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Abstract: Background: Stocks of raw materials and finished products are found in all units of logistics
systems and require significant financial means of management. For this reason, scientifically justified
approaches to stock management and cost minimisation must be explored. Despite the existence of
many such approaches in literature and practice, each case has its own specificities and specificities
to which stock management models should be adapted. In this article, the aim of the authors is to
propose an approach to determine optimal supply sizes from different types of stocks (more than
one is known in the literature as multi-nomenclature) that minimises only the cost of inventory
management. The cost of inventory is not included. Methods: The article used the methods of
mathematical optimisation, the method of least squares, and regression analysis. The scope of the
models in the article is inventory management, with a limited number of stock keeping units. Time
series data for the delivered quantities and time series data for the costs of stock management are used.
Both time series use the same time period. Results: The constructed specific nonlinear mathematical
models for optimising the total cost of stock management are approbated based on sample data and
the results obtained are analysed. Conclusions: The created mathematical models and methods for
optimising the total cost of stock management may be used by logistics managers to minimise the
total costs of inventory management.

Keywords: optimisation; inventory management; logistic system

1. Introduction

The continuous implementation of a set of complex processes and activities is a pre-
requisite for ensuring the effective functioning of any business organisation in the modern
economy. Optimal inventory management is essential among this set of activities. Given
that stocks represent the static state of material flow, they occur in each logistics system.
The dynamic environment in which modern organisations must work determines the
continuous theoretical and practical interest in the problems related to stock management.
According to some studies, the stocks present everywhere in the logistics systems command
up to 80% of the working resources of the organisations, and the costs of maintaining and
managing them reach up to 40% of the logistics costs of the companies, in a number of
cases [1,2].

According to one of the required definitions of inventories, they are located in different
stages of production and circulation of production and technical production, consumer and
other goods awaiting entry into the production process or consumption, occurring in all
phases of the business process—in the supply (raw materials, complete products), in the
production process (incomplete production, instruments, semi-finished products, etc.), and
in the market (finished products, spare parts, accompanying goods for the workshops) [3,4].

The availability of stock is associated with both positive effects on the organisation’s
activities and various negative financial implications.
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Some of the main advantages of stock formation consists of the following: ensuring
business continuity (especially in production processes), the possibility of immediate cus-
tomer service, the availability of commercial discounts for the purchase of large quantities
of cargo, simplification of the production management process, and protection from price
increases from unfair suppliers, etc.

The most significant negative effects of the availability of stock in all stages of produc-
tion and circulation are as follows: freezing of a significant financial resource, commitment
of human resources, and additional management costs, etc.

Given that stock in the logistics system has both positive and negative aspects, there
is a need to use scientifically sound approaches to inventory management to achieve
better economic results [5,6]. In specialised literature and business practice, numerous
models [7–9] and methods [10–12] for managing inventories are known, depending on the
type of stock, the place of its formation, and the nature of its consumption, specific methods
are recommended for use. Nevertheless, there are still a number of specific features related
to inventory management that are not covered by common models and methods, but need
specific, modified models to more accurately describe them.

The well-known Wilson’s model for inventory management [13] has parameters (covari-
ates) describing different costs components for inventory management. These parameters are
difficult for defining and data collection. Their values often differ from real business values.
A novelty in this paper is the offered approach for constructing the total cost’s function based
on real (business) data. These data are aggregated for past periods (historical data). The
proposed approach (by the authors of this article) gives the possibility of using the total cost’s
function to describe the real situation more precisely. The drawbacks of the Wilson’s model
for inventory management are solved by the proposed approach.

The aim of the authors in this article is to propose an approach to determine optimal
supply sizes from different types of stock (more than one is known in the literature as
multi-nomenclature) that minimises only the cost of inventory management. The cost of
inventory is not included.

2. Literature Review

Teachers [14–16] who teach mathematics [17–19] and logistics in education [20–23]
usually try to find mathematical models that can be adapted in practices, that may be
validated with real business data or samples with data. The know-how of the adoption of
such models gives students (and, respectively, future businessmen/businesswomen) the
confidence to adapt new models which may help in reducing overall costs and bringing
to the market products with competitive prices. These models need to have a proper
software adaption [24–28]. Using programming languages [29–31], the source code may
be written. Furthermore, web applications [32–35] may be created with a built-in business
logic for inventory management. The proposed method for inventory management has
to be compared to other similar methods to check its performance [36,37]. Educational
services need further digitalization [38,39]. In this context, the newly created approaches
may be useful for students as well as for practitioners.

Many articles focus on “optimisation models” for “inventory management” [40].
Even though many findings are clear for researchers nowadays, the search for new and
better models to optimise inventory management continues. Some of them are focused
on a specific supply chain (such as pharmaceuticals) [41]. A great number of articles are
focused on green models [42]. Other models focus on the interactions of deterministic
and stochastic optimisation models in information sharing in supply chains [43]. Some
models are single stock models [44], others are multi stock models [45]. Using regression
function for inventory management is common practice [46–48]. The Wilson’s model for
inventory management is well-known and adapted by many researchers [49–53], even
though some drawbacks and limitations still exist. In some cases, practitioners declare that
they have difficulties in adapting theoretical models with many restrictions and limitations
in practices.
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The proposed models by the authors of this article are built with the assumption of a
limited number of stock items. Companies which have a big nomenclature of stock items
may make a sample of them and analyse it with the proposed models. They will need to
have observations for real costs to create the historic dataset. This dataset must be created
for each observed item and for fixed time periods, e.g., days, months, and quarters. One
of the novelties of the proposed models is the use of real historical data for different cost
components for constructing the cost’s function for inventory management.

Section 1 is the introduction, it describes the problem and the real gap in inventory
management. Section 2 deals with the literature review and the current state of the research
problem. Section 3 describes the proposed models, methods, and the research design.
Results and discussion are given in Section 4. Conclusions and an outline for further
research are given in Section 5.

3. Methods and Research Design

In general, two main types of consumption of stock are known in theory and practice, namely:

(1) Regular (even)—the stock is used daily, weekly, monthly, etc. In the management of
stocks that have this kind of need, various modifications of fundamentals in the theory
of inventory management is needed, and Wilson’s model [13,54] is recommended.

(2) Irregular (uneven)—inventory demand occurs at random times (e.g., spare parts).
Then the demand forecast cannot be made with high levels of accuracy, and different
models for managing stock are recommended in case of accidental demand [55,56].

In both types of inventory consumption, the following dependency is observed. The
total cost of managing inventory depends on the size of a shipment and includes some basic
components. One group of costs relates to stock storage and is proportional to the size of
the supply of stock, i.e., higher storage costs are formed at a larger stock size. Other types
of cost—which are either proportional or inversely proportional to the size of stocks—shall
also be considered. In any event, the total costs formed may be modelled by a function
which has a parabola type and has a minimum.

This article suggests an approach to determine optimal stock sizes of different types,
subject to the following restrictions:

(1) Deliveries are made at certain times at regular intervals—for example, once a week,
monthly, etc.

(2) The consumption of stocks is even.
(3) High storage costs and, at the same time, high costs associated with stock shortages

are observed.
(4) In the case of a shortage of stock, needs cannot be met when the next supply is received.

3.1. Staging of the Optimisation Model in the Presence of a Single Stock

In the case of a stock in volume of x units of a certain product, it is possible to generate
costs (just for stock management, not including the costs of the inventory itself) in the
amount of c currency units. These costs can be accumulated for two main reasons: storage
costs and costs from under-stock.

Let the volumes xi and therefore costs for past deliveries (ci, i = 1, 2, . . . , m) already
made known, which are carried out at m regular/fixed intervals (e.g., monthly).

The costs are a one-dimensional array {c1, c2, . . . , cm}. The volumes of deliveries are
also a one-dimensional array {x1, x2, . . . , xm}. A possible algorithm for finding the optimal
solution is the following: The minimal element in the array is found {c1, c2, . . . , cm}. Its
position in the array is stored in the variable “pos”. The optimal volume for stock delivery
is xpos.

The novelty in the proposed model in Section 3.1 (focused on finding the optimal
solution just for one stock) is proposing a fast algorithm for finding the volume of stock
delivery with minimal inventory costs (not including the cost of the inventory itself). The
model in Section 3.1. has no additional limitations for the stock volumes.
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From a practical point of view, it is normal for small and large values of x that the cost
value c is high. In the first case, due to high costs of shortage and the need for additional
supplies, and in the second, due to storage costs, etc.

3.2. Staging of the Optimisation Model in the Presence of More than One Type of Stock and Where
No Restrictions Are Imposed

Now, we will consider the situation with multi-product stocks. Let the n stock type be
present: A1, A2, . . . , An, the volumes for each we will indicate with xj, j = 1, 2, . . . , n and
the costs of each with cj, j = 1, 2, . . . , n.

Data for the supplied volumes are time series data. Data for the costs of stock man-
agement are also time series data. Both time series use the same time period. Filling in
both datasets with this important issue guarantees the correctness of the model. Creating
a sample dataset from real business data may be performed in 3 steps. Firstly, choosing
stock items with fixed-period delivery (e.g., monthly). Secondly, if the list is too big for
data collection and data analysis a smaller sample may be chosen. Thirdly, time series
data for costs management for each stock unit must be collected (e.g., monthly). Since
companies have confidential data, sample datasets are created by the authors to illustrate
the numeric examples.

The quantities of xi
j, i = 1, 2, . . . , m; j = 1, 2, . . . , n stocks of each product type and

the corresponding ci
j, i = 1, 2, . . . , m; j = 1, 2, . . . , n costs for each period are known for m

periods, depending on the volume of stock of each product type for each of the periods.
Deliveries are made at regular intervals and the data is summarized in the following

tables (Tables 1 and 2).

Table 1. Quantity of stocks.

j
i x1 x2 . . . xj . . . xn

1 x1
1 x1

2 . . . x1
j . . . x1

n

2 x2
1 x2

2 . . . x2
j . . . x2

n

. . . . . . . . . . . . . . . . . . . . .
i xi

1 xi
2 . . . xi

j . . . xi
n

. . . . . . . . . . . . . . . . . . . . .
m xm

1 xm
2 . . . xm

j . . . xm
n

Table 2. Total cost.

j
i c1 c2 . . . cj . . . cn

1 c1
1 c1

2 . . . c1
j . . . c1

n

2 c2
1 c2

2 . . . c2
j . . . c2

n

. . . . . . . . . . . . . . . . . . . . .
i ci

1 ci
2 . . . ci

j . . . ci
n

. . . . . . . . . . . . . . . . . . . . .
m cm

1 cm
2 . . . cm

j . . . cm
n

Here, we assume that there are no dependencies and limitations between the volumes
of different types of stocks. In this condition, the optimal stock of j type xj

i0(j), j = 1, 2, . . . , n
shall be determined by: i0(j) is such that cj

i0(j) = min {c1
j, c2

j, . . . , cm
j} for each j = 1, 2, . . . , n.

Here, as in 2.1, on the basis of practice, we assume that xj
i0(j) is one of the intermediate

values of xi
j, i = 1, 2, . . . , m for each j = 1, 2, . . . , n, since in the case of small and large xi

j,
i = 1, 2, . . . , m the costs are higher.

This means that in Table 2 in each column we determine the smallest number and find
the number that stands in the same position but in Table 1. This is how we determine all
the optimal volumes xj

i0(j) for each j = 1, 2, . . . , n.
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Let us look at an example of sample data.
Four products were delivered to storage at the beginning of each month during the

previous year, the quantities of which are given in Table 3.

Table 3. Quantity of supplied stocks of four products for the previous 12 months (in kg).

Product A1 A2 A3 A4

xi

Month
x1 x2 x3 x4

1 200 300 180 250
2 120 220 210 230
3 180 250 160 235
4 130 240 140 260
5 240 190 110 320
6 260 210 150 180
7 210 280 170 200
8 150 310 200 210
9 110 245 215 170
10 165 315 165 150
11 170 230 130 205
12 160 180 120 215

The corresponding costs, depending on the level of the stock, are given in Table 4.

Table 4. Costs (in BGN) for inventory management for the previous 12months.

Costs
Month c1 c2 c3 c4

1 130 180 110 160
2 140 110 125 145
3 100 130 95 150
4 125 120 105 170
5 170 150 130 210
6 180 115 90 155
7 135 160 100 130
8 130 170 120 120
9 120 135 135 165
10 110 165 98 180
11 105 117 108 125
12 115 155 118 122

In Table 4, the minimum column elements are c3
1 = 100, c2

2 = 110, c6
3 = 90 and

c8
4 = 120, respectively. This means that if at the beginning of each month a stock of the

products of the first 180 kg, the second 220 kg, the third 150 kg, and the fourth 210 kg is
carried out, then it can be expected that the total costs will be minimal and will be about
c3

1 + c2
2 + c6

3 + c8
4 = 100 + 110 + 90 + 120 = 420 BGN per month.

Again, we would like to stress that this approach is applicable when there is no depen-
dence between the volumes of stocks of individual products, i.e., no restrictions have been
imposed on variables xi

j, i = 1, 2, . . . , m; j = 1, 2, . . . , n, except for non-negative conditions.
The novelty of the proposed model in Section 3.2 is the possibility of constructing the

cost’s function with several stocks. As a result, the model finds the quantities of each stock
where the inventory costs (not including the cost for the inventory itself) are minimal. The
model in Section 3.2 has no additional limitations for the stock volumes.
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3.3. Staging of the Optimisation Model in the Presence of More than One Type of Stock and the
Presence of Restrictions

Often in practice there is a need to impose restrictions. Reasons for this may be the
capacity of the warehouse, for example, or the imposition of requirements for minimum
(and/or maximum) volume of stock of a given type, etc.

Let us now assume that, in the example we set out in 2.2, there is an additional restric-
tive condition, namely the capacity of the warehouse is 700 kg. Then the optimal solution we
have received is not acceptable, since x3

1 + x2
2 + x6

3 + x8
4 = 180 + 220 + 150 + 210 = 760 kg,

which exceeds the capacity of the warehouse and it is not possible to store these quantities
of these stocks of the four products on a monthly basis. Of course, we can search Table 3
for other values close to the optimum values, so that their amount does not exceed 700 kg.
However, it is difficult to apply this method to a large number of historical data and a large
number of products.

Therefore, here we offer a method for solving a multi-product task for managing
stocks with restrictions.

First, if, indeed, at small and large values per supply, the costs are greater than for
the intermediate values of the amount of supply of a given type of stock, then this means
that the dependence of costs c on the quantity of stock x is square and the method of least
squares can be used to obtain the analytical type of this dependency [57,58].

Secondly, for each product j, using the data from column Aj, j = 1, 2, . . . , n in
Tables 1 and 2 by square regression, we obtain the dependency:

cj (xj) = a j + b j x j + dj (xj)2, j = 1, 2, . . . , n

Thirdly, referring to the staging of the task and the theoretical productions of mathe-
matical optimisation [59,60], namely minimising the total costs, we construct the following
mathematical model:

min: Z (x1, x2, . . . , xn) = a1 + b1 x1 + d1(x1)2 + a2 + b2 x2 + d2(x2)2 + . . .
+ an + bn xn + dn(xn)2 (1)

under restrictive conditions:
x1 + x2 + . . . + xn ≤ Q (2)

xj ≥ 0, j = 1, 2, . . . , n (3)

where the capacity of the warehouse is Q.
We would like to make some clarifications. First, it is possible to include other restric-

tive conditions that reflect the real situation in inventory management. Such an additional
restrictive condition may be

vj ≤ xj ≤ Vj, j = 1, 2, . . . , n (4)

if a requirement is required that delivered volumes from each stock must exceed a specified
minimum level (vj) and not exceed another specified level (Vj).

The following clarification relates to the fact that a restrictive condition (2) is in the
form of inequality, which is more general than in the form of equality, because there may
not be a requirement to fully fill the capacity of the warehouse.

We will present the application of the model thus constructed with the data from
the example by imposing the additional capacity limit of the warehouse in the amount of
700 kg.

First, we will present the values of the dimensions of the deliveries of each type of
stock in Table 3 (from each column) in ascending order and we will present the rearranged
corresponding values of the total cost of inventory management (Table 4) corresponding to
these dimensions of monthly deliveries. Data for stock level and total cost of all products
are given in Table 5.
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Table 5. Stock level and total cost of all products.

A1 A2 A3 A4

x1 c1 x2 c2 x3 c3 x4 c4

110 120 180 155 110 130 150 180
120 140 190 150 120 118 170 165
130 125 210 115 130 108 180 155
150 130 220 110 140 105 200 130
160 115 230 117 150 90 205 125
165 110 240 120 160 95 210 120
170 105 245 135 165 98 215 122
180 100 250 130 170 100 230 145
200 130 280 160 180 110 235 150
210 135 300 180 200 120 250 160
240 170 310 170 210 125 260 170
260 180 315 165 215 135 320 210

Based on this data, the following analytical models are obtained using MS Excel
(Figures 1–4):
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Thus, the functions describing analytically the dependence of costs on the quantity of
stocks of each type shall accept the type:

c1 = 0.0075 (x1)2 − 2.4081 x1 + 308.58, R2 = 0.8213,

c2 = 0.0085 (x2)2 − 3.9563 x2 + 584.56, R2 = 0.7413,

c3 = 0.0125 (x3)2 − 4.0047 x3 + 417.6, R2 = 0.9261,

c4 = 0.0078 (x4)2 − 3.4187 x4 + 510.53, R2 = 0.7711.

Each of the four models has a sufficiently high value of the coefficient of detergent,
and we can assume these models are reliable.

The model of the optimisation task (1)–(3) accepts the type:

min: Z (x1, x2, x3, x4) = 0.0075 (x1)2 − 2.4081 x1 + 308.58 +
0.0085 (x2)2 − 3.9563 x2 + 584.56 +
0.0125 (x3)2 − 4.0047 x3 + 417.6 +
0.0078 (x4)2 − 3.4187 x4 + 510.53

under restrictive conditions:

x1 + x2 + x3 + x4 ≤ 700,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

The novelty of the proposed model in Section 3.3 is the possibility of constructing
the cost’s function with several stocks. The model assumes that the total volumes of stock
reserves of all items must not exceed the warehouse capacity. As a result, the model
finds the quantities of each stock where the inventory costs (not including the cost for the
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inventory itself) are minimal. The model in Section 3.3 has no additional limitations for the
stock volumes.

4. Results and Discussion

The optimal solution to this optimization task is determined by using MS Excel and is
as follows using the proposed model in Section 3.3:

x1 = 139.46, x2 = 214.12, x3 = 147.54, x4 = 198.88 and min: Z = 483.74

Of course, the values thus obtained for the dimensions of supplies from stocks may
be rounded per x1 = 139 kg., x2 = 214 kg., x3 = 148 kg., x4 = 199 kg., which is actually the
optimal integer solution to the task. This means that supplies of 139 kg must be made from
the first type of stock, supplies of 214 kg must be made from the second type of stock, the
third type of stock must be supplied at a rate of 148 kg, and the fourth type of stock must
be supplied at a rate of 199 kg. This value is naturally higher than the minimum of the
function, provided that there are no limits on the number of supplies of each type of stock,
it is the optimal solution in case of restrictions.

The application of the proposed models allows the calculation of optimal size for each
stock unit; minimal total costs for inventory (storage and lack/out-of-stock). This approach
is better than Wilson’s model. The total cost’s function is constructed based on real data
for inventory costs (not including the costs of the inventory itself). The proposed model
works with a limited number of stocks. However, if it gives the optimal result timely then
the list with stocks (included in the model) may be extended. Since the proposed model
uses historical business data for the costs of stock reserves and costs for out-of-stock goods,
other practitioners may replicate the proposed models with their business data.

The restriction for minimal and maximal volume for each stock item is given in the
model in Section 3.3 but it is not given in the numerical example. Another novelty of
the model in Section 3.3 is that the model may be extended, tested, and validated with
other limitations.

5. Conclusions

The models presented in this article are based on sample data, but in the presence of
real data they can be useful tools for determining an optimal strategy for replenishing the
stock of multiple products, subject to restrictions. However, it must be observed whether
the actual situation meets the conditions and nature of the demand for the stocks, for which
this model is constructed.

The novelties of the proposed models have several aspects. Firstly, they extend upon
Wilson’s model for inventory management. Secondly, the use of real historical data for
different cost components for constructing the cost’s function for inventory management,
and that the models may be extended, tested and validated with other restrictions.

The created models have practical implications. Logistics managers may choose a
sample from their big items/stocks/inventory list. They may create time series data for
delivered volumes (by stocks and by months), and time series data for the costs of inventory
management (by stocks and by months). They may apply the proposed models to minimise
the total costs for stock management. If the optimization models work fast, the logistics
managers may extend the sample with more items.

As a guideline for the development and extension of the options for the application
of the model, the possibility of adding further restrictive conditions relating, for example,
to the maximum permissible total value of products stored in the form of stocks may
be indicated.

Further research may be focused on creating new models based on the proposed ones
where the time series data for delivery volumes has different time periods than the time
series for the costs of inventory management (not including the costs of the inventory itself).
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