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Abstract: The calculation of lashing forces on containerships is one of the most important aspects
in terms of cargo safety, as well as slot utilization, especially for large containerships such as more
than 10,000 TEU (Twenty-foot Equivalent Unit). It is a challenge for stowage planners when large
containerships are in the last port of region because mostly the ship is full and the stacks on deck are
very high. However, the lashing force calculation is highly dependent on the Classification society
(Class) where the ship is certified; its formula is not published and it is different per each Class (e.g.,
Lloyd, DNVGL, ABS, BV, and so on). Therefore, the lashing result calculation can only be verified
by the Class certified by the Onboard Stability Program (OSP). To ensure that the lashing result is
compiled in the stowage plan submitted, stowage planners in office must rely on the same copy
of OSP. This study introduces the model to extract the features and to predict the lashing forces
with machine learning without explicit calculation of lashing force. The multimodal deep learning
with the ANN, CNN and RNN, and AutoML approach is proposed for the machine learning model.
The trained model is able to predict the lashing force result and its result is close to the result from
its Class.

Keywords: lashing force; containership; stowage planning; multimodal deep learning; AutoML;
ANN; CNN; RNN

1. Introduction
1.1. Consideration of Stowage Planning

Stowage planning is a highly complex process with the goal to achieve cost efficiency
and safety of crews and containership at the same time. This is done by ensuring that
containers are loaded in the appropriate places on the containership, with consideration of
the infrastructure limitation of all terminals in the round trip port rotation of the subject
vessel, container composition to be loaded at each terminal, necessary segregations of
the dangerous goods cargo, adherence to navigation visibility requirement, maximum
number of cranes that can work concurrently, fulfilment of special stowage requirements
from shippers, safety of containers and vessels, such as stability, strength, lashing, etc. In
Figure 1, more considerations are categorized by the goal of stowage planning.
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especially for the “DC HC (normal or high cubic container) mix under deck” case. Rahsed 
[7] applied a rule-based greedy algorithm to solve the unnecessary Restow/Shift move-
ment which is related to the “Low Restow/Shift” of “Low Cost” category. Shen [8] intro-
duced the Deep Q-Learning Network (DQN) as a model to solve the stowage planning 
problem, and this study showed the possibility to apply Machine Learning, Deep Learn-
ing or Reinforcement Learning for stowage planning. The introduced features are mostly 
under “High Revenue” and “Low Cost”. Rathje [9] introduced the new lashing rule of 
Germanischer Lloyd (GL) to offer containership operators more flexibility in on-deck con-
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1.2. Literature Review

Ding [1] and Avriel [2,3] studied and developed heuristic algorithms for automated
stowage planning in order to reduce a number of restows/shifts which are categorized
as “Low Cost”. Low [4] proposed and developed a system with consideration for crane
intensity and a number of rehandles (restows/shifts), which are categorized as “Low
Cost”, and stability, categorized as “Safety”. Ambrosino [5] studied the master bay plan
problem (MBPP) with the Linear Programming model and also presented a heuristic
approach to relax and solve the combinatorial optimization problem. This MBPP is related
to “Space Utilization” of “High Revenue” and “Low Overstow” and “Low Restow/Shift”
of “Low Cost”. Korach [6] studied an efficient mathematical programming technique
within a heuristic framework for the slot planning problem which is categorized as “High
Revenue”, especially for the “DC HC (normal or high cubic container) mix under deck” case.
Rahsed [7] applied a rule-based greedy algorithm to solve the unnecessary Restow/Shift
movement which is related to the “Low Restow/Shift” of “Low Cost” category. Shen [8]
introduced the Deep Q-Learning Network (DQN) as a model to solve the stowage planning
problem, and this study showed the possibility to apply Machine Learning, Deep Learning
or Reinforcement Learning for stowage planning. The introduced features are mostly
under “High Revenue” and “Low Cost”. Rathje [9] introduced the new lashing rule of
Germanischer Lloyd (GL) to offer containership operators more flexibility in on-deck
container stowage without compromising safety. However, there is no study on Lashing
Forces, taken into consideration stowage planning automation for the “Safety” category
despite the importance of lashing forces on large containerships.

1.3. Lashing in Containership

As the containerships become larger, container stacks on deck become higher. Today,
the largest containerships in the world can carry as many as 23,964 Twenty-foot Equivalent
Units (TEUs) [10]. Back in the 1950s, the first generation of containerships had only two
tiers on deck. Today, containerships are routinely carrying containers on deck up to eleven
(11) tiers high. As such, lashing on containers becomes increasingly important. The lashing
is the securing arrangements onboard to prevent containers from moving from their places
or falling off into the sea when the vessel is in motion, especially during rough weather.
Its effectiveness is measured by the magnitude of the various forces that act on containers,
comparing against their limits and displayed in a percentage. Each Classification society
has a slightly different method of measurement.
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In severe sea conditions, as well as in the case of improperly stowed containers and
overweight containers, these forces may become excessive, causing, for example, failure of
twist locks or collapse of lower-stacked containers. Consequently, whole container stacks
may collapse and go overboard, which is not just an economic issue but also an issue for
safe passageway, as these containers may be floating on the sea surface. Besides this, deck
containers may be loaded with dangerous goods. Thus, containers going overboard also
pose significant environmental implications [11]. According to the report of the World
Shipping Council, the industry loses as many as 10,000 containers a year at sea [12].

The calculation of lashing forces is one of the important aspects in terms of cargo
safety as well as slot utilization. It is solely dependent on the Classification society (Class),
that the ship is certified under. Unlike other calculations such as Stability, Strength and
DG (Dangerous Goods) check, the lashing calculation formula is not published and differs
from Class to Class (e.g., Lloyd, DNVGL, ABS, BV, and so on). The stowage planner has
to rely on the Class-certified Onboard Stability Program (OSP) to ensure his/her stowage
plan is lashing compliant as described by the process in Figure 2.
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1.4. Machine Learning in Lashing of Containership

As a trend of Machine Learning (ML), especially for Deep Learning nowadays, the idea
is that ML can fulfil the needs of stowage planners to get the lashing force values. Instead
of calculating the lashing forces by navel architecture engineering, this study proposes
multimodal deep learning with ANN, CNN and RNN to train machines to predict the
lashing forces.

As illustrated in Figure 3, the idea is that the stowage plan, consisting of stowage (e.g.,
container weight, height, slot position, etc.), condition (e.g., GM, Wind Speed, Roll Angle),
and containership structure (e.g., bays, rows, tiers), is given to one of the appropriate ML
models, trained per each Class (e.g., DNVGL, ABS, Lloyd, BV, etc.), and its ML Model
predicts and returns Lashing Forces as a result during the stowage planning in the stowage
planning tool. Without relying on OSP, stowage plans can be generated within the same
system swiftly, making lashing forces compliant. This study proposes the Multimodal
Deep Learning [13] model with AutoML [14–16] approach to predict Lashing Forces as a
part of the process of stowage planning automation.
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2. Lashing Force Prediction with Multimodal Deep Learnings
2.1. Idea and Process

The process of stowage planning automation with lashing force prediction is depicted
as follows.

1. As part of auto stowage planning process, the stowage planning tool slots containers
on deck.

2. The conditions, as input parameters for lashing force prediction, are set from both the
stability result (e.g., GM, Draft, Trim, etc.; subject to Class), calculated by the stowage
planning tool and inputted values (e.g., Wind Speed, Roll Angle, etc.; subject to Class)
by the stowage planner.

3. The stowage system requests the lashing force result for one of the embedded lashing
force prediction models, trained per each Class.

4. The model returns the lashing force percentage for each lashing component.
5. If any of the returned lashing force values is greater than 100%, the stowage planner

or stowage planning tool changes the containers with lighter ones and repeats from
step no. 2.

A 10,000 TEU containership, belonging to one of biggest shipping lines, has been
chosen and her real life, fully loaded stowage, especially On-Deck for the last port of region,
has been selected as the input to train the above-mentioned model, as depicted in Figure 4.
Almost all Rows in each On-Deck of Bay are fully loaded up to capacity. The lashing
force percentage in this stowage is close to 100%. The Classification society is ABS and the
lashing rule is the In-House Lashing Rule.
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2.2. Feature Extraction and Engineering
2.2.1. Containership Structure

As illustrated in Figure 5, the structure of containerships is well standardized because
the container itself is standardized with several dimensional types (e.g., commonly 20 ft or
40 ft in length and normal or high cubic in height). Generally, one Hatch consists of two
physical 20 ft bays (depicted Bay 25 and Bay 26) and one logical 40 ft bay (depicted Bay
26). This means that two 20 ft containers or one 40ft can be stacked in one slot. The bay
consists of Rows and Tiers as in the table, and each square is called Slot. One Bay is divided
into Under Deck and On Deck, and the lashing is needed On Deck only. There is a big
number of Slot differences in the Bay between the small and large containerships. Typically,
the size of the dimension needs to be fixed in order to train the machine, therefore, the
maximum size of the dimension is defined by 26 Rows (horizontal) and 13 Tiers (vertical)
which are able to accommodate the largest containership in the world. Since lashing forces
are independent per each Hatch with the given ship level condition, such as GM, in this
study, one dataset is defined by 1 Hatch (3 Bays) and On Deck. Each slot is presented by
three-dimension array Sbrt where;

b is Bay index {0, 1, 2}
r is Row index {0, 1, · · · 24, 25}
t is Tier index {0, 1, · · · 11, 12}

(1)
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Figure 5. Presentation of containership structure in Bays.

2.2.2. Features

Lashing forces are calculated with container stacking profiles and containership struc-
tures. The following six features are proposed to represent the factors that influence lashing
forces, illustrated in Figure 6. For F = { f (1), f (2), f (3), f (4), f (5), f (6)}:
• Physical slot availability in each slot, Sbrt, from fixed maximum dimension. If available

set 1, otherwise 0.
• Weight of container in each slot, Sbrt. Generally heavier containers stack in lower slots

to be stable.
• Height of container in each slot, Sbrt. Generally a lower height is more stable.
• Slot Highof Lashing Bridge Fore Side. Higher lashing bridge gives a safer lashing

force value in general.
• Slot High of Lashing Bridge Aft Side. Higher lashing bridge gives lower lashing force

value in general.
• Deck Level where the deck starts as compared to other Bays. For example, the Sunken

Bay has lower lashing force values because it is one level lower than other normal Bays.

In addition to the container stacking profiles on each Bay, there are vessel conditions
that influence lashing forces. The following three conditions are extracted and modelled as
auxiliary ANN for the multimodal modelling.

• GM (Metacentric Height)—this is the result condition when stability is calculated.
• Wind Speed.
• Roll Angle.
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Figure 6. Example of extracted features.

2.2.3. Lashing Force

As illustrated in Figure 7, there are 10 lashing force components per each Row and
two of them, the Lashing Special Corner H Forces and Lashing Special Corner V Forces,
are not applicable for this containership. These 10 values are answer labels for train and
test data.

• Corner Cast Compression;
• Corner Casting;
• Corner Post Compression;
• Lashing Rod Tension;
• Lashing Special Corner H Forces (not applicable for this ship);
• Lashing Special Corner V Forces (not applicable for this ship);
• Longitudinal Racking;
• Pull Out;
• Shear;
• Transverse Racking.
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2.2.4. Dataset

Fully loaded stowage for thelast port of region is selected as the input to train as
depicted in Figure 4. The lashing force percentage in this stowage is close to 100%, so this
stowage is used as a baseline dataset. Since the prediction model is supervised learning,
the label is needed for every dataset and the label comes from OSP. Therefore, over 100,000
training datasets are generated by interface between Stowage Planning Tool and OSP
represented both in the following strategy and in Table 1:

• 11 different realistic vessel conditions;
• For each condition, random weight variance in 10%, 15% and 20% for each container

onboard;
• A total of 21 different Hatches as the different stacking profile.

Table 1. Training and test data.

Condition GM Wind
Speed

Roll
Angle

10%
Variance

15%
Variance

20%
Variance

Total
104,786

1 2.00 30.00 22.00 4578 6636 2982 14,196
2 1.80 29.00 21.50 2520 2583 5796 10,899
3 2.10 28.00 21.00 2611 2708 2856 8175
4 2.40 27.00 20.50 2898 2580 2503 7981
5 2.70 26.00 20.00 3066 2646 4662 10,374
6 3.00 25.00 19.50 3141 2710 2559 8410
7 3.30 24.00 19.00 2594 3149 2581 8324
8 3.60 23.00 18.50 2541 2541 2552 7634
9 3.90 22.00 18.00 2568 2705 2734 8007

10 4.20 21.00 17.50 2566 2791 3799 9156
11 4.50 20.00 17.00 2478 3191 5961 11,630

2.2.5. Modeling

In this study, Multimodal Deep Learning is applied with Artificial Neural Network
(ANN), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). It
is common nowadays to adopt multimodal to predict results more accurately; for instance,
Video–Audio input to recognize human emotion [17]. First of all, the vessel conditions
are used as the auxiliary input of the ANN. General deep learning network, as ANN,
is adopted for the stowage plan because each slot position itself can be considered as a
meaningful feature. In addition, the Bay structure, presented in the Stowage Planning
Tool—as illustrated in Figure 5—is already very similar as an image, i.e., 26 × 13 pixels
with six features as channels; therefore, CNN is adopted as one of the inputs. Additionally,
the lashing force is affected by the adjacent Rows because the outer row can protect the
wind force to the inner row. This means that the sequence of the stacked container might
impact the lashing force values for the next rows. This is the reason why the RNN model is
used in this study. The features described in Section 2.2.2 are used for all ANN, CNN and
RNN models, except for the auxiliary model.

As illustrated in Figure 8, the first auxiliary input is one dimension to accommodate
the ship conditions, GM, Wind Speed and Roll Angle. The second ANN input is four
dimensions to represent Bays, Tiers, Rows and Features. The third input is three dimensions
to represent Tiers, Rows and Bays × Features as Channels of the CNN input. The last
input is two dimensions to represent Tiers and Bays × Rows × Features as nodes of the
RNN input.
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2.2.6. Training

In total, 80% from all datasets are used for training. The specification of the training
machine is:

• vCPU: 24 (Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60 GHz);
• RAM: 224 GiB System Memory;
• GPU: 4 (GK210GL (Tesla K80), NVIDIA Corporation).

The configuration parameters for modeling and fitting are depicted in Table 2 and
the training result of the best model, together with validation, is described in Table 3. The
validation loss, normalized MSE, is 0.0023243355099111795, which gives very good results
and the train and validation MSE and test MSE, scaled MSE, are 0.8656454525367441 and
0.8769041770067165. In consideration of the percentage values for the lashing force of
components, less than 1 for the MSE indicates the variance is about 1%.

Table 2. Training configuration parameters.

Category Configuration Value Description

Model trial 50 The maximum number of different Keras models to try

Fit

batch_size 32 Number of samples per gradient update

epochs 1000 The number of epochs to train each model during the search. It
stops training if the validation loss stops improving for 10 epochs

validation_split 0.2
The model will set apart this fraction of the training data, will not
train on it, and will evaluate the loss and any model metrics on

these data at the end of each epoch

Table 3. Best model result.

Result Value Description

Validation loss MSE 0.0023243355099111795 Normalized MSE
Train and validation MSE 0.8656454525367441 Scaled MSE (original percentage unit) for training and validation

test MSE 0.8769041770067165 Scaled MSE (original percentage unit) for test

The best hyperparameters to be found during the training in the AutoML approach
are described in Table 4.

The training curve in Figure 9 depicts the learning curve of the training and validation
in the best model. Within small steps, the loss became significantly reduced.
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Table 4. Best hyperparameters.

Hyperparameters Value

dense_block_2

num_layers 2
use_batchnorm False

dropout 0
units_0 32
units_1 32

conv_block_1

kernel_size 3
num_blocks 2
num_layers 1
separable False

max_pooling False
dropout 0

filters_0_0 64
filters_0_1 32
filters_1_0 32
filters_1_1 32

rnn_block_1
bidirectional True
layer_type lstm

num_layers 1

dense_block_1

num_layers 2
use_batchnorm True

dropout 0.0
units_0 16
units_1 16

dense_block_3

num_layers 3
use_batchnorm True

dropout 0
units_0 32
units_1 32
units_2 128

regression_head_1 dropout 0

optimizer optimizer adam

learning_rate learning_rate 0.001Logistics 2021, 5, x FOR PEER REVIEW 11 of 15 
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2.2.7. Testing

In total, 20% of all datasets are used for testing with the best model and the overall
test result is illustrated in Figure 10. The test result of each lashing force component is
illustrated in Figure 11. The X axis is the label lashing results from OSP and the Y axis is
the predicted lashing force value from the best model.
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2.2.8. Result Evaluation

After embedding the trained model into the Stowage Planning tool, the lashing forces
result from OSP and the predicted result from the trained model has been compared with
the new fully loaded stowage. Figure 12 describes the vessel top view of the entire Bay and
the highest lashing force value of each Row is presented. If the lashing value is over 100%,
then the red color is depicted; over 90%, the yellow color is presented; otherwise the green
color is displayed. Overall, the color patterns of two results are pretty similar. The detail
lashing force values are listed in Table 5 and each value is different between OSP and the
predicted result in the percentage scale.

• Total number of predicted values: 969;
• Max difference: 12.23;
• Average: 0.66;
• Total number of identical: 320 (33.02%);
• Total number of greater than 10% difference: 4 (16.62%);
• Total number of greater than 5% difference: 16 (1.65%);
• Total number of greater than 1% difference: 161 (0.41%);
• Total number of less than 1% difference: 468 (48.30%).

From the stowage planner point of view, normally an overall 5% variance is acceptable
and manageable during the planning process. Therefore, the results that the trained model
predicted are acceptable.
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Table 5. Difference between OSP interface and model prediction in percentage scale.

Bay 16 14 12 10 08 06 04 02 00 01 03 05 07 09 11 13 15

1 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.01 0.01 0.00 0.00 0.11 0.01 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.28 0.10 0.60 0.47 0.65 1.00 1.09 0.28 0.18 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.05 0.31 0.05 0.00 0.00 0.00 0.00
5 0.00 0.43 0.07 0.78 0.01 0.07 0.00 0.03 0.00 0.01 0.00 0.05 1.33 0.61 0.11 1.24 0.00
6 0.00 0.00 0.00 0.00 0.66 0.03 0.70 0.41 1.70 0.38 0.02 2.15 0.00 0.17 0.10 0.00 0.00
7 0.00 1.05 1.86 0.74 0.00 0.06 0.03 0.03 0.00 0.00 0.05 0.00 0.83 0.24 1.45 0.59 0.00
9 0.00 1.16 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.11 0.00 0.00 0.15 0.00 0.00 0.00
10 2.46 0.07 0.47 1.03 1.40 1.16 0.08 0.19 0.83 0.29 0.87 0.57 0.30 0.90 0.17 0.66 4.56
11 0.00 1.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.12 0.00 0.00 0.00
13 0.00 0.79 0.72 0.15 0.00 0.00 0.00 0.02 0.01 0.00 0.07 0.00 0.00 0.23 0.06 0.98 0.00
14 1.62 3.23 0.00 4.42 0.83 0.37 1.00 1.13 0.16 0.88 0.34 0.48 1.68 1.51 0.80 1.16 0.72
15 0.00 0.65 0.16 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.05 0.11 0.08 2.05 0.00
17 0.00 0.23 0.65 0.24 0.00 0.08 0.00 0.00 0.00 0.00 0.12 0.07 0.22 0.01 0.20 0.65 0.00
18 2.64 0.27 1.75 1.29 0.49 0.65 0.05 1.43 0.49 0.31 1.91 0.30 0.79 0.23 0.82 0.89 2.48
19 0.00 0.49 0.62 0.46 0.00 0.01 0.00 0.00 0.00 0.00 0.10 0.12 0.29 0.17 0.22 0.62 0.00
21 0.00 2.11 1.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.74 0.00
22 0.62 0.71 0.94 1.92 1.20 0.91 0.20 0.14 0.29 0.81 0.61 0.28 0.11 0.74 0.87 5.36 0.91
23 0.00 1.40 2.03 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.01 0.05 2.85 0.00
25 0.00 0.05 0.00 0.09 0.00 0.20 0.00 0.00 0.00 0.00 0.19 0.14 0.00 0.46 0.08 0.08 0.00
26 1.51 0.93 0.99 0.06 0.08 0.04 0.29 0.15 1.03 0.41 0.77 0.26 0.60 0.67 0.56 0.99 1.52
27 0.00 0.09 0.00 0.10 0.00 0.24 0.00 0.00 0.00 0.00 0.18 0.16 0.25 0.04 0.22 0.01 0.00
29 0.00 0.18 0.17 0.10 0.00 0.33 0.00 0.00 0.00 0.00 0.24 0.19 0.11 0.33 0.09 1.04 0.00
30 0.69 0.97 1.28 1.42 0.60 0.84 0.32 0.20 0.91 0.11 2.06 0.22 0.51 0.69 1.97 0.03 0.78
31 0.00 0.22 0.26 0.22 0.00 0.34 0.00 0.00 0.00 0.00 0.21 0.42 0.21 0.11 0.14 0.74 0.00
33 0.00 0.24 0.56 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.25 0.07 0.13 0.27 0.00
34 1.89 0.73 0.59 0.48 0.36 1.30 0.06 0.78 0.80 1.12 0.27 0.73 0.11 0.76 1.32 2.73 0.67
35 0.00 0.26 0.75 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.23 0.15 0.16 0.30 0.00
37 0.00 0.47 0.57 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.17 0.04 0.18 0.08 0.00
38 1.10 0.26 0.03 0.09 0.54 2.37 0.23 0.86 0.24 0.19 0.07 0.01 1.29 1.01 1.45 1.97 1.03
39 0.00 0.51 0.61 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.21 0.16 0.16 0.10 0.00
41 0.00 0.49 0.53 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.33 0.09 0.21 0.50 0.00
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Table 5. Cont.

Bay 16 14 12 10 08 06 04 02 00 01 03 05 07 09 11 13 15

42 0.45 0.85 8.33 0.52 0.17 8.15 0.32 2.04 1.17 0.11 0.27 7.33 1.36 0.91 0.07 3.27 1.11
43 0.00 0.42 0.72 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.32 0.22 0.22 0.34 0.00
45 0.00 0.48 0.15 0.16 0.00 0.43 0.00 0.02 0.01 0.00 1.32 0.28 0.03 0.44 0.10 0.17 0.00
46 0.36 1.33 0.21 1.04 0.99 0.29 0.01 1.46 1.99 0.93 2.42 0.23 4.36 0.81 0.69 0.06 1.09
47 0.00 0.34 0.19 0.16 0.01 0.39 0.00 0.00 0.00 0.01 0.83 0.51 0.17 0.11 0.16 0.22 0.00
49 0.00 0.23 0.48 0.26 0.00 0.00 0.00 0.01 0.00 0.00 0.17 0.00 0.28 0.11 0.21 0.25 0.00
50 1.84 0.69 12.23 2.76 1.97 3.96 0.79 6.14 4.99 5.38 2.43 3.14 3.53 5.16 11.81 1.66 5.06
51 0.00 0.31 0.63 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.31 0.19 0.23 0.22 0.00
53 0.00 0.41 0.42 0.32 0.00 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.32 0.26 0.27 0.30 0.00
54 1.18 3.10 0.54 0.22 0.91 0.37 0.63 3.94 0.74 2.23 2.00 1.37 1.92 2.02 0.42 2.88 0.17
55 0.00 0.40 0.55 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.38 0.25 0.29 0.32 0.00
58 1.64 9.26 2.89 3.75 2.02 1.84 0.35 1.43 1.10 0.08 2.04 0.90 2.62 2.71 2.22 9.03 1.91
62 5.36 2.24 2.71 0.07 0.16 1.47 0.29 0.89 0.11 0.32 1.11 3.76 2.97 4.70 10.64 1.65 1.25
65 0.00 0.53 0.37 0.33 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.00 0.20 0.22 0.23 0.20 0.00
66 1.71 8.10 1.50 0.38 1.51 8.11 1.00 1.19 0.98 1.18 1.42 1.35 1.77 1.59 0.19 6.66 1.51
67 0.00 0.54 0.28 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.30 0.20 0.22 0.27 0.00
69 0.00 0.55 0.72 0.55 0.00 0.00 0.00 0.01 0.00 0.00 0.16 0.00 0.41 0.27 0.39 0.43 0.00
70 0.95 0.70 10.55 0.68 0.52 4.20 0.55 2.72 1.85 2.89 0.19 1.49 1.40 1.22 1.05 0.11 3.81
71 0.00 0.54 0.53 0.59 0.01 0.00 0.00 0.00 0.00 0.00 0.20 0.01 0.51 0.26 0.39 0.43 0.00
73 0.00 0.57 0.20 0.11 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.10 0.16 0.37 0.08 0.19 0.00
74 5.73 2.73 1.02 1.22 2.70 4.70 3.70 2.56 0.19 3.04 3.90 0.93 2.49 3.02 1.82 3.04 1.12
75 0.00 0.42 0.29 0.28 0.00 0.26 0.00 0.00 0.00 0.00 0.20 0.22 0.22 0.13 0.12 0.22 0.00
77 0.00 0.50 0.36 0.23 0.00 0.00 0.00 0.01 0.00 0.00 0.11 0.00 0.19 0.21 0.19 0.19 0.00
78 0.43 6.73 0.10 0.28 0.75 0.83 2.35 2.17 0.73 2.64 2.93 0.85 1.80 1.59 0.96 4.87 1.24
79 0.00 0.52 0.57 0.35 0.01 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.26 0.19 0.21 0.22 0.00
82 2.48 3.04 1.09 0.19 0.64 1.50 2.23 2.62 1.19 0.65 1.91 0.30 1.07 2.33 1.49 2.71 0.34

3. Discussion

In this study, we consider the calculation of lashing forces on containerships to be one
of the most important aspects in terms of cargo safety, as well as slot utilization, especially
for large containerships. This study defines the idea and process for the lashing force
prediction in stowage planning; extracts the features from stacked profiles in containership
structures; prepares datasets to train, validate, and test the model; models Multimodal
Deep Learning with ANN, CNN, and RNN; trains with the AutoML approach. This trained
model predicts the lashing forces without an explicit calculation of the lashing force, and
the result of it is acceptable and workable.

We think that the proposed approach is valuable in terms of stowage planning automa-
tion, and one of the future directions of this study should be to extend to other Classes (e.g.,
Lloyd, DNVGL, ABS, BV, and so on) by training with the different datasets of each Class.
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