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Abstract

We investigate extreme dependence in a multivariate setting with special
emphasis on financial applications. We introduce a new dependence function
which allows us to capture the complete extreme dependence structure and
present a nonparametric estimation procedure. The new dependence function
is compared with existing measures including the spectral measure and other
devices measuring extreme dependence. We also apply our method to a finan-
cial data set of zero coupon swap rates and estimate the extreme dependence
in the data.
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1 Extreme dependence structure

One of the general goals of statistical extreme value theory is to understand the
behavior of the extreme observations in a set of data generated by a random process
and how that information can be used to draw inference about the corresponding
aspect of the true distribution. Extreme observations here may be very large or
very small observations, or more generally, observations in some rare set. Some
considerable progress has been made in past decades on the statistical inference of
extremes. See Coles (2001), Embrechts, Kliippelberg and Mikosch (1997), and Smith
(2003). In this paper, we focus on the very large observations in a data set when the
observations are multivariate. Specifically, let m be a positive integer and consider
an iid sequence of random vectors X; = (X;1,...,X; ), i € N. We are interested

in the statistical inference of the joint distribution of the componentwise maxima
n
M?’L,j:\/Xi,j7 ].S]Sm,
i=1

for large n. This topic is of relevance in many problems of practical interest; examples
can be found in Tawn (1988) (sea levels data), Coles and Tawn (1991) (tidal wave
data), Schlather and Tawn (2003) (rainfall data), de Haan and de Ronde (1998) (sea-
level and wind-speed data), Hauksson, Dacorgna, Domenig, Miiller and Samorod-
nitsky (2001) (currency exchange rate data), to name a few.

Among the most important problems in multivariate statistical extremes are
the description and inference of dependence between the components of M, :=
(M1, ..., M,,) when n is large. For example, in designing an investment portfolio
it is crucial to understand the relative behavior of the various assets in the portfolio
in the event of large losses so that the risks can be balanced, or in the event of possible
floods, it is important to understand of how extreme rainfall leads to dangerously
high river levels so that losses of lives can be prevented.

It is well known that the dependence structure of a random vector can be fully
captured by the copula or dependence function. A copula C' is a multivariate cumu-
lative distribution function (cdf) with standard uniform marginals. The copula Cg
of an arbitrary random vector (X, ..., X,,) with a joint cdf G and marginal cdf’s

G; is given by
Co(ur, ..., up) =P (X1 <Gy (u1),..., Xm <G, (um)), (ur,...,um) €[0,1]™(1.1)

where G5~ denotes the left-continuous inverse of G;. See Joe (1997) for details. We
focus on the copula of M,, for large n. Assume that there exist linear normalizing

functions f,1,..., fum, such that

lim P (M, ; < fn(x;),1 <j<m)=F(xq,...,2m), (1.2)

n—oo



where F' is a nondegenerate m-variate cdf. Any possible limit cdf F' in (1.2) is called
an multivariate extreme value cdf (mevdf). It can be seen that a cdf F' is an mevdf
if and only if the marginals F}, 1 < j < m, are one-dimensional extreme value cdf’s
(cf. Embrechts et al. 1997) and the copula C satisfies (Joe 1997, Section 6.2)

C'uy, ... up) = Cul,...,ul),  (ur,...,uy) €0,1]™, ¢t >0. (1.3)

Any copula C satisfying (1.3) is called an extreme copula.

Since applying monotone transformations to the marginals do not change the
copula, (1.2) implies that the copula of M, for large n, can be approximated by
that of F' and hence approximately satisfies (1.3). By the same token, it is clear
that the particular normalizations f,1,..., fom in (1.2) do not play a role in (1.3).
Consequently, (1.3) is a very general property for the limiting copula of M,,.

It is also known that any extreme copula can be written in the form of the

Pickands representation (Resnick 1997, Section 5.4):

C(uy, ..., uy) = exp {/s </\ wj(lnuj)> u(dw)}, (U, ... um) €10,1]™ (1.4)

where y is a finite measure on S, = {y > 0: > ", y; = 1} satistying

/ wip(dw) =1, j=1,...,m.

m

Further, by changing the variable w in the integral in (1.4), the extreme copula can
be described in infinitely many different but equivalent forms; for instance, Einmahl,

de Haan and Piterbarg (2001) adopts the following representation for the case m = 2:

C(ul,uz):exp{/ (1““1 p )Cb(dé)},ul,uQE[O,l], (1.5)
[0,7/2]

1Vecotf 1Vtanb

where @ is a finite measure, called spectral measure, on [0, /2] satisfying

/ (1A tan0)d(dh) = / (LA cot8)P(db) = 1.
[0,7/2] [0,7/2]

The focal point of this paper is the inference of the copula of F' in (1.2), namely
the limiting copula of M, based on a random sample. In view of (1.4), this is equiva-
lent to the inference of the measure p in the Pickands representation. We will discuss
a purely nonparametric approach of estimating the extreme copula. In conjunction,
we will introduce a method to visualize extreme tail dependence, a topic which has
not received much attention. We believe that simple and effective visualization tools
are crucial in this context in order to bridge theory and application. The literature

of multivariate extremes has focused almost exclusively on the bivariate case m = 2.



See Section 2 for a brief review of the literature of this case. The case m > 3 in
contrast has received little attention. Our approach of estimating dependence can
be implemented for any general m. Needless to say the curse of dimensionality is
even stronger here than in most other contexts so that the general procedure will not
achieve the intended purpose unless enough data are available. We will illustrate our
procedures by theoretical computations as well as simulations. We will also apply
the results on the analysis of a portfolio of zero coupon swap rates.

Throughout the paper we write a(u) ~ b(u) as u — oo, if a(u)/b(u) — 1 as

u — 00; we write a(u) =~ b(u) for crude approximations.

2 Measuring bivariate extreme sets

As mentioned, the statistical estimation of F' in (1.2) is of substantial interest in
applications. There are three main approaches. Coles & Tawn (1991) and Tawn
(1988) assume a parametric form for F' and approach the estimation problem by
maximum likelihood. While the parametric approach is efficient when the model
is correct, the conclusion can be grossly misleading if the model is incorrect. The
second approach estimates the measure p in (1.4) based on the empirical measure
for the transformed data where the transformation involves parameter estimation
on the marginals. Such a procedure is semiparametric in nature and examples of it
can be found in Embrechts, de Haan & Huang (2000), Einmahl, de Haan & Sinha
(1997), de Haan & Resnick (1977), and de Haan & de Ronde (1998). A completely
nonparametric approach for estimating p was introduced in Einmahl et al. (2001).
We next review this approach in detail.

Consider the bivariate case where m = 2. Suppose that the X; = (X1, X, ) are
iid random vectors with continuous marginal cdf’s Gy, G5. Assume that there exist

continuous and nondecreasing normalizing functions f, 1, fn2 such that

nh_{IOlOP (\/ Xig < far(21), \/Xzz < fn2($2)> = F(r1,13), 21,72 €R, (2.1)
i=1

where F' has continuous margins. As explained in Section 1, the copula Cp of F

is an extreme copula and it is independent of the normalizations (f, 1, fn.2). Hence

we consider instead the normalized limit of (\/[_, G1(X;1), Vi, G2(Xi2)). Since

G;(X; ;) ~ uniform|0,1], j = 1,2, we have for j = 1,2,

1
hmP<\/G _ﬁlnu%—l):u, uel0,1].



Consequently, the following computations yield the copula of F' in (2.1):

1
(\/Gl 11 lnul—l—l \/G2 12) lnu2+1)

=1

™2 lnug Inuy
. _ A d(db
— Cp(ur,u) eXp{/O (1\/cot(9 1\/tan9) ()¢

where the representation (1.5) is adopted in order to be consistent with the presen-
tation of Einmahl et al. (2001). It follows that

nP (Gl(Xl,l) >1-— ﬂ or GQ(XLQ) >1-— @)

n

T )
— V
0 1Vecotf 1Vtand

) o(dh). (2.2)

Since P(-) is monotone, the discrete index n — oo in (2.2) can be replaced by a
continuous index ¢ — oo and the limit remains the same. On [0, 0o]?\ {(0c0, 00)} define

the measures A; and A on the Borel o-algebra of [0, 00]*\{(cc, o)} by
At(A) =tP (t(61<X1’1),§2(X1,2)) S A) ,

and

w/2 T To
A (([z1, 0] X [2, 00])°) :/0 (o v o) @), 21,22 € [0,00)(2.3)

Note that the latter relation indeed defines a measure since the sets ([, 00] X [2, 00])
0 < x1, T3 <00, form a m-class which generates the Borel o-algebra of [0, 0o]*\ { (00, 00)}.

It follows from the continuous-index version of (2.2) that for all Borel sets A C
[0, 00]?\ {(00,00)} with A(DA) = 0, we have (cf. Resnick 1987)

tli)Ig} At<A> = tliglo tP (t(al(XLl),aQ(Xl,g)) S A) = A(A) (24)

Given an iid sample Xy,..., X, where X, = (X1, X,2), and a Borel set A in
[0, 00]?\ {(00,00)}, an intuitive estimator of A;(A) is

n

Rin(A) = 1P, (£ (G1(X11), Ca(X12)) € A) = % SO (H(Gr(Xi1), Ga(Xia) € 4).

i=1
Furthermore, each G;(X; ;) is uniformly distributed on [0, 1] and hence can be esti-
mated by R;;/n where R;; is the rank of —X;; among —Xj ;,...,—X, ;. Writing

e = t/n, the estimator A, n 1s approximated by

—EZI (Ri1, Rin) € A). (2.5)



This simple and natural estimator works very well both in theory and in practice. The
fact that it does not require estimating the marginal tail distributions eliminates an
important source of error in the estimation of tail dependence. Generally speaking,
the variance and bias of the estimator increases and decreases with ¢, respectively,
and € should satisfy ¢ — 0 and ne — oo in order for consistent estimation to be
achieved. A result in Einmahl et al. (2001) shows that the estimator can achieve a
quick rate of convergence in estimating A(A) for A of a certain form when ¢ is chosen
properly. See Einmahl et al. (2001), Huang (1992) and Qi (1997) for additional details
on the theoretical aspects of this estimation approach.

However, in practice when the procedure is implemented we have to select a
suitable ¢ from the data. This is always a difficult issue. In the examples in the next

section, we show how to do this by a practical approach.

3 Inference of dependence through measure de-

termining classes

We continue our discussions from Section 2 and use the notation developed there.
To fully estimate the measure A, it suffices to estimate A(A) for sets A in a measure-
determining class of A. There are obviously infinitely many such classes. The key
criteria for selecting such a class are that the measures A(A) are easy to interpret,
directly useful for describing tail probabilities, and can be estimated efficiently. Below

we mention two examples of such classes for the case m = 2.
Definition 3.1 For 6 € [0,7/2],

Cy = {(:El,xg)e[O,oo]Z:xl/\xggl, arggxltané’} and
D, = {(xl,:z:g)e[0,00]2:x1/\x2tan0§1}.

Both sets Cy and Dy have clear geometric interpretations. For 6, < 6y in [0,7/2],
Cy,\Cy, contains those points in [0, 0o]? for which at least one of the components is
no bigger than 1 and are trapped in the cone between angles 6, and 6,; Dy defines

the union of two sets
{(z1,29) : 0< 21 < 1,0 < g < o0} U{(x1,22) : 0 <y < 00,0 <9 < cotb}
where the factor cot # allows us to control the boundary of the second set. Define
Az1,22) = A (([x1,00] X [22,00])F), 21,22 € [0, 00]%. (3.1)
Immediately by (2.3),

Az, x0) = 21 A (1, 29/ 21). (3.2)



The following holds.

Proposition 3.2 For each 6 € [0,7/2],
(1) A(Cy) = @[0,0], where ® is the spectral measure in (2.3), and

(2) A(Dy) = A(L, cot ). 0

In view of Proposition 3.2(2) together with (3.2), {Dy : 0 < 0 < 7/2} is measure-
determining for A. The corresponding result of (1), which is proved in the Appendix,
shows that {Cy : 0 < 0 < 7/2} is also measure-determining for A. We note that
Proposition 3.2(1) was obtained in Einmahl et al. (2001) from an entirely different

perspective.
Definition 3.3 For all 6 € [0, 7/2] we define

B(0) = A(Cy) = B[0,0], and (0) = A(Dy) = A(L, cot 6).

By Proposition 3.2 and (2.4),
O(0) = z‘/lim A(Cy) and () = ltlim A+(Dy),

provided that A(OCy) = A(0Dy) = 0, and therefore ®(6) and () can be estimated
statistically by the nonparametric procedures Ka,n(Cg), //i&n(D@), respectively, if an

iid sample is available. From this perspective, we discuss below the relevance of ®(6)

and 1 (0).
Estimating ®(0) is a central theme in Einmahl et al. (2001). Let G;(x) = P(X; >
x) =1/x,x > 1. Observe that for 0 < 0 < 6, < /2,

P(X1V Xy >n,tanf; < X;/X, < tanb,)
= P(nG (X)) AnGa(Xs) < 1,tanf; < Go(X2)/G1(X1) < tanby)
= 1 (A(Co,) — Aa(Coy))
~ nTH®(6) — (6h)),

provided A(0Cy,) = 0,i = 1,2. However, if the G; are highly non-linear, the quantity
®(05) — ®(61) may be difficult to interpret. It is also somewhat cumbersome to use

an estimated ®(0) to estimate the distribution of the coordinate-wise maxima

<\/G i) < u]+1 j=1, 2)

6



one could conceivably proceed with this using the integral representation of the

copula, but in doing ®(#) has to be estimated for every € followed by a numerical

integration. The function ¢(6) compliments ®(6) in that respect, as explained below.
Suppose that z; = x;,, 7 = 1,2, are such that

0 < liminf nG;(x;) < limsup nG;(z;) < oo, i =1,2.

n—oo n—o0

Then it follows from (2.2) that for n — oo,

1 — _
P(X1 > 1 Or X2 > 1'2) ~ EA(TLGl(ZL’l),TLGQ(CEQ))

_ élm)A(ngEZ;) = Gy <arctan(§1<“’l))). (3.3)

As a result,

P"(X; <a1,Xy<x9) &= exp (—n@l(xl)qﬁ (arctan (6 )))

2(22)
~ PU(X) < @), (3.4)
where
_ _ a1($1)
£ =¢&(xy,29) = <arctan (62(%))) .
If Gy = G5 then
§(x, ) = p(m/4), (3.5)

which is what Schlather & Tawn (2000) refers to as extremal coefficient, a notion
related to the extremal index (cf. Leadbetter, Lindgren and Rootzén (1983) or Em-

brechts et al. 1997) in univariate extreme value theory for time series.

4 Bivariate tail dependence function

In this section we continue to explore the properties of 1(#) defined in Definition

3.3 and how it can be useful for describing multivariate extremes. First, we have:

Proposition 4.1 (1) ¢ is convex.

(2)  1(0) < (0) < o(0), 6 €[0,7/2], where 1y(f) := 1+ cotd corresponds
to independence and 11(0) := 1V cot 8 to complete dependence. O

The proof of this proposition can be found in the Appendix.
The function 1) becomes a much more effective tool for visualizing dependence if

it is normalized, as follows.



Definition 4.2 We define the bivariate tail dependence function as

_ ho(0) =(0) 1+ cotb —(0)
o) = 0@ =@~ Trcots 0 €02

(4.1)
O

By Proposition 4.1(2) the function p(#) takes values in [0, 1], with p(#) being close
to 0/1 corresponds to weak/strong dependence.

The quantity p(m/4) = 2 —1(w/4) (cf. (3.5)) is referred to as the (upper) tail de-
pendence coefficient in Joe (1997), which, as the name suggests, is meant to describe
the degree of dependence in the upper tails of the marginals. Thus, the function p
extends this notion from a single direction, 7/4, to all directions in (0, 7/2). This is

illustrated by the following example, which is similar to an example in Ledford &
Tawn (1996).

Example 4.3 Let X; ~ G1, X5 ~ G5 where (G; and G5 are continuous distributions.
Note that (1/G1(X1),1/G2(X5)) has Pareto(1) margins and the same copula as
(X1, X2). It follows from (2.4) and Definition 3.3 that for all § € (0,7/2), we have
Ai(1,cot8) — A(1,cotf) =1)(0) as t — oo, and hence

P (o crEie)
= tlggot( ( X)) < t) - P <@2(1Xg) < ttan@)
+P (Gl(Xl) <t @2(1)(2) < ttané’))

= 1—|—cot9—limt<1—P(_1 §t,_1 gttan0)>
t—o0 G (Xl) GQ(XQ)
€

= 1+cotf— lim tP (t(@l(xg,@z(xg)) ([1,oo]><[cot0,oo])c)

> ttanQ‘

= 14 cotf —(0) = (1 Acoth)p(f).

Hence for all 8 € (0,7/2),

- 1 1)) o
tlinéloP (X2 > (G, (1 ttan@) ‘Xl (1 ; = (1 Acotf)p(0).

O

Our examples below show that p provides an effective tool to visualize dependence
in the extreme tails of the bivariate distribution. In practice, when G is unknown,
p(0) can be estimated from a set of iid data (X;,Y;),1 < i < n, by the nonparametric

estimate

Go(0) = Ven(@) 1+ cotd — ., (6)

Penl6) = bo(0) — U (0) 1A cot 0

, 0€(0,7/2),

8



where

-~

Gen(0) = A.,n(Dy)

= gZ[(& (Ri,1,Rz’,2> S DG)
=1

= 82 I(R;y <e'or Ry <e'coth).
i=1

As mentioned in Section 2, theoretically € and 1/(ne) should be both small in order
for the estimator to perform well. In practice, we will plot p.,(#) for ¢ in some
sensible range for which ¢ and 1/(ne) are “small” and pick an ¢y for which the
estimates {D\M(ﬂ /4) behave stably in the neighborhood of 5. While it is convenient
to use the same ¢ for all 6, allowing € to vary with 6 in simple ways may improve the
quality of the estimation. Indeed, when 6 approaches 7/2, increasingly fewer points
of € (R;1, Ri2) are captured by Dy, which has the effect of inflating the variance of
the estimate in that region. A practical way to overcome this is to choose a baseline
e =¢gp at § = w/4 and allow ¢ to decrease slightly as 6 approaches 7/2. Another
practical consideration is a simple smoothing. At least visually if not theoretically,
the quality of the estimate of p., () improves if some smoothing is incorporated. In
that regard, one can perform a simple averaging over a box window or use something
more sophisticated such as spline smoothing.

We also recommend plotting (1/R;1,1/R;2), 1 <i < n, alongside that of p. ()
to fully appreciate the information in the latter. Recall that

lim P" (1/(nG1(X1)) < 1,1/(nG5(X2)) < tan @) = p(0).

n—oo

As such, p. ,(0) describes the degree of dependence reflected by the pattern of points
of (1/R;1,1/R;2), 1 < i < n, in the box [0,1] x [0,tan#]. The following simple

example demonstrates these points.

Example 4.4 Let py,ps € (0,1) and consider the model
Xi=piZiV(1=p1)Zy and X =peZi V(1 —p2)Zs,

with 7y, Zs, Z3 distributed as iid Pareto(1). Clearly, the dependence between X,
and Xy arises from the common component Z;. Hence the dependence is stronger
for larger values of py, pe. It is easy to see that both X; and X, are asymptotically
distributed as Pareto(1) in the tails. It is also easy to see that

1
P(X; >z or Xy >xtanf) ~ — (14 cot @ — p; A pacotd).
T



Applying (3.3), we have
(x) =14 cotd — p; A pycotb,

and

p1 A pa cot 6
0 —_
o(6) 1 Acotd

In Figure 1 we simulated this model for n = 10000 iid observations of (X7, X5). The

three sets of plots on the three rows correspond to the cases: p; = 0.7, po = 0.3,

(4.2)

p1 = 0.5, po = 0.5 and p; = 0.2, po = 0.8. On each row the left-most plot is the
true functions p(#) in (4.2) (dashed line) overlaid with the smoothed version of
p=n(6) (solid line) based on one simulated sample of size 10000, where ¢ is 1/200
for 6 € [0, /4] and thereafter, € decreases linearly to 1/210 when 6 reaches 7/2. We
computed p.,(0) for 6 € {6; = iw/200,1 < i < 100} and produced the smoothed

version /’){ES%(HZ) by averaging p. ,(0;),]j —i| < s =05, i.e.

1 S
7)) = E = o
pa’n(@) 25 1 1 = Pen(0ij) -

The plots in the middle column illustrate the root of the mean squared error

100
MSE(®:) = > (A0 (0:) — p(6)°
k=1

for the three cases based on 100 simulations with n = 10000 iid observations each
and ,5287)1’“(9@) represents the smoothed estimator of simulation &k, 1 < k& < 100. The
right-most plots contain the simulated points (1/R;1,1/R;2), 1 < i < n, of one
single sample of size 10000 but with points close to (1,1) truncated for easy viewing.

In the first row of plots, p is larger for small # than for large #; this is reflected
by the right-most plot in which the violation of independence can be seen to be
more severe below the diagonal. In the second row of plots, p is constant; which is
reflected by having a portion of extreme points lined up on the diagonal in the right-
most plot. The third row of plots is the converse of the first row of plots which is
reflected by the pattern of extreme points above the diagonal. This is an example of
a situation where Joe’s tail dependence coefficient does not convey a good picture of
extreme dependence, in that p(m/4) is not sufficient to describe the full dependence

structure of this model. O

Example 4.5 Let X = (X;,X5) be a bivariate random vector with dependence

structure given by a Gumbelcopula

Cx (u,v) = exp {— [(—Inw)’ + (= Inv)’] 1/6} , 0€]l,00). (4.3)

10
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Figure 1: Left column: smoothed version of /’5&5,)1(9) (solid line) overlaid with true function p(9).

Middle column: vMSE(6).
Right column: plots of (1/R;1,1/R; 2), with points close to (1,1) truncated, p1 = 0.7, po = 0.3
(upper row), p1 = 0.5, po = 0.5 (middle row) and p; = 0.2, py = 0.8 (lower row).

The dependence arises from J. It is a symmetric model and by Example 4.3 it has
(upper) tail dependence coefficient p(7/4) = Ay = In2/In(2 — §). Since Cx is an
extreme copula, ¥(#) = (1 + (cot 6’)5)1/5 and hence

(6) = LEoo = (14 (cot 0))"°
PRI = 1 Acotf
We simulated this model for n = 10000, and in Figure 2 the plots are given in the

, 0e€(0,7/2).

same order as in Figure 1 based on Example 4.4. We have chosen p(7/4) = 0.3
(upper row), p(m/4) = 0.7 (middle row) and p(7w/4) = 0.9 (lower row). The level of

dependence is manifested by the data scattered around the diagonal. O

5 Multivariate extensions

One advantage of the functions of ¢/ and p in Definitions 3.3 and 4.2 is that they can

be readily extended to higher dimensions by incorporating additional angles 6;. Let
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Figure 2: Left column: smoothed versions /’)\257{(9) (solid line) overlaid with true function p(6).

Middle column: vMSE(6).
Right column: plots of 1/R,;, j = 1,2, for Cx given in (4.3) and p(7/4) = 0.3 (upper row),
p(m/4) = 0.7 (middle row), p(r/4) = 0.9 (lower row).

m > 2and X; = (X;1,...,Xim) be iid with a distribution G, where the margins
G, are assumed to be continuous. Assume that (1.2) holds and the copula of F' has

the representation (1.4). Define the measures A; and A on the Borel o-algebra of
[0, 00]™\{o0,...,00} by

At(A) =tP (t (61<X1’1>, ‘e 7ém(X1,m) c A) 3
and

A (([xl,oo] X +ee X [xm,oo])c> = /m \n}wjxj p(dw) .

Jj=

As in the two-dimensional case, we have

lim A,(4) = A(A)

for any Borel set A C [0, 00]™\{oo0, ..., 00} with A(OA) = 0. Now set

Az, .. xy) = A <([x1,oo] X e X [xm,oo])c) ;
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and, for 6,....60,, € [0,7/2],
Dy, o, ={(x1,...,2) €[0,00]" : x1 ANxogtanby A - -+ A 2, tan b, < 1} .

.....

0,, for by, ..., 0, € [0,7/2] are measure-determining for A. Define

-----

(0o, ..., 0m) := A (Dy,. o,) = A1, cotby,..., coth,).
Hence by the same arguments as in Proposition 4.1, 1 is convex and
10, ..., 00) < V(lay...,0m) < o(O,...,04), 6Oi....0,€0,7/2], (5.1

where

o(f2,...,0m) = 1+cotby+ -+ coth,,

(02, ...,0m) = 1Vcotby V-V cotby,;
Yo and ), correspond to the independent and completely dependent cases, respec-
tively.

Definition 5.1 The tail dependence function, for m > 2, is defined as

(I1+cotby+ -+ cotby) — (b, ...,0m)

P02, 0m) = (14 cotby+ - +cotb,) —(1VcothyV---Vcoth,)

O

By (5.1), pis in [0,1] and p being close to 0 and 1 correspond to weak and strong
dependence, respectively.

In practice, when G is unknown, A(A) can be estimated for any Borel set A from

a set of data (X;1,...,Xim), 1 <i <mn, using the nonparametric estimator
Aen(A) =3 I (e(Rig,.... Rim) € A). (5.2)
i=1

The theoretical properties of the bivariate estimator as explained after (2.5) can also
be verified in higher dimensions. Accordingly, the estimate p(fs,...,6,,) is defined
as

Wo(Ba, ... 0m) — Ae (Do, 0,.)

Den(Oa, ..., 0p) = ,
Pen(02 ) D00 Om) — 01 (O, - 00

where

All practical considerations made in the previous section continue to be applicable
here. To visualize extreme dependence in the data, plot p.,(6a, ..., 6,,) for a discrete
set of (6a,...,0,,). When m > 3, plotting the estimated p requires considerable
creativity. In the following example the tail dependence function can be calculated

explicitly.
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Example 5.2 Let ¢;; € [0,1] for 1 < j <m,1 <14 < k, such that Zle cj; = 1 for
all j. Consider

k
Xj:\/cjiZia jzl,...,m,

=1

where 71, ..., Z; are iid Pareto(1). Generalizing (3.3), we obtain

1
P(X;>xor Xog >ztanfy or -+ or X,,, > xtanb,,) ~ —(0a,...,0,), = — 0.
x
On the other hand,

P(X; >z or Xo>axtanby or --- or X,,, > xtanb,,)

= 1-P(X; <z, Xy <ztanby,..., X,, < xtanb,,)
k

=1 _HP(Zj < :E(cl_leCQ_jltanQQ/\---/\c;étanﬁm))
j=1

1k
~ —chj\/@jcotég\/---\/cmjcot9m.
T
Hence,
k
@/}(02,...,9771) = Z(cli\/CQicot@g\/---\/cmicoth) s
i=1
and
p(92, e ,Hm)

(14+cotby+---+cotb,,) — Zle (€15 V coicot Oz V -+ -V i cot O,,)
(14 cotby +---+cotby,) — (1VcothyV---Vcoth,) '

Note that this example generalizes Example 4.4 which is the special case of m = 2,

k=3, 011:]?17012:1—]91,613:0, C21 = P2, ca2 = 0, 02321—p2~ O

Example 5.3 We estimate the dependence structure of the model given in Exam-
ple 5.2 with m = 3 and k = 5. We choose the constants cj;, 1 <7 < 3,1 <4 <5,
as

C11 = 0.2 C12 = 0.2 C13 = 0 Clqg = 0.6 C15 = 0

Co1 — 0.6 Cog = 0 Co3 — 0.2 Coy = 0 Co5 — 0.2

C31 — 0.2 C3g — 0.6 C33 — 0.2 C3y — 0 C35 — 0

Figures 3 and 4 contain the simulation results of this model for n = 10000 iid obser-
vations of (X, Xs, X3). We chose ¢ = 1/200 and computed the estimate p. (02, 03)
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for 05,05 € {6; = in/200,1 < i < 100} and smoothed p.,(6;,6;) by averaging
Pen Ok, 01), |k —il, ]l — j| < s =3, ie.

K] H - -~
@pr@:&.v = 3 M bpz@??&f;.
k,l=—s
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i3 60
60

X
4012

X
40"

X,
40

20
20
20

0

40 60 80 100 0 20 40. 60 80

12 .14
12 .14

1
1/Ris
1

1/Ris
02 .04 .06 .08

02 .04 .06 .08

0
0

06 08 1 12 .14 1 15

1/Riy 1/Riy 1/Rip

Figure 3: First row: data (3-d and 2-d projections) of the model given in Example 5.2.

Second row: ranks 1/R; ;, 1 < j < 3, in the same order as in row one.
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Figure 4: First row: smoothed estimate ﬂwﬁmwa%wv of the simulated data (see Figure 3), with
perspective plot (left-most), contour plot (middle) and image plot (right-most).

Second row: true tail dependence function p(62,03) for this model.

In the first row of Figure 3 the data are plotted, where in the left-most plot
we show the 3-dimensional data, the three plots on the right hand side show the
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projections of the data, (X;1,X;2), (X;1,X;3) and (X;2, X;3). The second row is
given in the same order as the first row, showing the reciprocal ranks 1/R;;, 1 <
j < 3. The first row of Figure 4 shows the estimate ﬁS’,{(HQ, 03), where the left plot is
a perspective plot, the middle one is a contour plot and the right one is a grey-scale
image plot. To see how the estimator performs the second row presents the true

tail-dependence function p(6s,03) for this model.

Remark 5.4 Let p; 23 be the tail dependence function of three rvs X, X, X5 and
p1,; be the tail dependence function of X;, X;, j = 2, 3, hence by definition p; 2(62) =
p123(02,m/2) and p13(05) = p123(7/2,03) holds Vb, 65 € (0,7/2). Therefore p; o
can be estimated by the cross section of the estimated trivariate tail dependence

function at a large and fixed angle 0,, and similarly for p; 3. To identify po 3 recall
that Ay23(0,a,b) = Ag3(a,b), hence

hII(l) p123 (arctan e, arctan (¢ tan 9))

E—

Y 1+ 1/e+4cotf/e — 1123 (arctane, arctan (e tan b))
= lim
e—0 1+ 1/e+cotf/e —1V 1/eVcoth/e

. e+ 1+4coth —elAia3(1,1/e,cotf/e)
= lim =
e—0 e+ 14+cotd —eV1Vcoth

e+1+cotfd—As3(e,1,coth)
im
e=0 e+ 1+cotf—eV1Vcoth

14 cotf — Ay 3 (1, cot )

- 14+ coth —1Vcoth = 23(0).

6 The swap rate data

The data consist of returns (daily differences) of Annually Compounded Zero Coupon
Swap Rates with different maturities (between 7 days and 30 years) and different
currencies (EUR, USD and GBP). Each of the time series consists of 257 daily
returns during the year 2001. In an exploratory data analysis we investigated first
each single time series. Plots of the autocorrelation functions of the single time series,
their moduli and squares exhibited no significant temporal dependence structure;
hence we assume the data being iid. Moreover, the histograms and a tail analysis
showed that the marginals are well modelled (at least in the tails) by a two-sided
exponential distribution. Concerning multivariate (spatial) dependence, for swap
rates in the same currency we observed a high dependence for similar maturities,
and a low dependence between very different maturities. Between different currencies

we observed only very little dependence except for similarly long maturities, where
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Figure 5: Estimates p for some swap rates with smoothed versions (dashed lines).
Left plot: p for 7-day vs 30-day, 7-day vs 6-month, and 7-days vs 30-year.

Middle plot: p for 30-day vs 60-day, 30-day vs 1-year and 30-day vs 30-year.

Right plot: p for 10-year vs 15-year, 10-year vs 20-year and 10-year vs 30-year.

we detected some moderate dependence. For plots and details on these effects we
refer to Kuhn (2002).

To see the estimator p at work we show plots of p. (), 8 € (0,7/2), as defined
in (4.1) for the swap rate data described above for EUR. We use the nonparametric
estimator given in (2.5). We stay away from the boundaries § = 0 and 6 = 7/2 since
{Z)\m(e) tends to 0o as # — 0, and for 0 near /2 there is a lack of data.

In Figure 5 the tail dependence function is estimated for various combinations of
swap rates of different maturities with p. ,,(6;) (zigzag-line) and the smoothed version
AU (6,) (dashed line) for & = 0.06, m = 5 and §; = 5i=2, 1 < < 200. The left plot
shows strong dependence between the 7-day and 30-day rates, moderate dependence
between the 7-day and 6-month rates, but very weak dependence between the 7-day
and 30-year rates. The middle plot shows moderate dependence between the 30-day
and 60-day rates for 0 close to /4 and exceptionally high dependence for § small or
large, but weak dependence between the 30-day and 1-year and 30-day and 30-year
rates. The right plot shows strong dependence between the 10-year,15-year, 20-year
and 30-year rates. O
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Example 6.1 Figure 6 shows a comparison of the tail dependence function with

the spectral measure ® as defined in (3.2). We recall that in case of independence

V O(dy) =
/0 (1\/(}0‘57 1\/tan7) (&) =z+y,

and hence

1, 0<m/2,

o(0) = 2([0,0)) = { 2, 0=n/2

and in case of complete dependence

V O(dy) =z V
/0 (1VCot’y 1\/tan’y> (dy) =zVy,

and hence

0, 0<n/4,

¢(0) = ©([0,0]) = { 1, 7/4<6<m/2.

These results allow us to interpret the plots. We consider the 20-year vs. 30-year, 7-
day vs. 30-day, and 7-day vs. 30-year swap rates. In the first row (high dependence)
the estimated spectral measure ® equals 0 for # < 0.4 and then quickly jumps to 1.
In the third row (low dependence) the estimated ® jumps quickly to 1 and remains
there until close to /2 where it jumps to 2. The middle row (moderate dependence)

is a mixture of high and low dependence case. O

Example 6.2 Figures 7 and 8 show two trivariate examples. The first example is
generated by the low dependent swap rates with 7 day maturity and currencies USD,
EUR and GBP; X;; corresponds to USD, X, to EUR and X; 3 to GBP. In the first
row we plotted the ranks 1/R;;, 1 < j < 3, where R;; = rank(—X; ;). In the left-
most plot we show the 3-dimensional data, the three plots on the right hand side show
the two-dimensional projections (1/R;1,1/R;2), (1/R;1,1/R;3) and (1/R;2,1/R; 3).
The second row shows the smoothed estimator ﬁf—f%(@g, 05) for n = 257, ¢ = 0.06 and
s = 3; the left plot is a perspective plot, the middle one is a contour plot and the
right one is a grey-scale image plot.

These 7-day swap rates show low and symmetric tail dependence which is re-
flected by many points lying near to the axes and the rest is scattered roughly
uniformly with respect to the angles 0, 03 (first row of figure 7). The estimator
f)é‘f,)l(HQ, 05) (second row) is therefore between 0.15 and 0.35 showing no significant
difference between small and large angles.

Figure 8 shows the same as figure 7 for the high dependent EUR swap rates with

maturities 5, 6 and 7 years. These swap rates with long and similar maturities show

18



1/Ri»

1/Riy

1R,

0.25

0.15

0.05

0.0

0.3

0.2

0.0

0.3

0.0

20-year swap vs. 30-year swap p of 20-year swap vs. 30-year swap d of 20-year swap vs. 30-year swap

S
=T =
=
3 =
(=]
©
s ° =
& < &
< -
2
~
R . S ™
A (=}
. "..',~ - g 7777777777777777777777777
P B
s
0.0 005 0.10 015 0.20 025 02 04 06 08 10 12 14 0.0 0.5 1.0 15
1/Riy 0 0
7-day swap vs. 30-day swap p of 7-day swap vs. 30-day swap ® of 7-day swap vs. 30-day swap
=
B =
»
s
=
© 3
s ° S
& = (&
s
. 2
. ~ =
. . s
'-. ‘ .
ii . .. =
fob oo =
s
0.0 0.1 0.2 0.3 02 04 06 08 L0 12 14 0.0 0.5 1.0 15
1/Riy 4 0
7-day swap vs. 30-year swap p of 7-day swap vs. 30-year swap ® of 7-day swap vs. 30-year swap
=
- ~
5
o )
= —
°
S e <
&« o
S
. . ~ 0
PR s 2
3,
ﬁ’. oL =
| I N . . < <
=
0.0 0.1 0.2 0.3 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5

1/Ris 0 0

Figure 6: Estimators of p and ® for some swap rates: 20-year vs. 30-year (first row), 7-day vs.
30-day (second row), and 7-day vs. 30-year swap rates (third row).

Left plots: transformed ranks 1/R; ;,j = 1,2.

Middle plots: estimated tail dependence function p.

Right plots: estimated spectral measure d of the data.

In the first row we see high, in the second middle and in the third row low dependence.

high and symmetric tail dependence which is reflected by all points lying near the
diagonal (first row of figure 7). The estimator ﬁg‘f,)l(QQ, 05) (second row) is therefore
almost everywhere close to 1, only for angles 6, 03 near 7/4 the estimator becomes

smaller which is illustrated by the points that are away from the diagonal. O

Appendix

Proof of Proposition 3.2 (1): The case § = /2 is obvious. Let y; = i/n if
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Figure 7: First row: data (3-d and 2-d projections) of the ranks 1/R
dependent 7-day swap rates rates in USD, EUR and GBP.
Second row: smoothed estimator ;’)ﬁ’%(@g,@g), perspective plot (left-most), contour plot (middle)

1 < j <3, of the low

.59

and grey scale image plot (right-most)
0 € (0,m/4] and z; =i/nif 0 € (w/4,7/2), 1 <i <mn, then

lim >~ [A(y; cot0,y;) — A(y; cot 6, y;—1)] 0 € (0, 7]
_ ) i
A(Cy) = -
lim 7 [A(z, 2 tan ) — A(z;, 2,1 tan )] + A(1,1) — A(1,tand), 6 € (%,5).

—00
n—oo ;|

B

Consider first 6 € (0, 7/4]. Note that for z1,z9 € [0, 0],

1V cotry 1V tan~y
(arctan %a%] {O,arctan z—f]

Thus, letting 6; := arctan (% tan 6’),

A (yicot 0, y;) — A (y;cot 0,y;1)

= % i / [(1 A coty) — (cot §)(1 A tan~)]|P(dy) + / (1 A cot ) d(dy)
(65,6] 0,65]

= % i / [1 — (cot @)(tan~)|P(dy) + P[0, 0;]
(05,0]

Observe that sup. ¢, g (1 — (cot #)(tan )] < 1. Since 6; — 0, we have

iimsup / 11— (cot 0) (tan7)]B(d) < B({0}),
(04,6]
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Figure 8: First row: data (3-d and 2-d projections) of the ranks 1/R; ;, 1 < j < 3, of the high
dependent 5-year, 6-year and 7-year EUR swap rates.

Second row: smoothed estimator /75%(92,93), perspective plot (left-most), contour plot (middle)
and grey scale image plot (right-most)

whereas ®[0,6;] — ®[0,0) as i — oo. Applying Cesaro’s mean value theorem we
conclude that A(Cy) = ®[0,0] for all 6 € (0,7/4] with &({0}) = 0. The case
0 € (m/4,7/2) can be dealt with similarly and the two cases combine to give
A(Cp) = @[0,0] for all 8 € (0,7/2) with ®({0}) = 0. Note that both A(Cjy) and
[0, 0] are nondecreasing and right-continuous functions in . Since they agree on a
dense subset of points in [0, 7/2] they must agree on the entire interval of [0, 7/2].
This concludes the proof. O
Proof of Proposition 4.1 (1): ¢(0) = 0”/2 (1/(1V coty))V(cot8/(1V tan~y)) ®(dy)
and since the integrand is convex with respect to 6, v is.
(2): Recall that % (1/(1V cot)) @(dy) = [i/? (1/(1V tanv)) ®(dy) = 1. With
(A.1) this gives A(z1,22) < 1 + 29 hence ¥(6) = A(1,cotd) < 1+ cotf. The in-
dependence extreme copula being Cy(z,y) = zy, it follows from (1.5) that (0) =
o(0) = 1+ cot @ for the independence case.

The extreme copula that corresponds to complete dependence is Cy(x,y) = x Ay,
it follows from (1.5) that 1(0) = 11(8) = 1V cot 6 for the complete dependence case.
By Fréchet-Hoeffding bounds (see Nelsen 1999, p. 9) C' < Cy holds for all copulae

C, hence ¥, < % for all ¥. O
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