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Abstract

Low signal to noise ratio (SNR) experiments in diffusion tensor imaging (DTI) give
key information about tracking and anisotropy, e. g., by measurements with small
voxel sizes or with high b values. However, due to the complicated and dominating
impact of thermal noise such data are still seldom analysed. In this paper Monte
Carlo simulations are presented which investigate the distributions of noise for dif-
ferent DTI variables in low SNR situations. Based on this study a strategy for the
application of spatial smoothing is derived. Optimal prerequisites for spatial fil-
ters are unbiased, bell shaped distributions with uniform variance, but, only few
variables have a statistics close to that. To construct a convenient filter a chain of
nonlinear Gaussian filters is adapted to peculiarities of DTI and a bias correction
is introduced. This edge preserving three dimensional filter is then validated via a
quasi realistic model. Further, it is shown that for small sample sizes the filter is as
effective as a maximum likelihood estimator and produces reliable results down to a
local SNR of approximately 1. The filter is finally applied to very recent data with
isotropic voxels of the size 1×1×1 mm3 which corresponds to a spatially mean SNR
of 2.5. This application demonstrates the statistical robustness of the filter method.
Though the Rician noise model is only approximately realized in the data, the gain
of information by spatial smoothing is considerable.
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1 Introduction

The basic experimental and theoretical tools for DTI are still in a state of
rapid renewal. Nevertheless, there is general agreement that water diffusion
magnetic resonance imaging can contribute substantially to the solution of
central issues concerning the architecture of normal and diseased brain tis-
sue. See Le Bihan [2003] for a recent review on the physical concepts and on
potential applications to neuroscience and associated clinical fields, such as
neurology, neurosurgery and psychiatry.

Thermal or Johnson noise in Diffusion Tensor data is one of the obstacles
which obstruct the evaluation of experiments especially in low SNR situa-
tions. Within the DTI hierarchy of variables, the complex Gaussian noise of
the signals is modified to the Rician family of distributions for the Diffusion
Weighted magnitude Signals or DWIs, compare for details Henkelmann [1985]
or Gudbjartsson and Patz [1995], then via the Stejskal Tanner equations to
the noise distributions of the tensor coefficients and to those of further derived
variables, like anisotropy or main diffusion directions describing anatomical de-
tails of nerve fiber bundles. Due to this chain of nonlinear mappings noise in
derived variables has a very complicated structure for low SNR. Nevertheless,
the analysis of low SNR experiments is of great interest. To reduce partial
volume effects, which can cause ”phantom connections”, see Basser and Jones
[2002], between anatomically separated fiber tracts, experiments with small
voxels are desirable. To separate fast and slow diffusion fractions, low SNR
experiments with high b-values, as described in Clark et al. [2002] or Yoshiura
et al. [2003], are to be performed.

To increase the SNR, denoising is frequently performed voxelwise. To this
end, experiments with the minimal number of necessary gradients and perhaps
different b-values are repeated (Basser et al. [1994], Basser and Jones [2002]).
In another experimental set up, multigradient arrangements with enhanced
numbers of gradients are applied (Jones et al. [1999], Papadakis et al. [1999],
Skare et al. [2000a]). In both cases, the multitude of measurements reduces
noise effects. Scanning time or subject motion limit these procedures.

A complementary smoothing technique is offered by spatial smoothing, where,
in a single data set, small samples of neighboring voxels are used to estimate,
e.g., local mean values. Spatial smoothing is rather limited, care must be taken
to avoid the introduction of blurring, which can be introduced by mixing in-
formation from different tissue units, like e.g., by averaging noisy diffusion
directions from spatially close but different axon bundles. As will be shown,
the application of convenient edge preserving filters can reduce blurring essen-
tially. The analysis of the statistical properties of edge preserving filters is still
in a preliminary state, see Winkler et al. [1999] and Winkler [2003] for reviews

3



of basic approaches. These comprise Bayesian methods which are conceptual
transparent, but burdened with heavy computations and with model and (hy-
per)parameter ambiguities, or alternatively, chains of nonlinear filters, which
are very fast and give excellent results, but lack presently a comprehensive
theoretical foundation (Winkler and Liebscher [2002]).

At present, spatial smoothing or regularization in DTI is discussed for different
random variables, like, e. g., the DWIs (Parker et al. [2000]), the tensor fields
(Basser et al. [2000], Pajevic et al. [2002]), the Eigenvalues and anisotropy
coefficients (Skare et al. [2000b], Bastin et al. [1998], Pierpaoli and Basser
[1996]), or the principal diffusion directions (Poupon et al. [2000], Tench et al.
[2002a,b]). Applying smoothing methods directly to the variable of interest
has the advantages to restrict on low dimensional fields, minimizing computer
time, and to deal with interpretable quantities, supporting special adapted reg-
ularization methods (Poupon et al. [2000], Tench et al. [2002a,b]). On the other
hand, for some of these variables, like Eigenvalues, anisotropy coefficients, or
main directions, already in the case of voxelwise smoothing, statistical bias
is reported. These noise dependend deviations between true mean value and
quantity of interest are investigated in model calculations for SNR’s above 20
by perturbation theory (Anderson [2001]) or above approximately 5 by Monte
Carlo simulations, see, e.g., (Skare et al. [2000b], Bastin et al. [1998], Basser
and Pajevic [2000]). The results indicate that the voxelwise statistics of ran-
dom variables involved in a DTI analysis is in general at least for medium
(approximately 5-15) and low SNR (<5) no longer Gaussian and may be bet-
ter described by skewed distributions (Skare et al. [2000b]). The fact that bias
and variance in simulation studies increase with 1/SNR (Bastin et al. [1998],
Anderson [2001], Basser and Pajevic [2000]) further indicates, that these dis-
tributions may change from voxel to voxel and form a specific random field for
every variable in the brain. This is impressively exemplified by Monte Carlo
simulations presented in Skare et al. [2000a], which show that bias and vari-
ance of anisotropy can have a strong dependence on the, in practice unknown,
angles between local main diffusion and the diffusion gradients applied.

In the first part of this paper DTI data are analyzed for typical geometri-
cal features which may constrain the filter construction. Discontinuities, e. g.,
in the anisotropy or in the direction field, favor edge preserving filters, like
those applied in Parker et al. [2000]. On the other hand, as the fields of the
variables have, inside those discontinuous boundaries, continuous regions with
appreciable curvature, the linear approximation quality of the filter is also im-
portant. This is a non trivial observation, as most edge preserving filters, like
the diffusion equation (Parker et al. [2000]), the local M-smoother (Chu et al.
[1998]) or the nonlinear Gaussian filter chain from Aurich (Aurich and Weule
[1995]), achieve optimal edge resolution only for underlying piecewise constant
functions and can bias curvature. It is the main goal of this paper to establish
a new spatial filtering method for DTI which combines edge detection with a
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good generalization quality for piecewise curved fields.

As this filter shall be applicable in low SNR situations, it is necessary to find
the DTI variables with the most convenient noise distributions for spatial
smoothing. Therefore, a special Monte Carlo study is performed. Low and
high b-value experiments with minimal and multigradient equipment are in-
volved. Most attention is paid to low SNR situations, however, the smoothing
strategies found are also convenient for higher SNR. In case of minimal gradi-
ent experiments with constant b-values the Rician distributed DWIs offer the
most regular distributions. For minimal experiments with different b-values a
“back” transformation of the mean tensor to a minimal set of virtual DWIs
with approximately Gaussian statistics is convenient. For multigradient exper-
iments a more ambiguous situation is apparent. In contrast to other variables,
the angle of the main diffusion shows a rather regular distribution field close
to Gaussian even for low SNR and may be convenient for spatial smoothing.
For the Eigenvalues however, a residual bias cannot be reduced even by very
high numbers of gradients. But, as will be shown, replications of the whole
experiment with moderate numbers of gradients and voxelwise DWI averaging
produce convenient prerequisites for further spatial smoothing, which, followed
by a bias correction, can reduce bias in all variables already for realistic sam-
ples sizes close to zero.

Based on this analysis a new three dimensional nonlinear spatial filter for
DWIs is presented. Its construction goes back to a chain of nonlinear Gaus-
sian filters estimating local mean values (Aurich and Weule [1995]). This chain,
designed for piecewise constant signals, corrupted by a bell shaped noise distri-
bution, is modified to include the conditions of piecewise curved signals with
spatially varying Rician noise. Finally, a bias correction is performed. The
construction is applicable to individual spatial DWI fields, but with minor
modifications also to scalar fields of other variables. The filter application is
performed fully automatic, the only input parameter is the standard deviation
of background noise. The filter is fast and both numerically and statistically
robust. This filter is validated in low SNR situations by a quasi realistic ”gold
standard” model, based on measured data (Hahn et al. [2001]). A comparison
with a maximum likelihood estimator of the DWI via the Rician distribution
family (Sijbers et al. [1998]) demonstrates the convenient statistical effective-
ness of the smoothing method. A new extension of the bias correction allows
reliable analysis down to local SNR≈ 1. Finally, the filter is applied to very
new data which are measured on an isotropic grid with a voxel volume of
1×1×1mm3 and a spatially mean SNR of about 2.5. Though noise of this
experiment is only approximately Rician, the smoothing method results in an
appreciable gain of information.
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2 Materials and methods

2.1 MR data acquisition

Three experimental data sets are involved in the present study. The first ex-
periment (Exp1) was performed on a General Electric (Milwaukee, WI) Signa
1.5 T Echospeed Horizon scanner using a spin echo echo-planar sequence with
TR,TE=4200,120 ms. Three replications of a minimal experiment with the
gradients {[1, 0, 1] , [−1, 0, 1], [0, 1, 1], [0,−1, 1], [1, 1, 0], [−1, 1, 0]} /

√
2 , with

a b-value of b = 880 s/mm2, and with a 128x128 image matrix producing
1.875x1.875 mm2 in plane resolution were measured. The number of axial
slices was 24 with a thickness of 3mm and 1mm gap. The corresponding
b = 0 s/mm2 reference experiment was repeated twice.

The second experiment (Exp2) was performed with the same scanner like Exp1
but 4 replications with the b-values b = 400, 500, 700, 880 s/mm2 and only one
measurement with b = 0 s/mm2were acquired. The grid is like in Exp1, the

gradients were
{
[
√

2, 0, 0] , [0,
√

2, 0], [0, 0,
√

2], [1, 1, 0], [1, 0, 1], [0, 1, 1]} /
√

2.

A third experiment (Exp3) was performed to test the applicability of the
presented theory to very small voxel sizes. The isotropic 1×1×1mm3 diffusion
weighted data were acquired from a consented normal volunteer (F40y) on a
General Electric 1.5 MRI scanner using a dual spin echo prepared diffusion
sequence that utilized ramp sampling and fat suppression. The tensor encoding
scheme used is the principal icosahedral (Icosa6) as described elsewhere (Hasan
et al. [2001], Hasan and Narayana [2003]). The field of view is 260 mm2 and the
data matrix is 256x256 pixels, a total of 28 contiguous axial sections covering
the corpus callosum were selected from a sagittal scout localizer. The b factor is
1000 s/mm2, TR=4.5 seconds and TE=82 ms, and the number of replications,
NEX=4. The DWIs were averaged by the scanner.

2.2 Noise, edges and curvature in DTI data

To illustrate typical features in DTI data, we present in Fig. 1 some data of
Exp1 for a region around the corpus callosum within an axial slice. To reduce
noise the three sets of DWIs and the two references were averaged voxelwise.
The mean tensor was derived via the Stejskal Tanner equations, Eq. (2). In the
left panel of Fig. 1 the tensor field component d11(~x) is presented, see Eq. (1),
in the right panel the mean DWI, |S4(~x)|mean, for |~g4〉 = [0,−1, 1]/

√
2. A

closer inspection of the data still shows appreciable noise with spatially varying
variance, compare, e. g., in d11 the yellow valleys of the pyramidal tracts and
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Fig. 1. The left panel shows d11 on an axial slice around corpus callosum (CC).
Red-blue maxima are mainly due to high diffusion within the ventricles. The right
panel shows the mean DWI for the gradient [0,−1, 1]/

√
2 in the same region, here

the maxima are mainly due to the signal from diffusion in the corpus callosum. The
data are denoised voxel wise via DWI averaging based on two replications for the
reference experiment and three replications for b = 880 s/mm2, red arrows indicate
parts of corpus callosum and of pyramidal tract (PY), the few extremal voxels in
the corners are outside the brain.

the green bow of the corpus callosum region in front. Especially the boundaries
of the corpus callosum show steep intensity variations within very few voxels
due to the ventricles, see the red-blue maxima of water diffusion in d11. Such
steep variations, whose width is mainly due to partial volume effects, are
hereafter called edges. Similarly, in |S| the water diffusion is separated from
that in white matter by edges. As in the |S|-image large intensities correspond
to small diffusion, also the transition from corpus callosum to neighboring
white matter tissue is frequently stepwise, see, e. g., the steep red-blue bow
of the corpus callosum DWI in the front. This is related to a steep variation
of the local anisotropy or Eigenvalues when the corpus callosum is left within
white matter. Nonetheless, also regions with smoothly curved intensities are
apparent in both panels. This feature may be more obvious in Fig. 5, where a
denoised DWI is presented.

The presence of edges is further supported by the following observation: Ac-
cording to empirical knowledge about the streams of axon tracks (Nieuwenhuys
et al. [1983], Wiegell et al. [2000]) it is evident that neighboring nerve bundles
can have strongly different main directions in white matter. This has the con-
sequence that the Eigenvectors in regions with different fiber streams change
in a discontinuous way. As the tensor is real and symmetric or Hermitean,
the tensor field, d(~x), can be formulated as a function of the Eigenvalue and
normalized Eigenvector fields λi(~x) and |i(~x)〉 in braket notation (Messiah
[1972]); where the ket, | . . .〉, is a three dimensional vector, the bra, 〈. . . |, its
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transpose and 〈. . . | . . .〉 a scalar product.

d(~x) =


d11(~x) d12(~x) d13(~x)

d21(~x) d22(~x) d23(~x)

d31(~x) d32(~x) d33(~x)

 =
3∑

i=1

λi(~x)|i(~x)〉〈i(~x)| (1)

This representation implies that spatial discontinuities in the Eigenvalues or
Eigenvectors map to the tensor field and consequently to other derived quan-
tities like the anisotropy coefficients. They will in general also transform to
the DWIs which are connected to d(~x) by the Stejskal Tanner equations.

|Sj(~x)| = f |S0(~x)| exp

(
−b

3∑
i=1

λi(~x)〈i(~x)|~gj〉2
)

(2)

Where b is the b-value of the experiment, f a volume fraction, which is only
for slow diffusion components different from unity, |~gj〉 a normalized diffusion
gradient and |Sj(~x)| and |S0(~x)| are the DWIs and reference .

2.3 The random fields of the DTI variables

According to Jensen’s inequality for concave or convex transformations of ran-
dom variables (Feller [1971]), statistical bias effects like those discussed in the
Introduction are to be expected for the nonlinearly transformed random vari-
ables of DTI. The mentioned results of Monte Carlo simulations, where noise
propagation in DTI variables is studied for medium and high SNRs further
indicate that the random properties of DTI variables should be described by
locally varying random fields in the brain. This is evident from the structure of
the Stejskal Tanner equations, see Eq. (2). The exact magnitude signals with-
out noise, DWIexact, depend on the local angles between diffusion and gradients
and on the local Eigenvalues or diffusion strengths. When noise is introduced,
this dependence is mapped to the specific DWI distributions within the Rician
family determined by the SNR= |Sexact| / σ0, where σ0 equals the Rayleigh
corrected standard deviation of background noise. Superpositions of the loga-
rithm of noisy DWIs determine the tensor coefficients and so carry over their
local dependence on diffusion and gradients to the statistical properties of
derived random variables, like anisotropy.
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2.4 A Monte Carlo simulation of the random fields

An unbiased, and spatially uniform bell shaped distribution for a noisy vari-
able would be ideal for any attempt to apply spatial smoothing. In this context
Monte Carlo simulations are performed, to quantify the random field prop-
erties. The tensor model describes a three dimensional cigar-shaped diffusion
ellipsoid, where the two larger axes rotate within the x-y plane of the labora-
tory system around the z axis. The tensor has the form:

d =


d11 d12 0

d21 d22 0

0 0
d11+d22−

√
(d11−d22)2+4d2

12

2

 , (3)

the element d33 is the smaller Eigenvalue of the upper submatrix. As all un-
known parameters are contained in this submatrix, the simulated measure-
ments are performed only in the x-y plane, i.e. i=1,2 in Eq. (2); for a minimal
experiment only 3 plane gradients are necessary. The diffusion model, Eq. (3),
is probed in low SNR situations.

For fixed diagonal tensor coefficients d11 and d22 the off diagonal d12 is changed
in 50 equidistant steps within the interval d12 ∈

[
−0.8

√
d11d22, 0.8

√
d11d22

]
.

This variation serves as a simple model for spatially varying diffusions within
the brain. The interval is defined by the positive definiteness condition of
the tensor and covers, without the factor 0.8, all possible off diagonal dif-
fusions. The factor is introduced to limit the ratio of it’s sorted Eigenval-
ues λ1 > λ2 to λ1/λ2 < 10, preventing unrealistic high anisotropy. Low and
high b-value experiments are simulated via Eq. (2). For the first group of ex-
periments b=900 s/mm2 and f=1 are applied with the diagonal components
d11=.00156mm2/s and d22=.00084mm2/s to achieve a realistic mean diffusity
of (d11 + d22 + d33)/3 ≈.0009mm2/s (Bastin et al. [1998]). For b=3500 s/mm2

the procedure of Clark et al. [2002] was used. There, the slow tensor component
is fitted by a monoexponential model to the signal decay within a high b-value
interval. The fraction, f , of the slow component is achieved by an extrapo-
lation of high b-value data. The slow diagonal diffusion for the Monte Carlo
simulation is defined to be d11=.0007mm2/s and d22=.00035mm2/s with f=
.31. This is in agreement with the fraction and approximately with the slow
three dimensional mean diffusity of .00035mm2/s found in corpus callosum
by Clark et al. [2002]. For both models, the fractional anisotropy FA is ap-
proximately in the range FA∈ [.4, .9]. The reference signal was assumed to be
|S0| = 1000.
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In recent experimental arrangements the frame of minimal experiments is
extended to more gradients. In this context Jones, Papadakis and Skare discuss
the propagation of noise from the DWIs to the tensor coefficients for higher
numbers and varying directions of gradients (Jones et al. [1999], Papadakis
et al. [1999], Skare et al. [2000a]). Skare proposes a condition number, cond,
depending only on the gradient directions, which controls an error in the
tensor components due to noise in the signals. In our simulations uniformly
distributed gradient directions are applied which were proposed in Jones et al.
[1999] with a minimal condition number, cond = 1.4, for a plane measurement.
All applied gradient sets include the direction ~g12 = [1, 1]/

√
2 which is used

as reference projection in the graphical presentations.

To introduce thermal noise, noise simulated by a complex Gaussian distri-
bution with standard deviation σ0 is added to the signals independently for
every gradient direction, see, e. g., Skare et al. [2000b] or Pierpaoli and Basser
[1996] for a precise algorithmic definition of the procedure applied. Different
noise levels with standard deviations σ0 are involved in the simulations. Ex-
periments for b= 900 s/mm2 are performed with σ0 = 30n, with n=2. . . 6.
The slow diffusion component was investigated with σ0= 15, 20, and 30. As
a SNR=|S0|/σ0 = 33 corresponds for a 1.5T DTI scanner approximately to a
voxel size of 2×2×3mm3, the voxel sizes investigated vary for b=900 s/mm2

approximately from 12 to 2mm3 and for b=3500 s/mm2 from 24 to 12mm3.

A large number of Monte Carlo simulations was performed to explore the
systematics in the distributions and to find the most convenient variables
for spatial smoothing. Typical results and the consequences for filtering are
presented and discussed in the sections Results and Discussion.

2.5 A nonlinear spatial filter

For spatial smoothing, we propose to apply a chain of nonlinear Gaussian fil-
ters, which goes back to Aurich and Weule [1995], and estimates the mean of a
noisy scalar intensity function f(x), x ∈ Rn, n= dimension of space. The chain
iterates nonlinear filters which combine a spatial window, Φ, and an intensity
window, Ψ. The corresponding parameters vary according to special rules by
which edge detection and generalization or smoothing quality are balanced.
After the presentation of the standard version, several new modifications which
are convenient for spatial DTI filtering will be introduced.
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One filter step is defined by :

F µ
η ◦ f(x) =

∑
y∈neighborhood of x

Φ(x, y)Ψ(f(x), f(y))f(y)∑
y∈neighborhood of x

Φ(x, y)Ψ(f(x), f(y))
(4)

with Φ(x, y) = exp(− (x−y)2

2η2 ) and Ψ(f(x), f(y)) = exp(− (f(x)−f(y))2

2µ2 )

it’s k iterations are defined by :

f smooth
k (x) = F µdk−1

ηck−1 ◦ . . . ◦ F µd
ηc ◦ F µ

η ◦ f(x) (5)

The number of iterations, k, the spreading factors of the windows, c and d,
and the initial width of the spatial window, η, are regarded as parameters.
The initial intensity window width is µ = 3σ, where σ =standard deviation of
noise on f .

To enable an adaptive application of the filter for the reader, a short presenta-
tion of the basic parametrization strategy will be given. From the construction
of the nonlinear window, Ψ, it is clear that for vanishing noise, the filter result
converges to the input data. Regard now an intensity step H in an elsewhere
constant spatial function which is corrupted by Gaussian noise with standard
deviation σ > 0. The edge to noise ratio, ENR, is given by

ENR = H/2σ (6)

Iterating the chain k times reduces σ by 1/αk and allows for large samples an
edge resolution down to

ENR = 1/αk (7)

where α > 1 is a speed factor determining the parameters c, d, and η via:

c =
n
√

α2, d = 1/α, and η =
n√

4α2

2
√

π
·∆g , where ∆g is the smallest width in the

n-dimensional anisotropic or isotropic voxels. Frequently k is chosen so high
that the filter reaches its fix point, i. e., that further iterations do not change
the results. Due to the nonlinearity of the chain, this parametrization could
be theoretically justified up to now only for stepwise constant signals with
Gaussian noise, see Mühlhaus [1997] for more details.

It will be shown in the section Results that in the present context the filter is
mainly applied to noisy DWI fields. As magnitude signals are piecewise curved,
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and as their noise is Rician, several modifications of the basic construction are
introduced. In Rician distributions, for low SNR, σ = σ(MNR), where MNR=
|S|mean / σ0. Therefore a heteroscedastic µ = 3σ(MNR) is introduced into
Ψ. Increasing k and α increases the edge resolution capacity, but, favoring
estimates with curvature = 0, it reduces the ability to approximate curved
functions. Therefore a convenient balance suited for DTI data must be found
by data or model validation. A further improvement of the generalization
properties can be achieved by the use of f(x) instead of f smooth

k−1 (x) in the last
iteration, see Winkler et al. [1999]. As the present filter produces finally an
estimate of the mean value of the magnitude signal, the Rician bias correction
should be applied for low SNR’s to the resulting f smooth

k (x).

In Fig. 4 applications of this modified filter chain to simulated one dimensional
noisy DWIs are presented in panels a), b) and c). Denoising of functions with
two different shapes is performed with the same parameters k=4 and α =

√
2

to demonstrate robustness of the method. The intermediate and final filter
results of the iterations are shown. The final mean value estimate of the chain
(yellow) is bias corrected (violet), the corresponding true model is indicated by
a black line. Different sample sizes=nR×500 are involved, ∆g is constant for all
calculations a) - d). The mean value estimates show a good relative precision
also for skewed noise in low SNR situations, as the consecutive bias corrected
magnitude signals agree in general well with the model. For SNR< 1, due
to decreasing statistical stability of the bias correction, see section 3.1.3, the
estimation errors increase. Note the improvement of generalization in panel b)
for nR=4 compared to panel a). Discontinuities are already well reproduced
in panel a). Panel c) shows an application to stepwise constant signals with
partly very low SNRs. The transition to nR=4, not shown, improves the gen-
eralization again but not the resolution of the step at ENR=1/2. To achieve
that, an essentially higher nR would be necessary. In panel d) a linear Gaus-
sian filter is applied to the nR=4 situation. The blurring effects at the edges
over a scale much larger than ∆g are inherent to linear spatial filters.

To cover the whole brain, in DTI experiments frequently anisotropic voxels
with enlarged grid in axial direction are applied. It is more convenient for
spatial smoothing to use isotropic voxels which increase the local sample sizes
and thus improve the mean value estimates. This is due to the more symmet-
ric grouping of the data enabling a more effective localization of the spatial
windows. Of similar importance is the dimension n. With n, the local sample
sizes grow and therefore the widths, ηck, of the spatial windows can be reduced
leading to a better localization of the data necessary for averaging.
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Fig. 2. Denoising of magnitude signals for dimension n = 1 is illustrated. On the
data points of panels (a-c) the nonlinear filter chain is applied. The results of the
consecutive iterations (k=4) are given by blue, green, red and yellow curves, the
final bias corrected approximation is violet. True signals are indicated by black lines.
The individual graphs give signal to noise ratios (SNR) versus space coordinate (x)
and edge to noise ratios (ENR) at discontinuities. In panel (d) a linear Gaussian
filter followed by the bias correction is applied. The sample sizes are nR×500.

3 Results

3.1 Results of the Monte Carlo simulations

3.1.1 The investigated distribution properties and spatial smoothing

In the simulations the distributions of the following DTI variables are inves-
tigated : |S12|, d12, the Eigenvalues λ1 > λ2 = λ3, the Trace= λ1+λ2+λ3

3
, the

fractional anisotropy FA (Basser [1995]) and the angles α, of the main Eigen-
vectors. The direction of a noisy main Eigenvector is defined only modulo π,
therefore it is aligned to the exact main Eigenvector, before its angle with
[1,0] is calculated. The distribution of any variable q is characterized by a
measure of the bias effect and by higher moments µn about the mean meanq.
In detail, these are the relative bias (meanq − qexact)/qexact, the bias uncer-
tainty

√
µ2/|qexact| = σq/|qexact|, the skewness µ3/σ

3
q , the normalized standard

deviation of noise quantifying heteroscedasticity σq/ max(σq), and finally the
kurtosis (µ4/σ

4
q − 3) measuring the peakedness of the distribution or the de-

gree of tail heaviness. To avoid singularities, the angular bias is quantified
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by (meanα − αexact)/10o, the uncertainty by σα/30o, the other moments for
q = α are calculated like above. All moments are plotted in the Figures ver-
sus the SNR = |Sexact

12 |/σ0, varying with the diffusion coefficient d12. The
quantity |Sexact

12 | is derived by the gradient ~g12 = [1, 1]/
√

2 from the model
diffusion not distorted by noise, see Eq.(3). The distribution properties are
chosen with respect to their importance for spatial smoothing. As the dis-
cussed filters estimate the mean values, the bias and the possibility of its
correction by a convenient parametrization is important. However, as bias is
an asymptotic quantity and as spatial or voxel wise smoothing is performed
on rather small samples, the bias uncertainty is also discussed. Reduced un-
certainty of a variable is also essential for nonlinear filters, as their ability to
detect edges increases with reduced noise. Skewness measures deviations from
symmetry. Enlarged skewness combined with kurtosis>0 increases the risk of
outliers which may corrupt the estimated mean. Such situations demand large
sample sizes which may not be available. Kurtosis is zero for Gaussian and
6 for exponential, skewness is zero for Gaussian, 0.6 for Rayleigh, and 2 for
one sided exponential distributions. As spatial filters need information about
the noise level, spatially uniform noise, which can easily be estimated from
the data, is convenient. Therefore, heteroscedasticity and the possibility of its
parametrization which can be used as filter input is also discussed.

3.1.2 Results for minimal experiments

In Fig. 3 A, B, C results of experiments with three uniformly distributed gra-
dients in the x-y plane (cond=1.4) and b=900 s/mm2 are presented, Fig. 3 D
presents the same minimal experiment for b=3500 s/mm2. The moments are
derived via Monte Carlo sampling with 50 000 iterations per parameter com-
bination or model diffusion. Results for the voxel volume 4mm3 are presented
in Fig. 3A, C and for 12mm3 in Fig. 3B, D. The vertical bars at SNR=1.8, 3.8,
and 11.3 indicate the transition d12=0mm2/s. On the left sides of these tran-
sitions the exact main diffusion directions increase their angles with [1,0] from
0◦ to 35◦, on the right sides these angles decrease from 0◦ to –35◦. Anisotropy,
FA∈ [.4, .9], is roughly proportional to the magnitude of the angles.

Due to the convenient condition number for the gradient set the relative bias
effects in Fig. 3 A/a are quite small. For a different gradient set, e. g.,{[1, 0] ,

[0, 1], [1, 1]/
√

2
}
, the bias in all variables is nearly doubled. However, the bias

uncertainty, see Fig. 3 A/b, can deteriorate single measurements appreciably.
The maximum uncertainty for FA is close to 60% and that of the angle close
to 25◦, which can produce severe errors in special tracking algorithms, see An-
derson [2001]. In Fig. 3 B/a,b both quantities are reduced due to the enlarged
SNR. In all variables of Fig. 3 A, except |S12|, skewness is appreciable, the
absolute values of skewness are at least close to that of a Rayleigh distribution,
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see Fig. 3 A/c. In Fig. 3 B/c the skewness of d12, λ1 and α comes close to
0.6. Kurtosis for both experiments is essentially positive for all variables. The
corresponding patterns in the plots, not shown, are similar to those of skew-
ness, maximum kurtosis for λ1 is ≈ 6 (A) and ≈ 2.5 (B). In both experiments
a kurtosis peak for α ≈ 0◦ is striking, the heights of the peaks are ≈ 4 (A)
and ≈ 1 (B). Heteroscedasticity in Fig. 3 B/d can become even larger than
that in Fig. 3 A/d, the exception is again |S12|. A minimal experiment for
b=3500 s/mm2 with a voxel volume of 12mm3 is shown in Fig. 3 D. Due to
the enhanced b-value and the weighting factor the SNR scale is reduced com-
pared to that of Fig. 3 B and is close to that of Fig. 3 A. The results in Fig. 3
D and Fig. 3 A are similar in the uncertainty, skewness and heteroscedasticiy,
the relative bias is however appreciably enhanced, kurtosis is for λ1 between
2 and 3.

These results, presented in Fig. 3 A, B, D, together with those mentioned in
section 2.4, suggest the following: At mean and low SNR all variables, ex-
cept, perhaps, the tensor Trace, show the features of a locally varying random
field, when variation in SNR is identified with local variation of diffusion in
the brain. Their deviations from spatially uniform bell shaped distributions
increase with 1/SNR, the quantitative ranges of the central moments cause
doubts on the possibility to apply spatial smoothing in a straightforward man-
ner. Only the Trace, at least for b=900 s/mm2 , shows convenient features for
direct spatial smoothing, though skewness may be problematic for too low
SNR. However, the information contained in the Trace is rather limited.

The DWIs are the only variables where the distributions are explicitly known
and can be simply parametrized via SNR or MNR, the statistical bias in any
DWI can be corrected, when convenient mean value estimates are available.
Concerning skewness, above SNR≈4 the DWIs are symmetric, below, the max-
imal skewness of |S12| in Fig. 3 A is well below the corresponding maxima of
the residual variables. In Fig. 3 D this maximum is at least below those of λ1,
Trace, and d12. Kurtosis is ≈ 0 in all cases. Heteroscedasticity is minimal for
|S12| in Fig. 3 A, in Fig. 3 D λ1 and Trace are more uniform. However, as in
DWIs the variance scales with MNR, varying variance can be incorporated ap-
proximately into spatial filters for DWIs as will be shown below. Concluding,
in low SNR situations of minimal experiments the DWIs may be convenient
for spatial smoothing. Also in situations with medium SNRs, see Fig. 3 B,
the spatially uniform Gaussian distribution with neglectable bias shifts make
them to the preferable candidates. Finally, as DWIs are basic in the DTI chain
of variables, ”good” approximations to the true DWIs should be sufficient to
derive any residual variable in ”good” approximation, due to continuity of the
mappings between the variables.
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Fig. 3. Monte Carlo results for minimal experiments with b = 900 s/mm2 in panels
A/B/C and with b = 3500 s/mm2 in D are presented. Relative bias (a), uncertainty
of relative bias (b), skewness (c) and heteroscedasticity (d) of the variables |S12|, d12,
λ1, λ2, FA, α, and Trace (see color legend) are plotted versus SNR. In experiments
A/C a voxel volume of 4 mm3, in B/D of 12mm3 is involved. For panel C the
experiment A is repeated nR = 4 times, the variables are derived from the averaged
DWIs.
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3.1.3 Results for experiments with voxelwise denoising

To increase the SNR, which would improve the conditions for spatial smooth-
ing, essentially two variants of voxelwise denoising are in use. First, experi-
ments with low numbers of gradients are repeated to reduce noise by voxelwise
averaging (Anderson [2001]). In the second variant, multigradient experiments
are applied (Jones et al. [1999], Papadakis et al. [1999], Skare et al. [2000a]).

Concerning the first variant for constant b-values, we assume that the minimal
experiments discussed above are repeated nR times. The naive transition to
the averaged random variable of interest (e. g., F̃A =

∑nR
i=1 FAi/nR) reduces

its uncertainty and skewness by a reduction factor 1/
√

nR and also kurtosis
by 1/nR, but not bias and heteroscedasticity. A convenient bias and variance
parametrization is only known for DWIs. Therefore, the conditions for further
spatial smoothing are in general not improved in an optimal way.

When averaging is performed on the DWIs, and when all residual variables
are derived from these estimates of |S|mean, we find reduction of uncertainty,
skewness and kurtosis in nearly all variables. The effect on bias is ambiguous.
At least partially it is reduced in derived variables, but, due to a more peaked
distribution around the biased |S|mean, bias for derived variables can even
be increased by denoising of DWIs. See Fig. 3 C for such results, they are
derived from experiments presented in Fig. 3 A, nR = 4. Increased bias can
be found e.g. for the Eigenvalues λ1 and λ2 for high FA and low SNR or in
the tensor d12 in Fig. 3 C/a. This indicates that in addition to denoising a
bias correction (bc) is important. Due to the reduction of uncertainty and
skewness, and the parametrization of heteroscedasticity the statistics of the
DWIs in Fig. 3 C complies well with further spatial smoothing increasing
an effective nR. To estimate the improvement, assume for simplicity strict
homogenuos diffusion within the nF−1 nearest voxels surrounding the voxel of
interest and perform unweighted spatial averaging on the mean DWIs based on
nR experimental replications. The result would be equivalent to the result for
neffective = nR ·nF experimental replications. Relative bias and bias uncertainty
for an effective nR = 16 applied to the experiment of Fig. 3 A and DWI
averaging are presented in Fig. 4 A/a,b. To the estimates of |S|mean in Fig. 4
A/a the Rician bc relating MNR to SNR, see Fig. 4 A/d, is then applied. Note,
that in this correction the noise level before denoising, that of Fig. 3 A, must be
applied. All variables which are derived from these estimates of |S|exact are then
approximately unbiased, see Fig. 4 A/c. The precision of this bc is limited by
the standard deviation (std) of |S|mean , σ(|S|mean) = σ/

√
nR, where σ equals

the std of the DWI before denoising, see Fig. 4 A/d. For σ(|S|mean) → 0
also for the variables the bias → 0. In case of low SNR’s and a too small
nR the uncertainty can create poor mean value estimates mapping to |S|exact

≈ 0 with singular tensor components, see Eq. (2), and heavy tail statistics, in
other cases they may be even outside the domain of the mapping. Statistics,
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limitations and extensions of bc are discussed in section 4.1 of Discussion.

In another type of data acquisition, minimal experiments are repeated with
different b-values. This arrangement goes back to Basser et al. [1994]. In nu-
merous simulations the system of Stejskal Tanner equations was solved for
the mean tensor by multivariate linear regression without the weighting pro-
posed in Basser et al. [1994], as bias and skewness in the tensor distributions
were then considerably smaller. A typical result for a voxel size of 5.3mm3

and b-values b1=500, b2=700, and b3=900 s/mm2 is presented in Fig. 4 B, the
tensor components d11, d12 and d22 are shown. To perform additional spatial
smoothing a back transformation proposed in Hahn et al. [2001] is conve-
nient to reduce the noise distortions caused by the Stejskal Tanner equations.
A transformation from the mean tensor to virtual DWIs via Eq. (2) with
b = (b1 + b2 + b3)/3 and the same gradients as in the ”real” experiment pro-
duced in all cases which were studied DWI distributions with clearly better
prerequisites for spatial smoothing than those of the tensor components, see
Fig. 4 B for a comparison between tensor and virtual DWIs.

In case of multigradient experiments with constant b-value the multitude of
DWIs reduces noise voxelwise in the tensor calculated via singular value de-
composition. In Fig. 4 C an experiment like in Fig. 3 A but with 12 uniformly
distributed gradients is presented. In this experiment any diffusion direction
is projected to (practically) every orientation in space via the 12 gradients.
This prevents a limitation to projections with decreased SNR only, see Eq.
(2), which can enhance bias in minimal experiments, see Fig. 3 C, for a min-
imal experiment with the same number of DWIs. The relative bias in Fig. 4
C/a is well reduced. Skewness is in general similar to that of the replicated
experiment, see Fig. 3 C/c and Fig. 4 C/c, however, the skewness of the angle
is essentially reduced in the multigradient experiment. Less perfect is kurto-
sis, again a peak (≤ 2) for α ≈ 0o is apparent. These moderate tails have
their origin in the rather steep slopes of α, when d12 crosses zero. The second
moments, see Fig. 4 C/b,d are close to those of the experiment presented in
Fig. 3 C, they are mainly determined by the number of DWIs. With respect
to further spatial smoothing, the situation is ambiguous. Noise is not reduced
in the DWIs and back transformations to virtual DWIs did not bring essential
improvements. Though the bias is close to zero for the derived variables, the
other conditions are at least not optimal. Skewness for d12 and λ1 can become
effective, heteroscedasticity for α, FA, λ1 and d12, kurtosis for α, see Fig. 4
C/c,d. On the other hand, the relative noise level of the variables, see Fig. 4
C/b, is low, so that the effect of heteroscedasticity on spatial filtering may
be of second order. Concluding, we find that α may be convenient for spatial
smoothing, followed by the Trace which again reveals a very uniform behavior.

Application of more gradients reduces uncertainty, skewness and also kurto-
sis, but the relative bias remains essentially stable due to the remaining tensor
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Fig. 4. Replications and multigradient experiments with voxel volumes 4 and
2.5mm3 are presented in A-C and D. Experiment for A like in Fig. 3 C, but nR=16.
Bias (a), bias uncertainty (b) and corrected bias (c) are plotted, see color legend for
variables. In (d) the bias correction, mapping MNR to SNR, is illustrated. The dis-
tribution, centered at MNR=1.5, indicates the uncertainty in MNR, the red curve
segment an extension of the bias correction. In B the averaged tensor components
and virtual DWIs, see color legend, for minimal experiments with b =500, 700 and
900 s/mm2 are shown. The moments in (a-d) are like in Fig.3. In C a 12-multigra-
dient experiment is presented. For the variables see color legend, the moments are
like in B. In D bias and uncertainty for experiments with very low SNR (1-5) are
shown. A 60-multigradient experiment in a,b; in c,d a 12-multigradient experiment
with 5Rx4F replications and bc.
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bias. The reduction of kurtosis in α is however quite slow, as residual noise in
d12 is very effective. An example for very low SNRs is given partly in Fig. 4
D/a,b for 60 multigradients. The relative bias with uncertainty for experi-
ments with b=900 s/mm2 and a voxel volume of 2.5mm3 is presented, the
corresponding SNR range is 1–5. The relative bias remains when we enlarge
the number of gradients, up to 200 were applied numerically. As DWI denoising
permits a general way to a bc, a mixed procedure is plausible. Such a multi-
gradient arrangement with only a moderate number of gradients and several
replications of the whole experiment with subsequent spatial DWI smoothing
plus bc is exemplified in Fig. 4 D/c,d, where for a b value and a voxel volume
like in Fig. 4 D/a,b 12 multigradients, an effective n = 5R x 4F , and bc are
applied. When n is increased, this bias converges to zero for all variables. For
comparing analysis of higher moments and estimation of realistic numbers n,
see section Discussion.

3.1.4 Negative Eigenvalues

In experiments with low SNR noise can produce large fractions of voxels where
the tensor violates positive definiteness and can no more be interpreted as a
quantity describing diffusion. Especially in regions with large ansiotropy the
smaller Eigenvalues are close to zero and frequently become negative by noise
distortions. It was proposed in Ahrens et al. [1998] to constrain the Eigenval-
ues positive within the least square algorithm which derives voxelwise a mean
tensor. The presented combination of voxelwise and spatial smoothing with bc
should offer a basic solution to this problem, which is within our model related
to the bias of λ2. In the simulations of minimal experiments with b=900 s/mm2

and voxel sizes 2.5, 3, 4, and 6mm3, the fractions of negative definite tensors
are .19, .15, .11, and .05 when voxels with FAexact ≥ 0.8 are considered. When
we apply 12 multigradients the fractions are below .03. This is in line with the
mainly negative or positive bias of λ2 for high FA in the corresponding mini-
mal or multigradient experiments before additional denoising. After voxelwise
denoising by DWI averaging without any discrimination between “negative”
or “positive” voxels via 20 effective replications for the smallest voxel and 16
else, all fractions are below < 10−3, as denoising alone produces positive bias
in all experiments. Note, that due to the hermitean properties of the tensor,
the main directions are not corrupted by the bias in λ2, see panels a,b in Fig. 3
A,C and in Fig. 4 A. Applying bc, the fractions, ordered like above, are .04,
.02, .002 and 10−5 for the minimal experiments and < .003 for 12 multigra-
dients. When the number of effective replications involved is roughly realistic
and when we can trust the bias correction, it seems that the problem of low
diffusions can be approached in an essentially data driven way. In this context
the possibility of a sorting bias for noisy Eigenvalues is frequently discussed in
model simulations, see, e. g., Skare et al. [2000b] or Basser and Jones [2002].
In our simplified model this effect could not be studied as the diffusion is
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Fig. 5. Left panel: An axial DWI-map of the gold standard tensor for the gradient
indicated, else see text; right panel shows the FA-map of this slice. Voxels which are
excluded from the error analysis are colored black.

effectively two dimensional and therefore the Eigenvalues are always sorted
correctly. The mentioned bias reduction should also reduce these effects in
arbitrary three dimensional situations.

3.2 Validation of the spatial filtering method

The Monte Carlo simulations give indications for convenient strategies how to
apply spatial filters in low and medium SNR situations. To validate the DWI
based method a quasirealistic anatomical model is introduced. It is derived
from the data of Exp2 with a voxel size 1.9×1.9×4mm3, see section 2.1 for
more details. A smoothed tensor is calculated from the data as described in
Hahn et al. [2001] and is used as ”gold standard”. In a region around the corpus
callosum with a size of 71×41×12 voxels this tensor is transformed to the
DWIs by Eq. (2) for b=900 s/mm2, |S0|=1000, and for six gradients proposed
by Jones (Jones et al. [1999]), cond ≈1.5. The DWIs are then distorted by
noise as described in section 2.4 and three dimensional versions of the filter
are applied to the whole region. To achieve an optimal treatment of curvature
and edges in the DWIs a series of tests with the gold standard diffusion, not
presented in detail, lead to the following optimal filter parametrization: k = 3,
f smooth

k−1 (x) = f(x), µ ∈ {3σ0, σ0, σ0/2}, and η and c for α=2; notation like in
section 2.5.

Five different noise levels are investigated, σ0=60, 90, 120 and 5 replications
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σ0 60 90 120 5× 120 5× 150

filter-mean [%] 20,71,90 11,58,83 6,48,78 28,79,94 23,74,92

noisy-exact [%] 0,3,18 0,0,3 0,0,1 0,5,24 0,1,10

filter-exact [%] 18,68,89 7,50,78 2,30,65 8,58,86 1,31,71

(filter+bc)-exact [%] 19,70,90 9,54,80 5,42,73 23,74,91 16,65,87

neffective 5.3 9 10.5 30 30

SNR 18 (7.8) 16 (5.2) 13 (3.9) 21 (3.9) 17 (3.1)

Table 1
For five noise levels applied to the ”gold standard” signal, numbers of voxels in
percent are given in rows 2-5. Row 2: voxels with relative errors 0.05, 0.1 and 0.15
between filter estimates and true mean values. Row 3-5: same, for errors between
quantities indicated. Row 6: numbers of equivalent experimental replications. Row
7: SNR after spatial smoothing (and of the noisy DWIs).

for 120 and 150 with DWI averaging. For the error analysis voxels inside CSF
are excluded by a tensor Trace condition, Trace<.0012 mm2/s. In addidtion,
to exclude boundary effects of the filter only 8 axial slices, marginated by
three voxels, are involved in the error analysis. The total number of analysed
voxels is 14660, the FA map with excluded voxels and a DWI are presented
for a middle slice of the model in Fig. 5.

The spatially mean SNRs of these experiments are given in brackets in the last
row of Tab. 1. For the rows 2-5 the relative errors ||S|α − |S|β|/|S|β ≤ ratio
for α ∈ {noisy, filtered, filtered and bias corrected} and β ∈ {exact, exact
mean}, and ratio ∈ {0.05, 0.1, 0.15} are investigated. The relative deviations
are calculated voxel wise for all gradients. When in a voxel all six DWIs fulfill
the error condition, the voxel is counted, to add to the relative numbers of
voxels (in percent) of Tab. 1. Row 2 quantifies the ability of the filter to
approximate the exact DWI mean values, e.g. for σ0=60 in 71% of the voxels
the relative deviation is below 0.1. In rows 3-5 the gain of information by
spatial smoothing is illustrated. Row 3 demonstrates the large gap between
exact and noisy DWIs. Application of the filter, row 4, improves the situation
considerably. For the replicated experiments even very low SNR situations
can be approximated well with high probability. When the bias correction is
added (M2 of section 4.1), the information quality systematically improves, see
row 5. To compare the effect of spatial smoothing with denoising by voxelwise
averaging, the standard deviations after smoothing for all voxels with MNRs ≥
3.5 are calculated, the equivalent effective numbers of replications are given in
row 6. In row 7 the corresponding SNR improvement is presented. As is evident
from the results of Tab. 1, spatial filtering is quite effective and can replace
on average 5–10 replications of experiments in the SNR region investigated.
In measures which compare filter results with the model ”truth” we find that
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with reduced initial noise level in the DWIs the results improve.

4 Discussion

The aim of the presented study is to explore the possibility of spatial filter-
ing on DTI variables in low and medium SNR situations. It was exemplified,
that the distributions of the DTI variables are those of spatially varying non
Gaussian random fields which in general conflicts the basic demand of spatial
smoothing for uniform noise close to Gaussian. The local variability of the dis-
tributions depends in a complex way on basic system parameters like, e. g., the
angles between local diffusion and the measuring gradients of the individual
experiment. According to the presented analysis and in agreement with earlier
case studies by Hahn et al. [2001, 2002a,b], it seems that even for low SNR the
DWIs offer a possibility to bring the advantages of spatial smoothing into the
game. As the proposed spatial filter is a mean value estimator, bias correction
of the DWIs is important in low SNR situations to eliminate, via the continu-
ous mappings of DTI, bias in derived variables. The statistical properties and
limitations of the bias correction will be analyzed in the following.

4.1 How low can we go with SNR ?

The bias correction is based in our approach on the map bc : MNRexact → SNRexact,
where the domain of bc is identified with MNR, the set of estimated |S|mean/σ0.
The precision of |S|exact/σ0 ≈ bc(|S|mean/σ0) depends on the uncertainty of
the MNR distribution, and on the MNR level, as stability in the map de-
creases with MNR due to the steep slope of bc in this region, see Fig.4 A/d.

For MNRs below the Rayleigh minimum,
√

π/2, bc is not defined. The exten-
sion bc = zero is natural, but introduces a second mode in the distribution of
estimated SNRs. To avoid this mode a smooth C1-extension was introduced
for MNR<1.33, where bc = (·/a)b, with (a,b)=(1.44,8.76), and bc(1.33) = 0.5,
see Fig.4 A/d. Averaging of the DWIs to estimate |S|mean is henceforth short-
ened to method M1, M1 followed by bc with extension (·/a)b to M2, and M1
plus bc with extension zero to M3.

By a numerical comparison, not presented in detail, we found that M3 is for
all sample sizes equivalent to a direct Maximum Likelihood estimation ML of
|S|exact via the complete Rician distribution. This means that M3 produces for
large sample sizes unbiased Gaussian distributed SNRs with the mean |S|exact

and with optimal variance equal to the minimum variance bound, which is
a lower bound on the variance of any unbiased estimator, see Sijbers et al.
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SNR Bias
|S|

Bias
|S|

Bias
|S|

√
MSE
|S| , c95

|S|

√
MSE
|S| , c95

|S|

√
MSE
|S| , c95

|S| sample

M1 M2 M3=ML M1 M2 M3=ML size

1 0.55 -0.07 -0.12 0.65,1.15 0.57,0.87 0.63,1.0 5

0.55 -0.06 -0.09 0.60,0.97 0.44,0.71 0.50,1.0 10

0.55 -0.04 -0.05 0.58,0.84 0.33,0.59 0.36,0.84 20

0.55 -0.03 -0.04 0.57,0.79 0.26,0.52 0.29,0.57 30

2 0.14 -0.015 -0.02 0.25,0.48 0.25,0.49 0.26,0.51 5

0.14 -0.006 -0.006 0.20,0.38 0.18,0.35 0.18,0.35 10

0.14 -0.003 -0.003 0.17,0.3 0.12,0.24 0.12,0.24 20

0.14 -0.002 -0.002 0.16,0.28 0.1,0.2 0.1,0.2 30

3 0.06 -0.002 -0.002 0.15,0.3 0.15,0.3 0.15,0.3 5

0.06 -0.001 -0.001 0.12,0.22 0.11,0.21 0.11,0.21 10

0.06 -0.0002 -0.0002 0.09,0.18 0.08,0.15 0.08,0.15 20

0.06 -0.0003 -0.0003 0.08,0.16 0.06,0.12 0.06,0.12 30

Table 2
Simulated relative bias, rooted mean squared errors and deviation thresholds (P =
0.95) for methods M1,M2 and M3=ML to estimate |S| are given; 105 iterations are
applied to calculate the expectation values. The effective sample sizes vary from 5
to 30, the SNRs from 1 to 3, M1 is the mean value estimator, M2 is identical to M1
but bias corrected with extension (·/a)b, and M3 like M2 but with extension zero,
ML is the Maximum Likelihood estimator based on the Rician distribution.

Fig. 6. Skewness and kurtosis of the experiments presented partly in Fig. 4/D;
upper panels 60 multigradients, lower panels 12 multigradients and consecutive
DWI averaging over 5R × 4F replications via M2.
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Fig. 7. Worst case distributions of λ1, λ2 and α. Experiments with 60 (green) and 12
multigradients (blue: nR=1, red: M1 for nR=20, black: M2 for nR=20) are presented.
Residual parameters are like in Fig. 6. Black bars equal the exact values of the
variables.

[1998] for further properties of this ML estimator. When the sample sizes and
SNR are reduced, it is clear from Fig.4 A/d that bc skews the distributions
of |S| estimated. When the Rayleigh minimum is approached, for M3 tensor
components or Eigenvalues increase rapidly, and high kurtosis is produced in
their distributions corrupting the estimation of individual bias corrected DTI
variables. The Rayleigh minimum itself produces infinite diffusion indicating
the limit of the noise model, based essentially on Eq. (2). Those outliers are
reduced by M2, which maps MNR<1.33 smoothly to SNR∈ [0, 0.5].

For quantification, in Table 2, for M1, M2 and M3 bias, mean squared error
MSE = Exp[(|S|exact − |S|)2] = bias2 + variance, and confidence thresholds
c95 for P[(||S|exact − |S|| < c95)] = .95, where Exp denotes expectation value
and P probability, are presented. The bias in M1 expresses the Rician shift
and is corrected somewhat better in M2 than in M3. The relative rooted MSE
is considerably improved by bc, again more in M2 than in M3. For SNR=1
about 30 effective replications are necessary to remain for M2 approximately
within a 50 % relative deviation from the exact value for P = 0.95; for SNR=2
we find a 20 % deviation. This indicates that for very low SNR a coupling of
experimental replications with spatial smoothing is probably unavoidable to
increase effective sample sizes sufficiently.

Weak approximation of few DWIs with very low SNR does not necessarily im-
ply weak approximation of the tensor, as for multigradients in the derivation
of the tensor also higher SNR information is involved, see for an example Fig.
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4/D, for 60 and 12 gradients. For both experiments the mean SNR without
noise ≈ 2.7 when averaging is performed over all DWIs of a measurement. See
Fig. 6 for skewness and kurtosis complementing the bias information of Fig.
4 D. For 60 multigradients only kurtosis of α, d12 ≈ 0 is remarkable. This is
due to a steep, but not singular slope in the aligned Eigenvector components.
For 12 multigradients and 5Rx4F replications plus bc however, skewness and
kurtosis of λ1 and d12 increase up to 1 and 2.5, essentially due to effects of the
Rayleigh minimum in bc of M2. In the corresponding minimal experiment, not
shown, the patterns of skewness and kurtosis are similar. The angular peak in
kurtosis goes up to ≈ 4, the skewness and kurtosis maxima of λ1 are enhanced
up to ≈ 2 and ≈ 15. In Fig. 7 the worst case distributions of λ1, λ2 and the an-
gle between noisy and exact Eigenvector are presented, for the Eigenvalues the
experiments at SNR=1, for the angle at SNR=2.3 were chosen, see Fig. 6. The
bias corrected variables (black) peak close to the true values (bars), indicat-
ing maximum probability for good approximations and reasonable confidence
intervals. For M112 (red) variance is lower, but the modes for the Eigenvalues
are biased. For 60 multigradients (green) the distributions of Eigenvalues are
intermediate, biased and with mean variance. For the angle 60 multigradients
produce an appreciable tail up to about ±20o. Summarizing, even in the worst
cases, M212 (black) seems to give reasonable approximations; in contrast, the
distributions for 12 multigradients alone (blue) produce a rather undetermined
situation.

The number of experimental replications, nR, can be related to the total scan-
ning time, T , via T = TR ∗ (ngradients + 1) ∗ nR. For a full three dimensional
measurement with 21 multigradients, TR = 7 seconds, and nR = 4 this results
in T ≈ 10 minutes, indicating that the numbers of gradients and experimental
replications chosen in the simulations are within a ”realistic” frame. Thus our
study indicates, that experiments with local SNRs down to ≈ 1 can be an-
alyzed with good precision, when convenient gradient arrangements are used
and when M2 is applied. Prerequisite is however, that the Rician noise model
is approximately realized. Dietrich et al. [2001] investigated the noise model of
two experiments with very low SNRs > 0.5 . The bias of diffusion coefficients
(ADCs) from a clinical scanner could be corrected by bc of M3, concluding that
noise was essentially Rician. The second equipment produced no Rician noise
and bias could only be corrected by an empirical function modelling bc. To
determine the parameters of this function additional phantom measurements
were necessary.

4.2 Analysis of real data with voxel size 1× 1× 1 mm 3

To test the applicability of the presented theory, a very recent high resolution
experiment with isotropic voxels of size 1×1×1 mm3 was analyzed, see section
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Fig. 8. Upper panels : FA maps before (left) and after spatial smoothing (M1).
Yellow box indicates region of main diffusion directions plotted below. Coloring
of the vectors reflects FA. Light blue <0.1, blue 0.1-0.2, red 0.2-0.4 green 0.4-0.6,
yellow 0.6-1. Green horizontal bar indicates position of coronal slice presented in
Fig. 9/10.

2.1 for experimental details (Exp3). Isotropic voxels are best suited for filter
applications, see section 2.5. The measurements were repeated, NEX=nR=4,
and the DWIs were averaged inside the scanner. Determination of the noise
level outside the brain region revealed a deviation from Rician noise. The
Rayleigh identity meanexp ≈ 1.9 × stdexp was not fulfilled well, stdexp was
about 30 % too high. This may be due to temporal instabilities of the scanner
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Fig. 9. Upper panel, FA map of a coronal slice after spatial smoothing (M1), middle
panel : the corresponding main diffusion directions, low panel : before smoothing;
colors like in Fig. 8.

or to ”loading” effects created by the subject inside the coil. Inside the brain,
tissue pulsations and motion may cause similar deviations. A discussion on the
issue of scanner stability and its impact in fMRI can be found in Weisskopf
[1996].

Nevertheless, methods M1 and M2 for the filter variant of section 3.2 were
applied to the data on the basis of stdexp, as the deviation from a Rayleigh dis-
tribution was not too severe, and the methods should be robust. To be on the
save side, also several calculations with up to 30 % enlarged and reduced noise
levels of stdexp were performed, the results differed slightly from the presented
ones and showed the expected over- or undersmoothing, the (subjectively) best
results were achieved with stdexp. In Fig. 8, upper panels, representative FA
maps of an axial slice after DWI averaging, left panel, and after consecutive
spatial smoothing (M1), right panel, are presented. M1 improves the infor-
mation quality essentially, no apparent filter caused artifacts in the smoothed
image could be detected. In the lower panel the main diffusion directions, for
the region indicated, is presented, the arrows are colored according to their
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Fig. 10. Coronal slice of Fig. 9 , but with bias correction (M2), colors like in Fig. 8.
Low panel, SNR map of DWI for gradient (0,0.53,-0.85). SNR ranges, black : 0 −
1, dark gray : 1 − 1.5, gray : 1.5 − 2, light gray : 2 − 2.5, white : 2.5 − 4.3.

FA value. The direction field shows the anatomically expected fiber streams
and a good coherence, which may make tracking feasible. In regions with high
FA in several voxels the lowest Eigenvalues become negative. They are cor-
rected by shifting them to a small positive value. The coherence of the main
directions is not distorted by these negative Eigenvalues. In Fig. 9 a coronal
slice is presented. Again FA map and direction field seem to be realistic, the
information gain for directions by application of M1 is illustrated in the lowest
panel showing main directions before spatial smoothing. In Fig. 10 the bias
correction is added (M2), in the FA map (upper panel) the contrast is en-
hanced, fine structures with enlarged anisotropy around CSF become clearer.
The anatomical origin of these structures could not be identified. The effect
of bc on the directions is reduced compared to the Eigenvalues, as can be seen
in the middle panel. To give an idea of the SNR range inherent in the data,
the lowest panel shows an approximative SNR map calculated by bc for one
DWI, we find for the averaged SNR≈ 2.5, liquor was excluded. The presented
analysis exemplifies that the methods M1 and M2 are robust denoising tools
even for DTI data with very low SNR and with noise which is probably only
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approximately Rician . Their application improves the information quality of
such data considerably. Parallel imaging, or the application of higher field
strengths may further improve the statistics for minimal experiments to apply
spatial smoothing.

5 Conclusion

A robust denoising method for DTI data with low SNR is proposed and vali-
dated. A convenient coupling between voxelwise and spatial smoothing seems
to enable the analysis of experiments with a local SNR down to ≈ 1. The
presented method of DWI averaging is of general applicability and also use-
ful in higher SNR situations. This is supported by a different investigation
from Anderson [2001] who studied noise effects on bias and variance in Eigen-
values and Eigenvectors for SNRs from approximately 20 to 100. For SNRs
around 20, averaging of DWIs by experimental replications is recommended.
For higher SNRs Anderson’s results imply an equivalence between DWI and
tensor averaging. This is in line with a proposal by Pajevic et al. [2002] who
apply B-splines to obtain a continuous representation of the tensor coefficient
fields. This method can be regarded as a special variant of spatial smoothing
applied to the tensor fields.
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