILP) to design
a hybrid generation bioethanol supply chain that maximized supply chain profit while
considering greenhouse gas (GHG) emissions, irrigation, land-use restrictions, and energy
efficiency in their model. Additionally, Ren et al. [4] developed a life cycle energy and
emissions optimization model for designing a biofuel supply chain without considering
logistics expenses. Using multiple feedstock models, they examined the optimal amount of
energy and carbon emissions from a first-generation biomass feedstock. However, these
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studies did not conduct sensitivity analysis for energy use and emission penalties to in-
vestigate how these two environmental factors could affect the location of biorefineries.
The economic and environmental aspects of biofuel supply chain networks were only
superficially explored in many regional and local studies. However, policy makers and
planners need site-specific studies to assist with local and regional planning [19].

To facilitate access to farmers, work force, and biomass feedstocks, biofuel producers
often build biorefineries near supply zones, highways, railroads, and large cities, maximiz-
ing environmental and social advantages [1,20]. As a result, locating biorefineries based
only on economic criteria, such as minimizing transportation costs, would fail to meet the
environmental and social advantages of biofuel production [20,21]. There are few studies
on the biofuel supply chain network design that determined the suitability of the potential
locations to establish biorefineries using GIS analysis [19]. In an analysis of the biofuel
supply chain network design, Zhang et al. [1] utilized GIS in conjunction with optimization
models to design a biofuel supply chain network and minimize the total system costs.
Similarly, Sanchez-Garca et al. [22] used a GIS optimization model to identify the optimal
site for a wood-fired power plant, which minimized supply chain costs and greenhouse
gas emissions.

To overcome the aforementioned research gaps, this study employs a two-stage
decision-making approach to design a SBSC network in the state of North Dakota. The
following are the contributions of this research to the literature:

• Locating potential biorefineries using GIS.

- Several studies simplified the identification of potential biorefineries by selecting
only centroids, city gates, etc., whereas very few studies used Geographic Infor-
mation Systems to specify potential locations more realistically. Employing GIS
analysis, we considered geographical factors, such as distances from major cities,
biomass feedstock suppliers, water sources, highways, and railroads, to locate
potential biorefineries.

• Developing a MILP model to maximize the profit while considering the impacts of
energy use and carbon emissions throughout the supply chain.

- Our model is significant in considering the joint impacts of carbon emissions and
energy consumption on the design of a biofuel supply chain.

• Providing a detailed analysis of how penalties associated with carbon emissions and
energy consumption in the supply chain could impact its design and profitability.

- Few studies were conducted that provide detailed supply chain planning and
design scenarios based on the penalties set for carbon emissions and energy
consumption within biofuel supply chains. In this study, we show how differ-
ent penalties for energy consumption and carbon emissions can affect location
allocation of biorefineries and supply chain planning.

2. Materials and Methods
2.1. Problem Statement

This study aims to design a sustainable SBSC network by developing a two-stage
modeling approach. In the first stage, we determine a group of feasible (suitable) locations
for biorefineries, and in the second stage, we design a supply chain that can maximize
profits and determine optimal biorefinery locations. The SBSC network includes three major
parts: biomass supply zones (suppliers), bioethanol plants (biorefineries), and in-state and
out-of-state demand zones. The SBSC network and its associated activities within each part
are shown in Figure 1. The biomass feedstock (switchgrass) flows from the suppliers to the
bioethanol plants (biorefineries) by truck. Then the bioethanol produced in plants either
goes to in-state demand zones by truck or to out-of-state demand zones by rail.
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This study examines the SBSC in the state of North Dakota as a case study. The
environmental, temperature, and soil conditions in the Northern Great Plains of the United
States, where North Dakota is located, are suitable for growing commercial switchgrass [2].
Biomass supply zones comprise the first echelon of the SBSC network flow where marginal
lands are located. Marginal lands almost exist in all 53 counties of North Dakota; thus,
switchgrass can be cultivated all over the state. These counties were divided into nine
agricultural statistical districts (ASDs), including NW, NC, NE, WC, Central, EC, SW,
SC, and SE serving as switchgrass suppliers in the design of the SBSC network [16,17].
Figure 2 shows the switchgrass supply zones and North Dakota infrastructure considered
for designating possible bioethanol plants. This figure shows highly populated cities, lakes,
rivers, roads, railroads, and ASDs colored according to their potential for switchgrass
cultivation. The shapefiles used to create the GIS map was extracted from the United States
Census Bureau [23].

The capacity of switchgrass-based biorefineries was set at 150 million gallons per year
(MGPY), which is the maximum capacity for commercialized cellulosic biorefineries [24].
Moreover, Table 1 shows the total marginal lands available for switchgrass cultivation
in the ASDs along with their rental costs. According to the United States Department
of Agriculture (USDA), cropland, pastureland, and marginal land accounted for 69.1%,
26.1%, and 4.8% of the 15.89 million hectares of total farmland under cultivation in North
Dakota [25]. This study focuses only on the marginal land for switchgrass cultivation which
totals around 0.76 million hectares. Considering marginal lands for switchgrass cultivation
avoids competition for lands used for food and feed crops. Since marginal lands were not
used previously, there is no documented marginal land rental cost; therefore, we used the
pastureland rental cost for each supply zone as the cost for renting marginal land.
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Table 1. Biomass feedstocks availability and marginal land rental cost.

Agricultural Statistical District (ASD) Available Land for Switchgrass Cultivation (ha) [25] Marginal Land Rental Cost (USD/ha) [25]

SE 76,229 USD 67.95
EC 74,394 USD 49.42
NE 195,229 USD 40.77
SC 65,442 USD 45.71

CENTRAL 84,683 USD 49.42
NC 88,533 USD 39.54
SW 45,013 USD 35.83
WC 75,253 USD 34.59
NW 102,370 USD 24.71

The bioethanol produced in North Dakota is sold to fulfill both in-state and out-of-state
demands in the United States. According to our conversations with bioethanol experts
in ND, there are six in-state demand zones, including Fargo, Grand Forks, Jamestown,
Bismarck, Dickinson, and Minot, which have fuel racks where bioethanol is blended with
gasoline. Additionally, there are four out-of-state demand zones, including Houston (TX),
Los Angeles (CA), Portland (OR), and Seattle (WA), for the bioethanol produced by biore-
fineries located in North Dakota. Our case study becomes more realistic by considering
out-of-state demand zones, allowing policymakers to depend on the corresponding conclu-
sions. The majority (90%) of North Dakota’s bioethanol production is transported by rail to
other states, with only 10% of it being sold locally (transported by truck) [26]. Accordingly,
the demand associated with each demand zone is assigned in proportion to its population.
The in-state and out-of-state demand zones are shown in Figure 3.
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2.2. Methodology

This section explains the two-stage modeling approach developed to design an SBSC
network. In the first stage, GIS analytics uses the topography and geographical factors in
North Dakota to determine the feasible locations for building biorefineries. These factors
were highlighted in earlier literature on the selection of appropriate sites for establishing
biorefineries [1,27]. The factors are presented in the following:

1. Locations within one mile of a state or federal road transport infrastructure;
2. Locations within one mile of a rail transportation network;
3. Areas near towns or cities having a population of at least 2000;
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4. Areas within a quarter-mile and one mile of a waterbody (rivers, lakes, etc.);
5. Locations with rich supplies of switchgrass biomass.

These geographical factors are the main drivers in finding potential locations for
building biorefineries as they enhance long term social, environmental, and human resource
benefits for the stakeholders [1,27]. For instance, it is essential to locate biorefineries
at locations where both rail and road are available for facilitating the transportation of
switchgrass and the distribution of bioethanol. A large population is also crucial to assure
the labor availability for facilities. Locations close to a waterbody are also preferable for
biorefineries to minimize variable operating costs [27]. Furthermore, locations adjacent to
supply zones with abundant supplies of switchgrass are preferred to reduce transportation
costs, emissions, and energy consumption [28].

The results from the GIS analysis are used in the second stage of the decision-making
approach in which we use a MILP model that maximizes the profit of the SBSC network. In
the model, the number of biorefineries is considered a binary variable, while other variables
are considered continuous. The objective function of the optimization model includes
revenues from bioethanol and switchgrass-based bioethanol co-product (which is called
lignin pallet) sales; cultivation and harvesting costs of switchgrass, transportation expenses
due to shipping switchgrass to biorefineries and shipping bioethanol to demand zones,
production and construction costs of bioethanol plants, and finally, penalties associated with
energy consumption and carbon emissions of the supply chain activities. The optimization
model determines the optimal biorefinery locations from the potential locations provided by
the GIS analysis, while minimizing transportation costs, energy consumption, and carbon
emissions. Accordingly, the model assigns the optimal supplier(s) and demand zone(s) to
each biorefinery. It should be noted that the effects of both economic and environmental
factors on supply chain decisions will be considered simultaneously.

For the proposed model, we make the following assumptions: (1) the bioethanol
producers are responsible for switchgrass procurement (acquisition) including renting
marginal lands, the cultivation and harvesting process, and shipment of switchgrass [17];
(2) the bioethanol producers are also responsible for bioethanol transport but not for
switchgrass-based bioethanol co-product [17]; and (3) all the bioethanol produced to meet
a specific demand level are sold to the demand nodes [16,17,28].

The notations, parameters, and decision variables of the optimization model are
presented in Table 2 and the input parameters are shown in Table A1 in Appendix A.

The objective function used in this study to address decisions is as follows:
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Table 2. Sets, decision variables, and parameters for the models.

Notation

Indices/Sets
λ Mean yield rate of switchgrass (tons/ha)
v Cultivation cost of switchgrass (USD/ha)

I Set of suppliers, indexed by i h Harvesting cost of (square bale) switchgrass (USD/ha)
K Set of biorefineries, indexed by k ri Marginal land rental cost at supply zone i (USD/ha)
E Set of in-state demand zones, indexed by e ai Available marginal land at supply zone i (has)
R Set of out-of-state demand zones, indexed by r θ Bioethanol conversion rate from switchgrass (gallons/ton)

Decision variables 6 Bioethanol co-product conversion rate at biorefineries
(tons/gallon)

Yk 1 if a biorefinery is opened at location k; 0 otherwise ACE Emission factor of switchgrass acquisition (kg CO2e/ton)

Qik
Quantity of switchgrass transported from supply area i to

biorefinery k via truck (tons) STE Emission factor of transporting switchgrass via truck (kg
CO2e/ton-mile)

Decision variables Parameters

Xke
Quantity of bioethanol transported from biorefinery k to

in-state demand zone e via truck (gallons) PRE Emission factor of bioethanol production from switchgrass
(kg CO2e /gallon)

Zkr
Quantity of bioethanol transported from biorefinery k to

out-of-state demand zone e via rail (gallons) BTE Emission factor of transporting bioethanol via truck (kg
CO2e/gallon-mile)

CP Quantity of bioethanol co-products produced at
biorefineries (tons) BRE Emission factor of transporting bioethanol via rail (kg

CO2e/gallon-mile)
Parameters ACG Energy consumed during switchgrass acquisition (MJ/ton)

π Bioethanol selling price (USD/gallon) PRG Energy consumed during bioethanol production (MJ/gal)

ϕ Bioethanol co-product selling price (USD/ton) STG Energy consumed during transporting switchgrass via
truck (MJ/ton-mile)

ρ Production cost at biorefineries (USD/gallon) BTG Energy consumed during transporting bioethanol via truck
(MJ/gallon-mile)

γg Transportation fixed cost of switchgrass via truck
(USD/ton) BRG Energy consumed during transporting bioethanol via rail

(MJ/gallon-mile)

ηg Transportation variable cost of switchgrass via truck
(USD/ton-mile) ξ

Carbon tax/Environmental cost factor of emissions
(USD/kg CO2e)

γt Transportation fixed cost of bioethanol via truck
(USD/gallon) ψ Energy cost factor of fossil fuel consumed (USD/MJ)

ηt Transportation variable cost of bioethanol via truck
(USD/gallon-mile) dik Distance from supply zone I to biorefinery k (miles)

γr Transportation fixed cost of bioethanol via rail
(USD/gallon) dke

Distance from biorefinery k to in-state demand zone e
(miles)

ηr Transportation variable cost of bioethanol via rail
(USD/gallon) dkr

Distance from biorefinery k to out-of-state demand zone e
(miles)

f b Annualized fixed capital cost for opening a biorefinery
(USD) DEMe

Annual bioethanol demand level at in-state demand zone e
(gallons)

CAP Capacity of biorefineries (gallons) DEMr
Annual bioethanol demand level at out-of-state demand

zone r (gallons)

The objective function in Equation (1) maximizes profit (revenue–cost) for the SBSC.
The first two elements in the objective function are supply chain revenues coming from two
final products: bioethanol and switchgrass-based bioethanol co-product. Other elements in
the objective function present the cost components of the model, including marginal land
rental cost for switchgrass cultivation, switchgrass cultivation cost, switchgrass harvesting
cost, transportation cost of switchgrass, biorefinery capital cost, biorefinery production cost,
transportation cost of bioethanol via truck to in-state demand zones, transportation cost of
bioethanol via rail to out-of-state demand zones, emissions cost, and energy cost. Supply
chain emissions are penalized with a cost of ξ (carbon tax). The amount of CO2e emitted
due to supply chain activities, such as switchgrass acquisition, bioethanol production,
and switchgrass and bioethanol transportation, are considered as emission sources in the
SBSC. The energy cost factor (ECF) ψ is set as a penalty for the total amount of energy
consumed in the SBSC to reduce energy consumption. Switchgrass acquisition, bioethanol
production, and switchgrass and bioethanol transportation are considered as sources of
energy consumption in the supply chain.

The constraints of the model are shown in Equations (2)–(12):

∑
k∈K

Qik ≤ λ·ai ∀i ∈ I (2)
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θ ∑
i∈I

Qik = ∑
e∈E

Xke + ∑
r∈R

Zkr ∀k ∈ K (3)

6

(
∑
k∈K

∑
e∈E

Xke + ∑
k∈K

∑
r∈R

Zkr

)
= CP (4)

∑
e∈E

Xke + ∑
r∈R

Zkr ≤ CAP·Yk ∀k ∈ K (5)

∑
k∈K

Xke = DEMe ∀e ∈ E (6)

∑
k∈K

Zkr = DEMr ∀r ∈ R (7)

Yk = {0, 1} ∀k ∈ K (8)

CP ≥ 0 (9)

Qik ≥ 0 ∀i ∈ I, ∀k ∈ K (10)

Xke ≥ 0 ∀k ∈ K, ∀e ∈ E (11)

Zkr ≥ 0 ∀k ∈ K, ∀r ∈ R (12)

Constraint (2) forces the amount of switchgrass harvested at area i to be less than or
equal to the maximum switchgrass available to be harvested on marginal lands for each
zone. The material flow constraints for biomass-to-bioethanol are given in Equation (3), and
biomass to bioethanol co-product is specified by Equation (4). Constraint (5) represents the
capacity constraints of bioethanol plants (if activated). Constraint (6) assures that the volume
of bioethanol produced in biorefineries fulfills the demand of in-state demand zones. Likewise,
constraint (7) declares that the volume of bioethanol produced in biorefineries satisfies the
demand from out-of-state demand zones. Finally, constraints (8)–(12) confirm the nature and
non-negativity of variables used in the model. The MILP is solved via OpenSolver 2.9.0 using
the COIN-OR Branch-and-Cut (CBC) optimization engine [29].

3. Results and Discussion
3.1. Location Allocation of Potential Biorefineries with GIS Analysis

The ideal locations to build new bioethanol plants in North Dakota were determined
based on GIS analysis and served as input for the MILP model, which specifies which
facilities should be opened to satisfy the demand. According to GIS analysis, there were four
possible cellulosic biorefinery locations in North Dakota for switchgrass-based bioethanol
production that meet the required criteria for building a new bioethanol plant. According
to Figure 4, these locations are in Ward, Grand Forks, Richland, and Stutsman counties,
which were chosen as biorefinery names accordingly. It was observed that the proposed
biorefineries were distributed among different ASDs.

3.2. Maximizing Profit without Emissions and Energy Consumption Penalties

As discussed previously, we use 150 MGPY as the maximum capacity for a biorefinery.
Therefore, the maximum amount of bioethanol that can be produced across the four
possible sites in North Dakota is 600 MGPY. To examine the effects of demand variation,
we consider four different demand levels (150, 300, 450, and 600 MGPY). This enables us to
analyze how demand levels can affect bioethanol facility selection decisions. As shown
in Figure 5, the contribution of different cost components is almost the same through four
different demand levels. Considering different demand levels while setting the penalties
for emissions and energy use to zero, the biorefinery construction cost has the highest
percentage of cost, followed closely by bioethanol production cost. Two cost elements
contributed 67.2% to the total supply chain cost, suggesting that finding cost-effective
production facilities and technologies for biorefineries has a significant role in reducing
the supply chain costs. Transportation and cultivation costs are also significant, while land
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rental and harvesting costs are the smallest. Overall, the costs increased in an almost linear
fashion as the available capacity increased in the various capacity scenarios.
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The supply chain could attain profits of USD 70.74 million, USD 141.87 million, USD
209.76 million, and USD 273.26 million at 150, 300, 450, and 600 MGPY demand fulfillment
rates. Accordingly, the supply chain could profit USD 0.472, USD 0.473, USD 0.466, and
USD 0.455 per gallon of bioethanol produced at fulfillment rates of 150, 300, 450, and
600 MGPY, respectively. Based on the results, supply chain profit was not significantly
impacted by higher production capacity.
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Table 3 shows the optimal assignment of supply and demand zones to bioethanol
plants. When the annual demand is 150 MGPY, Ward is the first bioethanol plant chosen
by the MILP. The Ward biorefinery is the first location where policymakers and investors
can build a new cellulosic bioethanol plant, which has the lowest logistical costs compared
to other locations identified by GIS analysis. The Ward biorefinery is in the NW district
where it can supply all its required biomass feedstock from switchgrass cultivation lands in
the NW and NC districts. When the demand level increases to 300 MGPY, the Stutsman
biorefinery located in the Central district is selected as the second bioethanol plant to open.
In this scenario, the EC district lands along with Central district lands are rented to fulfill
the required biomass feedstock for the Stutsman biorefinery. In this situation, the Ward
biorefinery tries to meet most of the demand of out-of-state demand zones, including
Los Angeles, Portland, and Seattle, as well as Minot in North Dakota, and the Stutsman
biorefinery seeks to mostly fulfill the in-state demand (all in-state demand zones except
Minot) along with Houston and the remaining bioethanol needed for Los Angeles. When
the demand level is increased to 450 MGPY, the Grand Forks biorefinery is opened in the NE
district by the MILP as the third biorefinery. When the demand level is set to its maximum
(600 MGPY), Richland biorefinery is opened in the SE district as the fourth biorefinery
plant to produce biofuel from switchgrass cultivated in the SE and EC districts. In this
scenario, all four potential biorefineries are opened and assigned their closest supplier and
demand zones. There are three supplier districts, WC, SW, and SC, which are not used in
the optimal solution, as the other six supplier districts can supply enough switchgrass to
produce 600 MGPY bioethanol. This also means the marginal lands in North Dakota have
the potential to produce more switchgrass than biorefineries in North Dakota can process.
Overall, considering different demand levels indicates that the order priority for opening
cellulosic biorefineries in North Dakota is Ward, Stutsman, Grand Forks, and Richland.

Table 3. Optimal assignment of supply zones and demand zones to bioethanol plants disregarding
emissions and energy use penalties.

Demand (MGPY) Supplier District Biorefinery Out-of-State Demand Zone In-State Demand Zone

150

NW, NC Ward All out-of-state demand
zones All in-state demand zones

- Grand Forks - -
- Richland - -
- Stutsman - -

300

NW, NC Ward Los Angeles, Portland, Seattle Minot
- Grand Forks - -
- Richland - -

CENTRAL, EC Stutsman Houston, Los Angeles Fargo, Jamestown, Grand Forks,
Bismarck, Dickinson

450

NW, NC Ward Los Angeles, Portland, Seattle Minot
NE Grand Forks Houston Fargo, Grand Forks

- Richland - -
CENTRAL, EC Stutsman Houston, Los Angeles Jamestown, Bismarck, Dickinson

600

NW, NC Ward Los Angeles, Portland Minot
NE Grand Forks Houston, Los Angeles, Seattle Grand Forks

SE, EC Richland Houston Fargo
CENTRAL, EC Stutsman Los Angeles Jamestown, Bismarck, Dickinson

3.3. The Impact of a Carbon Tax on the Supply Chain

In this section, the emissions penalty is not set to zero in the objective function,
however, the energy use penalty is set to zero. In our model, an emissions cost is incurred
based on carbon emissions from biomass acquisition (such as cultivating, harvesting, and
collecting), transportation from supplier districts to biorefineries, bioethanol production,
and transportation between biorefineries and demand zones. By considering these four
emission sources, our model assesses the effects of carbon emissions generated in the
switchgrass-to-bioethanol process. The environmental cost per unit of CO2e (kg of CO2e) is
imposed as a carbon tax.

To consider the effects of a carbon tax, five different scenarios are considered for the
carbon tax rate in the presence of the four demand level scenarios to better analyze the
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impact of emissions on the supply chain and bioethanol plant siting decisions. In our study,
biorefineries are responsible for paying the penalties to the government for emissions
coming from all activities through the supply chain. The different carbon tax values are
“No Penalty” with a USD 0 carbon tax, “Regular” with a USD 0.1231 carbon tax, which
is based on an estimation of the environmental costs of CO2 emissions [30], “Reaction
Point” with varied carbon tax according to the demand level, which is the minimum carbon
tax for which the supply chain starts to react to the carbon tax and reduce its emissions,
“Profit = $0” with varied carbon tax according to the demand level, which is the minimum
carbon tax for which the total supply chain profit is USD 0, “Another Biorefinery Needed”
with varied carbon tax according to the demand level, which is the minimum carbon tax
for which the supply chain adds another biorefinery.

Table 4 demonstrates the effects of the different carbon tax rates on the total profit and
total carbon emissions of the supply chain. When demand is 150 MGPY, the minimum carbon
tax, which makes the supply chain reduce its emissions, is USD 1.06 per kg CO2e. In this
case, emissions decreased by 2.9% and profit reduced by 6.8%. This means that reducing
emissions through a carbon tax requires a 6.8% economic compensation. Furthermore, the
maximum profit of the supply chain remains positive until a carbon tax of more than USD
1.82 is imposed. In this case, increasing the carbon tax does not reduce the emissions unless a
very high carbon tax (at least USD 70/kg CO2e) is applied for which the model opens another
biorefinery to reduce emissions. In this situation, there will be a reduction in emissions, but
the supply chain is no longer profitable. When demand is 300 or 450 MGPY, the same trends
are seen. The minimum carbon taxes, which result in the supply chain reducing emissions
(“Reaction Point” scenario), are USD 0.22 and USD 0.21 per kg CO2e, respectively, for 300
and 450 MGPY. In these cases, emission reductions are 0.7% and 0.4%, while reductions in
profit are 11.7% and 11.8%, respectively. This indicates that as demand increases, a greater
loss in profit is necessary to reduce emissions. Similarly, the supply chain stops making a
profit if the carbon tax is higher than USD 1.89 and USD 1.79, respectively, when demand
is 300 and 450 MGPY without a decrease in emissions. Clearly, emissions are lower when a
very high carbon tax is imposed, however, with such high carbon taxes, the supply chain does
not make any profit. The carbon taxes that affect the selection of bioethanol plants under the
“Another Biorefinery Needed” scenario are USD 280 and USD 445 for the demand of 300 and
450 MGPY, respectively. When demand is 600 MGPY, there is no decrease in emissions, since
the supply chain is at its maximum capacity and there are no options to reduce emissions. All
in all, the carbon taxes from “Reaction Point” scenarios show the most promise as the supply
chain makes a profit while emissions decrease.

Table 4. Emissions and profit with different demand levels under different carbon taxes
(emissions penalties).

Carbon Tax

No Penalty Regular Reaction Point Profit = USD 0 Another Biorefinery
Needed

Demand
(MGPY) Values USD 0 USD 0.1231 Varied Varied Varied

150
Total profit USD 70,735,060 USD 65,895,171 USD 65,895,171

(carbon tax = USD 1.06)
USD 0

(carbon tax = USD 1.82)
USD (2,487,703,373)

(carbon tax = USD 70)
Emissions a 39,316,733 39,316,733 38,184,906 38,184,906 36,688,217

300
Total profit USD

141,873,566 USD 132,601,966 USD 125,308,674
(carbon tax = USD 0.22)

USD 0
(carbon tax = USD 1.89)

USD (20,799,938,779)
(carbon tax = USD 280)

Emissions 75,317,633 75,317,633 74,791,924 74,791,924 74,431,385

450
Total profit USD

209,761,577 USD 195,291,611 USD 185,076,825
(carbon tax = USD 0.21)

USD 0
(carbon tax = USD 1.79)

USD (51,864,095,228)
(carbon tax = USD 445)

Emissions 117,546,438 117,546,438 117,020,730 117,020,730 116,789,324

600
Total profit USD

273,256,099 USD 253,269,524 - USD 0
(carbon tax = USD 1.68) No more biorefineries

Emissions 162,360,481 162,360,481 No changes 162,360,481 -
a The emissions values are in kg CO2e unit.
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As shown in Table 5, the number of bioethanol plants under different demand sce-
narios is constant until a very high carbon tax (“Another Biorefinery Needed” scenario)
is applied. Even when the supply chain stops making a profit, the emission cost is not
high enough to beat the construction cost of another biorefinery. Under different demand
scenarios, when the carbon tax reaches a very high level (“Another Biorefinery Needed”
scenario), one more biorefinery will be opened. A thought-provoking point of Table 5 is
that with the demand of 150 MGPY, when the carbon tax reaches the “Reaction Point”
(USD 1.09/kg CO2e here), the model chooses the Stutsman biorefinery instead of Ward,
which indicates the importance of demand level, besides carbon tax rate, for selecting
bioethanol plants. On the other hand, from the results of Table 4, we concluded that the
supply chain starts to reduce its emissions when the “Reaction Point” carbon tax scenario
is implemented. The reason for this drop can be found in Table 6. Table 6 shows how
emissions from different sources in the supply chain change for different carbon tax values
with a demand under 300 MGPY. According to Table 6, emissions coming from the biomass
acquisition process and bioethanol production are constant regardless of the carbon tax.
However, emissions coming from the transportation of biomass from suppliers to biore-
fineries and the transportation of bioethanol from biorefineries to demand zones change
as the carbon tax grows. The emissions from transportation are considerably higher than
biomass acquisition and bioethanol production emissions, which confirms the importance
of distances and the amount of product being shipped. Since the amount of switchgrass
and bioethanol is fixed under each demand level to fulfill the production requirement, the
model can only find a better solution by changing the assigned paths in the network.

Table 5. Impact of different carbon taxes on bioethanol plant land allocation decisions.

Carbon Tax

No Penalty Regular Reaction Point Profit = USD 0 Another
Biorefinery Needed

Demand (MGPY) Bioethanol Plant USD 0 USD 0.1231 Varied Varied Varied

150

Ward X X - - X
Grand Forks - - - - -

Richland - - - - -
Stutsman - - X X X

300

Ward X X X X X
Grand Forks - - - - X

Richland - - - - -
Stutsman X X X X X

450

Ward X X X X X
Grand Forks X X X X X

Richland - - - - X
Stutsman X X X X X

600

Ward X X X X X
Grand Forks X X X X X

Richland X X X X X
Stutsman X X X X X

Table 6. Emissions from different sources by carbon tax with a 300 MGPY demand level.

Carbon Tax

No Penalty Regular Reaction Point Profit = USD 0 Another Biorefinery
Needed

Emissions sources USD 0 USD 0.1231 USD 0.22 USD 1.89 USD 280
Biomass acquisition 545 545 545 545 545

Bioethanol production 2400 2400 2400 2400 2400
Transport from supplier to

biorefinery 22,404,399 22,404,399 21,878,691 21,878,691 21,927,586

Transport from biorefinery to
demand zone 52,910,289 52,910,289 52,910,289 52,910,289 52,500,854

Total * 75,317,633 75,317,633 74,791,924 74,791,924 74,431,385
* All emissions are in kg CO2e units.
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As illustrated in Table 6, the emissions drop when a “Reaction Point” carbon tax
(USD 0.22/kg CO2e) is imposed because of a reduction in emissions coming from the
transportation of biomass from suppliers to biorefineries, which means the model chooses
other suppliers with shorter distances to biorefineries regardless of the marginal land rental
cost. When a carbon tax less than the “Reaction Point” carbon tax is imposed, the land
rental cost is highly influential in the selection of supply sources. However, as the carbon
tax increases, the additional cost from transportation emissions becomes more important
and closer supply sources with higher land rental costs, but shorter transportation distances
are chosen. Therefore, the model finds the cheapest supplier based on transportation and
land rental costs.

Analyzing Tables 4–6 together generates important insights, which can help policy-
makers to better address environmental issues and develop more sustainable supply chains.
Considering these tables, we can see how increasing carbon taxes can decrease emissions.
First, the reduction in emissions comes from transportation emissions as supply source
proximity becomes more important than land rental cost. Second, we identify the “Reaction
Point” carbon tax for which the supply chain is still profitable, but emissions are reduced.
Third, we see that a carbon tax, which results in the opening of a new biorefinery, is too
large to be practical in that it will result in an unprofitable supply chain.

3.4. The Impacts of an Energy Consumption Penalty on the Supply Chain

In this section, the energy consumption penalty is not set to zero in the objective
function, however, the emissions penalty is set to zero. The major sources of energy
consumption are the biomass acquisition process, transportation from supplier districts to
biorefineries, bioethanol production, and transportation between biorefineries and demand
zones. By considering these four energy consumers, the MILP accounts for the energy
consumed in the switchgrass-to-bioethanol process. For the purpose of this paper, energy
refers to diesel consumption as a major fuel for transportation modes, production facilities,
and agricultural machinery. The diesel energy impact factor is USD 151.42 Megajoule (MJ)
per gallon, and a diesel price of USD 3.25 per gallon is chosen based on the on-highway
diesel fuel price in the Midwest area of the US at the time of this study, which leads to
an energy cost of USD 0.0215 per MJ of energy [1,31]. This is the “Regular” ECF taken to
quantify energy consumption. However, besides the Regular ECF, we considered other
prices for penalizing energy usage to better analyze the impacts of energy on the proposed
supply chain. The other different scenarios for ECF values are “No penalty”, “Reaction
Point”, “Profit = $0”, and “Another Biorefinery Needed”. These are defined as for the
scenarios used with the carbon tax in Section 3.2. In our work, biorefineries are in charge of
paying the penalties to the government for energy consumed during activities through the
supply chain.

In Tables 7 and 8, along with four different cases for demand levels, we implemented
five scenarios for pricing energy consumption to see how penalties for energy usage can
change supply chain total profit, the total amount of energy consumption, and bioethanol
plant siting decisions. In Table 7, unlike with the emissions penalty, the energy cost has a
great contribution to the supply chain’s biorefinery and demand zone assignment decisions.
In this case, the model starts with Stutsman biorefinery instead of Ward when a penalty
for energy use is considered. Moreover, for all demand levels, the maximum profit of the
supply chain is positive only under “No Penalty” and “Reaction Point” ECF scenarios. The
minimum ECFs, which result in the supply chain reducing energy consumption (“Reaction
Point” scenario), are USD 0.004, USD 0.00014, USD 0.00009, and USD 0.00009 per MJ,
respectively, for 150, 300, 450, and 600 MGPY bioethanol demand. The results of comparing
the maximum profit of the supply chain when there is “No Penalty” for energy consumption
and when “Reaction Point” ECF is implemented express that a desirable level of energy
reduction is achieved with a decrease of 13.9%, 4.4%, 3%, and 3.3% in the economic objective
under 150, 300, 450, and 600 MGPY demand levels, respectively. The ECFs that make the
supply chain stop making a profit under 150, 300, 450, and 600 MGPY demand levels are
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USD 0.0032, USD 0.0033, USD 0.0031, and USD 0.0028 per MJ, respectively. In Table 9, we
show how energy consumption by different consumers changes with different ECFs when
demand is under 300 MGPY. The energy consumed in the transportation of switchgrass
between suppliers and biorefineries is the main source of energy consumption. Imposing a
“Reaction Point” ECF can decrease the amount of energy consumed in transporting both
switchgrass and bioethanol while letting the supply chain make a profit.

Table 7. Energy consumption and profit with different demand levels under different ECFs.

ECF

No Penalty Reaction Point Profit = USD 0 Regular Another
Biorefinery Needed

Demand (MGPY) Values USD 0 Varied Varied USD 0.0215 Varied

150
Total profit USD 70,735,060 USD 60,926,739

(ECF = USD 0.0004)
USD 0

(ECF = USD 0.0032) USD (393,511,221) USD (1,609,483,849)
(ECF = USD 0.078)

Energy (MJ) 24,631,063,008 21,537,344,071 21,537,344,071 21,537,344,071 20,248,379,593

300
Total profit USD 141,873,566

USD 135,653,138
(ECF = USD

0.00014)

USD 0
(ECF = USD 0.0033) USD (795,544,890) USD (3,389,124,545)

(ECF = USD 0.081)

Energy (MJ) 44,489,135,416 43,595,413,313 43,595,413,313 43,595,413,313 42,339,964,254

450
Total profit USD 209,761,577

USD 203,496,958
(ECF = USD

0.00009)

USD 0
(ECF = USD 0.0031) USD (1,266,990,598)

USD
(11,177,593,949)

(ECF = USD 0.1658)
Energy (MJ) 69,611,317,791 69,500,191,601 68,680,553,671 68,680,553,671 68,068,426,986

600
Total profit USD 273,256,099

USD 264,158,559
(ECF = USD

0.00009)

USD 0
(ECF = USD 0.0028) USD (1,896,993,394) No more

biorefineries

Energy (MJ) 101,089,408,308 100,941,239,825 100,941,239,825 100,941,239,825 -

Table 8. Impact of different energy cost factors on bioethanol plant land allocation decisions.

ECF

No Penalty Reaction Point Profit = USD 0 Regular Another
Biorefinery Needed

Demand (MGPY) Bioethanol Plant USD 0 Varied Varied USD 0.0215 Varied

150

Ward X - - - X
Grand Forks - - - - -

Richland - - - - -
Stutsman - X X X X

300

Ward X X X X X
Grand Forks - - - - X

Richland - - - - -
Stutsman X X X X X

450

Ward X X X X X
Grand Forks X X X X X

Richland - - - - X
Stutsman X X X X X

600

Ward X X X X X
Grand Forks X X X X X

Richland X X X X X
Stutsman X X X X X

Table 9. Energy consumers reaction to different ECFs values at 300 MGPY demand level *.

ECF

No Penalty Reaction Point Profit = USD 0 Regular Another Biorefinery
Needed

Energy consumers USD 0 USD 0.00014 USD 0.0033 USD 0.0215 USD 0.081
Biomass acquisition 831,235,619 831,235,619 831,235,619 831,235,619 831,235,619

Bioethanol production 4,145,999,997 4,145,999,997 4,145,999,997 4,145,999,997 4,145,999,997
Transport from supplier

to biorefinery 34,930,956,349 34,111,318,419 34,111,318,419 34,111,318,419 34,278,618,010

Transport from
biorefinery to demand

zone
4,580,943,452 4,506,859,278 4,506,859,278 4,506,859,278 3,084,110,629

Total 44,489,135,416 43,595,413,313 43,595,413,313 43,595,413,313 42,339,964,254

* All energy values are in MJ units.
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Key results for the ECF are similar to for the emissions penalty with reductions coming
in energy consumption resulting from the trade-off between land rental cost and the ECF
penalty, the reaction points were identified which reduce energy consumption but allow
for a profitable supply chain, and a large enough ECF to result in opening a new plant also
resulting in an unprofitable supply chain. One difference in the results for the ECF and the
emissions penalty is that the Regular scenario for the ECF was unprofitable and reduced
energy consumption but the Regular scenario for the emissions penalty was profitable and
did not reduce emissions.

3.5. Analysis with Both Emissions and Energy Consumption Penalties

Addressing environmental and energy issues besides economic objectives would help
our model to meet some aspects of sustainability. In order to see how imposing penalties
simultaneously on both emissions and energy consumption affects the proposed supply
chain, we considered the demand of 300 MGPY for further analysis, as shown in Tables 10
and 11. None of the “No Penalty”, “Regular”, “Reaction Point”, and “Profit = $0” scenarios
affect bioethanol plant siting decisions with a demand of 300 MGPY. This shows that when
demand is low (e.g., 150 MGPY in our study), the emissions and energy consumption
penalties have high impacts on biorefinery siting, while if the demand is high enough
(e.g., more than 150 MGPY in our study), increasing the price of emissions and energy
use penalties does not influence biorefinery siting decisions until a very high penalty is
considered for one or both. In other words, the transportation costs incurred to the supply
chain regarding transporting biomass from farms to the established biorefineries and from
the biorefineries to the demand nodes is not large enough to make the supply chain find
other locations in the area to minimize the costs.

Table 10. Impact of different ECFs and carbon taxes on bioethanol plant land allocation at 300 MGPY
demand level.

Carbon Tax (USD/kg CO2e)

No Penalty Regular Reaction Point Profit = USD 0 Another
Biorefinery Needed

ECF (USD/MJ) Bioethanol Plant USD 0 USD 0.1231 USD 0.22 USD 1.89 USD 280

No Penalty
USD 0

Ward X X X X X
Grand Forks - - - - X

Richland - - - - -
Stutsman X X X X X

Reaction Point
USD 0.00014

Ward X X X X X
Grand Forks - - - - X

Richland - - - - -
Stutsman X X X X X

Profit = USD 0
USD 0.0033

Ward X X X X X
Grand Forks - - - - X

Richland - - - - -
Stutsman X X X X X

Regular
USD 0.0215

Ward X X X X X
Grand Forks - - - - X

Richland - - - - -
Stutsman X X X X X

Another Biorefinery
Needed

USD 0.081

Ward X X X X X
Grand Forks X X X X X

Richland - - - - -
Stutsman X X X X X
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Table 11. Impact of different ECFs and carbon taxes on the total supply chain’s profit, energy, and
emissions at the 300 MGPY demand level.

Carbon Tax

No Penalty Regular Reaction Point Profit = $0 b Another
Biorefinery Needed

ECF Values USD 0 USD 0.1231 USD 0.22 USD 1.89 USD 280

No Penalty
USD 0

Profit (USD) 141,873,566 132,601,966 125,308,674 0 (20,799,938,779)
Emissions c

(USD/kg CO2e) 75,317,633 75,317,633 74,791,924 74,791,924 74,431,385

Energy d (MJ) 44,489,135,416 44,489,135,416 43,669,497,445 43,669,497,445 42,595,469,330

Reaction Point
USD 0.00014

Profit 135,653,138 126,445,922 119,198,325 (5,707,569) (3,959,758)
Emissions (USD/kg

CO2e) 74,794,603 74,794,603 74,794,603 74,791,924 74,431,385

Energy (MJ) 43,595,413,313 43,595,413,313 43,595,413,313 43,669,497,445 42,595,469,330

Profit = $0 a

USD 0.0033

Profit 0 (11,315,584) (18,563,181) (143,470,169) (20,940,503,828)
Emissions (USD/kg

CO2e) 74,794,603 74,794,603 74,794,603 74,794,603 74,431,385

Energy (MJ) 43,595,413,313 43,595,413,313 43,595,413,313 43,595,413,313 42,595,469,330

Regular
USD 0.0215

Profit (795,544,890) (804,752,106) (811,999,703) (936,906,691) (21,714,905,113)
Emissions (USD/kg

CO2e) 74,794,603 74,794,603 74,794,603 74,794,603 74,434,064

Energy (MJ) 43,595,413,313 43,595,413,313 43,595,413,313 43,595,413,313 42,521,385,198

Another Biorefinery
Needed

USD 0.081

Profit (3,389,124,545) (3,398,312,054) (3,405,544,139) (3,530,183,780) (24,244,927,532)
Emissions (USD/kg

CO2e) 74,634,515 74,634,515 74,634,515 74,634,515 74,434,064

Energy (MJ) 42,339,964,254 42,339,964,254 42,339,964,254 42,339,964,254 42,521,385,198
a The ECF that makes the supply chain stop from making a profit when the emission penalty is zero; b the emission
penalty that makes the supply chain stop from making a profit when the ECF is zero; and c the emissions are in kg
CO2e units d the energy is in the MJ units.

Table 11 shows the impact of different ECFs and carbon taxes on supply chain profit,
energy use, and emissions with a demand of 300 MGPY. According to this table and
comparing the results from applying different carbon tax and energy scenarios with results
from the base case with no policies applied, the lowest possible emissions (74,431,385 kg
CO2e) occurs when “Another Biorefinery Needed” carbon tax is imposed, and the lowest
energy consumption also occurs (42,339,964,254 MJ) when “Another Biorefinery Needed”
ECF is applied. However, in these two cases, the supply chain is not profitable. There
are two cases when the supply chain is profitable while penalizing emissions or energy
consumption to achieve environmental benefits: (1) when there is no penalty for energy
use but “Reaction Point” carbon tax for emissions; and (2) when there is no penalty for
emissions but “Reaction Point” ECF for energy use. In the former policy, the “Reaction
Point” carbon tax reduces emissions and energy use by 0.7% and 1.8%, respectively, while
there is 11.7% reduction in profit. In the latter policy, the “Reaction Point” ECF decreases
emissions and energy use by 0.7% and 2%, respectively, while there is a 4.4% reduction
in profit. This means the best policy would be just to consider the “Reaction Point” ECF
for energy consumption (USD 0.00014/MJ under 300 MGPY demand) since less economic
compensation is required to achieve comparable environmental benefits compared to using
a carbon tax. It should also be mentioned that the supply chain could become profitable
applying other combinations of carbon tax and ECF policies, such as a combination of
“Reaction Point” carbon tax and “Reaction point ECF”, and a combination of “Regular”
carbon tax and “Reaction Point” ECF.

4. Conclusions

This research developed a two-stage modeling approach to investigate the economic
and environmental factors of a switchgrass-to-bioethanol supply chain in the state of North
Dakota. In the first stage, the potential locations of bioethanol plants were determined
according to some geographical aspects. In the second stage, a MILP model was created.
This optimization model aims to maximize the profit of the supply chain by determining
the optimal locations of the bioethanol plant, and the optimal assignment of suppliers
and demand zones for each plant, such that transportation, carbon emissions, and energy
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consumption costs are minimized. Our study considers both in-state and out-of-state
demand zones in North Dakota. The effects of different carbon tax rates, energy cost factors
and bioethanol demand levels on the supply chain decisions (i.e., plant locations) were
evaluated. According to the GIS analysis, four potential locations were chosen to build new
cellulosic (switchgrass-based) bioethanol plants in North Dakota, which served as inputs
for the optimization model.

With nearly 67% of the total cost coming from bioethanol production and biorefinery
construction, improving the technologies to produce bioethanol in more cost-effective
and highly productive manufacturing facilities is likely to significantly reduce the costs.
Transportation costs also accounted for a high percentage (nearly 15%). As electric heavy
trucks are expected to be used in the future, the costs associated with transportation in
the supply chain are expected to decrease, which ultimately improves sustainability of the
supply chains.

The results of the optimization model show that by setting the “Reaction Point” sce-
nario for the carbon tax or ECF (scenarios with the minimum carbon tax or ECF which
the supply chain starts to react), the supply chain starts reducing its emissions and en-
ergy consumption. The “Reaction Point” carbon taxes are USD 1.06, USD 0.22, and USD
0.21 per kg CO2e, and the “Reaction Point” ECFs are USD 0.004, USD 0.00014, and USD
0.00009 per MJ, respectively, for 150, 300, and 450 MGPY bioethanol demand levels. When
the demand is 600 MGPY, there is no decrease in emissions since the supply chain is at
its maximum capacity and there are no options to reduce emissions, however, setting a
USD 0.00009 per MJ penalty for energy consumption would result in the supply chain
reducing energy consumption. If the demand is high enough (more than 150 MGPY in our
study), the carbon tax or ECF does not have any effect on bioethanol siting decisions until a
very high carbon tax, which results in negative profit, is imposed. Moreover, the results
of this study illustrate that biomass transportation from suppliers to biorefineries and the
transportation of bioethanol from biorefineries to demand zones are the important factors
that control emissions and energy consumption for the supply chain. Another important
point from the results is that when a carbon tax less than the “Reaction Point” scenario
is set, the model assigns a supply location with a cheaper land rental cost regardless of
whether it is the closest to a biorefinery. However, if a “Reaction Point” carbon tax or ECF is
applied, the model selects the supplier with the shortest path regardless of the land rental
cost. Finally, considering both ECF and carbon tax simultaneously as the factors to control
the emissions and energy use was also investigated. In this study, we provided practical
management implications for governments and agencies seeking to design an optimal and
sustainable biofuel supply chain. Our findings conclude that from a sustainability point of
view, there is no need to penalize both emissions and energy use to get desirable environ-
mental improvements. The best sustainable solution will be achieved when a “Reaction
Point” ECF is set to penalize consumed energy. Under this scenario, emissions and energy
use are decreased by 0.7% and 2%, respectively, while there is a 4.4% reduction in profit.

As future research, this study can be extended by considering other species of second-
generation biomass feedstock rather than switchgrass while evaluating a bioethanol supply
chain. Moreover, different types of biomass can be considered simultaneously to determine
the most economical and sustainable approach to produce bioethanol. Future work can also
emphasize incorporating the impacts of uncertainties, risks, or disruptions in the biomass
bioethanol supply chain and bioethanol plant siting decisions.
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Appendix A. Input Parameters

The distances between supply zones, biorefineries, and demand zones (dik, dke, dkr)
are available as an Excel file upon request.

Table A1. Values of input parameters.

Parameter and Value a Description Source

π = 2.21 Bioethanol selling price (USD/gal) [32]
ρ = 0.9 Production cost of bioethanol at biorefinery (USD/gallon) [2]
γs = 6 Transportation fixed cost of switchgrass via truck (USD/ton) [8]

ηs = 0.08 Transportation variable cost of switchgrass via truck
(USD/ton-mile) [8]

γt = 0.01159 Transportation fixed cost of bioethanol via truck (USD/gallon) [33]

ηt = 0.00024 Transportation variable cost of bioethanol via truck
(USD/gallon-mile) [33]

γr = 0.06183 Transportation fixed cost of bioethanol via rail (USD/gallon) [34]

ηr = 0.000069 Transportation variable cost of bioethanol via rail
(USD/gallon-mile) [34]

θ = 82.63 Bioethanol conversion rate from switchgrass (gallons/ton) [2]
6 = 0.0085 Bioethanol co-product conversion rate (ton/gallon) [18]

ϕ = 134 Bioethanol co-product selling price (USD/ton) Assumption
CAP = 150,000,000 Capacity of biorefineries (gallons) [24]

f b = USD 101,145,437 Annualized fixed capital cost for opening a biorefinery (USD) [35] (estimate)
ACE = 0.00015 Emission factor of switchgrass acquisition (kg CO2e/ton) [36] (estimate)

STE = 0.1103 Emission factor of transporting switchgrass via truck (kg
CO2e/ton-mile) [36] (estimate)

PRE = 0.000008 Emission factor of producing bioethanol from switchgrass (kg
CO2e/gallon) [18] (estimate)

BTE = 0.0005624 Emission factor of transporting bioethanol via truck (kg
CO2e/gallon-mile) [37] (estimate)

BRE = 0.0001135 Emission factor of transporting bioethanol via rail (kg
CO2e/gallon-mile) [37] (estimate)

λ = 16.32 Mean yield rate of switchgrass (ton/ha) [2] (estimate)
v = 395 Cultivation cost of switchgrass (USD/ha) [2]
h = 27.9 Harvesting cost of (square bale) switchgrass (USD/ha) [38]

ACG = 228.95 Energy consumed during switchgrass acquisition (MJ/ton) [39] (estimate)

STG = 171.97 Energy consumed during transporting switchgrass via truck
(MJ/ton-mile) [39] (estimate)

PRG = 13.82 Energy consumed during bioethanol production (MJ/gal) [39] (estimate)

BTG = 1.58 Energy consumed during transporting bioethanol via truck
(MJ/gallon-mile) [39] (estimate)

BRG = 0.00001279 Energy consumed during transporting bioethanol via rail
(MJ/gallon-mile) [37] (estimate)

ξ = 0.1231 (Regular) Carbon tax / Environmental cost factor of emissions (USD/kg
CO2e) [30,40] (estimate)

ψ = 0.0215 (Regular) Energy cost factor of fossil fuel consumed (USD/MJ) [1,31] (estimate)
a In this research, prices and costs are based on May 2021.

Appendix B. Conversion Factors

1 mile = 1.609 km
1 ton = 0.907 metric ton

1 gallon = 3.785 L
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13. Cobuloglu, H.I.; Büyüktahtakın, İ.E. A Mixed-Integer Optimization Model for the Economic and Environmental Analysis of
Biomass Production. Biomass Bioenergy 2014, 67, 8–23. [CrossRef]

14. Ghaderi, H.; Pishvaee, M.S.; Moini, A. Biomass Supply Chain Network Design: An Optimization-Oriented Review and Analysis.
Ind. Crops Prod. 2016, 94, 972–1000. [CrossRef]

15. Babazadeh, R.; Razmi, J.; Rabbani, M.; Pishvaee, M.S. An Integrated Data Envelopment Analysis–Mathematical Programming
Approach to Strategic Biodiesel Supply Chain Network Design Problem. J. Clean. Prod. 2017, 147, 694–707. [CrossRef]

16. Ebrahimi, S.; Haji Esmaeili, S.A.; Sobhani, A.; Szmerekovsky, J. Renewable Jet Fuel Supply Chain Network Design: Application of
Direct Monetary Incentives. Appl. Energy 2022, 310, 118569. [CrossRef]

17. Haji Esmaeili, S.A.; Sobhani, A.; Szmerekovsky, J.; Dybing, A.; Pourhashem, G. First-Generation vs. Second-Generation: A Market
Incentives Analysis for Bioethanol Supply Chains with Carbon Policies. Appl. Energy 2020, 277, 115606. [CrossRef]

18. Gonela, V.; Zhang, J.; Osmani, A.; Onyeaghala, R. Stochastic Optimization of Sustainable Hybrid Generation Bioethanol Supply
Chains. Transp. Res. Part E Logist. Transp. Rev. 2015, 77, 1–28. [CrossRef]

19. Jayarathna, L.; Kent, G.; O’Hara, I. Spatial Optimization of Multiple Biomass Utilization for Large-Scale Bioelectricity Generation.
J. Clean. Prod. 2021, 319, 128625. [CrossRef]

20. Sultana, A.; Kumar, A. Optimal Siting and Size of Bioenergy Facilities Using Geographic Information System. Appl. Energy 2012,
94, 192–201. [CrossRef]

21. Huang, E.; Zhang, X.; Rodriguez, L.; Khanna, M.; de Jong, S.; Ting, K.C.; Ying, Y.; Lin, T. Multi-Objective Optimization for
Sustainable Renewable Jet Fuel Production: A Case Study of Corn Stover Based Supply Chain System in Midwestern U.S. Renew.
Sustain. Energy Rev. 2019, 115, 109403. [CrossRef]

22. Sánchez-García, S.; Athanassiadis, D.; Martínez-Alonso, C.; Tolosana, E.; Majada, J.; Canga, E. A GIS Methodology for Optimal
Location of a Wood-Fired Power Plant: Quantification of Available Woodfuel, Supply Chain Costs and GHG Emissions. J. Clean.
Prod. 2017, 157, 201–212. [CrossRef]

23. TIGER/Line Shapefiles. Available online: https://www.census.gov/geographies/mapping-files/2020/geo/tiger-line-file.html
(accessed on 19 September 2022).

24. Kou, N.; Zhao, F. Techno-Economical Analysis of a Thermo-Chemical Biofuel Plant with Feedstock and Product Flexibility under
External Disturbances. Energy 2011, 36, 6745–6752. [CrossRef]

25. NASS Census of Agriculture National Agricultural Statistics Service (NASS). Census of Agriculture; USDA: Washington, DC, USA, 1997.
26. ND Studies Energy Curriculum. Available online: https://www.ndstudies.gov/energy/level2/module-5-biofuels-geothermal-

recovered/biofuels (accessed on 13 January 2020).
27. Zhang, F.; Johnson, D.M.; Johnson, M.A. Development of a Simulation Model of Biomass Supply Chain for Biofuel Production.

Renew. Energy 2012, 44, 380–391. [CrossRef]
28. Haji Esmaeili, S.A.; Szmerekovsky, J.; Sobhani, A.; Dybing, A.; Peterson, T.O. Sustainable Biomass Supply Chain Network Design

with Biomass Switching Incentives for First-Generation Bioethanol Producers. Energy Policy 2020, 138, 111222. [CrossRef]
29. Mason, A.J. OpenSolver—An Open Source Add-In to Solve Linear and Integer Progammes in Excel. In Operations Research

Proceedings; Springer: Zurich, Switzerland, 2012; pp. 401–406. [CrossRef]
30. Nguyen, T.L.T.; Gheewala, S.H. Fossil Energy, Environmental and Cost Performance of Ethanol in Thailand. J. Clean. Prod. 2008,

16, 1814–1821. [CrossRef]
31. Energy Information Administration (EIA)—Gasoline and Diesel Fuel Update. Available online: https://www.eia.gov/petroleum/

gasdiesel/ (accessed on 13 January 2020).
32. Mohamed Abdul Ghani, N.M.A.; Vogiatzis, C.; Szmerekovsky, J. Biomass Feedstock Supply Chain Network Design with Biomass

Conversion Incentives. Energy Policy 2018, 116, 39–49. [CrossRef]
33. Searcy, E.; Flynn, P.; Ghafoori, E.; Kumar, A. The Relative Cost of Biomass Energy Transport. Appl. Biochem. Biotechnol. 2007, 137,

639–652.
34. Kocoloski, M.; Michael Griffin, W.; Scott Matthews, H. Impacts of Facility Size and Location Decisions on Ethanol Production

Cost. Energy Policy 2011, 39, 47–56. [CrossRef]
35. Osmani, A.; Zhang, J. Stochastic Optimization of a Multi-Feedstock Lignocellulosic-Based Bioethanol Supply Chain under

Multiple Uncertainties. Energy 2013, 59, 157–172. [CrossRef]

http://doi.org/10.1002/bbb.129
http://doi.org/10.1016/j.rser.2022.112115
http://doi.org/10.1016/j.biortech.2010.08.122
http://doi.org/10.1016/j.jclepro.2014.08.005
http://doi.org/10.1016/j.biombioe.2014.03.025
http://doi.org/10.1016/j.indcrop.2016.09.027
http://doi.org/10.1016/j.jclepro.2015.09.038
http://doi.org/10.1016/j.apenergy.2022.118569
http://doi.org/10.1016/j.apenergy.2020.115606
http://doi.org/10.1016/j.tre.2015.02.008
http://doi.org/10.1016/j.jclepro.2021.128625
http://doi.org/10.1016/j.apenergy.2012.01.052
http://doi.org/10.1016/j.rser.2019.109403
http://doi.org/10.1016/j.jclepro.2017.04.058
https://www.census.gov/geographies/mapping-files/2020/geo/tiger-line-file.html
http://doi.org/10.1016/j.energy.2011.10.031
https://www.ndstudies.gov/energy/level2/module-5-biofuels-geothermal-recovered/biofuels
https://www.ndstudies.gov/energy/level2/module-5-biofuels-geothermal-recovered/biofuels
http://doi.org/10.1016/j.renene.2012.02.006
http://doi.org/10.1016/j.enpol.2019.111222
http://doi.org/10.1007/978-3-642-29210-1_64
http://doi.org/10.1016/j.jclepro.2007.12.009
https://www.eia.gov/petroleum/gasdiesel/
https://www.eia.gov/petroleum/gasdiesel/
http://doi.org/10.1016/j.enpol.2018.01.042
http://doi.org/10.1016/j.enpol.2010.09.003
http://doi.org/10.1016/j.energy.2013.07.043


Logistics 2023, 7, 5 22 of 22

36. You, F.; Wang, B. Life Cycle Optimization of Biomass-to-Liquid Supply Chains with Distributed-Centralized Processing Networks.
Ind. Eng. Chem. Res. 2011, 50, 10102–10127. [CrossRef]

37. Zhang, F.; Johnson, D.M.; Wang, J. Life-Cycle Energy and GHG Emissions of Forest Biomass Harvest and Transport for Biofuel
Production in Michigan. Energies 2015, 8, 3258–3271. [CrossRef]

38. Larson, J.A.; Yu, T.; English, B.C.; Mooney, D.F.; Wang, C. Cost Evaluation of Alternative Switchgrass Producing, Harvesting,
Storing, and Transporting Systems and Their Logistics in the Southeastern USA. Agric. Financ. Rev. 2010, 70, 184–200. [CrossRef]

39. Gonela, V.; Zhang, J.; Osmani, A. Stochastic Optimization of Sustainable Industrial Symbiosis Based Hybrid Generation Bioethanol
Supply Chains. Comput. Ind. Eng. 2015, 87, 40–65. [CrossRef]

40. X-Rates. Currency Calculator (US Dollar, Euro). X-Rates Website. 2018. Available online: https://www.x-rates.com/calculator/
?from=EUR&to=USD&amount=1 (accessed on 13 January 2020).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1021/ie200850t
http://doi.org/10.3390/en8043258
http://doi.org/10.1108/00021461011064950
http://doi.org/10.1016/j.cie.2015.04.025
https://www.x-rates.com/calculator/?from=EUR&to=USD&amount=1
https://www.x-rates.com/calculator/?from=EUR&to=USD&amount=1

	Introduction 
	Materials and Methods 
	Problem Statement 
	Methodology 

	Results and Discussion 
	Location Allocation of Potential Biorefineries with GIS Analysis 
	Maximizing Profit without Emissions and Energy Consumption Penalties 
	The Impact of a Carbon Tax on the Supply Chain 
	The Impacts of an Energy Consumption Penalty on the Supply Chain 
	Analysis with Both Emissions and Energy Consumption Penalties 

	Conclusions 
	Appendix A
	Conversion Factors 
	References

