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Abstract: The importance of considering forward and backward flows simultaneously in supply
chain networks spurs an interest to develop closed-loop supply chain networks (CLSCN). Due to
the expanded scope in the supply chain, designing CLSCN often faces significant uncertainties.
This paper proposes a fuzzy multi-objective mixed-integer linear programming model to deal with
uncertain parameters in CLSCN. The two objective functions are minimization of overall system costs
and minimization of negative environmental impact. Negative environmental impacts are measured
and quantified through CO2 equivalent emission. Uncertainties include demand, return, scrap rate,
manufacturing cost and negative environmental factors. The original formulation with uncertain
parameters is firstly converted into a crisp model and then an aggregation function is applied to
combine the objective functions. Numerical experiments have been carried out to demonstrate
the effectiveness of the proposed model formulation and solution approach. Sensitivity analyses
on degree of feasibility, the weighing of objective functions and coefficient of compensation have
been conducted. This model can be applied to a variety of real-world situations, such as in the
manufacturing production processes.

Keywords: closed-loop supply chain network design; fuzzy multi-objective decision making; mixed
integer linear programming

1. Introduction

The increasing need for re manufacturing, the growing market competition, and the
concern on negative environmental impacts have spurred significant interest in closed-
loop supply chain network (CLSCN) adoption in manufacturing industry. In contrast to
designing the forward and reverse material flows separately, the integrated system can
achieve global optimally considering both flows in the supply chain. As pointed out by
Klibi et al., the complex and dynamic nature of CLSCN creates a lot of uncertainties in the
supply chain system and dramatically influences the overall performance of the logistics [1].
The design of a supply chain network often involves long-term strategic decisions which
have sustaining impact in business operations. Pishvaee et al. stated that opening/closing
or upgrading a facility are capital intensive and time-consuming, and hence making any
changes to those decisions in real time is often impossible [2]. Therefore, it is essential to
incorporate uncertainties into the design of CLSCN such that the decisions in the supply
chain network configuration are efficient and robust.

In this paper, we propose a mathematical model for a single-product, multi-period and
capacitated CLSCN. The tactical decisions include determining flows among the facilities
while strategic decisions involve facility location selection. The major contributions can be
summarized as follows:

• We proposed a novel multi-objective CLSCN model to minimize overall system
costs and negative environmental impact. To the best of authors’ knowledge, fuzzy
programming has not been applied to CLSCN problems with system cost and envi-
ronmental impact objectives.

Logistics 2021, 5, 15. https://doi.org/10.3390/logistics5010015 https://www.mdpi.com/journal/logistics

https://www.mdpi.com/journal/logistics
https://www.mdpi.com
https://orcid.org/0000-0001-5090-054X
https://orcid.org/0000-0001-8392-8442
https://doi.org/10.3390/logistics5010015
https://doi.org/10.3390/logistics5010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/logistics5010015
https://www.mdpi.com/journal/logistics
https://www.mdpi.com/2305-6290/5/1/15?type=check_update&version=2


Logistics 2021, 5, 15 2 of 16

• We found most related studies in the literature only considered 1 or 2 uncertain
parameters. In this paper, we studied multiple uncertain parameters such as demand,
return, scrap rate, processing costs and environmental impact.

• A comprehensive parameter sensitivity analysis of the fuzzy model is conducted.

The remainder of this paper is organized as follows: The literature review is discussed
in Section 2. The problem statement and model formulation are defined in Section 3. The
equivalent crisp model as well as solution approach are presented in Section 4. The computa-
tional experiments and sensitivity analyses are included in Section 5, and managerial insights
are derived. Finally, Section 6 concludes the paper with major findings and points out future
research directions.

2. Literature Review

There has been extensive study in this field. Scenario-based stochastic programming,
robust optimization, and fuzzy programming approaches have been widely applied in
CLSCN to deal with uncertainties. Scenario-based stochastic programming is a power-
ful approach when probabilistic distribution information for the uncertain parameter is
available. A few recent studies estimate the probabilistic distributions for the uncertain pa-
rameters and then apply scenario-based stochastic programming which samples scenarios
from the probabilistic distributions followed by scenario reduction techniques [3–5]. How-
ever, this approach has limitations [6,7]. First, in many real-world applications the decision
maker may not have enough historical data, thus, estimating the accurate probabilistic
distribution is impossible. For instance, estimating probabilistic distribution of demand
of new product can be challenging. Second, an accurate approximation of probabilistic
distribution may require a large amount of scenarios which increase the computational
complexity. On the other hand, if scenario sample size is restricted for computational
reasons, then the range of future realizations under which decisions are determined and
evaluated is limited.

To address these limitations, robust optimization has been introduced as an alternative
approach to deal with uncertainty. Robust optimization handles uncertainties by solving
robust counterpart over predetermined uncertainty sets [8] . The robust counterpart is
a worst-case formulation of the original problem in which worst-case is measured over
all possible values that uncertain parameters may take in given convex sets. The main
advantage of robust optimization in contrast to scenario-based stochastic programming is
that only rough historical data is required to derive the uncertainty sets [9]. Studies that
apply robust optimization to CLSCN can be found in the following literatures [2,10]. On
top of that, there are papers that apply multiple methods, simultaneously. Hybrid robust
and stochastic programming approach for multiple uncertainties have been studied in
the following literatures [11,12]. However, the main limitations on robust optimization
are: First, only a few uncertain parameters were considered in robust optimization for
CLSCN mainly due to reformulation as well as computational complexity [2,10,13]. As
stated by Prajogo and Olhager, supply chain network design often involves decisions
from multiple stakeholders and significant amount of uncertainties [14]. Second, robust
optimization assumes all uncertain coefficients belong to a predefined symmetric interval
centered at the nominal value. This may not be true for some real-world applications in
which uncertainties have highly skewed distributions [15]. Third, robust optimization
assumes uncertainty to affect only the constraint coefficients. It should be noted that a
problem with uncertainties in the objective functions or right hand side of constraints
requires reformulation and thus increase computational complexity.

As an alternative, the main advantages of fuzzy programming are: First, this approach
provides a framework to handle multiple uncertainties at the same time without increasing
model complexity [16]. Those uncertainties can affect not only left hand side of constraints
but also right hand side of constraints as well as objective function. Second, this approach
does not require complete information about uncertainty. Uncertainties in the fuzzy
programming are dealt with triangular or trapezoidal membership function in which only
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rough data is required to determine the most pessimistic value, the most possible value
and the most optimistic value. Pishvaee and Torabi introduced a fuzzy mathematical
programming model for CLSCN with two objective functions: minimization of total costs
and minimization of total delivery tardiness [17]. Zarandi et al. considered uncertainties
in the decision maker’s aspiration levels as the objectives are imprecise. There are four
different objective functions in the paper: first two objective functions aim to minimize the
overall costs and the last two objective functions focus on the maximization of total service
level [18]. Jindal and Sangwan introduced a fuzzy mixed integer linear programming
model for CLSCN with a single objective function which maximizes the overall profit [19].
Kumar and Kumar compared a traditional supply chain network system with a closed-
loop supply chain network system and made the following claim: The traditional supply
chain seeks to reduce the cost and improve the efficiency while CLSCN aims to lower
the consumption of resources and decrease the emissions of pollutants so as to maximize
the economic benefits [20]. Amin and Zhang emphasized the importance of considering
environmental impact in CLSCN because environmental protection is included in the both
internal and external management [21]. Literature also contains a review of the current
research in CLSCN. Ehsan and Simme discuss many papers on CLSCs and game theory.
They summarise that research has focused on duel channel collection and duel channel
selling methods prioritizing the role of manufactures [22]. In addition to that, studies
focusing on investigating factors contributing to CLSCN have also been published [23] .

3. Problem Definition and Formulation
3.1. Problem Statement

The network design problem studied in this paper is a single product, multi-period
and capacitated CLSCN which includes manufacturing plants, distribution, collection,
recovery and disposal centers. The configuration is explained in Figure 1 created by the
authors. Given the customer demands, the goal is to find the optimal facility locations as
well as materials flows such that overall system costs and negative environmental impacts
are minimized. With concern over global climate increases, regulations on carbon emis-
sions have been developed by government in multiple countries. For example, China has
announced that Ministry of Finance would levy taxes on carbon emissions. In addition,
European Union initialized a carbon emission trading scheme (EU ETS) for companies
with the goal of reducing carbon emission [24]. Motivated by the effect of carbon emission,
the negative environmental impacts are measured and quantified by CO2 equivalent emis-
sion. We assume that facilities that have less negative environmental impact will require
additional capital investment, therefore, negative environmental impacts are inversely
proportional to capital investment. Haddadsisakht and Ryan emphasized the importance
of studying carbon emission in the CLSCN [25].

This supply chain system consists of both forward and backward flows. In the forward
network, manufacturing plants produce and transport products to distribution centers and
then to customers. In the backward network, defective/used products are collected from
customers and shipped to collection centers. After a quality examination process, returned
products are classified into two different categories depending on their conditions. The
recoverable and scrapped items are sent to recovery and disposal centers, respectively.
After appropriate processing, recovered items are sent back to distribution centers and
reenter the forward network.

In this paper, we assume that products are fairly new to the market and therefore not
enough historical data is available to estimate the distributions of demand, return, and
processing cost. On the other hand, network infrastructure information such as fixed cost,
maximum capacity and transportation cost are assumed to be known. Because there are
multiple uncertain parameters with limited amount of historical data, fuzzy programming
would be a more appropriate modeling platform compared to robust optimization or
stochastic programming in terms of modeling and computational efficiency [15,26].
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Figure 1. Closed-loop supply chain configuration

3.2. Model Formulation

The following mathematical notations have been used in the formulation of the
CLSCN. Parameters with uncertainty are represented with a tilde sign on. Demand vol-
ume, return volume, average scrap rate and unit processing cost at different facilities are
considered to be uncertain. In addition, we consider uncertainties in negative environmen-
tal impact through CO2 equivalent emission. Parameters like facility fixed cost, facility
maximum capacity, and transportation cost are considered to be known and fixed.

Sets :

i set of potential locations for manufacturing plants i = 1 · · · I
j set of potential locations for distribution centers j = 1 · · · J
k set of fixed locations of customers k = 1 · · ·K
l set of potential locations for collection centers l = 1 · · · L
m set of potential locations for recovery centers m = 1 · · ·M
n set of potential locations for disposal centers n = 1 · · ·N
t set of time periods t = 1 · · · T

Parameters:

d̃kt demand volume of customer k in time period t
ω̃kt percentage of return from customer k in time period t
η̃t mean scrap rate in time period t
αi fixed cost of building manufacturing plant i
f j fixed cost of building distribution center j
gl fixed cost of building collection center l
an fixed cost of building disposal center n
bm fixed cost of building recovery center m
coij unit product shipping cost from manufacturing plant i to distribution center j
cujk unit product shipping cost from distribution center j to customer k
cqkl unit product shipping cost from customer k to collection center l
cplm unit product shipping cost from collection center l to recovery center m
csln unit product shipping cost from collection center l to disposal center n
chmj unit product shipping cost from recovery center m to distribution center j
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ρ̃i unit production cost at manufacturing plant i
ϕ̃j unit processing cost at distribution center j
β̃l unit processing cost at collection center l
τ̃m unit reproduction cost at recovery center m
pri maximum capacity of manufacturing plant i in each time period
pxj maximum capacity of distribution center j in each time period
pyl maximum capacity of collection center l in each time period
pzm maximum capacity of recovery center m in each time period
pwn maximum capacity of disposal center n in each time period
˜eri negative environmental impact factor for opening a manufacturing plant at location i
˜exj negative environmental impact factor for opening a distribution center at location j
˜eyl negative environmental impact factor for opening a collection center at location l
˜ezm negative environmental impact factor for opening a recovery center at location m
˜ewn negative environmental impact factor for opening a disposal center at location n

Decision Variables:

Oijt volume of products transported from manufacturing plant i to distribution center j in
time period t

Ujkt volume of products transported from distribution center j to customer k in time period t
Qklt volume of returned items transported from customer k to collection center l in time

period t
Plmt volume of recoverable items transported from collection center l to recovery center m

in time period t
Slnt volume of scrapped items transported from collection center l to disposal center n in

time period t
Hmjt volume of recovered items transported from recovery center m to distribution center j

in time period t
Ri 1 if a manufacturing plant is built at location i and 0 otherwise
Xj 1 if a distribution center is built at location j and 0 otherwise
Yl 1 if a collection center is built at location l and 0 otherwise
Zm 1 if a recovery center is built at location m and 0 otherwise
Wn 1 if a disposal center is built at location n and 0 otherwise

With these defined notations, the CLSCN problem can be constructed as follows:

3.2.1. Objective Functions

The strategic decisions in this CLSCN design include the numbers as well as locations
of manufacturing plants, distribution, collection, recovery and disposal centers. In addition,
decisions need to be made on the flow volume between facilities in each time period. Two
objective functions are: minimization of overall system costs and minimization of negative
environmental impact. Overall system costs include fixed costs, transportation costs and
manufacturing costs. We use CO2 equivalent emission to measure and quantify negative
environmental impact. The inverse relationship between capital investment costs (αi, f j, gl ,
an, bm) and CO2 equivalent emission is embedded in the negative environmental impact
factors ( ˜eri, ˜exj, ˜eyl , ˜ezm, ˜ewn). Notably, the objective functions (1) and (2) are in conflict with
each other. That is, higher value in one objective function results in lower value in another
one and hence optimizing the CLSCN requires a trade-off between these two contradictory
objective functions.
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Min ζ1 =∑
i

αi · Ri + ∑
j

f j · Xj + ∑
l

gl ·Yl + ∑
n

an ·Wn + ∑
m

bm · Zm

+ ∑
i,j,t

(ρ̃i + coij) ·Oijt + ∑
j,k,t

(ϕ̃j + cujk) ·Ujkt + ∑
k,l,t

cqkl ·Qklt

+ ∑
l,m,t

(β̃l + cplm) · Plmt + ∑
l,n,t

(β̃l + csln) · Slnt

+ ∑
m,j,t

(τ̃m + chmj) · Hmjt

(1)

Min ζ2 =∑
i

˜eri · Ri + ∑
j

˜exj · Xj + ∑
l

˜eyl ·Yl + ∑
m

˜ezm · Zm + ∑
n

˜ewn ·Wn (2)

3.2.2. Constraints

We assume that all demands must be satisfied and no backlog is allowed. Constraint (3)
ensures the demands are satisfied. Constraint (4) makes sure return products are collected
and shipped to the collection centers. Constraints (5) to (8) are flow balance equations
which assure flow balance at distribution, collection and recovery centers. Constraints (9)
to (13) are maximum capacity constraints which enforce, in each time period, the difference
between incoming and outgoing flows for each facility is no larger than the maximum
capacity. Constraint (14) indicates all facility location variables have to be binary and
constraint (15) indicates all flow variables have to be non-negative.

∑
j

Ujkt ≥ d̃kt ∀k, t (3)

∑
l

Qklt ≥ ω̃kt · d̃kt−1 ∀k, t (4)

∑
i

Oijt + ∑
m

Hmjt = ∑
k

Ujkt ∀j, t (5)

η̃t ·∑
k

Qklt = ∑
n

Slnt ∀l, t (6)

(1− η̃t) ·∑
k

Qklt = ∑
m

Plmt ∀l, t (7)

∑
j

Hmjt = ∑
l

Plmt ∀m, t (8)

∑
j

Oijt ≤ Ri · pri ∀i, t (9)

∑
i

Oijt + ∑
m

Hmjt ≤ Xj · pxj ∀j, t (10)

∑
k

Qklt ≤ Yl · pyl ∀l, t (11)

∑
l

Plmt ≤ Zm · pzm ∀m, t (12)

∑
l

Slnt ≤Wn · pwn ∀n, t (13)

Ri, Xj, Yl , Zm, Wn ∈ {0, 1} ∀i, j, l, m, n (14)

Oijt, Ujkt, Qklt, Plmt, Slnt, Hmjt ≥ 0 ∀i, j, k, l, m, n, t (15)
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4. The Proposed Solution Method

The proposed CLSCN design formulation is a mixed integer linear programming
problem with multi-objective functions. Since membership functions are used to capture
the uncertainties, we transform the original model into an equivalent crisp model in the
first stage. In the second stage, we combine two objective functions and solve the crisp
model to obtain solutions.

4.1. The Equivalent Auxiliary Crisp Model

Multiple approaches have been proposed in the literature to handle formulation with
uncertain parameters in both constraints and objective functions [27–29]. In this paper,
we adopt Jimenez et al. approach [28]. The major advantage of their method is that it
does not introduce extra objective functions or constraints and the whole problem remains
linear. This approach is based on the concept of expected interval and expected value of a
fuzzy parameters.

Assume c̃ is a triangular fuzzy number whose membership function µc̃ can be repre-
sented by the following equation:

µc̃(x) =


fc(x) = x−cp

cm−cp if cp ≤ x ≤ cm

1 if x = cm

gc(x) = co−x
co−cm if cm ≤ x ≤ co

0 if x ≤ cp or x ≥ co

(16)

where cp, cm and co indicate the most pessimistic value, the most possible value and
the most optimistic value. These membership functions can be stated as the degree of
occurrence of parameters which are usually determined based on historical data and
experts’ knowledge. According to Jimenez [28], the expected value (EV) and expected
interval (EI) of a triangular fuzzy number c̃ can be defined as follow:

EV(c̃) =
Ec

1 + Ec
2

2
=

cp + 2cm + co

4
(17)

EI(c̃) = [Ec
1, Ec

2] = [
∫ 1

0
f−1
c (x)dx,

∫ 1

0
g−1

c (x)dx] = [
1
2
(cp + cm),

1
2
(cm + co)] (18)

Two problems need to be addressed when the formulation contain uncertain param-
eters: (1) How to define a feasible solution when the constraints have fuzzy parameters;
(2) How to define an optimal solution when the objective functions have fuzzy coeffi-
cients. Multiple approaches for ranking fuzzy numbers can be found in the following
literatures [30,31]. Different properties have been studied to justify ranking approaches
such as robustness and distinguishability.

According to Jimenez [28], any pair of fuzzy number ã and b̃, the degree in which ã is
larger than b̃ can be stated as follows:

µM(ã, b̃) =


0 if Ea

2 − Eb
1 < 0

Ea
2−Eb

1
Ea

2−Eb
1−(Ea

1−Eb
2)

if 0 ∈ [Ea
1 − Eb

2, Ea
2 − Eb

1]

1 if Ea
1 − Eb

2 > 0

(19)

where [Ea
1, Ea

2] and [Eb
1, Eb

2] are the expected interval of fuzzy parameters ã and b̃. Expression
µM(ã, b̃) ≥ α or ã ≥α b̃ can be viewed as fuzzy parameter ã is no smaller than b̃ in degree α.
Similar ranking approaches can be found in the following literatures [32,33]. According
to Parra et al., for any pair of fuzzy parameters ã and b̃, we say that these two fuzzy
parameters are equivalent in degree of α if Equation (20) holds [34].

ã ≥ α
2

b̃ and ã ≤ α
2

b̃ (20)
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ã ≤ α
2

b̃ indicates that b̃ is larger than or equal to ã at least in degree α
2 . Equivalently, it also

indicates that ã is larger than or equal to b̃ at most in degree 1− α
2 . Thereforce, Equation (20)

can be reformulated as follow:

α

2
≤ µM(ã, b̃) ≤ 1− α

2
(21)

Let’s consider a fuzzy mathematical programming problem (22) in which all coeffi-
cients and parameters are defined as triangular fuzzy numbers. It should be noted that
deterministic objective functions and constraints remain unchanged.

min
x

c̃Tx

s.t. ãix ≥ b̃i i = 1, · · · , l
ãix = b̃i i = l + 1, · · · , m

(22)

According to Zimmermann’s approach, a fuzzy solution is given by the intersection
of all fuzzy objective functions and constraints [35]. A solution x is feasible in degree α if
mini=1,··· ,m[µM(ãix, b̃i)] = α. Using Equations (19) and (21), fuzzy constraints ãix ≥ b̃i and
ãix = b̃i can be rewritten as follows:

Eaix
2 − Ebi

1

Eaix
2 − Eaix

1 + Ebi
2 − Ebi

1

≥ α i = 1, · · · , l (23)

α

2
≤

Eaix
2 − Ebi

1

Eaix
2 − Eaix

1 + Ebi
2 − Ebi

1

≤ 1− α

2
i = l + 1, · · · , m (24)

Equations (23) and (24) can be reformulated as follows:

[(1− α)Eai
2 + αEai

1 ]x ≥ αEbi
2 + (1− α)Ebi

1 i = 1, · · · , l (25)

[(1− α

2
)Eai

2 +
α

2
Eai

1 ]x ≥
α

2
Ebi

2 + (1− α

2
)Ebi

1 i = l + 1, · · · , m (26)

[
α

2
Eai

2 + (1− α

2
)Eai

1 ]x ≤ (1− α

2
)Ebi

2 +
α

2
Ebi

1 i = l + 1, · · · , m (27)

Similarly, a feasible solution xo is α - acceptable optimal solution if and only if for all
feasible solution x, the following equation holds:

c̃tx ≥ 1
2

c̃txo (28)

That is, xo is a better solution in terms of objective value at least in degree 1
2 as opposed

to other feasible solution x. Equation (28) can be expressed as µM(c̃tx, c̃txo) ≥ 1
2 . After

plugging in to Equation (23), we get the following equation:

Ectx
1 + Ectx

2
2

≥
Ectxo

1 + Ectxo

2
2

(29)

The equivalent crisp α—acceptable model of (22) can be reformulated as follows:

min
x

EV(c̃)x

s.t. [(1− α)Eai
2 + αEai

1 ]x ≥ αEbi
2 + (1− α)Ebi

1 i = 1, · · · , l
[(1− α

2 )Eai
2 + α

2 Eai
1 ]x ≥ α

2 Ebi
2 + (1− α

2 )Ebi
1 i = l + 1, · · · , m

[ α
2 Eai

2 + (1− α
2 )Eai

1 ]x ≤ (1− α
2 )Ebi

2 + α
2 Ebi

1 i = l + 1, · · · , m

(30)

Using the Equation (30), the equivalent crisp CLSCN problem can be rewritten
as follows:
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Min ζ1 =∑
i

αi · Ri + ∑
j

f j · Xj + ∑
l

gl ·Yl + ∑
n

an ·Wn + ∑
m

bm · Zm

+ ∑
i,j,t

(
ρ

p
i + 2ρm

i + ρo
i

4
+ coij) ·Oijt + ∑

j,k,t
(

ϕ
p
j + 2ϕm

j + ϕo
j

4
+ cujk) ·Ujkt

+ ∑
l,m,t

(
β

p
l + 2βm

l + βo
l

4
+ cplm) · Plmt + ∑

l,n,t
(

β
p
l + 2βm

l + βo
l

4
+ csln) · Slnt

+ ∑
m,j,t

(
τ

p
m + 2τm

m + τo
m

4
+ chmj) · Hmjt + ∑

k,l,t
cqkl ·Qklt

(31)

Min ζ2 = ∑
i

erp
i + 2erm

i + ero
i

4
· Ri + ∑

j

exp
j + 2exm

j + exo
j

4
· Xj

+ ∑
l

eyp
l + 2eym

l + eyo
l

4
·Yl + ∑

m

ezp
m + 2ezm

m + ezo
m

4
· Zm

+ ∑
n

ewp
n + 2ewm

n + ewo
n

4
·Wn

(32)

∑
j

Ujkt ≥ α · (
dm

kt + do
kt

2
) + (1− α) · (

dp
kt + dm

kt
2

) ∀k, t (33)

∑
l

Qklt ≥ α · (
ωm

kt · d
m
kt−1 + ωo

kt · d
o
kt−1

2
)

+ (1− α) · (
ω

p
kt · d

p
kt−1 + ωm

kt · d
m
kt−1

2
) ∀k, t

(34)

(
α

2
· ηm

t + ηo
t

2
+ (1− α

2
) · η

p
t + ηm

t
2

) ·∑
k

Qklt ≤∑
n

Slnt ∀l, t (35)

((1− α

2
) · ηm

t + ηo
t

2
+

α

2
· η

p
t + ηm

t
2

) ·∑
k

Qklt ≥∑
n

Slnt ∀l, t (36)

(1− α

2
· ηm

t + η
p
t

2
− (1− α

2
) · ηo

t + ηm
t

2
) ·∑

k
Qklt ≤∑

m
Plmt ∀l, t (37)

(1− (1− α

2
) · ηm

t + η
p
t

2
− α

2
· ηo

t + ηm
t

2
) ·∑

k
Qklt ≥∑

m
Plmt ∀l, t (38)

It should be noted that, constraints (5), (8)–(15) in the original formulation do not
contain fuzzy parameters and hence remain unchanged in this formulation.

4.2. The Fuzzy Solution Approach

Fuzzy mathematical programming has been widely used to solve multi-objective
problems due to its’ capability in quantifying the satisfaction level of each objective function.
The very first fuzzy multi-objective solution approach was proposed by Zimmermann,
called max - min approach [35]. The basic idea of this approach is to introduce an auxiliary
variable λ, and then maximize λ given λ smaller than or equal to all objective values.
However, this approach is not efficient and solution may not be unique [36,37]. In addition,
this approach does not consider the relative importance of each objective function. Tiwari et
al. proposed an additive model in which the relative importance of each objective function
is considered [38], but the ratio of satisfaction level does not necessary match up with the
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relative importance level for the decision makers. In this paper, we adopt the approaches
that proposed by Torabi and Hassini [39].

In order to introduce this multi-objective aggregation function, we first define a linear
membership function for each objective. This function can be viewed as the satisfaction
level of each objective function. The linear membership function for a minimization
objective can be defined as follows:

µζ1(x) =


1 for ζ1(x) ≤ ζ−1
ζ+1 −ζ1(x)

ζ+1 −ζ−1
for ζ−1 ≤ ζ1(x) ≤ ζ+1

0 for ζ1(x) ≥ ζ+1

(39)

Similarly, the linear membership function for a maximization objective can be defined
as follows:

µζ2(x) =


1 for ζ2(x) ≥ ζ+2
ζ2(x)−ζ−2

ζ+2 −ζ−2
for ζ−2 ≤ ζ2(x) ≤ ζ+2

0 for ζ2(x) ≤ ζ−2

(40)

It should be noted that the linear membership function (39) is used since both ζ1
and ζ2 are minimization functions. In this paper, there are two objective functions in the
decision making problem. However, this approach can be easily generalized to problems
with more than two objective functions. Given an α value, ζ−1 and ζ+2 are obtained by
solving the multi-objective problem as a single objective problem using only one objective
function. Assuming the optimal solutions are x∗1 and x∗2 , respectively. Then, ζ+1 and ζ−2 can
be obtained by using the following expressions: ζ+1 = ζ1(x∗2) and ζ−2 = ζ2(x∗1).

The aggregation function can be expressed as follows [39]:

maxx,λo λ(x) = γλo + (1− γ)∑h θhµh(x)
s.t. λo ≤ µh(x) h = 1, 2

x ∈ F(x) and γ ∈ [0, 1]
(41)

where µ1(x) and µ2(x) are the linear membership functions of two objective functions and
F(x) denotes the feasible region of equivalent crisp model. In the result, λo = minh{µh(x)}
indicates minimum satisfaction level of all objective functions. γ and θh indicate the
coefficient of compensation and the relative importance of hth objective function.

5. Computational Experiments

To demonstrate and validate the proposed model and solution technique, numerical
experiments have been implemented and the results are shown in this section. The nu-
merical example includes two potential locations for manufacturing plants, four potential
locations for distribution centers, five fixed locations of customers, three potential locations
for collection centers, two potential locations for disposal centers, and twelve time peri-
ods. It should be noted that this type of decision making model can be applied to other
manufacturing production processes as well. The details in this case study can be found
in the following literatures [17,40,41]. To generate the triangular fuzzy parameters, three
prominent points (the most likely value, the most pessimistic value and the most optimistic
value) need to be estimated for each uncertain parameter. The most likely value (cm) is first
generated randomly using the uniform distribution. Subsequently, the corresponding most
pessimistic value (cp) and the most optimistic value (co) are determined, without loss of
generality, by multiplying 0.8 and 1.2, respectively [42].

Besides these uncertainties, we also consider negative environmental impact uncer-
tainty through CO2 equivalent emission. The most likely values for ˜eri, ˜exj, ˜eyl , ˜ezm and ˜ewn
are set inversely proportional to the capital investment. This is based on the assumption
that the environmental friendly facilities have higher capital investment due to additional
expense on environmental friendly machines and clean technologies. Under this assump-
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tion, the two objective functions (31) and (32) become conflict with each other since the first
objective function tends to minimize overall system costs by opening economic facilities
and second objective function aims to minimize negative environmental impact by opening
more expensive facilities. Model formulation (41) is then applied to not only balance
two contradictory objective functions but also provide a lower bound on the minimum
satisfaction in the objective functions.

5.1. Sensitivity Analysis on α

In order to determine model formulation (41), the linear membership functions should be
applied for Equations (31) and (32) by testing the range of their objective values. Table 1 shows
the sensitivity analysis on α. Wα−PIS

1 is the optimal objective value (minimum overall system
costs) for Equation (31) at each level of feasibility α. Similarly, Wα−PIS

2 is the optimal objective
values (minimum negative environmental impact) for Equation (32) at each level of feasibility
α. Meanwhile, we obtain the optimal decisions xα−PIS

1 and xα−PIS
2 , respectively. Wα−NIS

1
and Wα−NIS

2 are derived by plugging the optimal decision xα−PIS
2 into Equation (31) and

optimal decision xα−PIS
1 into Equation (32). For example when α = 0.5, the minimum overall

system cost is $1,635,098 and the maximum overall system cost is $1,695,098. Corresponding
annual minimum negative environmental impact is 1700 tons and annual maximum negative
environmental impact is 2000 tons. As shown in Figure 2, if the values are smaller than the
optimal objective values ($1,635,098 and 1700 tons), then the decision maker is 100% satisfied
with the solution. If the values are greater then the worst objective values ($1,695,098 and
2000 tons), then the decision maker is 0% satisfied with the solution. Between the best and
the worst objective values, the level of satisfaction decreases as objective value increases since
both ζ1 and ζ2 are minimization functions. The goal is to find a balance point between two
conflicting objective functions based on the decision maker’s preference. It should be noted
that greater α results in more robust solution and hence objective values (Wα−PIS

1 , Wα−NIS
1 ,

Wα−PIS
2 , Wα−NIS

2 ) increase as α increases. When α increases from 0.6 to 0.7, there are significant
increases in both overall system costs and negative environmental impact due to network
configuration upgrades. This signifies a α smaller than 0.6 would be a good strategy for
the company.

Table 1. Sensitivity analysis on degree of feasibility (α).

α Wα−PIS
1 ($) Wα−N IS

1 ($) Wα−PIS
2 (tons) Wα−N IS

2 (tons)

0.1 1,400,372 1,690,324 1700 2400
0.2 1,451,849 1,691,516 1700 2300
0.3 1,483,329 1,692,709 1700 2200
0.4 1,534,811 1,693,903 1700 2100
0.5 1,635,098 1,695,098 1700 2000
0.6 1,656,294 1,696,362 1700 1900
0.7 1,907,492 2,047,492 2200 2600
0.8 1,908,691 2,048,691 2200 2600
0.9 2,069,891 2,259,891 2500 3100
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19
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Figure 2. Linear membership functions for ζ1 and ζ2 when α = 0.5.

5.2. Sensitivity Analysis on θ1 and θ2

The next step is to construct the linear membership functions µζ1(x) and µζ2(x) for a
given α value. Let’s set α = 0.5, then the linear membership functions can be expressed
as follows:

µζ1(x1) =
1, 695, 098− x1

60, 000
and µζ2(x2) =

2000− x2

300

where x1 and x2 are the objective values for the crisp model. Notice that
x1 ∈ [1, 635, 098, 1, 695, 098] and x2 ∈ [1700, 2000]. The denominator of linear membership
function is obtained by identifying the range of objective values (e.g., 1,695,098 − 1,635,098
= 60,000 and 2000 − 1700 = 300). Intuitively, the level of satisfaction decreases as x1
and x2 increase because they are minimization functions. The sensitivity analysis on the
importance of objective functions is shown in Table 2. θ1 is the importance of the first
objective function ζ1 (overall system costs) and θ2 is the importance of the second objective
function ζ2 (negative environmental impact). Given the fact that θ1 + θ2 = 1, increasing θ1
while decreasing θ2 indicates the decision maker tends to put more focus on the overall
system costs and less focus on the negative environmental impact. In Table 2, W1 is the
optimal objective value for ζ1 and W2 is the optimal objective value for ζ2. µW1 and µW2

are the level of satisfaction for two objective functions, respectively. λ0 is the minimum
level of satisfaction: λ0 = min(µW1 , µW2). When θ1 = 0.9 and θ2 = 0.1, corresponding
µW1 = 1 and µW2 = 0. It indicates that the decision maker is 100% satisfied with the overall
system costs and 0% satisfied with the negative environmental impact. This parameter
setup makes the solution indifferent to traditional supply chain network system because it
does not consider environmental impact and only care about the overall system costs. As
θ1 decreases, the decision makers put more and more focus on the environmental impact,
therefore, W1 increases and W2 decreases. Notice that µW1 , µW2 and λ0 are insensitive to
parameter changes in θ1 and θ2. Apparently, minimum satisfaction λ0 is fairly low across
all θ1 and θ2 combinations and this motivates us to investigate how γ affect the model
solution. From a company’s perspective, they should avoid picking θ1 = 0.9, θ2 = 0.1
since the minimum satisfaction level drops to 0. If the company has a budget lower than
1,675,098, then they should pick higher θ1 value and lower θ2 value such as θ1 = 0.8 and
θ2 = 0.2 so that they can focus more on the financial aspect. On the other hand, if the
company wants to generate less negative environmental impact, then they should choose
lower θ1 value and higher θ2 value such as θ1 = 0.1 and θ2 = 0.9
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Table 2. Sensitivity analysis on the coefficient of compensation (γ).

W1 ($) W2 (tons) µW1 µW2 λ0

γ = 0.1 2,069,891 3100 1 0 0
γ = 0.2 2,069,891 3100 1 0 0
γ = 0.3 2,109,891 2900 0.789 1/3 1/3
γ = 0.4 2,139,891 2800 0.632 0.5 0.5
γ = 0.5 2,139,891 2800 0.632 0.5 0.5
γ = 0.6 2,139,891 2800 0.632 0.5 0.5
γ = 0.7 2,159,891 2700 0.526 2/3 0.526
γ = 0.8 2,159,891 2700 0.526 2/3 0.526
γ = 0.9 2,159,891 2700 0.526 2/3 0.526

Degree of feasibility (α) is fixed at 0.9 and importance of objective functions (θ1 and θ2) are fixed at 0.8 and 0.2,
respectively.

5.3. Sensitivity Analysis on γ

Table 2 includes the sensitivity analysis on the coefficient of compensation (γ). We fix
θ1 = 0.8, θ2 = 0.2, α = 0.9 and only vary γ to investigate it’s impact on the solution. The
corresponding linear membership functions are shown as follows:

µζ1(x1) =
2, 259, 891− x1

190, 000
and µζ2(x2) =

3100− x2

600

By comparing Tables 2 and 3, it can be found out that the minimum satisfaction
level (λ0) is more sensitive to the coefficient of compensation (γ) than the importance
of objective functions (θ1 and θ2). In Table 2, λ0 takes value 1

3 for the most cases which
indicates that the model pays more attention to the objective values than the minimum
satisfaction levels. In Table 2, λ0 takes values such as 0, 1/3, 0.5, and 0.526 which are more
diverse. Recall two objective functions are conflicting with each other: the first objective
function is trying to build facilities with small fixed cost and the second objective function
is aiming to build facilities with large fixed cost as they have better sewage and exhaust gas
treatment systems. Therefore, solution with minimum satisfaction level greater than 0.5 is
good. When γ = 0.1 or γ = 0.2, the solution is indifferent to the traditional supply chain
network system because the decision makers only care about the overall system costs and
ignore negative environmental impact completely. From a company’s perspective, they
should choose γ between 0.7 to 0.9 since solutions are balance (µW1 and µW2 are close to
each other) and minimum satisfaction level (λ0) is above 0.5. If the company focuses on
cutting the budget, then a small γ such as 0.1 is better.

To summarise, Maximum overall system costs and negative environment impact is
dependent on the degree of feasibility. The point of balance can be found between the
conflicting functions based on decision makes preference and budget for overall system
costs. In addition to that the sensitivity analysis shows that there is a trade-off between
the two objective functions. The importance of the functions can be changed based on the
company’s preferences. Also, the satisfaction level of the company is less sensitive to the
objective functions than the coefficient of compensation. This is because building facilities
with less environmental impact would require high fixed costs to account for better sewage
management systems.
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Table 3. Sensitivity analysis on the importance of objective functions (θ1 and θ2).

W1 ($) W2 (tons) µW1 µW2 λ0

θ1 = 0.1,
θ2 = 0.9 1,675,098 1800 1/3 2/3 1/3

θ1 = 0.2,
θ2 = 0.8 1,675,098 1800 1/3 2/3 1/3

θ1 = 0.3,
θ2 = 0.7 1,675,098 1800 1/3 2/3 1/3

θ1 = 0.4,
θ2 = 0.6 1,675,098 1800 1/3 2/3 1/3

θ1 = 0.5,
θ2 = 0.5 1,655,098 1900 2/3 1/3 1/3

θ1 = 0.6,
θ2 = 0.4 1,655,098 1900 2/3 1/3 1/3

θ1 = 0.7,
θ2 = 0.3 1,655,098 1900 2/3 1/3 1/3

θ1 = 0.8,
θ2 = 0.2 1,655,098 1900 2/3 1/3 1/3

θ1 = 0.9,
θ2 = 0.1 1,635,098 2000 1 0 0

Degree of feasibility (α) is fixed at 0.5 and coefficient of compensation (γ) is fixed at 0.4.

6. Conclusions

Supply chain design is among the most critical decisions in the manufacturing pro-
duction. Recently, more attention has been paid to the closed-loop supply chain systems
as they provide additional profits by collecting end-of-life units and re-manufacturing
them for consumption which recovers the value of production. In the traditional supply
chain systems, flows start from suppliers, going through manufacturing plants, distribu-
tion centers and end at customers. However, closed-loop supply chain systems extend
it by collecting defective/used products from customers, classifying them based on the
condition, re-manufacturing the recoverable units and sending recovered products back to
the customers.

Closed-loop supply chain network design includes many strategic decisions such as
network configuration and hence faces significant amount of uncertainties. In this paper, we
consider the uncertainties in demand, return, scrap rate, manufacturing costs and environ-
mental impacts. Fuzzy programming works better in terms of modeling and computational
efficiency when there are multiple uncertain parameters with rough historical data. One of
the contribution for this study is that we proposed a multi-objective fuzzy programming
model to copy with uncertainties in the CLSCN. Two conflicting objective functions are
minimization of overall system costs and minimization of negative environmental impact.
We apply the solution approach proposed by Jimenez et al. to create the crisp model and
then integrate different objective functions using the approach proposed by Torabi and
Hassini [28,39]. Sensitivity analyses have been conducted on various parameters such as
the degree of feasibility (α), the importance of objective functions (θ1, θ2) and coefficient
of compensation (γ). Managerial insights are provided along with the analyses. It can be
observed that: (1) different α values will provide different linear membership functions
and a α value smaller than 0.6 should be selected; (2) λ0 is insensitive to the combinations
of θ1 and θ2; (3) By varying γ, we are able to find a balance solution.

The research is subject to a few limitations which suggest some future research direc-
tions: First, time complexity is not addressed in this paper, however, this aspect is really
important for large scaled problems and hence developing valid inequalities and heuristic
algorithms can be appealing. Second, an efficient approach to capture the statistical proper-
ties of uncertain parameters and convert into crisp models is desired. Last but not the least,
the choice of raw materials and collection technologies play a big role in environmental
impact, therefore considering uncertainties in those two components are also crucial.
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