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Abstract: Loading and unloading rolling cargo in roll-on/roll-off are important and very recurrent
operations in maritime logistics. In this paper, we apply state-of-the-art deep reinforcement learning
algorithms to automate these operations in a complex and real environment. The objective is to teach
an autonomous tug master to manage rolling cargo and perform loading and unloading operations
while avoiding collisions with static and dynamic obstacles along the way. The artificial intelligence
agent, representing the tug master, is trained and evaluated in a challenging environment based on
the Unity3D learning framework, called the ML-Agents, and using proximal policy optimization.
The agent is equipped with sensors for obstacle detection and is provided with real-time feedback
from the environment thanks to its own reward function, allowing it to dynamically adapt its policies
and navigation strategy. The performance evaluation shows that by choosing appropriate hyperpa-
rameters, the agents can successfully learn all required operations including lane-following, obstacle
avoidance, and rolling cargo placement. This study also demonstrates the potential of intelligent
autonomous systems to improve the performance and service quality of maritime transport.

Keywords: deep reinforcement learning; cargo management for roll-on/roll-off ships; autonomous
tug master; agent based reinforcement learning; collision avoidance

1. Introduction

Intelligent transportation systems implement advanced technologies such as sensing,
awareness, data transmission, and intelligent control technologies in mobility and logistics
systems. For mobility, the objective is to increase transport performance and achieve
traffic efficiency by minimizing traffic problems such as congestion, accidents, and resource
consumption. The same goals are targeted for logistics, but the focus is on the optimization
of resource consumption, cost, and time, as well as on the efficiency, safety, and reliability
of logistic operations.

Smart ports have emerged as a new form of port that utilizes the Internet of Things,
artificial intelligence, blockchain, and big data in order to increase the level of automation
and supply chain visibility and efficiency. Digital transformation of ports, terminals, and
vessels has the potential to redefine cross-border trade and increase shipping operation
efficiency [1]. Orive et al. [2] gave a thorough analysis of the conversion to digital, intelli-
gent, and green ports and proposed a new methodology, called the business observation
tool, that allows successfully undertaking the automation of terminals considering the
specific constraints of the port. Furthermore, various logistics operations have been studied
using new techniques such as cargo management, traffic control, detection, recognition
and tracking of traffic-related objects, and optimization of different resources such as en-
ergy, time, and materials [3,4]. The state-of-the-art of smart ports and intelligent maritime
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transportation has been described highlighting trends, challenges, new technologies, and
their implementation status [5–7].

At the same time, the past few years have witnessed breakthroughs in reinforcement
learning (RL). Some important successes were recorded, namely learning a policy from
pixel input in 2013 [8], beating the world champion by AlphaGo Master [9], and the OpenAI
Dexterity program in 2019 [10]. Reinforcement learning refers to goal-oriented algorithms,
which learn how to attain a complex objective (goal) or how to maximize along a defined
dimension over time. The agent interacts with its environment in discrete time steps. At
each time step, the agent receives an observation, which typically includes the reward.
Based on this feedback, the agent chooses an action from the set of available actions, which
is subsequently sent to the environment. The environment state is changing, and the goal
of the agent is to maximize its collected reward.

The objective of this paper is to assess the feasibility and efficiency of deep RL tech-
niques (DRL) in teaching a multiagent system to accomplish complex missions in a dynamic
constrained environment. Handling of rolling cargo in ports is an appropriate field to
achieve this purpose, in which the agents can be autonomous tug masters and the environ-
ment reflects the real world. Our particular application is the automation of the loading
and unloading of rolling cargo from ships. These two operations are essential and recurrent
in maritime shipping and aim to move rolling cargo from the quay or defined points in the
terminal to onboard ships. This kind of ship is called a roll-on/roll-off (RORO) ship. The
optimization of these services will be of great benefit in terms of time, energy, space, service
quality, etc. This paper focuses on the loading operation since it is the most challenging
and has more constraints to meet.

This paper tries to provide approaches to practical challenges and answer the follow-
ing research questions:

1. How is the performance of the agents controlled by RL? We evaluate this by looking
in particular at convergence and its speed, but also other metrics such as accumulative
reward, episode length, and entropy.

2. To what degree are the learned policies optimal? This will be analyzed by identifying
if there are any emergent strategies that are not explicitly desired by the developer
and that the tug masters have learned.

3. What is the impact of tuning the learning hyperparameters on the quality of the
achieved solution?

Our contribution consists of a DRL solution that simulates the handling of loading
and unloading cargo using autonomous tug masters for RORO ships in smart ports. We
evaluate the solution both regarding performance and policy optimality and can show that
our system is able to solve the tasks included satisfactorily. We further assess the impact of
different learning model hyperparameters on the quality of the solutions achieved. Our
solution is also trained using incremental learning, adding additional challenges as the
system learns to solve previously included tasks.

The remainder of this paper is organized as follows: The second section presents the
related works and background theories of DRL. The third section provides the specifications
of the autonomous system ensuring loading/unloading operations and describes the
experimental setup. The obtained results are presented and analyzed in Section 4. Finally,
conclusions are drawn in Section 5.

2. Background
2.1. Related Work

The use of machine learning techniques for cargo management has received consider-
able attention from researchers due to their achieved performance. Shen et al. [11] used a
deep Q-learning network to solve the stowage planning problem and show the possibility
to apply reinforcement learning for stowage planning. To perform an automated stowage
planning in container ships, Lee et al. [12] provided a model to extract the features and to
predict the lashing forces using deep learning without the explicit calculation of lashing
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force. The container relocation problem was solved using the random forest based branch
pruner [13] and deep learning heuristic tree search [14]. This direction of research deals
only with the management of cargo and particularly automated stowage planning and
container relocation taking into consideration some logistic related constraints. Almost all
these studies did not take into consideration the movement and operations required by
cranes or autonomous vehicles in ports.

Another complementary track of research is the automation of cargo management
using control and communication technologies. Price et al. [15] proposed a method to
dynamically update the 3D crane workspace for collision avoidance during blind lift
operations. The position and orientation of the crane load and its surrounding obstacles
and workers were continuously tracked by 3D laser scanning. Then, the load swing and
load rotation were corrected using a vision based detection algorithm to enhance the
crane’s situational awareness and collision avoidance. Atak et al. [16] modeled quay crane
handling time in container terminals using regression models and based on a big dataset of
port operations and crane movements in Turkish ports.

Recently, attention has also been directed toward rolling cargo. M’hand et al. [17]
proposed a real-time tracking and monitoring architecture for logistics and transport in
RORO terminals. The system aims to manage dynamic logistics processes and optimize
some cost functions such as traffic flow and check-in time. The specific mission of the
system is the identification, monitoring, and tracking of the rolling cargo. Reference [18]
discussed the potential evolution in the RORO industry that can be achieved by process
mining in accordance with complex event processing. It gave an overview of process
mining and complex event processing. It also introduced the RORO definition, subsystems,
as well as the associated logistics processes. To take advantage of the autonomy capabilities,
K. You et al. [19] proposed an automated freight transport system based on the autonomous
container truck. The designed system operates in a dual-mode, mixing the autonomous
driving, which is used in the terminal and connecting tunnels, with the manned driving
mode, which is adopted within the operation area. One of the problems related to rolling
cargo handling is the stowage problem in which the aim is to plan loading as much cargo
as possible and maximizing the space utilization ratio on the decks, while respecting the
time and reducing the cost spent on shifting cargo [20–22].

Machine learning based techniques are increasingly used to implement and automate
the management of smart port services. The goal is to provide autonomy and increase the
performance of the logistics operations. L. Barua et al. [7] reviewed the machine learning
applications in international freight transportation management. In [23], the authors used
RL for selecting and sequencing containers to load onto ships. The goal of this assignment
task is to minimize the number of crane movements required to load a given number
of containers with a specific order. Fotuhi et al. [24] proposed an agent based approach
to solve the yard crane scheduling problem, which means determining the sequence of
drayage trailers that minimizes their waiting time. The yard crane operators were modeled
as agents using the Q-learning technique for automatic trailer selection process. In the
same context, Reference [3] used the Q-learning algorithm to determine the movement
sequence of the containers so that they were loaded onto a ship in the desired order. Their
ultimate goal was to reduce the run time for shipping. As an extension of their work, they
tried to optimize three processes simultaneously: the rearrangement order of containers,
the layout of containers, assuring explicit transfer of the container to the desired position,
and the removal plan for preparing the rearrangement operation [25].

In the unloading process, it is primordial to provide customers with precise informa-
tion on when rolling cargo is available to be picked up by customers at the terminal. To
fulfil this need, Reference [26] developed and tested a module based framework using
statistical analysis for estimating the discharge time per cargo unit. The result achieved
was the estimation of the earliest pick-up time of each individual truck or trailer within
1 h accuracy for up to 70% of all cargo. In [27], the authors proposed a simulation model
to simulate the process of RORO terminal operations, in particular the entry and exit of
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vehicles, with the Arena software. The model also served to determine the scale of land
parking lots to be assigned to RORO.

To the best of our knowledge, there is no work dealing with the autonomous man-
agement of these types of loading and unloading of rolling cargo using reinforcement
learning. In addition, in our study, we consider both the stowage planning problem and
the automation of tug master operations.

2.2. Deep Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning encompassing a set of
techniques that try to learn the best agent strategy, called the policy, maximizing the reward
functions of the agent. The policy, denoted by π, is the way in which the agent chooses a
specific action a on state s (called observation). Formally, the policy is a mapping π : S→ A
from the state space to the action space, and it is generally stochastic. The environment
is stochastic as well and can be modeled as a Markov decision process with state space
S, action space A, transition dynamics p(st+1|st, at), reward function r(st; at), and a set of
initial states p(s0) [28]. Considering the agent objectives, trajectories can be extracted from
the process by repeatedly sampling the agent’s action at from its policy π(st) and the next
state st + 1 from p(st+1|st, at). The total reward is the sum of each step’s reward and can
be represented as Rt := ∑∞

i=t r(si, ai).
To maximize the expected sum of rewards, a state-value function Vπ(st)

:= Esi≥t ,ai≥t∼π [Rt|st] is defined to be the expected return from time t onwards with re-
spect to π and starting from the state s. It measures the quality of being in a specific state.
Another important function is the action value function Qπ(st, at) := Esi≥t ,ai≥t∼π [Rt|st, at],
which represents the expected return from time t onwards if an action at is performed at
state s. It measures the profitability of taking a specific action at in a state s. The techniques
that use these two functions are called value based RL. The objective of value based RL
is to estimate the state-value function and then infer the optimal policy. In contrast, the
policy gradient methods directly optimize the policy with respect to the expected return
(long-term cumulative reward) by performing gradient ascent (or descent) on the pol-
icy parameters. The policy based methods are considered more efficient especially for
high-dimensional or continuous action spaces.

To be able to optimize the policy using gradient based methods, the policy is assumed
to be defined by some differentiable function π(θ), parameterized by θ. These methods use
gradient ascent approximations to gradually adjust the policy parameterized function in
order to optimize the long-term return J(θ) := Esi ,ai∼π(θ)[R0] according to the approxima-
tion θ ← αθt +∇θ J(θ). ∇θ J(θ) is the policy gradient representing the step and direction in
updating the policy. It is approximated by the equation:

∇θ J(θ) ≈ 1
N

N

∑
n=1

∞

∑
t=0
∇θ log π(an

t |sn
t )Aπ(sn

t , an
t )

where the sum ∑∞
t=0∇θ log π(an

t |sn
t ) measures how likely the trajectory is under the current

policy. The term Aπ(s, a) = Qπ(s, a)−Vπ(s) is the advantage function, which represents
the expected improvement obtained by an action compared to the default behavior. Since
Qπ(s, a) and Vπ(s) are unknown, Aπ(s, a) is also unknown; therefore, it is replaced by
an advantage estimator using particular methods like generalized advantage estimation
(GAE) [29].

This vanilla policy gradient algorithm has some limitations mainly due to the high
variance and exaggerated requirement for a huge number of samples to accurately estimate
the direction of the policy gradient. This results in a slow convergence time. In addition, it
suffers from some practical issues such as the difficulty in choosing a stepsize that works
throughout the entire course of the optimization and the risk of convergence towards a
sub-optimum of the ultimate desired behavior.
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Recent policy gradient methods such as trust region policy optimization (TRPO)
[30] and proximal policy optimization (PPO) [31] solve these issues through some tricks.
The importance sampling technique is used to avoid the huge number of samples and
the collection of completely new trajectory data whenever the policy is updated. It uses
samples from the old policy to calculate the policy gradient. To efficiently choose the
stepsize, the trust region notion is elaborated. The maximum step size to be explored is
determined as the radius of this trust region, and the objective is to locate the optimal point
within the radius. The process is iteratively repeated until reaching the peak. To guarantee
the monotonic improvement and that any new generated policies always improve the
expected rewards and perform better than the old policy, the minimization-maximization
algorithm is used to optimize the lower bound function that approximates the expected
reward locally.

Deep RL is currently the cutting edge learning technique in control systems [32].
It extends reinforcement learning by using a deep neural network (DNN) and without
explicitly designing the state space. Therefore, it combines both RL and deep learning (DL)
and usually uses Q-learning [33] as its base. A neural network can be used to approximate
a value function or a policy function. That is, neural nets learn to map states to values,
or state-action pairs to Q values. Rather than using a lookup table to store, index, and
update all possible states and their values, which is impossible for very large problems, the
neural network is trained on samples from the state or action space to learn dynamically
the optimal values and policies. In deep Q-learning [34], a DNN is used to approximate
the Q-value function. The DNN receives the state in its input and generates the Q-value of
all possible actions in its output. For the policy based methods, the policy and advantage
function are learned by the DNN.

3. Methodological Approach

We apply the state-of the-art deep reinforcement learning algorithm, namely PPO, for
loading and unloading rolling cargo from ships.

DRL algorithms require a large number of experiences to be able to learn complex
tasks, and therefore, it is infeasible to train them in the real world. Moreover, the agents
start by exploring the environment and taking random actions, which can be unsafe and
damaging to the agent and the surrounding objects. Thus, it is necessary to develop a
simulation environment with characteristics similar to reality in order to train the agents,
speed up their learning, and avoid material costs. Our study used a simulation based
approach performed with Unity3D. The environment in which we expect the agent to
operate is the harbor quay and the ship filled with obstacles. The agent is the tug master
itself even if it is more accurate to think of the agent as the guiding component, which
controls the tug master, since its function is limited to generating the control signals that
steer the tug master’s actuators. It is equipped with sensors for obstacle detection and
trained and evaluated in a challenging environment making use of the Unity3D learning
framework (ML-Agents). The next subsections first describe the algorithm used, then the
entire system and the interactions between its components.

3.1. System Specifications

The structure of the system is depicted in Figure 1. It consists of a dynamic environ-
ment and two agents. The environment is the space encompassing RORO, terminal, lanes,
etc. It is considered unknown and dynamic. The structure of the environment may change
over time; new rolling cargo arrives at the terminal, and other objects, including staff, move
around the scene. The agents are autonomous tug masters that should learn how to load
cargo inside the vessel, under the following constraints:

• Rolling cargo is distributed randomly over the terminal, and the arrival time is
unknown to the agent.

• The goal space in which the agent should place the cargo is defined; however, the
agent should determine the accurate position according to other specific constraints
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such as size, weight, and customer priority. In this paper, we are limited to the size of
the trailer.

• Collision avoidance: The agents should avoid collision with static obstacles, such as
walls and cargo, and avoid dynamic obstacles, like staff and other agents.

• Lane-following: Inside the vessel, the agents must learn to follow the lanes drawn on
the ground.

Figure 1. General structure of the navigation system explored in this study.

Unity3D was used to create the environment and simulate the training process. It
enables realistic visuals and accurate physics, as well as low task complexity. The visu-
alization was used to help evaluate the credibility of the system and as an illustration
when communicating the solution to employees at Stena Line. Task complexity could be
reduced through the task handling mechanism inside Unity3D. We made use also of the
Unity ML-Agents [35] to train the agents since it contains a low-level Python interface that
allows interacting with and manipulating the learning environment. In fact, the ML-Agents
Toolkit contains five high-level components Figure 2, and herein, we explain the four
components that we used and show their role in our application:

• Learning Environment : It contains the scene and all game characters. The Unity scene
provides the environment in which agents observe, act, and learn. In our experiments,
the same scene was used for both training and testing the trained agents. It represents
the internal decks of the RORO where trailers are placed and the quay or wharf, which
is a reinforced bank where trailers stand or line-up. It includes also linkspans, trailers,
tug masters, and various dynamic and static objects. The internal decks can be of
various sizes and may be on different floors.
From a pure learning perspective, this environment contains two sub-components:
Agent and Behavior. The Agentis attached to the Unity game object tug master and
represents the learner. The Behavior can be thought of as a function that receives
observations and rewards from the Agent and returns actions. There are three types
of behaviors: learning, heuristic, or inference. A learning behavior is dynamic and not
yet defined, but about to be trained. It is used to explore the environment and learn
the optimal policy and presents the intermediate step before having the trained model
and using it for inference. That is to say that the inference behavior is accomplished
by the trained model, which is supposed to be optimal. This behavior is derived from
the saved model file. A heuristic behavior is one that is explicitly coded and includes
a set of rules; we used it to ensure that our code is correct and the agent is able to
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perform actions. Generally, the agents can have different behavior components or
may share the same one.

• Python Low-Level API: It contains a low-level Python interface to interact with
and manipulate a learning environment. It communicates with Unity through the
Communicatorto control the Academyduring the training process. It is then an
external component.

• External Communicator: It connects the Learning Environmentwith the Python Low-
Level API.

• Python Trainers: This contains the implementation of proximal policy optimization
for agent training. The use of PPO as a deep learning algorithm is explained in
detail in Section 3.2. The implementation is built on top of the open-source library
TensorFlow [36], Version 2.2. The Python Trainers interface with the Python Low-
Level API from which it receives the set of agent observations and rewards and gives
back the actions to be performed by the tug masters.

Figure 2. ML-Agents architecture [35].

3.2. Algorithm

The agent should perform a set of tasks O(T), where each is moving trucks from
different initial positions to the target states under certain constraints such as static obstacles’
distribution, dynamic obstacles, lane-following, and truck size. We consider the task as
being a tuple: T = (Lt, St(s), St(s(t+1)|st, at), H). The goal of our policy based approach
is to optimize a stochastic policy πθ : S × A → R+, which is parameterized by θ. In
other words, the objective is to find a strategy that allows the agents to accomplish the
tasks from various initial states with limited experiences. Given the state st ∈ ST(s) of the
environment at time t for task T, the learning model of our agent predicts a distribution
of actions according to the policy, from which an action at at is sampled. Then, the
agent interacts with the environment performing the sampled action at and receives an
immediate reward Rt according to the reward function. Afterwards, it perceives next state
st+1 ∼ S(st+1|st, at). In an iterative way, the learning model needs to optimize the loss
function LT that maps a trajectory τ = (s0, a0, R0, ..., sH , aH , RH) followed by the policy
from an initial state to a finite horizon H. The loss of a trajectory is nothing but negative
cumulative reward LT(τ) = −ΣH

t=0Rt.
The policy learning is shown in Algorithm 1. In each episode, we collect N trajectories

under the policy πθ . Afterwards, the gradient of the loss function is computed with regard
to the parameter θ, and the latter is updated accordingly.
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Algorithm 1: Pseudocode for policy learning.

Input : Training tasks O(T), maximum number of iterations set K, number of
trajectories to collect N, learning hyperparameters

Output : Policy πθ

Randomly initialize the parameter θ while not done do
for each (Ki, Oi(T)) do

while k ≤ Ki do
Sample a batch of tasks T ∈ O(T) for all T do

Sample N trajectories with policy πθ

Compute the gradient of the loss function w.r.t θ
end
Perform the update of θ according to the gradient

end
end

end

3.3. DRL Implementation Workflow

The first task is to develop a realistic and complex environment with goal-oriented
scenarios. The environment includes ship, walls, walking humans, rolling cargo, lanes,
and tug masters. The cargo is uniformly distributed in random positions inside an area
representing the quay where cargo should be queued. The maximum linear velocity in
the x and y axes is 5 m/s, and the maximum angular velocity in the z axis is 2 rad/s. The
agents observe the changes in the environment and collect the data, then send them along
with reward signals to the behavior component, which will decide the proper actions. Then,
they execute those actions within their environment and receive rewards. This cycle is
repeated continuously until the convergence of the solution. The behavior component
controlling the agents is responsible for learning the optimal policy. The learning process
was divided into episodes with a length of T = 7000 time steps where the agent must
complete the task. A discrete time step, i.e., a state, is terminal if:

• The agents collide with a dynamic obstacle.
• The maximal number of steps in the episode is achieved.
• The agents place all cargo in the destinations, which means that all tasks are completed.

Data collection: the set of observations that the agent perceives about the environment.
Observations can be numeric or visual. Numeric observations measure the attributes
of the environment using sensors, and the visual inputs are images generated from the
cameras attached to the agent and represent what the agent is seeing at that point in time.
In our application, we use the ray perception sensors, which measure the distance to the
surrounding objects. The inputs of the value/policy network are collected instantly by the
agents and consist of their local state information. The agents navigate according to this
local information, which represents the relative position of agents to surrounding obstacles
using nine raycast sensors with 30 between them. No global state data are received from
the agents, such as absolute position or orientation in a coordinate reference. In addition,
we feed to the input of the neural network other data like the attributes of the sensed cargo.

The agents share the same behavior component. This means that they will learn the
same policy and share experience data during the training. If one of the agents discovers
an area or tries some actions, then the others will learn from that automatically. This helps
to speed up the training.

Action space: the set of actions the agent can take. Actions can either be continuous
or discrete depending on the complexity of the environment and agent. In the simulation,
the agent can move, rotate, pull, and release the cargo and select the destination where to
release the dragged cargo.

Reward shaping: Reward shaping is one of the most important and delicate opera-
tions in RL. Since the agent is reward motivated and is going to learn how to act by trial
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experiences in the environment, simple and goal-oriented functions of rewards need to
be defined.

According to this multi-task setting, we implement reward schemes to fulfil each
task and achieve the second sub-goal since the task functions are relatively decoupled
from each other and, in particular, the relationship between collision avoidance and path
planning maneuvers and placement constraints. We train the agent with deep RL to obtain
the skill of moving from different positions with various orientations to a target pose while
considering the time and collision avoidance, as well as the constraints from both the agent
and placement space. Thus, each constraint stated in the specifications should have its
appropriate reward and/or penalty function. The reward can be immediate after each
action or transition from state-to-state and measured as the cumulative reward at the end of
the episode. In addition, the sparse reward function is used instead of continuous rewards
since the relationship between the current state and goal is nonlinear.

• During the episode:

– The task must be completed on time. Therefore, after each action, a negative
reward is given to encourage the agent to finish the mission quickly. It equals
1/MaxStep such that MaxStep is the maximum number of steps allowed for an
episode.

– If an object is transported to the right destination, a positive reward (+1) is given.

• After episode completion: If all tasks are finished, a positive reward is given (+1).
• Static collision avoidance: Agents receive a negative reward (−1) if they collide with a

static obstacle. Box colliders are used to detect the collisions with objects in Unity3D.
• Dynamic collision avoidance: There are two reward schemes: the episode must be

terminated if a dynamic obstacle is hit, which means that the tug master fails to
accomplish the mission; the second option is to assign a negative reward to the
agent and let it finish the episode. A successful avoidance is rewarded as well. To
enhance the safety and since dynamic obstacles are usually humans, the second choice
is adopted.

• Lane-following: No map or explicit rules are provided to the agent. The agent relies
solely on the reward system to navigate, which makes this task different from path
following in which a series of waypoints to follow is given to the agent. The agent is
rewarded for staying on the lane continuously, i.e., in each step, and since the agent
often enters and leaves the lanes during the training, the rewards for lane-following
have to be very small so that they do not influence the learning of the objective.

– Entering the lane: positive reward (5× 10−3) .
– Staying in the lane: positive reward (1× 10−2).
– Going out of the lane: negative reward (−1× 10−2); should be larger than the

entry reward to avoid zigzag behavior.

If we suppose that the lanes are obstacle-free, the accumulated reward is the sum of the
obtained rewards during the episode. Otherwise, obstacle avoidance and lane-following
are considered as competing objectives. Then, a coefficient β ∈ [0, 1] is introduced to make
a trade-off between them, as described by Equation (1), with r f (t) and ra(t) being the
lane-following and obstacle avoidance rewards at time t, respectively.

r(t) = βr f (t) + (1− β)ra(t) (1)

Configuration parameters: The most important parameters are explained in the fol-
lowing lines, and the others are summarized in Table 1.

• Batch size: the number of training samples (observations) fed to the network in one
iteration; its value is set to 1024.

• Number of epochs: Each epoch is one complete presentation of the dataset to be
learned by a learning machine. After each epoch, the model weights are updated.
Each epoch includes many iterations (data size divided by the batch size), and each
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iteration consists of one feed-forward and back-propagation of only one batch. Three
epochs are generally sufficient to digest all the data features.

• Learning rate: controls the change amount made by adjusting the weights of the
network with respect to the loss gradient, called also the step size. It can simply be
defined as how much newly acquired information overrides the old. The learning
rate is the most important hyperparameter to tune to achieve good performance in
the problem, commonly denoted as beta.

• Epsilon decay: controls the decrease in the learning rate so that the exploration and
exploitation are balanced throughout the learning. Exploration means that the agent
searches over the whole space in the hope to find new states that potentially yield
higher rewards in the future. On the other hand, exploitation means the agent’s
tendency to exploit the promising states that return the highest reward based on
existing knowledge. The value of epsilon decay is generally set around 0.2.

Table 1. Parameters used in the simulation and their values.

Parameter Value

Number of layers 2

Buffer size 2048

λ 0.95

Gamma 0.99

Learning rate schedule linear

Memory size 256

Data normalization false

Time horizon 64

Sequence length 64

Use recurrent True

Summary frequency 60,000

Visualization encode type simple

Maximum steps 1.5× 107

Number of hidden units in DNN 128

The parameter values exposed herein are the default values recommended for general
tasks. For our specific task, optimal hyperparameters are obtained using tuning techniques.
In fact, one of the big challenges of DRL is the selection of hyperparameter values. DRL
methods include parameters not only for the deep learning model, which learns the policy,
but also in the environment and the exploration strategy. The parameters related to the
model design make it possible to construct a deep learning model capable of effectively
learning latent features of the sampled observations; whereas a proper choice of parameters
related to the training process allows the built model to speed up the learning and converge
towards the objective.

The hyperparameter optimization problem (HPO) is a challenging task since the
hyperparameters interact with each other and do not act independently, which makes the
search space very huge. Different types of methods have been used to solve the HPO
problem. Basic search methods sample the search space according to a very simple rule
and without a guiding strategy, such as the grid search method and the random search
method [37]. More advanced methods are sample based and use a policy to guide the
sampling process and update the policy based on evaluating the new sample. The well-
known algorithms of this category are Bayesian based optimizers [38] and population
based techniques such as the genetic algorithm, which we opt to use in this paper [39]. The
challenge here is to find a policy that finds the optimal configuration in a few iterations and
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avoids local optima. The last category includes HPO gradient based methods that perform
the optimization by directly computing the partial derivative of the loss function on the
validation set [40].

All the experiments were done using Unity3D Version 2018.4 and ML-Agents v.1.1.0
developed by Unity technologies, San Francisco, US. C# was used to create the environ-
ment and scripts controlling the agents, while Python was used to develop the learning
techniques and train the agents. The external communicator of Unity allows the agent
training using the Python code. The agents use the same brain, which means that their
observations are sent to the same model to learn a shared policy. A machine with the
microprocessor Intel i7 and a RAM size of 16G was used to run the implemented code.

4. Results and Discussion
4.1. Agent Learning Evaluation

The simulations were performed using a multiagent framework. Two agents, rep-
resenting tug masters, collaborated to place the cargo in their appropriate locations. We
analyzed the agent’s performance based on quantitative metrics, and Table 1 summarizes
the most important parameters used in the simulation.

Four scenarios were considered. In the first scenario, the surface (100 m × 100 m)
where the agents learned to move the rolling cargo was obstacle-free. The agents were not
constrained to follow lanes, and the only requirement was to complete the task as quickly
as possible. About 2.7 M steps of training were enough to converge, and then, the agents
could complete all tasks in an average of 300 steps with a mean cumulative reward of 16.4
for 7000 steps.

The second scenario consisted of lane-following and static obstacle avoidance (walls).
About 3.6 M episodes were required to achieve the convergence where the success rate
of avoiding static obstacles was 100% and the average time needed to complete the task
was 410 steps. The mean accumulated reward was 15.7, which decreased compared to
the first scenario due to the increase of the path length caused mainly by the existence of
obstacles. The third scenario included dynamic obstacles, i.e., pedestrians. The success rate
of the agent to avoid those dynamic obstacles was about 91%, and it learned to avoid static
obstacles 100%. In the fourth scenario, the agent learned all tasks.

Table 2 summarizes the overall training progress for different scenarios. Converge
is the number of steps it took to converge. Reward is the mean cumulative reward, and
reward std is the standard deviation. Length is the episode length after convergence. To
compare the learning behavior, the mean cumulative reward of 7000 steps was computed
for all agents. As expected, it consistently increased over time during the training phase
(Figure 3). The fluctuation of the curve reflects the successive unsuccessful episodes. After
the convergence, the curve should be stationary and fluctuations reduced. The standard
deviation of the cumulative episode reward lied in the interval [1.8, 3.2], which appeals to
the implementation of the stabilization technique as mentioned in Section 5. Three-hundred
to 450 steps were required for each agent to accomplish the mission collaboratively.

The lane-following was qualitatively evaluated. The agents followed the lanes almost
perfectly, but for some sequences, they still tended to choose the shortest path, so that they
saved time and got a greater reward.

Table 2. Agent training performance for different scenarios.

Scenario Converge Reward Reward std Length

Without obstacles and lanes 2.7 M 16.4 1.83 300

Lane-following and static obstacles 3.6 M 15.7 2.13 410

Static and dynamic obstacles 3.4 M 15 2.93 400

Lane-following and obstacle avoidance 5.7 M 13.9 3.2 450
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Figure 4 shows also how much reward the agent predicted to receive in the short
term through the value estimate metric. It is the mean value estimate for all states visited
by the agent during the episode. It increased during the successful training sessions and
increased throughout the learning. After some time, the mean value estimate became
almost proportional with to the cumulative reward increased. This means that the agent
was accurately learning to predict the rewards. The same figure depicts the linear evolution
of the learning rate by a decay of 0.2.

Figure 3. Evolution of learning parameters during training (Scenario 4).

Figure 4. Learning progress during training in the fourth scenario.

To evaluate the learning progress of the agents, various metrics were used. In Figure 5,
the entropy measures the randomness and uncertainty of the model decisions. It reflects the
expected information content and quantifies the surprise in the action outcome. As shown
in the figure, it steadily decreased during a successful training episode and consistently
decreased during the entire training process. The increase in the entropy, for instance
between the steps 1.1 Mand 2 M, shows that the agents were exploring new regions of the
state space for which they did not have much information.
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Figure 5. Evolution of the entropy during the training (scenario 4).

To evaluate how the state space was learned by the agents, the value loss metric
was used. It computes the mean loss of the value function update for each iteration,
subsequently reflecting the ability of the model to predict the value of each state. As shown
in Figure 6, it increased during the training and then decreased once the learning converged.
This shows that the agents learned the state space accurately. On the other hand, the policy
loss was the mean magnitude of the policy loss function. It reflects the way in which the
policy, i.e., the strategy of action decision, evolved. The results show that, as expected, it
oscillated during training, and its magnitude decreased for each successful session when
the agents chose the best action sequences.

Figure 6. Evolution of losses during the training (Scenario 4).

4.2. Incremental Learning

In the case of complex environments, the agent may take a long time to figure out the
desired tasks. By simplifying the environment at the beginning of training, we allowed the
agent to quickly update the random policy to a more meaningful one that was successively
improved as the environment gradually increased in complexity. We proceeded in an
incremental way as follows: we trained the agents in a simplified environment, then we
used the trained agents in the next stage with more complex tasks, and so forth. There was
no need to retrain them from scratch. Table 3 depicts the different stages of the incremental
learning. Converge is the number of steps required for convergence; Reward is the mean
cumulative reward; and Length is the episode length after convergence. After training the
agent in the basic scenario without obstacles and lanes, it took only 1.5 M to teach the agent
to follow lanes and avoid static obstacles instead of spending 3.6 M steps to learn the tasks
from scratch. The same was for learning dynamic obstacle avoidance, which required only
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an extra 1.9 M steps. The same experience was performed for five iterations and showed
that the agent was learning a sub-optimal policy with a reward average of 13 and never
exceeded 13.2.

Table 3. Mean of the accumulated rewards and convergence speed for different scenarios.

Environment Complexity Converge Reward Length

Without obstacles and lanes 2.7 M 16.4 300

Lane-following and static obstacles 4.2 M 15.1 430

Lane-following and obstacle avoidance 6.1 M 13 530

4.3. Hyperparameter Tuning

The final experiment aimed to improve the results obtained using default hyperparam-
eters. The genetic algorithm (GA) was used as an optimizer over the hyperparameter search
spaces to find the optimal structure of the model, as well as to tune the hyperparameters of
the model training process. The optimizer was run for 100 generations with a population of
size 20 in a parallel computation scheme such that the maximum number of iterations was
one million steps. Each individual presented a single combination of the hyperparameters.
The fitness function was evaluated once the stop condition was met for all individuals,
and it equaled the mean of accumulated rewards for the last 100 episodes. Table 4 shows
the search space considered for the model design hyperparameters and the obtained op-
timal values. The discrete sets are denoted by parentheses, and continuous intervals are
denoted with brackets and sampled uniformly by the GA. The optimal architecture of the
deep learning model that learned the policy and the advantage function consisted of three
hidden layers having each 256 units.

Table 4. Search spaces and optimal values of the model structure hyperparameters.

Search Space Optimal Values

# of hidden layers (2, 3, 4, 5) 3

# of units in the hidden layer (128, 160, 256, 512) 256

dropout [0.01, 0.3] 0.22

The optimal parameters for the training process are listed in Table 5. The use of this
value combination sped up the learning process and increased the mean cumulative reward.
A full simulation for the fourth scenario shows that the agents achieved a mean cumulative
reward of 14.83 in 4.6 M steps.

Table 5. Learning parameters explored.

Search Space Optimal Values

Learning rate [1× 10−4, 1× 10−2] 1× 10−3

Epsilon decay [0.1, 0.3] 0.18

Batch size (512, 1024, 1536, 2048) 512

λ [0.9, 0.99] 0.9

Maximum episode length [500, 800] 564

To show the importance of hyperparameter tuning, Figure 7 illustrates the learning
progress of the agents for different hyperparameter values in the fourth scenario. It is clear
that choosing the values of configuration C4 degraded the performance of the agents, and
never learned the tasks. In fact, we noticed through the visualization that they could not
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explore the environment and were stuck in a sub-region of the space. Using the value
combinations C2 and C3 allowed the agents to learn a suboptimal policy because they did
not complete all tasks in an optimized time and their risk of hitting obstacles was high.

Figure 7. Agent learning progress for different hyperparameter configurations. Table 6 shows the
corresponding combination values.

Table 6. Hyperparameter configurations used in the experiment of Figure 7.

C1 C2 C3 C4

Learning rate 1× 10−3 1× 10−3 5× 10−3 1× 10−2

Epsilon decay 0.18 0.26 0.24 0.28

Batch size 512 512 256 256

λ 0.9 0.95 0.96 0.96

Maximum episode length 564 592 630 510

# of hidden layers 3 3 2 2

# of units in the hidden layer 256 128 128 128

Dropout 0.22 0.06 0.15 0.28

4.4. Discussion

Looking back at the research questions formulated in the Introduction, we can affirm
that the agents are able to learn good strategies and fulfil the expected tasks. Regarding
the first research question, we can say that using appropriate model hyperparameters,
we can converge to a solution where the agents learn how to accomplish their tasks. The
convergence also ensures some kind of stability and allows the agents to exploit their
knowledge instead of infinitely exploring the environment or choosing random actions.
However, the reward standard deviation reflects the trajectories’ variation and also the
imperfection of learning stability. Looking at the second research question, we can see
that the policy learned is sub-optimal in the incremental learning approach, but it is near-
optimal otherwise. Regarding the third research question, it is evident that the tuning of
hyperparameters improved the quality of the achieved solution.

The obtained results are very promising and encourage resolving more advanced
logistics constraints using reinforcement learning. Our study was limited to collision
avoidance, lane-following, and cargo moving. In addition, only one cargo feature, which is
the size, is used as the constraint to place the cargo in its appropriate destination. Thus, the
formulation of the multi-objective stowage problem including all the logistics constraints
is one of the first priorities. The aim will be mainly the optimization of the deck utilization
ratio on board the ship with respect to specific constraints such as customer priorities,
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placing vehicles that belong to the same customer close to each other, ship weight balance,
etc. Another perspective of this study that currently presents a challenge to the proposed
autonomous system is the stability. In fact, the reward standard deviation lies between 1.83
in the first scenario without obstacles and 3.2 for the fourth scenario. Lyapunov function
based approaches [41] can be used on the value function to ensure that the RL process
is bounded by a maximum reward region. In addition, collaboration among the agents
can be further enhanced. In this paper, a parameter-sharing strategy is used to ensure the
collaboration and implicit knowledge sharing, which means that the policy parameters are
shared among the agents. However, cooperation is still limited without explicitly sharing
the information.

5. Concluding Remarks

In this paper, deep reinforcement learning is used to perform recurrent and important
logistics operations in maritime transport, namely rolling cargo handling. The agents,
representing the tug masters, successfully learn to move all cargo from the initial positions
to the appropriate destinations. Avoiding static and dynamic obstacles is included in the
objective function of the agents. The agents learn to avoid static obstacles with a 100%
success rate and avoid dynamic obstacles with a 91% success rate. We use hyperparameter
tuning to improve the results, and we show the great impact that deep learning model
hyperparameters have on the solution convergence, policy learning, and advantage func-
tion. In the tuned model, the agents need 4.6 M steps to converge towards the optimal
policy and achieve 88.3% of the maximum value of the mean cumulative reward. Finally,
incremental learning has the advantage of saving training time and building a complex
environment incrementally, but it risks falling into a local optimal trap.

The proposed approach shows a potential to be extended to real-world problems
where full automation of the loading/unloading operations would be feasible. The impact
would be for both environmental sustainability and potential increase in revenue. The
work should also be of interest to manufacturers of systems and vehicles used in these
settings. However, as pointed out, this is an initial study and as such the main focus has
been on studying the feasibility to apply the algorithms presented in the work and to see if
they can solve a simplified problem of unloading and loading of cargo.

We see several possible extensions of the proposed solution as directions for future
work. As the end goal is to implement it in physical tug masters loading and unloading
ROROs, incorporating more realistic constraints is one extension that we will pursue. This
includes making the agents operate with realistic tug master constraints, like having to
reverse in order to attach a trailer, having to drag the trailer, and being realistically affected
by dragging a heavy trailer regarding, e.g., acceleration, breaking, turning, etc. This also
includes making the interior of the ROROs more realistic, with multiple decks, narrow
passages, etc. Another aspect that might need consideration is load balancing on deck,
in order to optimize stability and minimize fuel consumption. Several of the mentioned
improvements will affect the RL environment, but will also need reshaping of the reward
function. Optimizing the reward function to ensure that the agents learn to avoid dynamic
obstacles perfectly is another important thing to address in future work.
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