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Abstract: This paper presents a generalization of a previously defined lexicographical dynamic
flow model based on multi-objective optimization for solving the multi-commodity aid distribution
problem in the aftermath of a catastrophe. The model considers distribution of the two major
commodities of food and medicine, and seven different objectives, and the model can easily be
changed to include more commodities in addition to other and different priorities between the
objectives. The first level in the model is to maximize the amount of aid distributed under the given
constraints. Keeping the optimal result from the first level, the second level can be solved considering
objectives such as the cost of the operation, the time of the operation, the equity of distribution for
each type of humanitarian aid, the priority of the designated nodes, the minimum arc reliability, and
the global reliability of the route. The model is tested on a recent case study based on the Hagibis
typhoon disaster in Japan in 2019. The paper presents a solution for the distribution problem and
provides a driving schedule for vehicles for delivering the commodities from depots to the regional
centers in need for humanitarian aid.

Keywords: humanitarian logistics; multicriteria; distribution models

1. Introduction

The tasks related to humanitarian logistics are a combination of logistics and humani-
tarian relief, focusing on maintaining health, life, and living conditions. They deal with
transportation, storage, and transshipment, as well as the management of humanitarian
aid focusing on logistics services and logistics costs. The logistics services objective ensures
that aid is delivered to the people most in need as quickly and reliable as possible, while
the logistics costs objective ensures the best possible service within a limited budget for
the humanitarian relief [1]. Humanitarian logistics have their own specific challenges and
difficulties depending on the type, location, and degree of disaster. In the case of acute
severe natural disasters, people need to be rescued and taken care of within a short period
of time. Lack of information, destroyed infrastructure, and limited international assistance
are particular problems. Schumann-Bölsche [1] notes that in the case of persistent natu-
ral disasters, such as regular droughts in some regions of Africa and in case of political
crises, the challenge is not so much related to the time aspect but rather focuses on limited
financial resources and logistical potential, for example, in seaports or in refugee camps.
Political and cultural issues can also complicate humanitarian logistics.

The World Heritage Encyclopedia defines humanitarian logistics as a branch of lo-
gistics that specializes in organizing the delivery and storage of supplies during natural
disasters or complex emergencies to the affected area and people [2]. During the onset
of a disaster, all elements of the system must work according to a proven, ready-made
scheme based entirely on logistic principles. The challenge for the responsible authorities
is to respond to the request as efficiently as possible and to minimize the response time,
execution costs, and number of distribution centers involved. Mobilization centers and
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brigades are sent to the area for managing the delivery of food and organize rescue teams.
The private sector and the field of humanitarian logistics can enrich each other, and the
private logistics sector can learn from humanitarian assistance, e.g., in order to provide
flexibility and speed in difficult conditions. Hence, it is valuable to simulate disasters
in various scenarios in advance in order to take appropriate precautionary measures to
prevent its occurrence or to assign all possible resources to minimize the damage. The
importance of logistics in disaster preparedness is in line with observations, rehearsal,
warning, and hazard analysis. However, in humanitarian supply chains, it is extremely
difficult to assess the efficiency indicators accustomed to business logistics. The demand
for such operations is very unpredictable. It is difficult to assess performance and to predict
working conditions, and there is a lack of incentives for performance measurement and
environmental research, as the domain is non-commercial. Depending on the nature of
the disaster, transportation management for disaster relief can be complex. It depends on
budget, coverage of demand, road reliability, equity of distribution, security in the disaster
area, and other criteria [3]. One of the main problems of interest in disaster management
deals with the distribution of humanitarian aid. The planning of such a distribution is
done along different phases of the process, such as pre-disaster and post-disaster phases.
In this work, we will focus on the post disaster humanitarian aid distribution. This implies
that there exists some available information characterized by high uncertainty, such as
demand, resources required, the state of the infrastructure, the time required to complete
the operation, and the dispersion of resources. In addition, there is usually a high time
pressure and a short period of time to prepare and run the model. One of the objectives
of this study is to investigate and create a realistic case study based on a recent disaster.
Further, this work aims at developing a realistic mathematical model for the problem and to
use the case study to assess the performance of the built model. In this context, the problem
consists of designing a realistic distribution schedule within the available resources, taking
into account several efficiency criteria.

2. Literature Review

The humanitarian sphere is unique for the implementation of any theory. Therefore,
in their studies, Guide and Van Wassenhove [4] emphasize that at the time of an emergency,
decision-makers have to work in conditions of limited information and time. It follows
that using models that require considerable searching time and a large amount of input
data is not the best solution in such cases. They also note that data collection will be a
rather complicated procedure, and all the same, the received data will most likely be of
poor quality [4,5]. Nevertheless, some researchers have succeeded in developing models
successfully applied in humanitarian logistics. In 2009, inspired by experience, Carroll and
Neu [6] described the state of humanitarian logistics as unstable with a huge number of
participants, which creates unpredictability and asymmetry. They developed a modern
model covering all aspects of logistics and narrowed the gap between the current and
necessary, flexible state of humanitarian logistics. They also proposed several universal
methods that, in their opinion, lead to “flexibility of cooperation and efficient logistics for
responding to natural disasters, which will lead to sustainability and universality”. The
vast majority of humanitarian logistics research focuses on the preparation and planning
stages, as well as applied policies and procedures. The studies that develop specific models
mainly propose to introduce information technologies into the supply chain. For example,
in 2002, a knowledge management framework serving as a tool for decision makers during
a humanitarian operation was developed. It is argued that such a system is self-learning
and the more information it accumulates, the better it will work in the future [7]. The
applicability of the research to the practical side of real life is very important. If the research
cannot be used in practice, the importance of such work is immediately devalued. If
repeated over and over again, this may lead to a decrease in the need of practitioners for
the work of scientists as a whole [5].
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2.1. Research on Humanitarian Logistics

The field of humanitarian logistics can include a wide range of logistic problems. One
important approach is operations research and quantitative methods for finding the best
possible solution under some given criteria. Within this field, vehicle routing problems
play a crucial role, and Anuar et al. [8] have published an extensive survey on vehicle
routing in humanitarian operations. The survey classifies papers based on attributes for
application, disaster type, model characteristics, and solution approach.

The UCM-HUMLOG research group [9] at the Complutense University of Madrid
is focusing their research on development of decision support systems for meeting lo-
gistical problems in disaster management. The article by Vitoriano et al. [10] aims to
identify relevant differences in disaster management compared with other types of lo-
gistics. They introduce a model for assessment of consequences in the early stage after
a disaster and another for the last mile distribution of humanitarian aid focusing on the
multicriteria nature of such problems. The multicriteria approach is further developed
by Mejita-Argueta et al. [11], who looked specifically into preparedness of frequent and
foreseeable floods. They considered the three criteria of evacuation and distribution time
and the total cost of the operation. In an earlier paper, Vitoriano et al. [12] presented a goal
programming-based humanitarian aid distribution system focusing on specific transport
problems appearing in humanitarian aid distribution. Another approach is a lexicographic
goal programming model presented by Flores at al. [13], focusing on evacuation and the
objectives of the number of evacuated people, the operation time, and the cost. The model
is evaluated through a case from the earthquake and tsunami that hit Palu, Indonesia, in
September 2018. Location of facilities is another concept relevant for disaster response
planning. Rennemo et al. [14] presented a three-stage model considering opening of local
distribution facilities, allocation of suppliers and last mile distribution of aid. The model
is stochastic with respect to the available vehicles, the state of the infrastructure, and the
demand. Monzon et al. [15] developed a pre-disaster model with uncertainty and multiple
criteria for facility location and network fortification. The model is a two-stage stochastic
model where the first stage concerns decisions to be taken before the disaster strikes, such
as location of inventories and fortification of road sections. The second stage relates to the
situation after the disaster has struck and solves the problem about distribution of goods
in the current network. The methodology was tested on a case based on the storm that hit
Mozambique in 2018.

Distribution problems in disaster management are often defined by multiple criteria
and high complexity under uncertain conditions. Hence, larger instances will not always
be possible to solve to optimality in real-time, and heuristics might be necessary for finding
acceptable solutions. Ferrer et al. [16] developed a constructive algorithm and a GRASP
metaheuristic for solving a last-mile distribution problem and tested the algorithm on a
case study based on the 2010 Haiti earthquake. The same authors presented a few years
later an ant colony-based methodology [17] for the same problem applied on case studies
from the Haiti earthquake together with another case based on the 2005 Niger famine.

2.2. The Hierarchical Compromise Model

Liberatore et al. [18] proposed a hierarchical compromise model for the joint optimiza-
tion of recovery operations and distribution of emergency goods based on a multi-criteria
solution approach and a three-level lexicographic optimization method. This model focuses
on recovery of damaged arcs in post-disaster operations. It calculates which temporary
emergency access roads, proper roads, tunnels, or bridges that need to be restored or
cleaned in the first place to open a path through them. In addition, it shows how to do
this with minimal loss of time and minimum budget costs while fully satisfying demand
and covering all affected areas and sites. The emphasis is on restoration work rather
than a distribution plan, so it is assumed that the capacities of the distribution centers are
unlimited and the distribution of products is continuous.
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The hierarchical model implies that the highest priority is to maximize the satisfied
demand for humanitarian aid and to help people in a catastrophe, while subsequently
other criteria are taken into account. In their paper, Liberatore, et al. [18] consider opti-
mization criteria such as maximum service time, total demand in the entire considered
area, maximum ransack probability during the delivery of goods along the selected route
and the minimum reliability of roads on the selected distribution plan. The first level of
the lexicographic model computes the maximum demand to meet and which routes to
use, taking into account all the above criteria. At the second level, the model optimizes
each criterion individually by minimizing the maximum of normalized criteria deviations
from ideal values with the previously found total demand value already fixed, using
Chebyshev distances. At the third level of lexicographic optimization, optimal solutions
are selected from a variety of alternatives. To accomplish this, researchers use the method
of minimizing the weighted sum of the normalized deviations of the criteria without losing
the results achieved at previous levels. Liberatore et al. [18] emphasize the need to coordi-
nate services involved in restoring transport infrastructure and humanitarian aid delivery
services. Moreover, they empirically prove this by conducting an experiment by replacing
the three-level solution described above with three independent sequential models. This,
in the same way that two separate services would make their decisions without coordi-
nating their actions but working separately. The “gaps” between the sequential solution
and a coordinated one show how important cooperation between rescue services is when
disasters occur, as well as the power of reliable information.

2.3. Dynamic Flow Model

A subsequent study on the current topic was conducted by Tirado et al. [19]. They
proposed a dynamic flow model for solving the aid distribution problem in emergency
situations based on a multi-criteria approach and a lexicographic method of goal program-
ming. In their work, Tirado et al. [19] proposed a model focusing on building a realistic
distribution plan for last mile delivery, assuming that the resource allocations and trans-
port infrastructure are known. For solving the problem, they introduced a time horizon,
divided into periods of one minute each. This approach allows for a realistic distribution
schedule. The dynamic model permit vehicles to follow different routes to visit the same
node and to visit a node several times. At the same time, the statically model does not
imply such optimization.

The decision-making process takes place at two lexicographical levels where four
criteria—the global distributed quantity, operating time, aid distribution equity, and cost—
are taken into account. The primary goal of the model is to maximize aid for people in need,
and this is directly proportional to the amount of demand that should be satisfied. The
objective function of the first stage is to allocate the planned amount of resources within
the available budget, when, at this level, no trade-offs with other optimization criteria are
permitted. At the first stage, the solution obtained is integer. It does not require a high
computational effort and hence it is calculated quickly. The second lexicographical level
of the model determines the distribution schedule, considering the remaining goals. The
decision maker, as an expert in the field, can specify the weights of each criterion. However,
by default, preference is given to minimizing the execution time of the operation, and then
secondly comes the cost and equity. For a dynamic model, it is important to correctly define
the length of the time horizon given as the maximum number of time periods. This is
important for the model to be able to optimize not only the time criterion but other criteria
as well. Otherwise, the time horizon can be limited in such a way that the other criteria
will not have any implication since they directly depend on the time of the operation in
real life. However, for modelling, it can be determined approximately or experimentally by
running the program and checking the results. If a reasonable solution is found within a
given time horizon, then the time horizon was chosen correctly, but if not, one could make
it longer and run the model again. However, another option used by Tirado et al. [19] is to
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use the execution time of the operation found by solving the static flow model defined by
Ortuño et al. [20], increased by 10%.

After testing, the dynamic model shows a slight increase in response time and cost,
due to separation of the time horizon into periods, but at the same time, it creates a realistic
schedule for the distribution of humanitarian aid, allowing for multiple departures from
each node. This schedule allows more people to get help earlier, although their need may
not be fully met immediately. In the end, however, the demand will be satisfied by the
next vehicle that follows the route. Difficulties in solving such a model may appear when
the time horizon increases. This will lead to a problem of high dimensionality, which may
require the use of extensive computer power to obtain a solution within reasonable time.

2.4. Compromise Programming Model

In a recent study, Ferrer et al. [3] present their newest application for humanitarian
logistics. The application is based on a compromise-programming model for multi-criteria
optimization in humanitarian last mile distribution. They argue that it is the first model
in its field capable of optimizing many criteria at the same time, while creating a realistic
schedule for vehicles and, if necessary, forcing them to travel in convoys. The model
proposed is intended to help in the distribution of humanitarian aid after a disaster,
meaning that the information involved in the decision-making process contains a high
degree of uncertainty. Despite this, it is a deterministic model where Ferrer et al. [3] assume
that the parameters entered for the computation will consider the uncertainty of the current
situation. The model builds on the compromise programming method considering six
criteria, such as time, cost, priority, equity, security, and reliability. The approach ensures
that the obtained solution is a non-dominated or efficient one, hence making sure that
there is no other solution surpassing or equals the proposed solution in all criteria. Such
a solution is as close to the ideal values as possible, within the available resources in
the current situation. Ideal values are determined by solving the model individually for
each criterion, without considering the importance of the others. It also implies that the
decision maker already has an initial amount of information sufficient for designing the
mission, e.g., the available amount of aid to be distributed and the number and type of
vehicles available. The developed model is designed for the delivery of a single commodity,
but it may be a tool with a diverse selection of goods pre-formed at the warehouse. The
model makes an individual schedule from the supplier to the demand nodes for each
vehicle, calculating the type of vehicle needed for a particular route. Furthermore, one
can set the condition that the rescue organization does not have the necessary type of
vehicles in its fleet, and in this case, the model can take into account rental of vehicles
and calculate the optimal plan for such a scheme. At the same time, the model allows
for constructing an operation for several depots and several types of vehicles considering
the time of loading and unloading of vehicles and allowing for transshipment and split
delivery. In addition, there are restrictions on the compatibility of certain types of vehicles
with certain roads. Hence, a large vehicle cannot be assigned to a narrow rural road and so
on. If an efficient solution requires the use of an unreliable arc, the model can append a
convoy and police escort for this route, increasing the cost for the operation. Consequently,
the use of unreliable arcs would be avoided if the other criteria allow for it. It may happen
that there are nodes in hardly accessible locations, leading to the model bypassing them
when finding a solution. In this layout, however, it is possible to designate such nodes
as priority.

Given all of the above, it is easy to conclude that when using the model in real
cases, the problem will have a high dimension, since a large number of variables is used
in the calculations. Ferrer et al. [3] states that in order for the model to provide a fast
enough solution, they had to use simple heuristic methods abandoning local search-based
metaheuristics and complex evolutionary algorithms because they would require a very
high computational effort. They applied the GRASP method [21], which is widely used
for compromise optimization problems for finding good solutions. Although several
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researchers have focused on humanitarian logistics during the last years, the research field
is still young. Hence, models developed are often insufficient for meeting the complex
requirements in a real-life problem. This research is following the direction from Ortuño
et al. [20] and Tirado et al. [19], starting with a static model and continuing with a dynamic
model divided into time periods. The main innovation in this work is to generalize the
model to include more than one type of product. In addition, more objective functions are
considered, including the reliability of routes and potential priorities, and a new case study
is presented for testing the model with real-life data. Such a model can be included in a
decision aid system to be used when disasters appear.

3. Model Description

The model presented in this work is an extended version of the model developed
by Tirado et al. [19]. In the basic model, such extensions were added as the ability to
carry out multi-commodity delivery, the ability to determine the priority for all desired
demand nodes, and two criteria for road reliability. The first criterion was maximizing
reliability based on the worst arc used in the distribution route, while the second criterion
aimed at maximizing reliability based on all arcs used in the operation. The ability to
calculate travel time as a maximum between the speed limit of the road used and the
speed characteristics of the vehicle traveling along it was also added. The presented model
includes the possibility to adjust the length of the time period depending on the preferences
of the decision maker. This option is convenient when planning long operations. Since the
indicator for effective performance of the model is the execution time of the program, a
large number of time periods will lead to a significant increase in the number of alternative
solutions, making the response time of the model larger. Hence, the length of one time
period should be chosen in a way that the response time of the model is reasonable and the
quality of the provided distribution plan and schedule is adequate.

Vitoriano et al. [22] applied the priority condition on the model for humanitarian
operations. The distinction exists in the fact that the authors implement the criterion of a
priority node, while in the model presented in this work, priority can be given to several
nodes at once in the same or different degree, depending on the choice of the decision
maker. Such a formulation not only allows for assigning priority to several nodes at the
same time but also allows the priority criterion not to conflict with the equity criterion for
optimizing them simultaneously. Ortuño et al. [20] also considered a reliability criterion
in their paper. However, this criterion is different from the one proposed in the current
paper. The model, proposed by the Ortuño et al. [20], assumes the use of a security criterion
based on the probability of robbery along the route, and the authors conclude that the
ransack probability can be reduced and the relevance of the safety attribute improved by
traveling in a convoy. In connection with this feature of the model, the reliability criterion
is also calculated for a convoy traveling through an arc. However, in the presented case
study, related to the humanitarian operation in Japan, there is no sense in applying a safety
criterion based on the probability of being ransacked and overloading the model. The fact
that a vehicle can move independently and not be guided by a convoy allows it to be more
maneuverable and mobile. This leads to the fact that the vehicle can overcome its route
faster, which is an undeniable advantage for humanitarian operations. When traveling in a
convoy, the speed of all vehicles must be taken into account. If a situation where the speed
characteristics of the vehicles are different occurs, then the entire convoy is obliged to move
at a speed not exceeding the maximum speed of the slowest vehicle. This can significantly
degrade the performance of the time criterion for long operations.

Goal programming turned out to be the most convenient method for obtaining the
desired result, and therefore it was used as the main optimization method for our model.
However, the model is formulated in such a way that adding more criteria to the objective
function makes the boundaries of the importance of the criteria less evident.

The notation for the model is presented in Tables 1–4, while the mathematical formu-
lation is presented after the notations:
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Table 1. Sets and indices.

N : Set of demand nodes and depots
A : Set of arcs represents existing links between nodes
T : Planned time horizon to complete the operation
V : Set of vehicles, defined by types
P : Set of products
G : Set of goals/objectives

i, j : Indices referring to nodes (i, j) ∈ A being i, j ∈ N
t, s : Indices referring to time periods t, s ∈ {1, . . . , T}
p, d : Indices referring to any products p, d ∈ P
f , m : Indices referring to food and medicine products f , m ∈ P, respectively

k. : Index referring to vehicle types k ∈ V
g : Index referring to goals g ∈ G

Table 2. Parameters.

demip : Demand of product p ∈ P at node i ∈ N, in tons
avqip : Available supply of product p ∈ P at node i ∈ N, in tons
distij : Length of arc (i, j) ∈ A, in km
velrij : Maximum velocity on arc (i, j) ∈ A, in km per hour
relij : Probability of crossing the arc (i, j) ∈ A, relij ∈ [0, 1]
capk : Capacity of vehicle type k ∈ V, in tons
velk : Maximum velocity of vehicle type k ∈ V, in km per hour

avehki : Number of available vehicles of type k ∈ V at node i ∈ N
tvehk : Total number of vehicle types k ∈ V available for the operation
trijk : Travel time of arc (i, j) ∈ A using vehicle of type k ∈ V
c fijk : Empty travel cost, i.e., fixed cost of using arc (i, j) ∈ A with vehicle of type k ∈ V, per km

cvijkp : Load travel cost, i.e., variable cost of using arc (i, j) ∈ A with vehicle of type k ∈ V, per km,
and ton of product p ∈ P

prii : Priority level of node i ∈ N, prii ∈ [0, 1]
tgg : Target for criterion g ∈ G; tgg 6= 0 defined by decision maker
wg : Weight of criterion g ∈ G defined by decision maker
tm : Time measure helping adjust the length of time period
bd : Large value to create bounds for some constraints

dvQ : Fixed deviation of delivered aid, in tons
qp : Total amount of product p ∈ P desired to be distributed in the operation, in tons
b : Budget available to perform the operation

Table 3. Variables.

QCijkpt : Load of product p ∈ P carried from i ∈ N to j ∈ N using vehicle of type k ∈ V and starting in
period t ∈ {1, .., T}, in tons

QSipt : Load of product p ∈ P stored at node i ∈ N at the beginning of period t ∈ {1, .., T}, in tons
NTVijkt : Number of vehicles of type k ∈ V that start traveling from i ∈ N to j ∈ N in period t ∈ {1, .., T}
NVikt : Number of vehicles of type k ∈ V available at node i ∈ N at the beginning of period t ∈ {1, .., T}
BTijk : Binary variable taking value 1 if a vehicle of type k ∈ V uses arc (i, j) ∈ A, 0 otherwise
BAij : Binary variable taking value 1 if any vehicle uses arc (i, j) ∈ A, 0 otherwise
BQt : Binary variable taking value 1 if load has been delivered in period t ∈ {1, .., T}, 0 otherwise
DVg : Variable showing unwanted deviation of the criterion g ∈ G from its target, in units of criterion
DVQ : Variable showing unwanted deviation from desired amount of delivered aid, in tons
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Table 4. Considered criteria.

Cost : Total cost of the operation, in US dollars.
Time : Number of time periods required to complete the operation.
TP : Time penalties variable adding higher penalties to long operations.

EqF : Criterion of equity of food distribution. 0 if food demand of all nodes is completely fulfilled and
positive otherwise.

EqM : Criterion of equity of medicine distribution. 0 if medicine demand of all nodes is completely
fulfilled and positive otherwise.

Prio : Demand satisfaction priority criterion in the specific nodes. 0 if demand of priority nodes is
completely fulfilled and positive otherwise.

Rel : Reliability criterion indicates the most unreliable arc used in the operation.
GR : Global route reliability criterion shows reliability of the whole set of arcs used in the operation.

The model has to satisfy the following hard constraints:
Constraints related to load:

∑
j/(j,i)∈A

∑
k

∑
s≤ t−trjik

QCjikps + avqip = ∑
j/(i,j)∈A

∑
k

∑
s ≤ t

QCijkps + QSipt∀i, p, t (1)

∑
i

QSipT = ∑
i

avqip∀p (2)

QCijkpt, QSipt ≥ 0 and integer ∀(i, j), ∀k, t, p (3)

Constraints (1) are the dynamic load flow conditions ensuring that the load of each
product at each node and time period is in balance. Constraints (2) make sure that dis-
tributed and stored load at the end of the operation is equal to the available amount of aid,
while constraints (3) indicate that load variables should be non-negative, and, in our case,
they should be integer.

Constraints related to travel time:

trijk =
distij∗tm

min
{

velk, velrij
}∀(i, j), ∀k (4)

Constraints (4) compute travel time as the maximum number of time periods required
to cross the arc, considering the speed limit of the arc and the speed characteristics for
the vehicle type, selecting the lowest value to be used. The time measure parameter tm is
introduced as a tool to manipulate the length of one time period. In this particular model,
tm = 12, which means that one period of time is equal to 5 min.

Constraints related to vehicles:

∑
j/(j,i)∈A

∑
s≤ t−trjik

NTVjiks + avehki = ∑
j/(i,j)∈A

∑
s ≤ t

NTVijks + NVikt∀i, k, t (5)

∑
i

NVikT = ∑
i

avehki∀k (6)

NTVjikt, NVikt ≥ 0 and integer∀(i, j), ∀k, t (7)

Constraints (5) create the balanced flow of vehicles, taking into account the chrono-
logical sequence of time periods, the number of products to be delivered to the node, the
type of vehicle, and the number of available vehicles in each node at a particular period
of time. At the same time, constraints (6) ensure that only accessible vehicles are used for
transportation. The inequalities (7) indicate that vehicle variables should be integer and
non-negative.

Constraints related to vehicle-load:

∑
p

QCijkpt ≤ capk NTVijkt∀(i, j), ∀k, t, p (8)
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Conditions (8) limit the sum of the carried products, ensuring that the vehicle capacity
is not exceeded.

Cost conditions:

Cost = ∑
(i,j)∈A

∑
k

∑
t

distij

(
2c fijk NTVijkt + ∑

p
cvijkp QCijkpt

)
(9)

Cost ≤ b (10)

Equation (9) defines how the cost is calculated. The model assumes that the vehicles
return empty to their original point, in other words, they drive twice through the same
route. The fixed cost includes all expenses that do not change throughout the operation,
such as renting a vehicle, salaries of drivers, and coordinators of the operation. These
components are directly dependent on the type of vehicle. The variable cost includes
loading/unloading charge for each type of product and fuel consumption. Total costs
depend on the total travel distance, the selected routes, the number and type of used
vehicles, and the amount and product ratio of distributed aid. Condition (10) bounds the
total costs for the operation by the budget limit. This should not be exceeded, although a
desired target could be defined by the decision maker.

Load conditions:
∑

i/demip>0
QSipT ≤ qp∀p (11)

Constraints (11) ensure that the maximum amount available of each product planned
for the operation is not exceeded. Parameter qp represents the target of the global amount
of aid to be distributed.

Equity conditions:
In the previously presented models, the authors did not consider such criteria as the

equity of multicommodity delivery. Therefore, the proposed approach to calculate the
fairness of the distribution of goods between nodes was different. After conducting a series
of experiments, we can conclude that the Min-Max goal programming approach provides
the most even distribution plan for multi-product cases.

EqF ≥ 1−QSifT/demif∀i/demif > 0 (12)

EqM ≥ 1−QSimT/demim∀i/demim > 0 (13)

Thus, constraints (12) show the maximum inequity among the nodes and thereby
measures how equitable the distribution plan is in relation to food. Constraints (13)
compute the maximum inequity among the nodes in relation to medicine and thereby
measures how equitable the medicine aid is distributed. Using these constraints, the model
computes the largest proportion of unsatisfied demand by product among the nodes. The
criteria take values of real numbers between 0 and 1, so the variables are equal to 0 if
demand of all nodes for the specified product is completely fulfilled and positive otherwise.
According to the goal programming methodology applied in this model, any target cannot
take a zero value

(
tgg 6= 0

)
. Therefore, the target of the equity criteria will be a very small

value close to zero.
Time conditions:
Operation time measure:

Time ≥ t·BQt∀t > tgTime (14)

In order to deal with the operation time, two measures are introduced. Conditions (14)
represent the number of time periods required to complete the operation. As mentioned
earlier, in this case, a single period of time is equal to 5 min. The target value for the
time criterion will be the number of periods during with which it is desirable to complete
the operation.
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Time Penalty measure:
TP ≥ ∑

t>tgTP

(t·tgTP)
2·BQt (15)

Equation (15) adds a high penalty to long operations. The target value for the time
penalty variable can be set based on how important it is to reduce the time of the operation,
compared with other criteria in the model. If it is necessary to prioritize the Time criterion,
then the target value for the TP variable can be extremely small and close to zero

(
tgg 6= 0

)
.

If the time criterion does not take priority in the planned mission, then the goal for the TP
may be equal to the target of the Time criterion (tgTime = tgTP). Both variables turn into 0
if their corresponding goals are achieved and they get positive values otherwise.

Auxiliary constraints in relation to time-vehicle:

tvehk = ∑
i

avehki∀k (16)

BQt+1 ≤ BQt∀t (17)

NVikt − NVikT ≤ tvehkBQt∀i, k, t (18)

NVikT − NVikt ≤ tvehkBQt∀i, k, t (19)

∑
i

∑
j

NTVijkt ≤ tvehkBQt∀k, t (20)

Binary variables BQt takes value 1 if load has been delivered in period t ∈ {1 . . . T},
and 0 otherwise. Hence, they show how many periods were used for the operation.
Constraints (17)–(20) ensure that the binary time variable is defined correctly. Equation (16)
computes the total number of available vehicles of each type in the network and works as
a bound for constraints (18)–(20).

Priority condition:

Prio = ∑
i/prii>0

prii

(
1−∑

p
QSipT/ ∑

d
demid

)
(21)

Priority appears as a demand satisfaction criterion at specific nodes. Equation (21)
weights the sum of the corresponding unmet demand overall demand nodes by their
priority level. Such a criterion in a model designed to optimize the distribution plan for
post-disaster operations can play a crucial role when the primary goal is to evenly deliver
the aid between the nodes. However, the decision maker would know whether there are
difficult accessible regions in unreliable areas of the network. In such cases, the model
may discard solutions with a lower cost or a shorter operation time, in favor of a solution
where the cost and time attributes deteriorate slightly but allow for more delivery to the
indigent settlements. The target of the priority criterion can be a very small value close
to zero, or any other value that the decision maker considers appropriate for a particular
mission. The priority criterion takes the value of 0 only if the demand of all prioritized
nodes is completely fulfilled, and it is positive otherwise.

Minimum reliability measure:
Natural disasters severely affect the viability of many aspects of the life of the affected

people. The obvious fact is that disasters have a significant destructive impact on the
transport infrastructure; hence, one of the most important criteria in the design of a
humanitarian logistics model is reliability. It is necessary to take into account the fact that
the degree of destruction of road infrastructure is uncertain after the disaster. One way
to simulate this type of uncertainty is to conduct a reliability analysis. In this model, the
reliability measure is defined through the probability of traversing a route successfully.
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More precisely, the reliability parameter relij is the probability indicating the safety of the
arc. The probabilities are determined separately for each link of the transport network.

Rel ≤ relij + 1− BAij∀(i, j) (22)

Criterion (22) states that the least probable arc in the distribution plan is the maximum
reliability measure. In other words, it shows the probability of the most unreliable arc used
to perform the operation.

Global route reliability measure:

GR = ∏
(i,j)/ BAij>0

relij (23)

GR = ∑
(i,j)/ BAij>0

log relijBAij (24)

Condition (23) reflects the global route reliability measure, which is computed as
the product of all the probabilities among the set of arcs used in the operation. Such an
equation assumes that all arcs are independent and have a specific reliability value. In order
to linearize this expression, the logarithm is applied. Hence, criterion (24) significantly
helps to increase the reliability of the full route, taking not only the lowest value in any
link into account but also the remaining links throughout the route. The target value of
the GR criterion should be determined based on knowledge that the value is represented
by the logarithm. Accordingly, the target might be equal to log(0.99) = −0.01. However,
applying the realism of the constructed model, we assumed that all the links used are
reliable and have a probability of 0.95. Additionally, considering the number of arcs in
the presented case and assuming that at least half of the arcs in the existing transport
network will be used to build the optimal solution, the following conclusion was made.
Under ideal conditions, the product of all the probabilities for a realistic solution, that
is, the global reliability along the entire route, will be less than or equal to 0.30. Thus,
as a target value, there is no need to set a value other than log(0.3) = −1.2 and ask the
model to achieve unattainable goals. At the same time, it is worth noting that the goal
programming objective function is formulated in such a way that targets cannot be negative
values. Consequently, the goal condition for the GR criterion (39) is set to avoid negativity
while maximizing the desired criterion. As the result, the target of the GR criterion should
be set equal to 1.2. Despite this reasoning, in any other operation, decision makers can be
guided by their own considerations and determine other target values for the criterion.

Auxiliary constraints in relation to arc-vehicle:

NTVijkt ≤ bd BTijk ∀k, ∀(i, j), ∀t (25)

∑
t

NTVijkt ≥ BTijk∀k, ∀(i, j) (26)

BAij ≥ BTijk∀k, ∀(i, j) (27)

BAij ≤∑
k

BTijk ∀(i, j) (28)

BQt, BAij, BTijk ε {0, 1}∀(i, j), ∀k, t (29)

The constraints (25)–(28) are introduced to guarantee that the binary variables are
defined correctly. Condition (29) states that these variables are binary only taking values
0 or 1.

The goal constraints are defined as follows:
First level: primary goal:

∑
p

∑
i/demip>0

QSipT + DVQ = ∑
p

qp (30)



Logistics 2021, 5, 39 12 of 30

Equation (30) is the load condition for the first level of the model. Parameter qp
represents the total amount of aid desired to be distributed. The equation assures that at
the end of the operation the sum of delivered goods in all the nodes that have a demand for
a particular product should be equal to the quantity of products planned to the distribution,
summarized over all products. If the condition is not fulfilled, then a positive value, equal
to the amount of aid that could not be delivered, will be assigned to the deviation variable
DVQ. If the condition is satisfied, the variable will be equal to zero.

Second level: load goal constraint:

∑
p

∑
i/demip>0

QSipT + dvQ = ∑
p

qp (31)

This constraint is applied to designate the load condition at the second level of the
model. After the value of the load deviation is determined, the variable DVQ is no longer
involved in the calculations. It is replaced by the parameter dvQ, which fixes the value of
the load deviation for the load condition of the second level. Thus, it can be noted that
constraint (31) differs from constraint (30) only by parameter dvQ, which is determined
by solving the primary goal. Otherwise, the constraint performs a similar function in
the model.

Cost goal constraint:
Cost− DVCost ≤ tgCost (32)

The presented Equation (32) is used to limit the total cost to a desired target. By
default, we already have a boundary for costs in terms of budget. However, from the
real-life point of view, the goal is not only to keep costs within the available budget but
also to find the cheapest possible solution fulfilling the given criteria. Hence, the target
value for the cost condition can be set to any reasonable amount, e.g., 50% of the budget or
similar, according to the decision maker.

Equity goal constraints:
EqF− DVEqF ≤ tgEqF (33)

EqM− DVEqM ≤ tgEqM (34)

The conditions (33) and (34) serve to indicate the goal for equity in the distribution
of each type of product in the humanitarian operation. Specifically, they indicate that the
maximum deviations between delivered load and demand should be minimized.

Time goal constraints:
Time− DVTime ≤ tgTime (35)

TP− DVTime ≤ tgTime (36)

The goal constraints (35) and (36) are formulated such that the time of the operation is
minimized as much as possible.

Priority goal constraint:

Prio− DVPrio ≤ tgPrio (37)

Since the priority criterion reflects the unsatisfaction of demand for the prioritized
nodes, the priority goal constraint (37) aims at minimizing this value.

Reliability goal constraints:

Rel + DVRel ≥ tgRel (38)

GR + DVGR ≥ − tgGR (39)
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Equations (38) and (39) are the goal constraints for the reliability criteria. The con-
straints state that the reliability values should be maximized. The corresponding deviation
variables will serve to compare obtained reliability values with the target values.

Cost, EqF, EqM, Time, TP, Prio, Rel, DVg ≥ 0 (40)

Equation (40) indicate that attribute variables should take non-negative values. An
exception is the global route reliability criterion, GR, since it takes a logarithmic value, and
the natural logarithm of x ε [0, 1] contains non-positive values.

The final model is based on a two-phase solving method, known as lexicographical
goal programming. The mathematical formulation of the objective function is written in
Equation (41).

Lexminz =

[
(DVQ),

(
∑
g

wg

tgg
DVg

)]
(41)

There are different opinions about the strengths and weaknesses of this method. How-
ever, relying on the studied literature it can be concluded that it is one of the most common
methods for solving this kind of problem, alongside scalarization, Pareto optimization,
and compromise programming. At the same time, studies have shown that compromise
programming and goal programming provide the most relevant methods for multi-criteria
optimization. A survey conducted by Jones and Tamiz [23] shows that in the case of using
goal programming to solve real problems, most of them were solved using the lexico-
graphic approach. Additionally, a while ago Romero [24] performed a research in which
he proved that most of the flaws of the lexicographical goal programming methodology
arise due to an incorrect application. In fact, some properties of the method, interpreted as
disadvantages, can turn into advantages for problems in real life.

The first level model:
The lexicographic goal programming model considers two priority levels. For hu-

manitarian distribution operations, the primary goal is delivery of the planned amount
of aid to the affected population. However, conditions such as a budget, the number of
vehicles available, or a short time horizon may lead to the objective being impossible to
achieve. Therefore, as suggested by Tirado et al. (2014) [19], the first level of the model aims
to determine the maximum total quantity of goods to be distributed under the existing
restrictions. For this purpose, the desired quantity of products to be delivered is set as the
target (30), and the model calculates whether it is possible to distribute the entire desired
amount of aid or eventually finds the minimum possible deviation from the target. At the
first level of the lexicographical model, the remaining goals defined for the mission are
not considered, although their constraints are included in the model. Hence, the objective
function of the first level is to minimize the deviation of the load criterion DVQ. In an ideal
case, this should be equal to zero.

minDVQ s.t. (1) to 22, (24) to (30) (42)

Equation (42) shows the model formulation for the first level solution, the objective
function, and constraints to be included. Once the first level of the model is solved, it
is determined how much of the global load can be distributed with the available set of
resources, and we know the load deviation value that must be fixed in order to proceed to
the second level of solution.

min ∑
g

wg

tgg
DVg s.t. (1) to (22), (24) to(29), (31) to (40) (43)

To continue the solving process, the objective function of the model is replaced by the
one shown in expression (43) Constraint (30) is replaced by constraint (31), and further, the
remaining goal constraints from (32) to (40) are added to the resulting model, as shown in
expression (43).
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In our case, the goals are not represented in the same units of measurement, so the
normalization method should be implemented in the objective function by dividing each
deviation variable by the corresponding goal to obtain normalized units for each criterion.
Such a manipulation allows one to work with a percentage expression of satisfaction
for each goal. In addition, the criteria can be assigned their own weight, showing the
importance of one criterion compared to others for the decision maker. Weights can be set
subjectively or by experimental selection after several runs of the model and evaluation
of the results. Ultimately, the model calculates and minimizes a weighted sum of all goal
deviations for each criterion except the load. One limitation of this model is that the time
schedule might not be realistic. Using vehicle speed and road limits is not always sufficient
to simulate the actual time in a real-life scenario, in particular when the time periods are as
small as five minutes. The times for loading and unloading of vehicles are not included
in this case study, even if the model can be extended to include such aspects. Real-life
problems are always more complex and uncertain than theoretical case studies, but this
model should be a step towards a realistic model to be used when sudden disasters appear.

4. Case Description

Humanitarian operation research needs realistic test cases to replicate experiments,
validate models, and compare results. However, getting realistic data on humanitarian
operations is challenging [25]. Confidentiality agreements or high acquisition costs dis-
courage data sharing within the humanitarian operation research community. The realistic
case study collected and presented in this work aims to benefit the humanitarian operation
research area and have a positive impact for practitioners and beneficiaries. The case study
is based on one of the recent disasters that shook the world—the typhoon Hagibis (meaning
fast) that hit Japan on 12 October 2019. The typhoon was an extremely violent and large
tropical cyclone that caused widespread destruction across its path, starting from October
6 up until 13 October 2019. Japanese meteorologists call it the most destructive in 60 years.
This was the 38th depression, 9th typhoon, and 3rd super typhoon of the 2019 Pacific
typhoon season. It was the strongest typhoon in decades to strike mainland Japan, and one
of the largest typhoons ever recorded at a peak diameter of 825 nautical miles (1529 km).
It was also the second costliest Pacific typhoon on record, with a damage estimated to 15
billion USD, only surpassed by the typhoon Mireille in 1991 (when adjusted for inflation).
In addition, Hagibis was also the deadliest typhoon to hit Japan since 1979, with at least 98
fatalities, and it caused catastrophic destruction in much of eastern Japan. As shown in
Figure 1, the typhoon passed through the most densely populated part of Japan, including
the Tokyo metropolitan area, with more than 37 million residents and about 6000 people
per square kilometer. The Typhoon spilled the river Tamagawa and caused much damage
in its area. More than half a million people were forced to leave their homes, and the
most severe damage was caused to agriculture and the infrastructure of nearby cities. The
storm ripped through a wide area of the country, cutting off electricity and water supplies,
causing mudslides, and flooding tens of thousands of homes [26].
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Case Study Data

One of the most important issues in research is the ability to find relevant and appro-
priate data. The data for compiling this case study were obtained from secondary sources
on the Internet. Emergency Response Coordination Center has published a comprehensive
report illustrating the most destroyed territories and describing the overall situation on
14 October 2019 [27]. Data such as the number of casualties and the population density
were obtained from the official website of the Statistics Bureau in Japan [28] and from
a website of statistics separately for each prefecture of Japan [29]. Based on these data,
the estimated amount of aid needed for distribution has been calculated. The Japan Me-
teorological Agency [26], United Nations Office for the Coordination of Humanitarian
Affairs [30], and NGO Japan Platform [31] provided information regarding the typhoon
characteristics, its consequences, and post-disaster response methods. Information about
damaged railway lines and areas of damaged roads was obtained from Ministry of Land,
Infrastructure, Transport, and Tourism of Japan [32], which led to the choice of road trans-
port. From UNOCHA [33] and EMDAT—International Disaster Database [34], archived
data about international disaster experience was collected. In addition, services such as
OpenStreetMap, Yandex, and Google Maps were used to properly compose the road net-
work. As mentioned above, the humanitarian distribution network was built for the Tokyo
Prefecture and its surroundings, so that humanitarian aid would be delivered to the ten
regional centers of Fujisawa, Funabashi, Kasukabe, Kawagoe, Kawasaki, Hachioji, Kofu,
Saitama, Chiba, and Tokyo. The aid should be distributed through the transportation hubs
at Haneda Airport, Narita Airport, Yokohama Port, and a distribution center specializing
in nutrition located at Tsuchiura. The following characteristics of the transport network are
provided. The transport network consists of 10 demand nodes, 4 supply depots, and 58
available connections between locations. The humanitarian aid to be delivered is divided
into two categories, namely, food and healthcare products including medicines, but the
model could easily be extended with more commodities. Assuming that about 10% of
the city’s population needed aid, the total demand for food was estimated to 2585 tons
for food and 440 tons for healthcare, making the desired amount of humanitarian aid to
be distributed 3025 tons for the whole operation. This is based on approximately 2 kg.
in total per person where almost 15% consisted of healthcare products. The depots are
based in places where humanitarian aid is delivered, in this case two airports, one seaport,
and one large distribution center with high capacity. The first depot is at Haneda Airport
with 1100 tons of food and 200 tons of medicine available, and the second depot is Narita
Airport with 440 available tons of food and 80 tons of medicine. Then follows the third
depot at Yokohama Port with 230 tons of food and 80 tons of medication available, and at
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last the distribution center at Tsuchiura with 1270 tons of food available for distribution.
Hence, the total amount of humanitarian aid available was 3040 tons of food and 360 tons
of medicine, making a total of 3400 tons. This was sufficient to meet the demand for food,
but a shortage of 80 tons for medicine at the demand nodes remained. The summary of the
relevant data is shown in Table 5.

Table 5. Characteristics of the humanitarian operation.

Name Nodes
Demand (Tons) Supply (Tons) Availability of Vehicles of Each Type

Priority
Food Medicine Food Medicine Small Medium Large

Haneda Airport D1 1100 200 50 30 20
Narita Airport D2 440 80 12 8 2
Yokohama Port D3 230 80 7 13 2
Tsuchiura DC D4 1270 0 50 30 20

Fujisawa N1 75 10
Funabashi N2 105 20
Kasukabe N3 40 5
Kawagoe N4 60 10
Kawasaki N5 255 45
Hachioji N6 95 20

Kofu N7 35 5 1
Saitama N8 225 25
Chiba N9 165 30
Tokyo N10 1530 270 0.8

To perform the operation, three types of vehicles with different capacities are used.
They are categorized as small vehicles with a capacity of 5 tons, medium vehicles with
a capacity of 15 tons, and large vehicles with a capacity of 25 tons. Moreover, 119 small,
81 medium, and 44 large vehicles are available for transportation, making a total of 244
vehicles. Table 6 reflects vehicle characteristics such as capacity, maximum speed, fixed
costs per kilometer, and variable costs depending on distance, cargo amount, and type
of product being transported. The model proposed in the previous section of this paper
provides the ability to give priority to some nodes. Based on a number of experiments
explained later, priority was given to the city of Kofu, node N7, located in an arduous area,
and to the city with the greatest demand—Tokyo, node N10. The planned mission consists
of distributing the desired amount of humanitarian aid within the available budget of
US$1,000,000.

Table 6. Characteristics and operational costs of the vehicle.

Vehicle Types Vehicle Capacity
(tons)

Speed (km/h) Fixed Cost
(US$/km)

Variable Cost (US$/(km·Ton·Product))

Food Medicine

small 5 100 20 1 1
medium 15 90 50 1.1 1

large 25 80 70 1.3 1

Figure 2 presents the transportation network with labelled demand nodes, supply
depots, and links that reflect the distance, speed, and reliability of roads available for
transportation. The links are shown in different colors depending on the reliability of the
arc. Green color represents a reliable arc where the probability of traversing the arc is over
70%. The orange color represents an arc with a probability more than 50%, while the red
color indicates that the probability is less than 50%. The different thickness of the links
shows the quality of the road. Hence, the thicker the arc, the higher the maximum speed of
its passage.

Information on the distance and maximum speed of the road was collected from
Google Maps and Open Street Maps. These sources provide comprehensive information
about the type of road and their quality. Reliability data for the links are the result of
conclusions based on the reports of MLIT [32], on the extent of destruction of certain routes,
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as well as on the report of Reliefweb [27], which provides the map of destruction showing
the epicenters of the destroyed area. Data on existing links, their distance and maximum
speed of the road as well as the reliability of the arcs is provided in Table A1 and can be
found in Appendix A.
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5. Computational Experiments

The presented model was implemented in AMPL and solved using CPLEX in par-
allel mode as optimizer. Although that the model was formulated to meet the research
objectives for a specific case study, it can be used for any humanitarian operation with
relevant objectives. In other words, for missions aimed at distributing multi-commodity
humanitarian aid in the aftermath of the catastrophe, which caused the destruction of
transport infrastructure and the violation of the reliability of roads.

At first, the model was run for the first lexicographical level, considering only the
criterion of maximum quantity to be distributed. The result obtained showed that with
the available resources, the maximum amount of aid to be distributed was 2945 tons
and the deviation from the target was 80 tons. Nevertheless, for an operation of this
magnitude these are considered good values, since they constitute more than 97% of the
desired quantity. In order to run the model for the second lexicographical level, it is
necessary to fix the value of the distributed aid and replace the objective function with the
goal programming objective function, as described in Section 4, before proceeding to the
further calculations.

The pay-off matrix shown in Table 7 is obtained by running the model of the second
level to optimize each of the criteria one by one. The ideal value for each criterion is in the
diagonal of the pay-off matrix and is highlighted in bold.

https://yandex.com/maps/-/CCQ2F8edtD
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Table 7. Pay-off matrix.

Criterion Cost, $ Time, Hour TP EqF EqM Prio Rel
GR

log %

Cost 799,342 2.5 5525 1 1 1.8 0.52 −2.4 9.4
Operation Time 998,942 1.7 1240 1 1 1.79 0.1 −6.9 0.11

Time Penalty 974,028 0.7 14 1 1 1.8 0.52 −1.9 13.8
Equity Food 999,112 2.5 5525 0 1 0.25 0.1 −7.2 0.07

Equity Medicine 997,901 2.5 5525 1 0.2 1.49 0.29 −4.7 0.84
Priority 991,038 2.5 5525 1 1 0 0.29 −3.7 2.5

Reliability 998,680 2.5 5525 1 1 0.82 0.87 −0.37 69.3
Global Route Rel. 997,824 2.5 5525 1 1 0.76 0.87 −0.21 81.1

The pay-off matrix shows that the different criteria are conflicting. For example, we
can see that food distribution equity (EqF) is not fully satisfied in any scenario, except where
that particular criterion is optimized. However, it can also be noted that in this scenario
the indicator is reduced to zero, that is, the objective is completely fulfilled on all nodes.
Looking at the equity criterion (EqM) for medicine, the best possible option is to satisfy
the demand of all nodes by at least 80%, making the factor equal to 0.2. Table 7 shows that
the best value of the cost criterion naturally is given in the scenario with individual cost
minimization. All other scenarios simply satisfy the budget constraint of US$1,000,000.
Therefore, the target value of this criterion was set to US$800,000, which is close to the
optimal value for this criterion. The maximum time of operation is 2.5 h (30 time periods),
which is associated with the length of time horizon set as an input parameter. At the same
time, the minimum reasonable time for the operation is 1.7 h, i.e., 20 time periods, shown for
the scenario that optimizes the Time criterion. The second time criterion (TP) is introduced
for penalties for long operations, and its minimization shows that if we want to reduce
the operation time as much as possible, giving preference to the time criterion over other
criteria, we can successfully use this attribute as a tool for this. However, further analysis
shows how such a prescription affects the uniformity of aid distribution. Looking at the
priority objective, the best-case scenario shows that it is possible to satisfy the demand of
priority nodes by 100%. When solving by the reliability objectives, we can also see that the
most reliable route in the operation has a minimum probability of traversing an arc of 87%
and an overall route reliability of 81.1%.

Solution Analysis

Table 8 represents the results of the aggregate solutions to show the sensitivity of the
model to criterion weights. The first column shows the criteria that have been simultane-
ously optimized, and the rows contain the results obtained for each of the criteria. The
results of optimization of all considered criteria with the criteria weights determined by
the decision maker are shown in the last row of the table. We can see that this solution,
although it is a trade-off for different criteria, mainly shows values not too far from the
ideal. The exception is the cost criteria, where the deviation from the optimal value is
significant but still within the cost limitation of 1,000,000.

Table 8. Solution result for aggregated goals.

Criterion Cost, $ Time, Hour TP EqF EqM Prio Rel
GR

log %

Cost and Time and TP 799,802 1.7 14 1 1 1.76 0.52 −1.61 19.8
Cost and Rel and GR 987,939 2.5 5525 1 1 0.74 0.87 −0.21 81.1

Cost and EqF and EqM and Prio 936,175 2.5 5525 0.002 0.2 0 0.1 −8.5 0.02
Cost and Time and TP and EqF and EqM 993,456 1.8 1785 0 0.2 0.024 0.1 −10.1 0.001

EqF and EqM and Prio 999,967 2.5 5525 0.002 0.2 0 0.1 −11.4 0.001
Rel and GR 999,973 6 5525 1 1 0.74 0.87 −0.21 81.1

Optimal solution 995,107 1.8 1785 0 0.2 0 0.52 −3.7 2.5
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The following analysis aims to identifying demand satisfaction at network nodes,
depending on the distribution policy applied. The result of the calculations is presented
in Tables 9 and 10. Note that optimizing on one single criterion could lead to a solution
where the amount delivered exceeds the demand in some nodes.

Table 9. Distribution plan of food for each set of criteria.

Node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Demand, tons 75 105 40 60 255 95 35 225 165 1530

Criteria Demand satisfaction, %

Cost 140 66 2037 0 480 0 0 0 224 0
Operation Time 286 804 487 0 372 0 0 0 212 1

Time Penalty 0 0 2762 0 521 0 0 0 90 0
Equity Food 100 100 100 100 100 100 100 100 100 100

Equity Medicine 0 57 1412 0 413 0 0 0 396 16
Priority 224 671 2062 0 329 0 134 0 0 0

Reliability 0 123 0 0 90 0 0 0 133 131
Global Route Rel 266 176 0 0 0 0 0 0 0 143

Aggregated criteria Demand satisfaction, %

Cost and Time and TP 666 414 2925 0 98 0 0 0 90 5
Cost and Rel and GR 266 190 0 0 0 0 0 0 0 142

Cost and EqF and EqM and Prio 100 100 100 100 101 100 100 100 100 99
Cost and Time and TP and EqF and EqM 100 100 100 100 100 100 100 100 100 100

EqF and EqM and Prio 100 100 100 100 101 100 100 100 100 99
Rel and GR 253 190 0 0 0 0 0 0 0 143

Table 10. Distribution plan of medicine for each set of criteria.

Nodes N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Demand, tons 10 20 5 10 45 20 5 25 30 270

Criteria Demand satisfaction, %

Cost 0 25 0 0 622 0 0 0 250 0
Operation Time 800 400 0 0 56 0 0 0 583 0

Time Penalty 800 1000 0 0 0 0 0 0 267 0
Equity Food 0 0 0 0 622 0 0 0 267 0

Equity Medicine 100 80 80 80 80 105 80 80 80 80
Priority 0 275 0 0 567 0 500 0 83 0

Reliability 0 400 0 0 178 0 0 0 0 74
Global Route Rel 800 650 0 0 0 0 0 0 0 56

Aggregated criteria Demand satisfaction, %

Cost and Time and TP 300 0 0 0 556 0 0 0 267 0
Cost and Rel and GR 800 400 0 0 0 0 0 0 0 74

Cost and EqF and EqM and Prio 80 80 80 80 87 95 120 80 80 80
Cost and Time and TP and EqF and EqM 80 100 80 90 80 80 100 84 83 80

EqF and EqM and Prio 80 80 80 80 91 80 120 80 83 80
Rel and GR 800 400 0 0 0 0 0 0 0 74

The distribution plan for the optimal solution found is shown in Table 11. It reflects
the demand for each product in tons and the amount of aid actually received in percent,
as well as the completion time for each node. As can be seen from the table, the optimal
solution has good results. For example, the demand for food is 100% satisfied for all but
one node. This is not surprising, given that Tokyo’s demand for food is 1530 tons, which is
51% of the total quantity of humanitarian aid to be distributed. However, the minimum
satisfaction of the demand for medicine among all nodes is 80%.
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Table 11. Optimal solution: distribution plan for demand nodes.

Node
Demand, tons Satisfaction, %

Completion Time, Hours
Food Medicine Food Medicine

N1 75 10 100 80 1.08
N2 105 20 100 100 1.75
N3 40 5 107 80 1.42
N4 60 10 100 80 1.83
N5 255 45 100 82 1.83
N6 95 20 100 80 1.83
N7 35 5 100 120 1.83
N8 225 25 100 80 1.83
N9 165 30 100 83 1.83
N10 1530 270 99 80 1.83

By observing the time indicators, we can also conclude that the resulting solution is
27% faster than the maximum allowable time limited by the time horizon. Moreover, we
can consider that the operation was performed in 110 min or 1.83 h.

Figure 3 shows a map with all the arcs involved in the optimal routes. In the figure, we
can see that the proposed routes are reliable, in the sense of more than 50% probability rate
for a successfully executed humanitarian operation. As shown in Table 8, the minimum
probability of traversing an arc is 0.52, and the global reliability of the solution is 2.5%,
which is an acceptable value considering that the reliability is calculated as a product of the
probability of all arcs used in the solution. The total cost is US$995,107, which is only 4893
below the budget limit of 1,000,000. This solution fully satisfies the priorities for nodes N7
and N10, set for meeting the total demand of N7 by 100% (priority = 1) and total demand
of N10 by 80% (priority = 0.8).

Table 12 shows changes in load flow over the time horizon. Based on changes in the
load flow, we can analyze which nodes were used as transshipment facilities. In Table 12,
we can see that nodes N1, N3 and N5 in some time periods have a positive increase in the
amount of load, followed by a negative. This indicates that aid was delivered to the node
by one group of vehicles, intended for distribution to other nodes by another group of
vehicles. Consequently, the nodes were used as transshipment points.

Table 13 shows the number of vehicles starting to travel from node i to node j at a
period of time t. As we can see from the schedule, the distribution schedule includes
267 vehicles, which is higher than the total number of available vehicles of 244 (119 small,
81 medium, and 44 large). This is due to the fact that some vehicles perform multiple trips.
Analyzing the solution further, we can see that node D4 only uses 9 of its 50 available
small vehicles. The number of vehicles leaving the depots appears to be 222, but since 19
of them have been reused, the total number of vehicles used in this solution is in fact 203.
It can also be noted that the last time period in which a shipment was performed is period
20, and the full distribution was completed after two more time periods, corresponding
to 1.83 h after the start of the operation. It is assumed that a vehicle may leave the node
i with the loaded aid or the vehicle may be requested from a nearby node j in order to
pick up the aid from that node. In the latter case, the vehicle will leave node i empty.
The presented distribution schedule shown in Table 13 does not state whether a vehicle
is loaded or empty, and therefore, in Table 14, the schedule of aid distribution in the time
periods is presented. This schedule does not reflect the amount of load for each product
but only the total quantity to be delivered from node i to node j during time period t. In
this case, it is assumed that the products do not require special storage conditions and can
be transported simultaneously on the same vehicle. The value 0 in the table represents the
situation where a vehicle leaves the node empty to pick up aid from a nearby node for
further distribution.
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Table 12. Load flow over time horizon.

Period Hours Elapsed D1 D2 D3 D4 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

0 0.00 1300 520 310 1270 0 0 0 0 0 0 0 0 0 0
1 0.08 1041 375 295 1225 0 0 0 0 0 0 0 0 0 0
2 0.17 1041 370 295 1180 0 0 0 0 166 0 0 0 0 0
3 0.25 1041 320 295 1180 0 0 0 0 166 0 0 0 0 0
4 0.33 1041 320 280 1180 0 0 0 0 166 0 0 0 0 23
5 0.42 1041 320 230 1180 29 0 0 0 181 0 0 0 0 23
6 0.50 1041 320 205 1180 29 0 0 0 181 0 0 0 95 23
7 0.58 1041 320 85 820 4 0 0 0 166 0 0 0 120 23
8 0.67 1056 320 85 820 4 0 0 0 166 0 0 0 165 23
9 0.75 1056 320 85 650 4 0 45 0 166 0 0 0 165 23

10 0.83 1056 290 40 630 4 0 0 0 166 0 0 0 165 23
11 0.92 1056 195 40 385 19 0 0 0 207 0 0 0 165 23
12 1.00 1060 195 40 285 4 0 0 0 207 0 0 0 165 23
13 1.08 1060 195 40 285 8 0 0 0 207 0 0 0 165 23
14 1.17 1060 195 40 285 83 0 0 45 252 0 0 0 165 23
15 1.25 1060 195 40 285 83 0 0 45 252 0 0 45 165 23
16 1.33 1060 195 40 285 83 0 0 45 252 0 0 45 165 23
17 1.42 595 170 40 285 83 0 177 45 252 25 0 45 165 383
18 1.50 595 170 40 285 83 0 47 45 252 25 0 45 165 383
19 1.58 350 170 0 285 83 0 47 45 252 25 0 45 165 383
20 1.67 0 170 0 285 83 0 47 45 252 25 0 45 165 848
21 1.75 0 170 0 285 83 30 47 45 252 25 0 45 165 848
22 1.83 0 170 0 285 83 125 47 45 252 90 0 45 165 1293
23 1.92 0 170 0 285 83 125 47 68 292 111 41 245 190 1743
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Table 13. Distribution schedule for the operation: number of vehicles.

From To Vehicle Type
Time Period

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D1

N5
small 25

medium 3
large 3

N10
small 25

medium 31 3
large 1 8 9

D2

D4
small 1 1

medium
large 1

N2
small 1

medium 2 6
large

N9
small 1 9

medium 6
large 1 1

D3

N1
small

medium 1 5
large 2 1

N5
small 8

medium 1 3 3
large

D4

N3
small 9

medium 3 3
large 8 1

N10
small

medium 24
large 8 4
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Table 13. Cont.

From To Vehicle Type
Time Period

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N1

N6
small

medium 1
large 1 2 1

N7
small

medium 3
large

N3

N4
small

medium 3
large 1

N8
small

medium 3
large 8

N5

D1
small

medium 1 3 3
large 1

D3
small 1

medium
large 1

N1
small

medium 3
large 1

N9 D2
small 1

medium 6
large 1
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Table 14. Distribution schedule for the operation: amount of aid.

From To Vehicle Type
Time Period

1 2 3 4 5 6 7 8 9 10 11 12 13 17 18 19 20

D1

N5
small 125

medium 45
large 66

N10
small 125

medium 465 45
large 23 200 225

D2

D4
small 5 5

medium
large 25

N2
small 5

medium 30 90
large

N9
small 5 45

medium 90
large 25 25

D3

N1
small

medium 15 75
large 50 25

N5
small 40

medium 15 45 45
large

D4

N3
small 45

medium 45 45
large 200 25

N10
small

medium 360
large 200 100
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Table 14. Cont.

From To Vehicle Type
Time Period

1 2 3 4 5 6 7 8 9 10 11 12 13 17 18 19 20

N1

N6
small

medium 15
large 25 50 25

N7
small

medium 41
large

N3

N4
small

medium 45
large 23

N8
small

medium 45
large 200

N5

D1
small

medium 15 0 0
large 0

D3
small 0

medium
large 0

N1
small

medium 45
large 25

N9 D2
small 0

medium 0
Large 0
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The distribution plan shown in Table 14 is illustrated graphically in Figure 4 for nodes
N1–N5 and in Figure 5 for nodes N6–N10. Due to the huge difference in demand of the
nodes, the amount received is shown as a percentage of the total demand. Here, we can
clearly see when the deliveries are performed and to which degree the demand is met at
the different nodes. However, since some nodes are used as transshipment nodes for other
demand nodes, the amount received can be reduced from one time period to another if
the load was meant for another node. This is particularly evident for node N3, which has
four times the demand in place in period 17 before it is transshipped further to the final
destination in N8.
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Figure 4. Load flow for nodes N1–N5.
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Figure 5. Load flow for nodes N6–N10.

It is also interesting to see the amount of load distributed by the different vehicle
types. Figure 6 shows the load transported compared to the total capacity of the vehicle
types found by multiplying the number of available vehicles by the capacity of the vehicle
type. Here, we can see that the small vehicles are not utilized in full, mainly since node
D4 only uses a small fraction of the vehicles available of that type. For the medium and
large vehicles, however, the load exceeds the capacity, meaning that some vehicles are used
several times. It is clear from the costs and conditions given in this test case that larger
vehicles should be preferred to smaller when this is possible.
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6. Conclusions

We have presented an extended lexicographical dynamic flow model for solving the
multi-commodity aid distribution problem in case of disasters. The model is based on
multi-objective optimization in two steps, where the main priority is to maximize the
amount of aid to deliver, while other objectives are considered using a goal-programming
approach. For testing the model, a case study was performed on a recent typhoon disaster



Logistics 2021, 5, 39 28 of 30

in Japan. The model was used to solve the problem of making a distribution plan of
aid from distribution centers to ten demand nodes located in different regional centers
in the disastrous area. The plan showed how a maximum amount of aid could be dis-
tributed within short time considering other aspects such as costs, reliability, equity, and
different priorities.

The main contribution of this research is the extended model in combination with
the new case study with realistic data. A future direction of research could be to include
even more realistic aspects in the model and to incorporate such a model in a decision aid
system to be used when natural disasters appear.
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Appendix A

Table A1. Network characteristics.

From To Length (km) Speed (km/h) Arc Reliability

D1 D3 25 90 0.88
D1 N2 35 90 0.85
D1 N5 4 50 0.78
D1 N9 50 90 0.89
D1 N10 20 90 0.97
D2 D4 51 90 0.79
D2 N2 45 50 0.99
D2 N9 35 90 0.8
D3 D1 25 90 0.88
D3 N1 26 50 0.99
D3 N5 20 70 0.98
D3 N6 50 70 0.29
D4 D2 51 90 0.79
D4 N2 67 90 0.1
D4 N3 52 90 0.52
D4 N10 70 90 0.87
N1 D3 26 50 0.99
N1 N6 55 70 0.59
N1 N7 130 90 0.61
N1 N5 9 50 0.99
N2 D1 35 90 0.85
N2 D2 45 50 0.99
N2 D4 67 90 0.1
N2 N9 17 50 0.89
N2 N10 22 70 0.99
N3 D4 52 90 0.52
N3 N4 40 90 0.97
N3 N8 20 50 0.56
N3 N10 50 70 0.24
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Table A1. Cont.

From To Length (km) Speed (km/h) Arc Reliability

N4 N3 40 90 0.97
N4 N7 150 90 0.79
N4 N8 20 50 0.89
N4 N10 50 70 0.21
N5 D1 4 50 0.78
N5 D3 20 70 0.98
N5 N1 9 50 0.99
N5 N10 19 90 0.79
N6 D3 50 70 0.29
N6 N1 55 70 0.59
N6 N7 98 90 0.88
N6 N10 50 70 0.53
N7 N1 130 90 0.61
N7 N4 150 90 0.79
N7 N6 98 90 0.88
N8 N3 20 50 0.56
N8 N4 20 50 0.9
N8 N10 30 90 0.2
N9 D1 50 90 0.89
N9 D2 35 90 0.8
N9 N2 17 50 0.89

N10 D1 20 90 0.97
N10 D4 70 90 0.87
N10 N2 22 70 0.99
N10 N3 50 70 0.24
N10 N4 50 70 0.21
N10 N5 19 90 0.79
N10 N6 50 70 0.53
N10 N8 30 90 0.2
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