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SUMMARY

There has been much recent interest in Bayesian inference for generalized additive
and related models. The increasing popularity of Bayesian methods for these and
other model classes is mainly caused by the introduction of Markov chain Monte
Carlo (MCMC) simulation techniques which allow the estimation of realistically
complex models. This paper describes the capabilities of the public domain soft-
ware BayesX for estimating complex regression models with structured additive
predictor. The program extends the capabilities of existing software for semi-
parametric regression. Many model classes well known from the literature are
special cases of the models supported by BayesX. Examples are Generalized Addi-
tive (Mixed) Models, Dynamic Models, Varying Coefficient Models, Geoadditive
Models, Geographically Weighted Regression and models for space-time regres-
sion. BayesX supports the most common distributions for the response variable.
For univariate responses these are Gaussian, Binomial, Poisson, Gamma and neg-
ative Binomial. For multicategorical responses, both multinomial logit and probit
models for unordered categories of the response as well as cumulative threshold
models for ordered categories may be estimated. Moreover, BayesX allows the
estimation of complex continuous time survival and hazardrate models.

1 Introduction

BayesX is a public domain software package developed in the last 6 years at the De-
partment of Statistics of the University of Munich. The program comprises a number of
powerful features and tools for full and empirical Bayesian inference. Functions for han-
dling and manipulating data sets and geographical maps, and for visualizing results are
added for convenient use. In this paper we describe a powerful regression tool in BayesX
for estimating complex semiparametric regression models based on recent MCMC simula-
tion techniques. Besides the regression tool described in this paper, the current version of
BayesX contains an alternative approach for inference based on mixed model methodology
(Fahrmeir et al. (2003a) and Ruppert et al. (2003)), and a tool for estimating Bayesian
dags (Fronk and Giudici (2000) and Fronk (2002)).
The model class supported by BayesX is based on the framework of generalized linear
models. Bayesian generalized linear models (e.g. Fahrmeir and Tutz (2001)) assume that,
given covariates u and unknown parameters γ, the distribution of the response variable y
belongs to an exponential family, with mean µ = E(y|u, γ) linked to a linear predictor η
by

µ = h(η) η = u′γ. (1)

Here h is a known response function, and γ are unknown regression parameters. BayesX
is, however, able to estimate much more flexible models with structured additive predictor
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(Fahrmeir et al. (2003a))

ηr = f1(ψr1) + . . . + fp(ψrp) + u′
rγ, (2)

where r is a generic observation index, the ψrj denote generic covariates of different types
and dimension, and fj are (not necessarily smooth) functions of the covariates. The func-
tions fj comprise usual nonlinear effects of continuous covariates, time trends and seasonal
effects, two dimensional surfaces, varying coefficient terms, i.i.d. random intercepts and
slopes, spatially correlated random effects and geographically weighted regression. In or-
der to demonstrate the generality of the model class supported by BayesX we point out
some special cases of (2) well known from the literature:

• Generalized Additive Model (GAM)
The predictor of a GAM (Hastie and Tibshirani (1990)) for observation i, i = 1, . . . , n
is given by

ηi = f1(xi1) + · · · + fk(xik) + u′
iγ. (3)

Here, fj are smooth functions of continuous covariates xj . In BayesX the functions
fj can be modelled by random walk priors and Bayesian P-splines, see Fahrmeir and
Lang (2001a), Lang and Brezger (2003) and Brezger and Lang (2003). We obtain a
GAM as a special case of (2) with r = i, i = 1, . . . , n and ψij = xij , j = 1, . . . , k.

• Generalized Additive Mixed Model (GAMM)
A GAMM extends (3) by introducing cluster specific random effects, i.e.

ηic = f1(xic1) + . . . + fk(xick) + b1cwic1 + · · · + bqcwicq + u′
icγ

where bc = (b1c, . . . , bqc) is a vector of q i.i.d. random intercepts (if wicj = 1) or
random slopes with respect to the cluster indicator c ∈ {1, . . . , C}. In BayesX the
random effects components are modelled by i.i.d. Gaussian priors for bjc, see e.g.
Clayton (1996). They can be subsumed into (2) by defining r = (i, c), ψrj = xicj ,
j = 1, . . . , k, ψr,k+h = wich, h = 1, . . . , q, and fk+h(ψr,k+h) = bhcwich.

• Geoadditive Models
In many situations additional geographic information for the observations in the data
set is available. As an example compare our demonstrating example in Section 3 on
the determinants of childhood undernutrition in Zambia. Here, the district where
the mother of a child lives is given and may be used as an indicator for regional
differences in the health status of children. A reasonable predictor for such data is
given by

ηi = f1(xi1) + . . . + fk(xik) + fspat(si) + u′
iγ (4)

where fspat is an additional spatially correlated (random) effect of the location si

an observation pertains to. Models with a predictor that contains a spatial effect
are also called geoadditive models, see Kammann and Wand (2003). In BayesX, the
spatial effect may be modelled by Markov random fields (Besag et al. (1991)) or two
dimensional P-splines (Brezger and Lang (2003)). In the notation of (2) we obtain
r = i, ψrj = xij for j = 1, . . . , k, ψi,k+1 = si, fk+1 = fspat.

• Varying Coefficient Model (VCM) - Geographically weighted regression
A VCM as proposed by Hastie and Tibshirani (1993) is defined by

ηi = g1(xi1)zi1 + . . . + gk(xik)zik
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where the effect modifiers xij are continuous covariables or time scales and the
interacting variables zij are either continuous or categorical. A VCM can be cast
into (2) with r = i, ψij = (xij , zij) and by defining the special function fj(ψij) =
fj(xij , zij) = gj(xij)zij . In BayesX, the effect modifiers are not necessarily restricted
to be continuous as in Hastie and Tibshirani (1993). E.g. the geographical location
as effect modifiers may be used as well, see Fahrmeir et al. (2003b) for an example.
VCM’s with spatially varying regression coefficients are well known in the geography
literature as geographically weighted regression, see e.g. Fotheringham et al. (2002).

• ANOVA type interaction model
Suppose we two continuous covariates xi1 and xi2 are given. Then, the effect of xi1

and xi2 may be modelled by a predictor of the form

ηi = f1(xi1) + f2(xi2) + f1|2(xi1, xi2) + . . . ,

see e.g. Chen (1993). The functions f1 and f2 are the main effects of the two
covariates and f1|2 is a two dimensional interaction surface which can be modelled
e.g. by two dimensional P-splines (Lang and Brezger (2003) and Brezger and Lang
(2003)). The main effects and the interaction can be cast into the form (2) by
defining r = i, ψr1 = xr1, ψr2 = xr2, ψr3 = (xr1, xr2).

All regression models discussed above and arbitrary combinations can be estimated with
BayesX in a Bayesian framework based on recent MCMC simulation techniques.
A variety of different smoothness priors are available in BayesX whose applicability depend
on the type of covariate and the prior assumptions on smoothness. For continuous covari-
ates BayesX supports random walk priors (Fahrmeir and Lang (2001a)) and Bayesian
P-splines (Lang and Brezger (2003)). For spatial effects a variety of Markov random field
priors (Besag et al. (1991)) and two dimensional P-splines (Brezger and Lang (2003)) are
available. Unobserved unit- or cluster specific heterogeneity may be considered by intro-
ducing random intercepts or slopes. Interactions may be introduced via varying coefficient
terms or two dimensional P-splines.
BayesX supports the most common distributions for the response variable. Supported
distributions for univariate responses are Gaussian, binomial, Poisson, gamma, negative
binomial and for multicategorical responses, both multinomial logit and probit models for
unordered categories of the response as well as cumulative threshold models for ordered
categories. Recently models for continuous time survival analysis have been added.
The goodness of fit may be assessed by the deviance, deviance residuals, the deviance
information criterion DIC (Spiegelhalter et. al. (2002)) and leverage statistics.
The methodological background for univariate responses is described in full detail in
Fahrmeir and Lang (2001a), Lang and Brezger (2003) and Brezger and Lang (2003). Count
data regression is covered in Fahrmeir and Osuna (2003). Models with multicategorical
responses are dealt with in Fahrmeir and Lang (2001b) and Brezger and Lang (2003).
Survival models are treated in Hennerfeind et al. (2003) and Fahrmeir and Hennerfeind
(2003). A thorough (and for most purposes sufficient) introduction into the regression
models supported by the program can be found in the BayesX manual (Brezger et al.
(2003), Ch. 7).
In the next section we give a brief overview about the general usage of BayesX and show
how Bayesian structured additive regression models are estimated. A complex example
about childhood undernutrition in Zambia is discussed in Section 3. Instructions for down-
loading the program and recommendations for further reading are given in the concluding
Section 4.
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2 Usage of BayesX

After having started BayesX, a main window with four sub-windows appears on the screen.
These are a command window for entering and executing code, an output window for
displaying results, a review window for easy access to past commands, and an object
browser that displays all objects currently available.
BayesX is object oriented although the concept is limited, i.e. inheritance and other
concepts of object oriented languages like C++ or S-plus are not supported. For every
object type a number of object-specific methods may be applied to a particular object.
For estimating Bayesian regression models we need a dataset object to incorporate, handle
and manipulate data, a bayesreg object to estimate semiparametric regression models, and
a graph object to visualize estimation results. If spatial effects are to be estimated, we
additionally need map objects. Map objects serve as auxiliary objects for bayesreg objects
and are used to read the boundary information of geographical maps and to compute
the neighbourhood matrix and weights associated with the neighbours. The syntax for
generating a new object in BayesX is

> objecttype objectname

where objecttype is the type of the object, e.g. dataset, and objectname is the name to
be given to the new object. In the following subsections we give an overview about the
specific methods of the object types required to estimate Bayesian structured additive
regression models.

2.1 dataset objects

Data (in form of external ASCII files) can be read into BayesX with the infile command.
Besides the infile command many more methods for handling and manipulating data are
available, e.g. the generate command to create new variables, the drop command to drop
observations and variables or the descriptive command to obtain summary statistics for
the variables. The general syntax of the infile command is:

> objectname.infile [varlist] [, options] using filename

Here, varlist is a list of variable names separated by blanks (or tabs), and filename is the
name (including full path) of the external ASCII file storing the data. The variable list
may be omitted if the first line of the file already contains the variable names. BayesX
assumes that the variables are stored columnwise, that is one column per variable. Two
options may be passed, the missing option to indicate missing values and the maxobs
option for reading in large datasets. Specifying for example ’missing = M’ defines the
letter ’M’ as an indicator for a missing value. The default for missing values are a period
’.’ or ’NA’ (which remain valid indicators for missing values even if an additional indicator
is defined through the missing option). The maxobs option may be used to speed up the
reading of large datasets into BayesX. Its usage is strongly recommended if the number of
observations exceeds 10000. For instance, ’maxobs=100000’ indicates that the dataset has
100000 observations. Having read in the data, the dataset may be inspected by double
clicking on the respective object in the object browser.

2.2 map objects

The boundary information of a geographical map is read into BayesX using the infile
command of map objects. Currently BayesX supports two file formats, boundary files
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and graph files. A boundary file stores the boundaries of every region in form of closed
polygons. Having read in a boundary file, BayesX automatically computes the neighbours
and associated weights of each region. By double clicking on the respective object in the
object browser the map may be inspected visually. A graph file simply stores the nodes
N and edges E of a graph G = (N, E). A graph is a convenient way of representing the
neighbourhood structure of a geographical map. The nodes of the graph correspond to
the region codes. The neighbourhood structure is represented by the edges of the graph.
Weights associated with the edges of the graph may be given in a graph file as well. For
the detailed structure of boundary and graph files we refer to the BayesX manual, Ch. 5.
Examples of boundary and graph files for different countries and regions are available at
the BayesX homepage, see Section 4 for the address. The syntax for reading boundary or
graph files is

> objectname.infile [, weightdef= wd] [graph] using filename

where option ’weigthdef’ specifies how the weights associated with each pair of
neighbours are computed. Currently there are three weight specifications avail-
able, ’weightdef=adjacency’, ’weightdef=centroid’ and ’weightdef=combnd’. If
’weightdef=adjacency’ is specified, for each pair of neighbours the weights are set equal to
one. Specifying ’weightdef=centroid’ results in weights inverse proportional to the dis-
tance of the centroids of neighbouring regions and ’weightdef=combnd’ results in weights
proportional to the length of the common boundary. If ’graph’ is specified as an additional
option BayesX expects a graph file to be read in rather than a boundary file.

2.3 bayesreg objects

Bayesian regression models are estimated using the regress command. The general syntax
is

> objectname.regress model [weight weightvar] [if expression] [, options] using dataset

Executing this command estimates the regression model specified in model using the data
specified in dataset, where dataset is the name of a dataset object created previously. An
if statement may be included to analyse only a part of the data and a weight variable
weightvar to estimate weighted regression models. Options may be passed to specify
the response distribution, details of the MCMC algorithm (for example the number of
iterations or the thinning parameter), etc. The syntax of models is:

depvar = term1 + term2 + · · · + termr

Here, ’depvar’ specifies the dependent variable in the model and term1,. . . ,termr define the
way the covariates influence the response variable. The different terms must be separated
by ’+’ signs. In the following we give some examples. An overview about the capabilities
of BayesX is given in Table 1. Table 2 shows how interactions between covariates are
specified. More details can be found in the BayesX manual Ch. 8.
Suppose we want to model the effect of three covariates X1, X2 and X3 on the response
variable Y. Traditionally a strictly linear predictor is assumed which can be specified in
BayesX by:

Y = X1 + X2 + X3

Note that a constant intercept is automatically included into the models and must not
be specified. Suppose now that we assume possibly nonlinear effects of the continuous
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variables X1 and X2. Assuming for example quadratic P-splines with second order random
walk smoothness priors for the effect of X1 and X2, we obtain:

Y = X1(psplinerw2,degree=2) + X2(psplinerw2,degree=2) + X3

The second argument in the model formula above is optional. If omitted, a cubic spline
will be estimated by default. Moreover, some more optional arguments may be passed,
e.g. the number of knots to be defined. For details we refer the reader to the BayesX
manual.
Suppose now that we observe an additional variable L which provides information about
the geographical location an observation pertains to. A spatial effect based on a Markov
random field prior is added by:

Y = X1(psplinerw2,degree=2) + X2(psplinerw2,degree=2) + X3 +
L(spatial,map=m)

The option ’map’ specifies the map object that contains the boundaries of the regions and
the neighbourhood information required to estimate a spatial effect.
The distribution of the response is specified by adding the option ’family’ to the options
list. For instance, ’family=gaussian’ defines the responses to be Gaussian. Other valid
specifications can be found in Table 3. Note that models for categorical responses may also
be used for estimating discrete time survival and competing risk models, see Fahrmeir and
Tutz (2001), Ch. 9. The Poisson distribution allows the estimation of piecewise exponential
survival models, see e.g. Ibrahim et al. (2001).

Table 1: Overview over different model terms in BayesX.

Prior Syntax example Description

Linear effect X1 Linear effect for X1.

First or second or-
der random walk

X1(rw1)
X1(rw2)

Nonlinear effect of X1.

P-spline X1(psplinerw1)
X1(psplinerw2)

Nonlinear effect of X1.

Seasonal prior X1(season,period=12) Varying seasonal effect of X1 with period 12.

Markov random
field

X1(spatial,map=m) Spatial effect of X1 where X1 indicates the region
an observation pertains to. The boundary infor-
mation and the neighbourhood structure is stored
in the map object ’m’.

Two dimensional
P-spline

X1(geospline,map=m) Spatial effect of X1. Estimates a two dimensional
P-spline based on the centroids of the regions. The
centroids are stored in the map object ’m’.

Random intercept X1(random) I.i.d. (random) Gaussian effect of the group indi-
cator X1, e.g. X1 may be an individuum indicator
when analysing longitudinal data.

Baseline in Cox
models

X1(baseline) Nonlinear shape of the baseline effect λ0(X1) of a
Cox model. log(λ0(X1)) is modelled by a P-spline
with second order penalty.

2.4 graph objects

graph objects are used to visualize data and estimation results obtained by other objects
in BayesX. Currently graph objects may be used to draw scatterplots between variables
(method ’plot’), or to draw and color geographical maps stored in map objects (method
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Table 2: Possible interaction terms in BayesX.

Type of interaction Syntax example Description

Varying coefficient term X1*X2(rw1)
X1*X2(rw2)
X1*X2(psplinerw1)
X1*X2(psplinerw2)

Effect of X1 varies smoothly over the
range of the continuous covariate X2.

Random slope X1*X2(random) The regression coefficient of X1 varies
with respect to the unit- or cluster index
variable X2.

Geographically weighted
regression

X1*X2(spatial,map=m) Effect of X1 varies geographically. Covari-
ate X2 indicates the region an observation
pertains to.

Two dimensional
surface

X1*X2(pspline2dimrw1) Two dimensional surface for the continu-
ous covariates X1 and X2.

’drawmap’). We illustrate the usage of graph objects with method ’drawmap’ which is used
to color the regions of a map according to some numerical characteristics. The syntax is:

> objectname.drawmap plotvar regionvar [if expression] , map=mapname [options] using
dataset

Method ’drawmap’ draws the map stored in the map object ’mapname’ and prints the
graph either on the screen or stores it as a postscript file (if option ’outfile’ is specified).
The regions with regioncode ’regionvar’ are colored according to the values of the variable
’plotvar’. The variables ’plotvar’ and ’regionvar’ are supposed to be stored in the dataset
object ’dataset’. Several options are available for customizing the graph, e.g. for changing
from grey scale to color scale or storing the map as a postscript file, see the BayesX manual
Ch. 6. A typical graph obtained with method ’drawmap’ is given in Figure 2.

3 A complex example: Childhood undernutrition in Zambia

In this example we demonstrate the usage of BayesX by an analysis of data on undernu-
trition of children in Zambia. This data set has already been analysed in Kandala et al.
(2001). Here, we will apply the same model developed in their paper. Since our focus is
on demonstrating how a regression model can be specified and estimated using BayesX
we do not discuss or interprete the estimation results.
Undernutrition among children is usually determined by assessing the anthropometric sta-
tus of a child relative to a reference standard. In our example undernutrition is measured
through stunting or insufficient height for age, indicating chronic undernutrition. Stunting
for a child i is determined using a Z-score which is defined as

Zi =
AIi − MAI

σ

where AI refers to the child‘s anthropometric indicator (height at a certain age in our
example), MAI refers to the median of the reference population and σ refers to the standard
deviation of the reference population.
The main interest is on modelling the dependence of undernutrition on covariates including
the age of the child, the body mass index of the child‘s mother, the district the child lives
in and some further categorial covariates. Table 4 gives a description of the variables used
in our model.
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Table 3: Response distributions in BayesX.

Family Link Description

gaussian identity Gaussian responses. Details about MCMC inference in Lang and
Brezger (2003).

binomial logit Binomial responses. Inference is based on conditional prior or IWLS
proposals, see Fahrmeir and Lang (2001a) and Brezger and Lang
(2003).

bernoullilogit logit Models with binary responses and logit link. Estimation is based on
latent utility representations, see Holmes and Held (2003).

binomialprobit probit Models with binary responses and probit link. Estimation is based on
latent utility representations, see Albert and Chib (1993).

multinomial logit Multinomial logit model, see Brezger and Lang (2003).

multinomialprobit probit Multicategorical probit model. Estimation is based on latent utility
representations, see Fahrmeir and Lang (2001b).

cumprobit probit Cumulative threshold model for ordered responses with three cat-
egories. Estimation is based on latent utility representations, see
Fahrmeir and Lang (2001b).

poisson log Poisson distribution. Inference is based on conditional prior or IWLS
proposals, see Fahrmeir and Lang (2001a) and Brezger and Lang
(2003).

negbin log Negative Binomial responses. Details in Fahrmeir and Osuna (2003).

gamma log Gamma distribution. Inference is based on conditional prior or IWLS
proposals, see Fahrmeir and Lang (2001a) and Brezger and Lang
(2003).

cox – Cox model. Details in Hennerfeind et al. (2003) and Fahrmeir and
Hennerfeind (2003).

The data can be analysed in largely five steps: We first read in the data into BayesX using
a dataset object. Since we want to estimate a spatial effect of the district in which the child
lives, we need the boundaries of the districts to compute the neighbourhood information
of the map of Zambia. Therefore, we create a map object which contains the required
information in the second step. A regression model is estimated in the third step followed
by visualizing results. Since our analysis is based on MCMC-techniques it is important
to investigate in a last step the sampling paths and the autocorrelation functions of the
estimated parameters.
In the following, we assume that the data set and the map of Zambia are stored in
c:\data\zambia.raw and c:\data\mapzambia.raw, respectively.

1. Reading data set information

To read in the data into BayesX we create a dataset object and use the infile command
of dataset objects:

> dataset d
> d.infile using c:\data\zambia.raw

2. Compute neighbourhood information

The neighbourhood information of the map of Zambia is computed and stored in BayesX
by creating a map object and using the infile command:

> map m

8



Table 4: Variables in the data set on childhood undernutrition.

Variable Description
hazstd Standardised Z-score of stunting.
bmi Body mass index of the mother.
agc Age of the child.
district District where the child lives.
rcw Mother‘s employment status with categories ”working” (= 1) and ”not

working” (= −1).
edu1
edu2

Mother‘s educational status with categories ”complete primary but incom-
plete secondary” (edu1 = 1), ”complete secondary or higher” (edu2 = 1)
and ”no education or incomplete primary” (edu1 = edu2 = −1).

tpr Locality of the domicile with categories ”urban” (= 1) and ”rural” (= −1).
sex Gender of the child with categories ”male” (= 1) and ”female” (= −1).

> m.infile using c:\data\mapzambia.raw

Having read in the boundary information, BayesX automatically computes the neigh-
bourhood matrix of the map. Two regions are assumed to be neighbours if they share a
common boundary.

3. Regression analysis

Now we can estimate our regression model using bayesreg objects. We create a bayesreg
object and estimate the model using the regress command:

> bayesreg b
> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2)

+ agc(psplinerw2) + district(spatial,map=m) + district(random),
family=gaussian iterations=12000 burnin=2000 step=10 predict using d

The two continuous covariates bmi and agc are assumed to have a possibly nonlinear
effect on the Z-score and are therefore modelled by P-splines (with second order random
walk penalty). The spatial effect of the district is split up into a spatially correlated
effect ’district(spatial,map=m)’ and an uncorrelated effect ’district(random)’, see
Fahrmeir and Lang (2001b) for a motivation. The correlated effect is modelled by a
Markov random field prior. The neighbourhood matrix and possible weights associated
with the neighbours are obtained from the map object ’m’.
The options iterations, burnin and step define the number of iterations, the burn in
period and the thinning parameter. Specifying step=10 as above forces BayesX to store
only every 10th sampled parameter which leads to a random sample of length 1000 for
every parameter in our example.
If the option predict is specified, samples of the deviance, the effective number of pa-
rameters pD and the deviance information criteria DIC of the model are computed and
stored, see Spiegelhalter et. al. (2002). In addition, estimates for the additive predictor
and the posterior expectation are computed for every observation.
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On a 2.4 GHz PC estimation of the model was carried out in about 1 minute and 05
seconds.
After estimation, results for each effect are written to an external ASCII file. These files
contain the posterior mean and median, the posterior 2.5%, 10%, 90% and 97.5% quantiles
and the corresponding 95% and 80% posterior probabilities of the estimated effects. For
example, the beginning of the file for the effect of bmi looks like this:

intnr bmi pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80

1 12.8 -0.284065 -0.660801 -0.51678 -0.283909 -0.0585753 0.085998 0 -1

2 13.15 -0.276772 -0.609989 -0.483848 -0.275156 -0.070517 0.0572406 0 -1

3 14.01 -0.258674 -0.515628 -0.416837 -0.257793 -0.10009 -0.00289024 -1 -1

The numbers 1 and -1 for the variables pcat95 and pcat80 indicate that the corresponding
credible intervals are either strictly positive or negative. Zero indicates credible intervals
containing zero.

4. Visualizing estimation results

Estimation results for nonlinear effects of bmi and agc and the spatial effect of the district
are best summarized by visualization. BayesX automatically creates appropriate plots
of the effects and stores the graphs as postscript files. The file names are given in the
output window for each effect. Figures 1 and 2 show the content of these files. Moreover,
a batch-file is created that contains all commands necessary to reproduce the plots. The
advantage is that additional options may be added by the user to customize the graphs
(e.g. to change the title or axis labels).
It is also possible to visualize effects on the screen immediatly after estimation. For the
nonlinear effects of the two continuous covariates such plots are obtained by executing the
commands

> b.plotnonp 1

and

> b.plotnonp 3

The numbers following the plotnonp command depend on the order in which the model
terms have been specified. The numbers are supplied in the output window after the
estimation.
Results for spatial effects are best visualized by drawing the respective map and coloring
the regions of the map according to some characteristic of the posterior, e.g. the posterior
mean. For instance, the structured spatial effect is visualized by typing

> b.drawmap 5, color

The additional option ’color’ forces BayesX to use colors instead of grey shades for
visualization.

5. Post estimation commands

In addition to the regress command, bayesreg objects provide some post estimation com-
mands to get sampled parameters or to compute autocorrelation functions of sampled
parameters. For example
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> b.getsample

stores sampled parameters in ASCII files and plots the sampling paths. The resulting
graphs are stored in postcript format leading e.g. to the plots shown in Figure 3 for
the scale parameter and the intercept. To avoid too large files, the samples are typically
partitioned into several files.
Autocorrelation functions may be drawn e.g. by typing

> b.plotautocor , maxlag=150

where ’maxlag’ specifies the maximum lag number. The default is ’maxlag=250’. Execut-
ing the plotautocor command also stores the autocorrelation functions in an ASCII file.
Figure 4 shows the autocorrelation function for the scale parameter and the intercept.

4 Download and recommendations for further reading

The latest version of BayesX including a detailed 200 pages manual is available at
http://www.stat.uni-muenchen.de/~lang/bayesx/bayesx.html.
The BayesX homepage also contains all files required to produce the results presented in
the example on childhood undernutrition in Zambia. In addition, a more detailed tutorial
based on the Zambia data set is available, click on Tutorials at the homepage. Finally,
the boundary and graph files for a number of countries and regions may be downloaded,
click on Maps at the homepage.
If not familar with MCMC simulation techniques, it is strongly recommended to read
at least one of the introductions into MCMC. A very nice and thorough introduction is
given in Green (2001). To get an overview about the methodology BayesX is based on,
we consider it sufficient to read Chapter 7 of the manual. More details may be found in
the references cited in this paper. First steps with BayesX can be done with the example
in this paper and the tutorial on childhood undernutrition in Zambia.

Acknowledgement:
We thank Ludwig Fahrmeir and Andrea Hennerfeind for helpful comments and discus-
sions. This research has been financially supported by grants from the German Science
Foundation (DFG), Sonderforschungsbereich 386 ”Statistical Analysis of Discrete Struc-
tures”.

 12.8  19.4  26  32.7  39.3

-0.66

-0.36

-0.05

 0.26

 0.56

Effect of bmi

bmi

 0  14.8  29.5  44.3  59

-0.28

 0.08

 0.44

 0.8

 1.16

Effect of agc

agc

Figure 1: Example on childhood undernutrition: Effect of the body mass index of the child‘s
mother and of the age of the child together with pointwise 80% and 95% credible intervals.
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Figure 3: Example on childhood undernutrition: Sampling paths for the scale parameter
and the intercept.

References

Albert, J. and Chib, S., 1993: Bayesian analysis of binary and polychotomous response
data. Journal of the American Statistical Association, 88, 669-679.

Besag, J., York, J. and Mollie, A., 1991: Bayesian image restoration with two applications
in spatial statistics (with discussion). Annals of the Institute of Statistical Mathemat-
ics, 43, 1-59.

Brezger, A., Kneib, T. and Lang, S., 2003: BayesX manual.

Brezger, A. and Lang, S., 2003: Generalized structured additive regression based on
Bayesian P-splines. SFB 386 Discussion paper 321, Department of Statistics, Uni-
versity of Munich.

Chen, Z., 1993: Fitting Multivariate Regression Functions by Interaction Spline Models.
Journal of the Royal Statistical Society B, 55, 473-491.

Clayton, D., 1996: Generalized linear mixed models. In: Gilks, W.R., Richardson, S.
and Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall,
London.

12



1 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

lag

scale_1_1

1 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

lag

intercept_1

Figure 4: Example on childhood undernutrition: Autocorrelation functions for the scale
parameter and the intercept.

Fahrmeir, L. and Hennerfeind, A., 2003: Nonparametric Bayesian hazard rate models
based on penalized splines. SFB 386 Discussion paper 361, University of Munich.

Fahrmeir, L., Kneib, T. and Lang, S., 2003a: Penalized structured additive regression for
space-time data: a Bayesian perspective. SFB 386 Discussion paper 305, University
of Munich. Revised for Statistica Sinica.

Fahrmeir, L. and Lang, S., 2001a: Bayesian Inference for Generalized Additive Mixed
Models Based on Markov Random Field Priors. Journal of the Royal Statistical So-
ciety C, 50, 201-220.

Fahrmeir, L. and Lang, S., 2001b: Bayesian Semiparametric Regression Analysis of Mul-
ticategorical Time-Space Data. Annals of the Institute of Statistical Mathematics, 53,
10-30.

Fahrmeir, L., Lang, S., Wolff, J. and Bender, S., 2003b: Semiparametric Bayesian Time-
Space Analysis of Unemployment Duration. Journal of the German Statistical Society,
87, 281-307.

Fahrmeir, L. and Osuna, L. 2003, Structured count data regression. SFB 386 Discussion
paper 334, University of Munich.

Fahrmeir, L. and Tutz, G., 2001: Multivariate Statistical Modelling based on Generalized
Linear Models, Springer–Verlag, New York.

Fotheringham, A.S., Brunsdon, C., and Charlton, M.E., 2002: Geographically Weighted
Regression: The Analysis of Spatially Varying Relationships. Chichester: Wiley.

Fronk, E.M., 2002: Model Selection for Dags via RJMCMC for the Discrete and Mixed
Case. SFB 386 Discussion Paper 271, Department of Statistics, University of Munich.

Fronk, E.M. and Giudici, P., 2000: Markov Chain Monte Carlo model selection for DAG
models. SFB 386 Discussion paper 221, Department of Statistics, University of Mu-
nich.

Green, P.J., 2001: A Primer in Markov Chain Monte Carlo. In: Barndorff-Nielsen, O.E.,
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