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Goodness of fit criteria for survival data

Martina Müller1

Institute for Medical Statistics and Epidemiology, IMSE
Technical University Munich, Ismaningerstr.22, 81675 München, Germany

ABSTRACT

The definition of an appropriate measure for goodness-of-fit in case of sur-
vival data comparable to R2 in linear regression is difficult due to censored
observations. In this paper, a variety of answers based on different resid-
uals and variance of survival curves are presented together with a newly
introduced criterion. In univariate simulation studies, the presented criteria
are examined with respect to their dependence on the value of the coeffi-
cient associated with the covariate; underlying covariate distribution and
censoring percentage in the data. Investigation of the relations between the
values of the different criteria indicates strong dependencies, although the
absolute values show high discrepancies and the criteria building processes
differ substantially.
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1 Introduction

A major interest of survival analysis is the investigation and rating of prog-
nostic factors for specific diseases. Survival analysis as time-to-event models
is often realised by semiparametric Cox regression which does not allow for
direct computation of a measure of goodness-of-fit such as R2 for linear
regression due to incomplete observation times i.e. censored failure times.
Several attempts were made to establish an at least comparable measure.
An appropriate measure should represent the difference between the real
data and the predicted values of the model and be dependent on the es-
timated coefficients. In addition, it should be able to be interpreted as a
percentage of variation in the data that explained by the model. Some of
the proposed measures have recently been corrected to reduce dependence
on the percentage of censoring in the data.
The aim of this paper is to investigate the latest measures along with a
newly introduced variant in univariate simulation studies. They will be anal-
ysed with respect to their dependence on underlying covariate distribution,
strength of the covariate’s influence, which is the associated coefficient, and
censoring percentage in the data. The absolute values of the different mea-
sures show high discrepancies. As they all are constructed for the same pur-
pose, the associations between the values of the different measures resulting
from simulated data were examined. It was found that they are strongly
related to each other although they are based on different outcomes of sur-
vival analysis.
In section two, the background of survival analysis, a general definition of R2

and desirable properties of an appropriate measure are outlined. In section
three, the definitions of existing criteria along with a newly introduced vari-
ant, which measure the goodness-of-fit in survival analysis, are presented.
Simulation results are shown and discussed in section four, and in section
five, an application to real data is given.

2 Background

2.1 Survival analysis

The main interest of survival analysis is usually the probability to survive
until a chosen point on the time axis. This is described by the survivor
function S(t). The cumulated probability to die until time t, F (t), is related
to the survivor function by:

S(t) = 1 − F (t)

The hazard function λ(t) represents the instantaneous probability to die at
time t+δt for a subject that survived at least until t. The cumulated hazard
Λ(t) =

∫ t
0 λ(s)ds is related to the survival function by:
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S(t) = exp(−Λ(t))

The estimation of the survival function can be realised nonparametrically by
Kaplan-Meier estimator (Kaplan & Meier, 1958). For each point of the time
axis, the probability of death is calculated as the number of events di relative
to the number R(ti) of subjects at risk at time ti. Hence, censored failure
times enter the estimation as a reduction in the corresponding number of
subjects at risk. The Kaplan-Meier estimator is written:

SKM(t) =
t∏

i=0

(1 − di

R(ti)
)

A Kaplan-Meier survival curve is therefore a step function over time with
steps at each time an event occurs, i.e. each failure time. In case of discrete
covariates, survival curves for different factor levels can be calculated and
compared by logrank test which gives an indication of the relevance of the
factor, i.e. whether survival in the groups significantly differs.
Continuous as well as discrete covariates can be handled by the semipara-
metric Cox proportional hazards model (Cox, 1972). This model assumes a
general baseline hazard λ0(t) for all subjects, given that all covariates have
outcome zero. This baseline hazard is arbitrary over time t. Nonzero covari-
ate values result in a constant shift of this baseline hazard over time.
Some software packages, such as S-plus, use mean covariate values for the
calculation of the baseline hazard instead of zero which results in a constant
shift of this function. The knowledge of the used reference is only important
for the interpretation of the resulting baseline hazard function.
The assumption of a constant shift of the baseline hazard by covariate val-
ues is called proportional hazards and must be checked before interpreting
the results of a Cox regression. If it is not fulfilled, a different model must
be applied, e.g. one allowing for time-varying coefficients. For a valid Cox
model, the formula for the hazard function is given as:

λ(t|x) = λ0(t) exp(β ′X)

Estimation in Cox regression is based on the partial likelihood function which
is the first part of the full likelihood and independent of the underlying base-
line hazard (Cox, 1975). It has been shown to have similar features as the
full likelihood although some information is lost by reducing the full likeli-
hood to its first term. The loss of information is not negligible for small data
sets and for informative censoring. It is usually assumed that censored ob-
servations do not contribute additional information to the estimation. This
is the case, if censoring is independent of the survival process. Otherwise,
censoring is informative and estimation via partial likelihood is biased.
If the data set is large enough and censoring is uninformative, estimation in
proportional hazards regression is established by maximising the logarith-
mised partial likelihood, which is:
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ln PL(β, X) =
∑

Yiuncensored

⎛⎝Xiβ − ln
∑
tj≥ti

exp(β ′Xj)

⎞⎠
For tied failure times, a correction must be introduced. Breslow (1974) pro-
posed the following correction of the partial likelihood function:

ln PL(β, X) =
∑

Yiuncensored

⎛⎝siβ − di

⎡⎣ln ∑
tj≥ti

exp(β ′Xj)

⎞⎠⎤⎦
Herein, si is the sum of the covariates of all individuals and di is the total
number of individuals failing at the ith failure time.
Maximisation is realised by setting the score function, which is the first
derivative of the logarithmised partial likelihood, to zero. The score func-
tion is:

U(β, X) =
∑

Yiuncensored

(
Xi −

∑
tj≥ti Xj exp(Xjβ)∑

tj≥ti exp(Xjβ)

)

Cox regression has become the standard for survival analysis. However, in
practise, the assumption of proportional hazards is rarely checked although
a wide choice of models allowing for non-proportional hazards by accounting
for time-dependent effects β(t) has been proposed. An example is given by
Berger et al. (2003) who model time-dependent effects by fractional poly-
nomials.

2.2 Goodness-of-fit criteria

A range of measures of goodness-of-fit and their application for different
settings are described by Kvalseth (1985). In ordinary linear regression, R2,
based on the residual sum of squares, is often the chosen measure for judging
the fit of a model. It results from the decomposition of sums of squares where
SST is defined as total sum of squares, SSR as the residual sum of squares
and SSM as the sum of squares explained by the model:

R2 =
SSM

SST
=

SST − SSR

SST
= 1 − SSR

SST

However, this measure cannot be used for proportional hazards regression
as the outcome contains incomplete failure times. The definition of residuals
for these models is more complicated and a variety of answers is available.
Some of which have been used to create criteria measuring the influence of
the covariates. The resulting criteria definitions are presented, along with
others, which are not based on residuals, and a newly introduced variant,
in the next chapter.
General desirable properties of a measure similar to R2 in linear regression
have been formulated by Kendall (1974). These are:
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• R2 = 0 in absence of association
• R2 = 1 for perfect predictability
• R2 should increase with the strength of association

These three stipulations should be checked within the simulation section for
the presented criteria. Other desirable properties are that the value should
increase with the absolute value of the coefficient associated with the ex-
amined covariate, and that the measure should not be influenced by the
percentage of censoring in the data. The latter of these properties is not
easy to solve. Although some of the existing measures have been corrected
recently, the simulation results for the new measures indicate that depen-
dencies on the censoring percentage are weaker but still exist.

3 Criteria definitions

3.1 Measures based on martingale and deviance residuals

Martingale residuals are defined as the difference between the cumulative
hazard assigned to an individual with failure time ti and its observed status,
δi = 0 censored, δi = 1 event. Martingale residuals are written as follows
(Therneau, Grambsch, Fleming, 1990):

Mi = δi − Λ(ti)

As the cumulative hazard Λ(ti) has no upper limit, these residuals range be-
tween 1 and −∞. However, the sum of all martingale residuals is always 0.
Λ(ti) is the number of expected events per individual failing at ti according
to the model. In a perfect model, which is defined as a perfect prediction
for all individuals, all martingale residuals are 0 and uncorrelated to each
other. There is a slight negative correlation in all other models due to the
property that they sum up to 0.
A high Λ(ti) can be interpreted as a high indication of death and will result
in a highly negative martingale residual. According to the model, these in-
dividuals were under observation for too long. As Λ(t) increases with time,
the residuals will tend towards increasingly negative values for longer ob-
servation times and have a highly skewed distribution.
Normalised transformations of martingale residuals have therefore been de-
fined. These transformed versions are called deviance residuals:

devMi = sgn(Mi)
√
−2(Mi + δi ln(δi − Mi))

This definition resembles the definition of deviance residuals in Poisson re-
gression, but as the nuisance parameter, the unspecified baseline hazard
λ0(t) is still involved, and the squared residuals do not exactly sum up to
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the deviance of the model, as they would do for Poisson regression (Venables
& Ripley, 1997). Hence, the sum of squared residuals cannot be interpreted
as the total deviance of the model.
Martingale residuals can be used to detect the functional form of a covari-
ate. Outlier screening can be performed by plotting either kind of residual
against time but this may be established more easily by using deviance
residuals.
Especially for covariate models with high coefficients and low censoring per-
centage, martingale residuals tend towards extreme negative values.
A common property of these residuals is their high dependence on the
amount of censoring in the data. The survival function is always calcu-
lated with respect to the amount of subjects at risk. Censoring by means of
the end of a study will always increase the probability that a subject who is
expected to have a long expected survival time is censored in comparison to
a subject who is expected to have a short expected survival time. There are
therefore usually more censored observations at the end of the study. The
survival function only has steps at times that are marked by failures. If the
last point on the time axis is not a failure, the survival function flattens ear-
lier than it would do if the last observation is a failure. This is because only
the number of individuals at risk at the last observed failure is taken into
account. Flattening survival also results in flattening cumulative hazard and
therefore less extreme residuals. On the other hand, extreme residuals occur
for high cumulative hazards. Consequently, these can be obtained in cases
of low censoring or high values of the product of covariates and associated
coefficients, i.e. the linear predictor.
Adopting the idea of a goodness-of-fit criterion based on residual sums of
squares, comparable to R2 in linear regression, will often result in the pref-
erence of a null model over any covariate model. This is because the squared
extreme residuals resulting from high values of the linear predictor increase
the sum of squares to such extremes that R2, which includes the difference
between the sum of squares of residuals from null and covariate model, can
even yield high negative values. The assumption of having normally dis-
tributed residuals, which is needed for the application of R2, is simply not
fulfilled because the distribution of martingale residuals is more exponen-
tially shaped. This also applies to the more normally distributed deviance
residuals - weaker but still visible.
Hence, a different definition for an appropriate criterion is needed. Stark
(1997) proposed measuring the mean absolute differences between residuals
of null and the covariate model and setting the sum relative to the mean of
absolute residuals of the null model. Thus, with Mi|x as martingale residual
in the covariate model and Mi as residual of the null model, the new mea-
sure is written:
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Km.norm =

1
n

∑
i

∣∣∣Mi − Mi|x
∣∣∣

1
n

∑
i |Mi| =

∑
i

∣∣∣Λi − Λi|x
∣∣∣∑

i |Mi|

Note that the observed status cancels in the counter of the fraction when
calculating absolute differences.
For deviance residuals an analogous measure can be built:

Kd.norm =

1
n

∑
i

∣∣∣devMi − devMi|x
∣∣∣

1
n

∑
i |devMi| =

∑
i

∣∣∣devMi − devMi|x
∣∣∣∑

i |devMi|

This new definition does not completely circumvent problems arising from
these types of residuals. Although negative values are avoided, the differ-
ences between the residuals of the two models may still get very high, i.e.
the difference between two residuals resulting from the two applied models
may be larger than the residual of the null model. In this case, often the
measures can exceed the maximum value allowed for a goodness-of-fit crite-
rion, which is 1 (Kendall, 1975). Simulation studies presented later showed
that these problems arise especially for data with low censoring percentage
and high discrepancies of the linear predictor. The latter case occurs if the
true underlying covariate distribution allows for high variance of covariate
values in combination with a high coefficient.
Correction is difficult, but will be the object of further research.

3.2 Measures of variation in survival

As survival can be taken as a major point of interest, criteria have been
proposed that are based on the survival function. Initially, the absolute dis-
tance or the mean squared distance between the survival curves of a null
model obtained through Kaplan-Meier estimation and a covariate including
Cox model were measured (Schemper, 1990).
These were later improved by measuring the weighted reduction of variance
in the survival processes (Schemper & Henderson, 2000). The variance of
the individual survival process at time t is defined as S(t) {1 − S(t)} for
a null model and S(t|X) {1 − S(t|X)} for the covariate model (Schemper
& Henderson, 2000). The mean absolute deviation measures are defined
as 2S(t) {1 − S(t)} and 2S(t|X) {1 − S(t|X)}. Measures of predictive accu-
racy integrated over the full follow-up range are weighted by a function of
time to reduce dependence on censoring and the factor 2 is dropped as it
cancels in the resulting criteria definitions. Hence:

D(τ) =

∫ τ
0 S(t) {1 − S(t)} f(t)dt∫ τ

0 f(t)dt

Dx(τ) =

∫ τ
0 EX [S(t|X) {1 − S(t|X)}] f(t)dt∫ τ

0 f(t)dt
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The measure V of the relative gain is then formulated. It is written as the
difference between the variance in survival for the null model, D, and its
expectation for the covariate model, Dx, relative to that of the null model:

V (τ) =
D(τ) − Dx(τ)

D(τ)

An alternative formulation is defined using weighted relative gains. The
weighting functions are moved as follows:

VW (τ) =

∫ τ
0

S(t){1−S(t)}−EX [S(t|X){1−S(t|X)}}
S(t){1−S(t)} f(t)dt∫ τ

0 f(t)dt

For estimation, S(t) {1 − S(t)} and EX [S(t|X) {1 − S(t|X)}] must be split
into three terms at each distinct death time t(j) as there are individuals still
alive (line 1 below), individuals that died before t(j) (line 2) and those who
are censored before t(j) (line 3). The mean absolute distance measure D is
therefore estimated by M̂(t(j)) as follows:

M̂(t(j)) =
1

n

n∑
i=1

[
I(ti > t(j))

{
1 − Ŝ(t(j))

}
+δiI(ti ≤ t(j))Ŝ(t(j))

+(1 − δi)I(ti ≤ t(j))

{
(1 − Ŝ(t(j)))

Ŝ(t(j))

Ŝ(ti)
+ Ŝ(t(j))

(
1 − Ŝ(t(j))

Ŝ(ti)

)}]

Dx is calculated the same way as D only with survival estimates Ŝ(t(j))

replaced by Ŝ(t(j)|X), which are obtained from a Cox model.
In the next step, the weights are calculated from the potential follow-up
distribution, also called reverse Kaplan-Meier, which is estimated like a
Kaplan-Meier estimator for survival, but with the meaning of the status in-
dicator δ reversed (Schemper & Smith, 1996 and Altman et al., 1995). The
reverse Kaplan-Meier function is denoted Ĝ. With dj being the number of
deaths at time t(j), the weights at time t(j) are defined as follows:

wj =
dj

Ĝ(t(j))

Hence, the estimate V̂ = (D̂ − D̂x)/D̂ is calculated with:

D̂ =

∑
j wjM̂(t(j))∑

j wj
and D̂x =

∑
j wjM̂(t(j)|x)∑

j wj

And VW is:
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V̂W =

∑m
j=1 wj

M̂(t(j))−M̂(t(j) |x)

M̂(t(j))∑
j wj

Simulation studies showed that the value of VW is always slightly smaller
than V .

3.3 Measures based on Schoenfeld residuals

A different method for judging a model is based on Schoenfeld residuals
(Schoenfeld, 1982). These measure the model’s accuracy in a different way.
At all complete failure times, the true covariates assigned to an individual
failing are compared to the expected value of the covariate under the model,
assuming the model is true. Hence, the idea is completely different from the
measures presented so far. While martingale residuals and the variance of
the survival curves are calculated conditioning on the covariates, these resid-
uals investigate covariate values conditioning on time. The expected values
of the covariates are calculated with respect to the probabilities assigned to
the values by the model. With ri(t) as indicator whether individual i is still
at risk at time t, the Schoenfeld residuals are defined as follows:

rschi
(β) = Xi(ti) − E(Xi(ti)|β)

= Xi(ti) −
n∑

j=1

Xj(ti)πj(β, ti)

= Xi(ti) −
n∑

j=1

Xj(ti)
rj(ti) exp(β ′Xj(ti))∑n

j=1 rj(ti) exp(β ′Xj(ti))

Consequently, when calculating these residuals, the result will be a matrix
with the number of rows equalling the number of events and a column per
covariate.
In order to define a measure for the goodness-of-fit of the model a modi-
fied version of residuals is needed for a null model. This is difficult because
the residual is based on the covariates. For the null model, the covariate is
supposed to have no influence and can be assigned to the individuals ar-
bitrarily. Therefore, residuals for the null model are obtained by replacing
the probability πj(β, ti) in the upper definition for the covariate model by
πj(0, ti) = rj(ti)/

∑n
j=1 rj(ti). In this way, all covariate values have the same

probability and there is no preference for values as in a covariate model. A
first measure for the goodness-of-fit has been formulated based on squared
residuals (O’Quigley & Flandre, 1994):

R2
OF =

∑n
i=1 r2

schi
(0) −∑n

i=1 r2
schi

(β)∑n
i=1 r2

schi
(0)
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= 1 −
∑n

i=1 r2
schi

(β)∑n
i=1 r2

schi
(0)

The next problem is that the residuals are calculated per covariate and it
is difficult to judge multivariate models. The idea of the prognostic index
(Andersen et al., 1983) has therefore been adopted as each patient’s outcome
is dependent of the combination of all covariates. The prognostic index is
defined as:

η(t) = β ′X(t)

Hence, the definition of a criterion, which can also be applied to a multi-
variate model, is based on Schoenfeld residuals multiplied by the vector of
covariates.
To reduce dependencies on the censoring percentage in the data, the squared
residuals are weighted by the height of the increment of the marginal sur-
vival curve at the corresponding point on the time axis. This is obtained
from the marginal Kaplan-Meier estimate (O’Quigley & Xu, 2001).
The weighted version of the new measure R2

sch is then written as follows:

R2
sch(β) =

∑n
i=1 δiW (ti) {β ′rschi

(0)}2 −∑n
i=1 δiW (ti) {β ′rschi

(β)}2∑n
i=1 δiW (ti) {β ′rschi

(0)}2

= 1 −
∑n

i=1 δiW (ti) {β ′rschi
(β)}2∑n

i=1 δiW (ti) {β ′rschi
(0)}2

The weights W (ti) are the height of the step of the marginal Kaplan-Meier
survival curve at time ti; rschi

(β) is the Schoenfeld residual for the covariate
model and rschi

(0) the residual for the null model.
R2

sch(β) is a consistent estimate for Ω2(β), which is a measure of explained
variation for X|t (O’Quigley & Xu, 2001). The expected minimum is 0 and
the maximum is 1 while R2

sch(β) is increasing with β. Another advantage of
this formulation is that asymptotically, decomposition into residual sums of
squares is possible, as for linear models:

SST
asympt.

= SSR + SSM

with

SST =
n∑

i=1

δiW (ti)
{
β̂ ′rschi

(0)
}2

SSR =
n∑

i=1

δiW (ti)
{
β̂ ′rschi

(β̂)
}2

SSM =
n∑

i=1

δiW (ti)
{
β̂ ′Eβ̂(Xti) − β̂ ′E0(X|ti)

}2

Apart from these properties, this formulation allows for an easy extension
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to nested, stratified and time-varying models. An overview of possible ex-
tensions and proofs are given in Xu (1996), Xu & O’Quigley (2001) and Xu
& Adak (2002).
For comparison reasons, a new variant based on Schoenfeld residuals is
introduced which is generally constructed like the measures based on cu-
mulative hazards while the weighting is kept. The mean absolute difference
between the residuals of the two models is therefore calculated, weighted
and divided by the mean of weighted absolute residuals of the null model.
The new measure is written:

R2
sch.k(β) =

1
n

∑n
i=1 δiW (ti) |β ′rschi

(0) − β ′rschi
(β)|

1
n

∑n
i=1 δiW (ti) |β ′rschi

(0)|

=

∑n
i=1 δiW (ti) |β ′rschi

(0) − β ′rschi
(β)|∑n

i=1 δiW (ti) |β ′rschi
(0)|

Being aware that some desirable properties of R2
sch(β) are lost by this new

formulation, this measure is mainly introduced to draw a comparison with
Km.norm and Kd.norm.
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4 Simulation studies

4.1 Data simulation

In simulation studies, the presented measures were analysed with respect to
their dependence on coefficients β, distribution of the covariate X and cen-
soring percentage in the data. In addition, relations between the outcomes
of the different measures were investigated.
Computation of the measures was based on data sets consisting of 1000
observations with exponentially distributed failure time tf and expectation
E(tf |X, β) = 1/ exp(β ′X). Uninformative censoring was added, comparable
to clinical studies where patients enter continuously over time and the study
is stopped after a predefined maximum observation time or after a certain
number of events is reached. Therefore, a uniformly distributed censoring
time was created for each subject, tc̃U(0, τ). The observation time is taken
as the minimum of tf and tc, the status indicator is set to 1 for tf ≤ tc and
zero otherwise. The upper limit τ was varied to obtain censoring percentages
of 0% and approximately 10%, 25%, 50% and 80%. Hence, the influence of
increasing censoring can be investigated.
Distributions of X were initially chosen as binary with p = 0.5, uniform
X̃U(0,

√
3) and normal X̃N(0, 0.25) as these three distributions have the

same variance although they differ in expectation. Additionally, more stan-
dard distributions were chosen, X̃N(0, 1) and X̃U(0, 1). The former of which
results in higher variance of X with values centred at 0 while the latter will
have lower variance than the binary covariate. The influence of the distri-
bution of X can therefore be observed.
Each value of X was then associated with different coefficients chosen from
the set β ∈ {0.5, 1, 2, 3} to yield failure times.
For each of the five covariate distributions, 200 data sets of 1000 observa-
tions along with one failure time and four different censoring times for each
value of β were generated. Hence, each measure was calculated 200 times
for each setting defined by covariate distribution, value of β and censoring
percentage.

4.2 Criteria investigation

All criteria were initially calculated for the data sets with binary X. The
obtained criteria are plotted against the according coefficients β in figure 1.
Lines are drawn between the means at each value of β with different styles
for different censoring percentages in the data. Correlations between β and
the values of all the criteria are high. The maximum correlation is 0.995
and is reached by R2

sch for data without censoring whereas the minimum is
0.910 and is obtained for VW in the data with 80% censoring.
As can be seen in figure 1, all criteria grow with increasing values of β, which
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Figure 1. Criteria over different values of coefficient β and varying censoring percentages for

a binary covariate X. The points display the true values; lines are drawn between the criteria’s

means for each coefficient. The lines represent the mean results for different censoring percentages

in the data as indicated in the legend.

is desirable as covariates with high coefficients are more important by means
of prediction. The strength of the increase is, to some extend for all criteria,
dependent on the censoring percentage in the data. The measures based on
the variance of the survival curves are less affected by censoring providing
this is not extreme. For high censoring (80%) the factor’s contribution to
the model can only be detected for high coefficients, here β = 3 (figure 1).
The measures based on martingale and deviance residuals are more obvi-
ously affected by censoring than the others. The strong monotonic decrease
is due to less extreme values of the cumulative hazard in presence of censor-
ing. Hence, residuals are less extreme especially for the covariate model, and
the difference between the two models decreases. The Schoenfeld residual
measures yield the lowest values for 50% of censoring and, in contrast to
the other criteria, highest values for the data with 80% censoring. But they
are generally less affected by censoring than the martingale and deviance
residual measures. However, the values of these criteria have higher variance.

When comparing the absolute values of all criteria, wide differences occur
(table 1). For data without censoring and coefficient β = 3, the martingale
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residual measure yields an average of 0.886 whereas the mean of VW is 0.314.

Table 1. Mean values of the criteria for 200 simulated data sets per coefficient β without

censoring and binary X.

Measure β = 0.5 β = 1 β = 2 β = 3

K.m.norm 0.315 0.548 0.792 0.886

K.d.norm 0.257 0.471 0.741 0.864

R2.sch 0.060 0.185 0.479 0.712

R2.sch.k 0.184 0.354 0.635 0.811

V 0.027 0.098 0.275 0.400

Vw 0.024 0.084 0.222 0.314

The Schoenfeld residual measures yield values that range between mar-
tingale and survival measures. Therefore the criteria are grouped and a
general ranking can be established which in most cases holds for all tested
covariate distributions:

Km.norm, Kd.norm ≥ R2
sch, R

2sch.k ≥ V, VW

In addition, the shape of the trend of the criteria over β can be judged. For
the measures based on martingale or deviance residuals, the trend over β
is more logarithmic whereas the other measures show more linear depen-
dencies. This is due to the expected maximum value of 1. It will be seen in
other simulation data that as soon as the measures approach 1, the curve
flattens for all the criteria.
On the other hand, the criterion R2

sch in some cases is slightly negative for
β = 0.5. In these cases the measure presumes that the effect of the covariate
is negligibly small i.e. the null model is better than the covariate model. In
fact, β = 0.5 is a small coefficient for a binary covariate. The associated
relative risk would be rr = exp(β) = 1.65. And most of the other criteria
also yield some values near zero.

The same analysis was then carried out on the continuous covariate dis-
tributions. First choice was X̃U(0,

√
3) as this distribution has the same

variance as that of a binary variable with p = 0.5 and differs only slightly
in its expectation. The results are displayed in figure 2. As can be seen,
the criteria behave much like those calculated for the data sets with a bi-
nary covariate. Only for the measures V and VW the increase with β in the
high censoring data, 80%, is more linear than for binary data. In addition,
there are more extreme values within R2

sch and R2
sch.k. Standard deviations

of these criteria increase for high censoring percentages more than for the
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Figure 2. Criteria over different values of coefficient β and varying censoring percentages for

a uniform covariate distribution X̃(0,
√

3). The points display the true values; lines are drawn

between the criteria’s means for each coefficient. The lines represent the mean results for different

censoring percentages in the data as indicated in the legend.

The next data analysed was that with normally distributed covariates,
X̃N(0, 0.25). The values of X are centred at zero but have the same variance
as the other distributions that have already been discussed. The centring of
X at zero leads to lower values in all the criteria as can be seen in figure 3.
The measures V and VW hardly yield more than 0.2 and several values of
R2

sch are again slightly negative. X in this setting is therefore not a strong
factor.

The data with X̃U(0, 1) was then analysed with respect to the model fit
criteria. The expectation of X is the same as for binary X although the
variance is lower. The results are very similar to those for the data with
X̃N(0, 0.25). Hence, no separate plot is displayed. Again, values of V and
VW are very low and rarely exceed 0.2. The standard deviations of the
Schoenfeld residual measures increase with the censoring percentage in the
data.
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Figure 3. Criteria over different values of coefficient β and varying censoring percentages for a

uniform covariate distribution X̃N(0, 0.25). The points display the true values; lines are drawn

between the criteria’s means for each coefficient. The lines represent the mean results for different

censoring percentages in the data as indicated in the legend.

The last analysed data sets are those with a standard normally distributed
covariate. The covariate values are centred at zero but have variance four
times as high as the binary covariate. The high variance allows for high val-
ues of X. In combination with high coefficients β this leads to high values
in criteria judging the goodness of fit as can be seen in figure 4.
Here, all curves have more or less logarithmic shapes. The values of all

the criteria are much higher than in the cases discussed before. Especially
Km.norm and Kd.norm exceed the expected upper limit of 1 for high coeffi-
cients. As mentioned before, cumulative hazards increase for strong factors
and lead to extreme residuals such that the absolute difference between the
residuals in the covariate model and those from the null model is higher than
the absolute residuals calculated for the null model. Therefore an extreme
improvement is obtained. The same observation is made for a few values of
R2

sch.k. The question arises whether this setting is a realistic situation. If so,
the fact that the limit of 1 is exceeded requires correction of these criteria
as the property of interpretation as a percentage of explained variation is
lost otherwise. On the other hand, the values of V and VW are very low for
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Figure 4. Criteria over different values of coefficient β and varying censoring percentages for

a uniform covariate distribution X̃N(0, 1). The points display the true values; lines are drawn

between the criteria’s means for each coefficient. The lines represent the mean results for different

censoring percentages in the data as indicated in the legend.

all other distributions of X and need further examination in case the other
settings are more realistic.
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Summary

In summary, it is evident that all the criteria strongly depend on the co-
efficient associated with the covariate. The measures Km.norm and Kd.norm

decrease constantly with increasing censoring percentages and meanwhile it
has been established in this piece of work that they may exceed the expected
maximum of 1 for extreme settings.
The Schoenfeld residual based measures return the lowest values for 50%
censoring in the data and are often highest for 80%. They have generally
higher variance than the other measures. For low coefficients, R2

sch may be
slightly negative, which is an indication for a very weak covariate. In these
cases, the null model is preferred over the covariate model. R2

sch.k, as well as
Km.norm and Kd.norm, exceeds the desired maximum value of 1 in extreme
settings. Therefore, these criteria cannot be interpreted as a percentage of
explained variation.
V and V w only decrease for high censoring (80%). They are otherwise un-
affected by censoring but the values are generally low.
All measures highly depend on the true underlying covariate distribution
on the basis of which the survival times are created. None of the criteria
are affected by rescaling of the covariate in the criteria calculating process,
as they all involve the covariate only in combination with the associated
coefficient β. Rescaling of the covariate only results in a different value of β
during estimation.
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4.3 Relations between the different criteria

As all of the presented criteria are supposed to measure the goodness-of-fit
of a model, the next idea was to examine the relations between them. An-
alytical descriptions of these are difficult, as the criteria building processes
differ in number of the terms in the sums and weighting functions are dif-
ferent.
The criteria resulting from the 800 simulation data sets per covariate distri-
bution without censoring (200 per value of β) were therefore plotted against
each other. Strong relationships occurred. When comparing the plots for all
covariate distributions, the relationships seemed very similar for all con-
tinuous covariate distributions. When analysing all criteria for continuous
X together (i.e. 3200 values per criterion), correlations ranged between
0.9318 and 0.9980 whereas for binary X, correlations ranged between 0.9630
and 0.9997. Summing all results of the five distributions together changed
the range of correlations to (0.9313, 0.9970). The plot, however, showed a
slightly different trend for the criteria resulting from simulation data with
binary X for several combinations. Hence, it was decided to keep the dis-
tinction between continuous and binary covariate distributions.
In figure 5, the criteria resulting from simulation data without censoring and
continuous distributions of X are plotted against each other. The strong re-
lationship between the criteria is obvious. The gaps that occur in the plot
can be explained by the discrete values of β. Although the trend is obvious
for all relationships, those which involve R2

sch.k show higher variance.
The plot for the data with binary X shows similar trends and compara-
bly strong relationships between the criteria. Therefore, it is not displayed
separately. The regions for different values of β, however, are more dis-
tinguishable except for the relation between Km.norm and Kd.norm, which is
shaped like the relation in figure 5. Again, the relations to R2

sch.k have higher
variance.

As no analytical answer to the question of the true form of the rela-
tionship is available yet, fractional polynomials were applied to each pair of
criteria. In this way, a first impression of the relationships and the influence
of censoring percentage, covariate distribution and coefficient on these can
be obtained. Fractional polynomials are defined as follows (Royston & Alt-
man, 1994):

FP (x, p) = b0 +
m∑

j=1

bjx
(pj)

Hence, a polynomial of degree m with exponents p is fit to describe the
form of a trend. In practice, a maximum degree of m = 2 and exponents
chosen from the set p ∈ {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, with x(0) = ln(x), is
sufficient for describing most trends. Each exponent can be chosen more
than once. In this case, the first term will be xp and the second is defined
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Figure 5. Criteria for continuous distributions of X for data without censoring plotted against

each other show strong relationships.

as ln(x)x(p). Consequently, a fractional polynomial of degree m = 2 with
exponents p = (0, 3) for example is written:

FP (x, p = (0, 3)) = b0 + b1 ln(x) + x3

The optimal fractional polynomial is found stepwise starting from the most
complex model with m = mmax. This is compared to the best model of
degree m = mmax − 1. The procedure stops as soon as the deletion of a
term results in a significant change in deviance.

The goodness-of-fit of a fractional polynomial model is measured by residual
deviance, which is also the measure of choice for judging the goodness-of-fit
of generalised linear models. A good fit is achieved if the residual deviance
is small. The residual deviances, along with the corresponding number of
residual degrees of freedom, are displayed in table 2 for the two data sets.
Compared to the number of observations and remaining residual degrees of
freedom, the residual deviance is generally small. This can be seen in table
2 and therefore gives an indication for a good fit. As already pointed out
in the discussion of the plots, the highest variance occurs for relations to
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Table 2. Residual deviances resulting from fractional polynomial fits between the criteria cal-

culated for continuous distributions of X and binary X respectively.

Model Residual deviance Residual deviance

X̃ cont. X̃ bin.

Residual df = 3197 Residual df = 797

K
d.norm̃

Km.norm 0.1531 0.0857

R2

sch̃
Km.norm 0.5202 0.3154

R2

sch.k̃
Km.norm 2.4110 0.4277

ṼKm.norm 0.2219 0.0916

V
W̃

Km.norm 0.4758 0.0436

R2

sch̃
Kd.norm 0.7038 0.0359

R2

sch.k̃
Kd.norm 2.5195 0.1514

ṼKd.norm 0.2479 0.0055

V
W̃

Kd.norm 0.5925 0.0017

R2

sch̃
R2

sch.k 1.6436 0.2189

R2

sch̃
V 0.1793 0.0259

R2

sch̃
VW 0.2915 0.0165

ṼR2
sch.k 1.0901 0.0690

V
W̃

R2
sch.k 1.3063 0.0374

ṼVW 0.1859 0.0011

R2
sch.k, which is proved by higher residual deviances. The relation, however,

is strong.

Variance in the plot increased with censoring in the data, especially for
relations to the Schoenfeld residual measures. The trend between the two
criteria based on cumulative hazards and that between the measures V and
VW remained practically unchanged, which indicates similar dependencies
on censoring for these criteria. The reason for the high variance is obviously
the higher variance that has been observed for the criteria R2

sch and R2
sch.k.

Km.norm and Kd.norm, however, are strongly dependent on censoring. There-
fore, the relation to the other criteria is increasingly compressed, although
the general shape of the trend is kept.
As for the data with binary X, the detection of a trend for relations in-
volving V or VW is difficult for 80% censored observations per data set. As
already mentioned in the discussion of figure 1, these criteria only detect
the covariate when it is combined with a high coefficient. The trend over β
is not smooth. Consequently, the relation to the other criteria is not smooth
either.
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4.4 Discussion of simulation results

The presented criteria judge the goodness-of-fit of a survival model with
respect to different outcomes, as there are cumulative hazard; prediction
of covariates, and variance of survival curves. All depend strongly on the
associated coefficient and the distribution of the true underlying covariate.
However, they differ strongly in value. While the measures V and VW are
generally very small, the criteria based on cumulative hazard tend to exceed
the expected maximum value of 1 for strong factors in data sets with very
small censoring percentages. The latter measures are the only ones that ob-
viously decrease monotonically with increasing censoring in the data. R2

sch.k

also exceeds the desired maximum value of 1, and it therefore does not al-
low for interpretation as a percentage. R2

sch for weak factors occasionally
yields slightly negative values, although its minimum in expectation is 0. In
addition, the measures based on Schoenfeld residuals have higher variance
than all the other criteria presented here. Consequently, all of the measures
suffer drawbacks.
However, strong relations between all of the criteria could be detected. When
describing these, data with binary X had to be distinguished from data with
continuous X. For further specification of the trends the censoring percent-
age has to be taken into account. This is especially the case for relations
including Km.norm and Kd.norm. Once this is realised, the successful cal-
culation of at least one of the measures should allow for the subsequent
derivation of all remaining measures. The precision of covariate prediction
is therefore directly related to the gain of explained variation in the survival
curves and the precision of cumulative hazards.

5 Application to stomach cancer data

The data analysed originate from a clinical study from Chirurgische Klinik
der TU München during the years 1987 and 1996. 295 patients with stomach
cancer were analysed with respect to their survival. The maximal individual
follow-up time is 11 years. The censoring percentage in the data is 63%. In
earlier analyses with less data (Stark, 1997), a dichotomised version of the
percentage of seized lymph nodes (NODOS.PR) was identified as strongest
prognostic factor. The optimal version of NODOS.PR is now recalculated for
the new data and analysed with respect to its contribution to the goodness-
of-fit of the model by means of the presented criteria.

For a complete analysis, assumptions for the application of a Cox model
must be checked first. These include linearity (if necessary, combined with
the finding of the optimal functional form) of the covariate and proportional
hazards. Initially, a varying coefficient model (Hastie & Tibshirani, 1993) is
fit using a spline of NODOS.PR as covariate to check for linearity. As can
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Figure 6. The varying coefficients spline plot for the continuous covariate NODOS.PR shows

that the linearity assumption is violated. No linear trend is possible within the 95% confidence

region (dashed lines). Vertical lines indicate possible positions for dichotomisation.

be seen in figure 6, no linear effect is possible within the 95% confidence re-
gion (dashed lines) and a dichotomised version of NODOS.PR is preferable
which distinguishes between a low risk and a high risk group.
Another indication for dichotomisation was found in the check of the func-
tional form of NODOS.PR. This graphical check is established by plotting
martingale residuals of the null model against the values of NODOS.PR (Th-
erneau & Grambsch, 2000). The smoothed fit is monotonic and logistically
shaped (figure 7), which is an indication for a threshold, and a dichotomi-
sation is proposed.
The optimal cut point was found by simultaneously testing all data points
in NODOS.PR, that guarantee at least ten individuals per group, as can-
didate split points. Test statistic is the logrank statistic, which is adjusted
for multiple testing according to Lausen & Schumacher (1992). The optimal
cut point is found as the one with minimum p-value. Here, the two minimal
p-values have been picked. The according cut points lead to two different
binary covariates that were tested with respect to their contribution to the
model fit. The optimal cut point was found at 0.1212, the next best point for
dichotomisation is at 0.2326. Both log rank statistics are highly significant
even after adjusting the p-values for multiple testing. The new covariates
are named nod.122 and nod.24.
Next, the assumption of proportional hazards was checked using the method
proposed by Grambsch & Therneau (1994), which tests for correlation be-
tween time, or transforms of time, and scaled Schoenfeld residuals. Here,
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Figure 7. Martingale residuals obtained from the null model plotted against the covariate values

indicate the functional form of the covariate. Here, a dichotomisation is chosen. Proposed cut

points are indicated as vertical lines.

correlations with time, ranks of time and logarithmic time were tried. No
violation of the model assumption could be found.

The two univariate models were therefore analysed with respect to the
presented goodness-of-fit criteria. The coefficients in the two models were
estimated as βnod.122 = 2.04 and βnod.24 = 1.95. The results for all goodness-
of-fit criteria are displayed in table 3.

Table 3. Goodness-of-fit criteria for two univariate models including a binary variable for

NODOS.PR and means of criteria obtained from simulation studies with β=2 combined with

50% and 80% censoring in the data.

Criteria Model with nod.122 Model with nod.24 Simulation with Simulation with

β=2, Zens=50% β=2, Zens=50%

Km.norm 0.5897 0.4531 0.6663 0.4571

Kd.norm 0.4482 0.3541 0.4929 0.3569

R2
sch 0.3242 0.2733 0.3127 0.4974

R2
sch.k 0.5529 0.46687 0.5085 0.7019

V 0.2595 0.2296 0.2850 0.0806

VW 0.2140 0.1982 0.2389 0.0617
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The factor nod.122 provides higher values in all the criteria. Therefore, it
should be preferred over nod.24. As in the simulation study, the values of
the different criteria show high discrepancies in both models.
The results for the model built with the factor nod.122 are interpreted as
follows: approximately 59% of absolute martingale residual deviation can be
explained by introducing nod.122 into the model, while 32% of the variation
of Schoenfeld residuals can be explained and the variation in the survival
curves is reduced by 26%. These values are generally high and nod.122 is
considered as an important factor for prediction.
Additionally, all criteria for the model with nod.122 were compared to the
means calculated in our simulation study in the previous section for 50%
and 80% censoring in data with a binary covariate associated with β = 2,
as these settings are closest to the real data. The simulation study showed a
constant decrease with increasing censoring percentage only for Km.norm and
Kd.norm (figure 1). Simulation data with 63% censoring would therefore be
expected to yield criteria values between those calculated for 50% and 80%
censoring. Although the simulation data are optimally created, the values
of these criteria obtained for the real data are close to the point where sim-
ulation data would be expected to yield values. The other criteria’s values
are still between the simulation means but closer to those obtained for 50%
censoring. For these criteria, the exact analytical dependence on censoring
percentage is not available, yet. Therefore, it is difficult to establish, where
the expected values should be in an optimal setting. But the results from
the real data seem not to clearly contradict the simulation results. Taking
into account that the simulation is optimally created for a univariate model
and the resting variance in the data is random and therefore cannot be ex-
plained, the model for the real data (based on nod.122) seems to be very
good.
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6 Conclusion

Different criteria have been presented to measure the goodness-of-fit in sur-
vival analysis. They are all obtained through different procedures and show
high discrepancies in value when calculated simultaneously for the same
data. All of them have drawbacks. The measures Km.norm, Kd.norm and
R2

sch.k tend to exceed 1 in extreme settings and can therefore not gener-
ally be interpreted as a percentage of explained variation. Correction would
be needed. It is difficult, however, as the problem is in the structure of mar-
tingale residuals and the use of absolute distances. The measures V and VW

are generally very low, whereas R2
sch has high variance and in some cases of

low associated coefficients, yields slightly negative values, which indicates a
weak factor. The latter measure, however, has been extensively studied and
allows for interpretation as a residual sum of squares in the classical sense;
an approximated decomposition into sums of squares and easy extensions
to different other settings. It is therefore currently recommended for use.
However, the values of the different criteria indicate that they are strongly
connected to one another. All the criteria are of interest, and the analytical
derivation of the relations between them is the aim of further research, as
well as the formulation of a model selection procedure based on an appro-
priate measure of explained variation for survival data.
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