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Abstract: While executives emphasize that human resources (HR) are a firm’s biggest asset,
the level of research attention devoted to planning talent pipelines for complex global organizational
environments does not reflect this emphasis. Numerous challenges exist in establishing human
resource management strategies aligned with strategic operations planning and growth strategies.
We generalize the problem of managing talent from a supply–demand standpoint through a resource
acquisition lens, to an industrial business case where an organization recruits for multiple roles given
a limited pool of potential candidates acquired through a limited number of recruiting channels.
In this context, we develop an innovative analytical model in a stochastic environment to assist
managers with talent planning in their organizations. We apply supply chain concepts to the problem,
whereby individuals with specific competencies are treated as unique products. We first develop
a multi-period mixed integer nonlinear programming model and then exploit chance-constrained
programming to a linearized instance of the model to handle stochastic parameters, which follow
any arbitrary distribution functions. Next, we use an empirical study to validate the model with
a large global manufacturing company, and demonstrate how the proposed model can effectively
manage talents in a practical context. A stochastic analysis on the implemented case study reveals
that a reasonable improvement is derived from incorporating randomness into the problem.

Keywords: talent management; nonlinear programming; stochastic programming;
chance-constrained programming

1. Introduction

Since creation of the phrase War for Talent by a group of McKinsey consultants in 1997 [1], the topic
of talent management (TM) has received considerable attention from practitioners and academics. Since
that time, issue of talent management represents a concern for an increasing number of organizations
engaged in development of their human resources. In recent years, the capability of an organization to
manage and plan the skills, knowledge, and competencies of its human resources (i.e., having the right
people, with the right skills, in the right place and at the right time) has been viewed as a critical factor
for organizational success. To achieve success, investing in human resources is a recognized driver
for succeeding in reaching growth, profitability and client satisfaction objectives. The implication
is that organizations must effectively and efficiently plan and manage individual workers to reach their
highest level of potential, especially for those that have a high impact (such as supply chain talent).

In the context of human resource management (HRM), talent management can be defined as
a holistic approach to human resource planning aimed at strengthening organizational capability and
driving business priorities using a range of HR interventions [2,3]. These interventions include a focus
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on performance enhancement, career development and succession planning [4]. Research indicates
that talent management must be aligned with corporate strategies and culture to be effective [5].
The concept of TM has evolved into common management practices. While originally focused on
recruitment, it is now recognized as a much broader concept that includes attracting, retaining,
developing and transitioning talented employees [6].

Talent management has been studied from different points of view (e.g., [7–9]). Among all
the existing studies on characterizing talent management conceptually, Cappelli [2] has contributed
a new perspective to talent management, based on the just-in-time manufacturing: a talent-on-demand
framework. In this framework, forecasting product demand is comparable to forecasting talent needs.
In particular, Cappelli [2] posits that estimating the cheapest and fastest ways to manufacture products
is equivalent to cost-effectively developing talent for different sectors, including manufacturing,
services, and technology. He also compares outsourcing to certain aspects of manufacturing processes,
such as hiring external talent (on-time delivery) to effectively plan for succession events (delivery
execution). The issues and challenges in managing the internal talent pipeline and advancing
employees through jobs and experience developments are remarkably similar to the processes that
occur in product movement through a supply chain. In both cases, companies benefit substantially
from reducing bottlenecks that block advancement, speeding up processing times and improving
forecasts to avoid mismatches. The benefits of Cappelli’s new metaphor for talent management
have been well characterized in the literature (e.g., [10,11]). However, since humans are distinct and
more complex to model than inanimate machine parts in traditional supply chain models, effective
application of Cappelli’s perspective requires new models and methods to capture and represent these
distinct features and complexities. Concepts such as hiring, training, retaining, learning and acquiring
new skills fundamentally influence the analytical problems relevant to human capital management.
Accordingly, these concepts are critical to the successful management and planning of a human
resource supply chain in practice.

1.1. Literature Review

The definition of talent management given in the prior section spans all processes that include
attraction and selection of required talents outside the organization through the retention and
development of current personnel inside the organization. In this section, we review prior analytical
studies implemented in each phase of the talent management process.

Personnel selection: The problem of selecting personnel satisfying a specified assessment criteria
has attracted considerable attention from scholars. Various multiple-criteria decision-making (MCDM)
approaches with precise or fuzzy evaluation criteria constitute the majority of analytical tools in this
category. For instance, Gungor et al. [12] proposed a personnel selection system based on a fuzzy
analytic hierarchy process (FAHP) to evaluate the best personnel using ratings of both qualitative and
quantitative criteria. Lin [13] dealt with the personnel selection problem by integrating analytic network
process (ANP) and fuzzy data envelopment analysis (DEA) approach. Gibney and Shan [14] described
the use of AHP in the dean selection process and compared the results against the Provost’s final
decision. Liao and Chang [15] used ANP in the Taiwanese hospital public relations personnel selection
process. In addition, Kelemenis and Askounis [16] applied fuzzy technique for order preference
by similarity to an ideal solution (TOPSIS) for selection of qualified human resources. Dursun and
Karsak [17] developed a fuzzy TOPSIS method in which both linguistic and numerical assessment
scales were used in personnel selection problem. Kelemenis et al. [18] incorporated the TOPSIS
method with fuzzy logic in order to select the most appropriate managers. Using Karnik–Mendel
algorithm, Sang et al. [19] proposed an analytical solution to the fuzzy TOPSIS method to obtain fuzzy
relative closeness in personnel selection problems. Kabak et al. [20] proposed a fuzzy hybrid MCDM
approach including fuzzy ANP, fuzzy TOPSIS and fuzzy ELECTRE techniques to solve personnel
selection problem.
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Career development/personnel advancement: The purpose of personnel development is to enrich
employees’ skills and knowledge in order to make them fit for future positions, emergent roles and
responsibilities. There are fewer studies in this problem category, and managerial subjective models
are generally favored. For example, Hedge et al. [21] described the design of a career development and
advancement system to compute an advancement score based on achievement of predefined milestones
in the US Navy. Baruch [22] developed a career development model entitled Career Active System Triad
(CAST) after reconciling the interests and concerns of both employers and employees. Hamori and
Koyuncu [23] addressed the relationship between international assignments, a method of developing
global leader competencies, and career advancement. By combining individual- and organization-level
variables, Garavan et al. [24] investigated the factors predicting the career progression of hotel
managers working in international hotel chains in Ireland, Europe and Asia.

Personnel attrition/Churn/turnover: Personnel attrition is another specific part of the talent
management process that has attracted attention from management researchers. This problem
is typically addressed using managerial and conceptual approaches. For instance, Morrell et al. [25]
developed a theoretical and heuristic model describing the relationship between organizational change
and employee’s turnover. Using structural equation modeling and survival analysis, Hom and
Kinicki [26] investigated how job dissatisfaction would progress into turnover. Maertz et al. [27]
examined mediated effects of perceived supervisor support and perceived organizational support on
turnover cognitions, and their interactive effects on turnover behavior. Steel and Lounsbur [28] and
Holtom et al. [29] provided interested readers with reviews of past papers under this category.

Employees’ retention: Arlotto, Chick, and Gans [30] analyzed the hiring and retention of
heterogeneous workers who learned over time. Kyndt et al. [31] found that learning and development
of employees are important retention-supporting strategies. Ramlall [32] provided a review of
motivation theories and explained how employee motivation affects employee retention within
organizations. Whitt [33] developed a mathematical model to help analyze the benefit in contact-center
performance obtained from increasing employee retention. Hausknecht et al. [34] proposed and tested
a model of 12 content-related factors thought to be partially responsible for employees’ decisions to
stay with a particular employer.

Although there might exist other papers in each category, we observe that the papers reviewed
above only focus on a particular part of the talent management process. Consequently, the solution
obtained in one phase that satisfies a specific set of decision criteria does not seem to function well in
another phase of talent management under our definition. Hence, the literature suffers from lack of
an integrated approach optimizing the entire end-to-end process of talent management. To eliminate
this shortcoming, we seek in the present paper to develop a novel mathematical programming model,
which enables us to model simultaneously all essential phases of the talent management process.
These phases include attracting, interviewing and offering candidates for an organizational role,
as well as the downstream phases of promoting and turnover of employees once employed. The
model development is grounded on the modern perspective to talent management described by
Capelli [2]. In this regard, we propose a multi-period mixed integer nonlinear programming model
using a supply–demand perspective, in which, to take into account the natural uncertainty in the
talent management process, some uncertain parameters are assumed stochastic following arbitrary
probability density functions (PDFs). After linearizing the proposed nonlinear programming model to
overcome any difficulties in deriving a solution, we employ chance-constrained programming (CCP)
to deal with the stochastic parameters. CCP theory enables us to derive deterministic equivalent to
one stochastic constraint. However, we need to exploit Monte Carlo simulation in using CCP theory to
treat stochasticity involved in another constraint. This approach will be presented in a manner that
uniquely addresses the problem of end-to-end talent management differently from prior approaches
in the literature.

The paper unfolds as follows: Section 2 introduces the fundamental theories of TOPSIS and
CCP. In Section 3, we briefly describe the underlined problem in this paper. Section 4 develops
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a stochastic multi-period mixed integer nonlinear programming model for talent pipeline management
from a supply–demand standpoint. Section 5 presents a solution procedure for the proposed
programming problem based on linearization of nonlinear terms involved, CCP and stochastic Monte
Carlo simulation. Section 6 describes a case study in which we have succeeded in implementing our
developed model. Finally, Section 7 is devoted to concluding remarks.

2. Fundamentals

2.1. TOPSIS

Any organization tries to identify the potential candidates for its job opportunities using limited
number of recruitment channels. These channels may include career fairs, social media, personal
interviews and communications, advertisements on different websites, and other approaches. However,
based on its former experiences in employment and the quality of applications received through specific
recruitment channels, an organization tends to prioritize all available channels. In this case, it may
hire more people from channels with a higher priority when selecting potential candidates. In order
to weight the recruitment channels in the present study based on pre-determined evaluation criteria,
we exploit the classic TOPSIS method as a principal technique in multi attribute decision-making
(MADM). It is grounded on the idea that the best alternative should logically have the shortest distance
from the positive ideal solution and the farthest distance from the negative ideal solution. If each
local criterion is monotonically increasing or decreasing, then it is easy to define an ideal solution.
The positive (negative) ideal solution is achieved from all best (worst) attainable values of local criteria.

Suppose m alternatives A1, A2, . . . , Am are going to be evaluated based on n criteria C1, C2, . . . , Cn

in a MADM problem. Each alternative is evaluated with respect to these n criteria. In this case,
the decision matrix D = [πij]m×n is used to present all ratings assigned to alternatives, where πij
is the rating of alternative Ai in terms of the criterion Cj. Let Ω = (ω1, ω2, . . . , ωn) be the vector
of local criteria weights satisfying ∑n

j=1 ωj = 1. Decision maker (DM) in this study gives these
weights subjectively.

The TOPSIS method consists of the following steps [35]:

I. In the first step, we normalize the decision matrix as:

πij =
πij√
m
∑

k=1
π2

kj

; i = 1, . . . , m, j = 1, . . . , n. (1)

Then, we multiply the columns of normalized decision matrix by the associated weights:

υij = ωj × πij ; i = 1, . . . , m, j = 1, . . . , n. (2)

II. The positive ideal and negative ideal solutions are, respectively, determined as follows:

A+ = {υ+1 , υ+2 , . . . , υ+n } = {(max
i

υij | j ∈ Kb ) (min
i

υij | j ∈ Kc )} (3)

A− = {υ−1 , υ−2 , . . . , υ−n } = {(min
i

υij | j ∈ Kb ) (max
i

υij | j ∈ Kc )} (4)

where Kb and Kc are the sets of benefit (positive) and cost (negative) criteria, respectively. In fact,
the positive ideal and negative ideal solutions are composed of all best and worst values attainable of
the criteria.

III. In the next step, we obtain the distances of the available alternatives from the positive ideal, S+
i ,

and negative ideal, S−i , solutions. These Euclidean distances for each alternative are calculated as
follows, respectively:
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S+
i =

√√√√ n

∑
j=1

(υij − υ+j )
2 ; i = 1, . . . , m. (5)

S−i =

√√√√ n

∑
j=1

(υij − υ−j )
2 ; i = 1, . . . , m. (6)

IV. The relative closeness to the ideal alternatives is calculated as:

RCi =
S−i

S−i + S+
i

; i = 1, . . . , m, 0 ≤ RCi ≤ 1 (7)

V. All alternatives are ranked according to the relative closeness to the ideal alternatives,
i.e., the greater the RCi is, the more preferable the alternative Ai is.

2.2. Chance-Constrained Programming; The Basic Theory

There are many management situations in which decisions are made in uncertain environments.
In an uncertain environment, we are not able to precisely define the required parameters and
gather their respective data to characterize a problem. In a prevalent uncertain environment,
the required parameters of an optimization problem follow probabilistic distribution functions.
In such cases, these parameters are so-called stochastic parameters. In order to deal with stochastic
parameters in an optimization problem, the literature has widely evolved into application of
stochastic programming approaches. One of the most commonly used methods is chance-constrained
programming (CCP) initially proposed by Charnes and Cooper [36]. In CCP modeling of a stochastic
decision system, we suppose the constraints will hold at least α percent of time. Here, α denotes the
confidence level provided by the decision maker as a proper safety margin.

We consider the following mathematical programming problem with stochastic parameters:

max f (x)
s.t.
gj(x, ξ) ≤ 0 ; j = 1, . . . , p

(8)

where x is an n-dimensional decision vector, ξ is a stochastic vector and gj(x, ξ);j = 1, . . . , p
are stochastic constraint functions. Since stochastic parameters are involved in characterizing all
given constraints, we cannot reasonably define the maximization term in the objective function and
the direction ≤ in the given constraints. In order to treat this type of problem correctly, Liu [37]
suggested using the following CCP model:

max f (x)
s.t.

(9)

Pr(gj(x, ¸) ≤ 0) ≥ αj ; j = 1, . . . , p (10)

where Pr(.) implies the probability of the event in (.), and αj is a predetermined confidence level to
constraint j.

The CCP approach can easily incorporate more analysis and subjective assessments rather
than other stochastic programming routines. In contrast to the two-stage stochastic programming
approach in which violation of the constraints is allowed but penalized through a penalty term in the
objective function, the CCP approach maintains a high level of reliability by expressing a minimum
requirement on the probability of satisfying constraints. In other words, the resulting decision ensures
the probability of complying with constraints, i.e., the confidence level of being feasible [38]. Since our
framework involves principal decisions on human resources in the talent management problem, any
violation of the organization’s constraints may have critical consequences in terms of organizational
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budgets and operational-ability. Furthermore, the solution of a problem obtained by CCP provides
comprehensive information on the economical outcome as a function of the desired confidence level of
satisfying constraints, which is crucial for decision-making [38]. Hence, the CCP approach appears to
be a better choice to treat uncertainty associated with the talent management problem.

3. Problem Description

As mentioned previously, we investigate the talent management problem in the present paper
using the supply–demand philosophy proposed by Capelli [2]. In a supply–demand representation
of the talent management problem, an organization acquires its essential human resources from
available recruitment channels in each time period, which supply the required talents. Capelli [2]
explained how an organization would benefit from modeling its talent management problem using
this supply–demand perspective. Figure 1 depicts the talent management configuration schematically
from this viewpoint.
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As shown in Figure 1, an organization continues accepting candidates for job position j in
recruitment channel i in period t such that At

ij candidates apply. Once the required number of
applications is gathered for job position j in recruiting channel i during time period t (i.e., At

ij),
the organization halts the application process and reviews the collected documents from the candidates.
In this step, the organization invites Xt

ij percent of all candidates with the highest qualifications for
job position j applied via recruitment channel i to be interviewed in period t. Afterwards, it offers
Yt

j percent of interviewed candidates (again with the highest qualifications for job position j) in time

period t. Finally, b̃j percent of all offered candidates will accept their offers and start working in
job position j in period t. To add additional complexity to this problem, in most organizations,
there exist job seniorities based on organizational structure. In such structures, an individual can
be promoted/demoted from a specific job position to another job position in each period based on
his/her qualifications. The promotion/demotion is depicted in the far right tier in Figure 1 denoted
by the advancement rate Vt

l j. Moreover, an employee working in position j may be dismissed by an
organization for any reason or may quit of his/her own volition during period t. This fact is reflected by
the attrition rate Φt

j in Figure 1. In this case, a vacant opportunity will become available for job position
j. Ultimately, an organization will grow in size during the time horizon of the model. The growth
of an organization is properly mirrored by a respective growth in its job positions, i.e., the more
growth in job positions, the more growth the organization faces. We define the growth rate Gt

j to
denote the current condition. The key variables to be decided on in this study include the number
of candidates for each job position applied through available recruitment channels, the number of
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required hires and the number of hired candidates along with operational rates (interview, offering,
attrition, advancement and growth rates) in each time period in such a manner that the total average
profit generated in an organization is maximized.

To understand and characterize the described problem better, we now present some remarks and
relations below:

Remark 1. If someone were promoted from job position l to job position j, then we would subtract 1 from the total
number of employees in job position l and add 1 to the total number of employees in job position j.

Remark 2. Suppose someone is promoted from job position l to job position j. Based on the tacit relations
in an organization, we can elicit the following relationships:

(I) # attritions for job position j = # current employees for job position j × attrition rate for job
position j

(II) # desired employees for job position j = # current employees for job position j × (1 + growth rate
for job position j)

(III) # promotions to job position j = sum of (# current employees of any job position l ×
the advancement rate from job l to job j)

(IV) # promotions from job position j = # current employees of job position j× sum of the advancement
rates from job position j to any job position k

(V) # gained/lost positions for job position j = # promotions to job position j − # attritions for job
position j− # promotions from job position j = # promotions to job position j− # current employees
for job position j × (attrition rate for job position j + sum of the advancement rates from job j to
any job position k).

It is clear that if the value of the latter relation is positive, we have some employees gained for
job position j; otherwise, some employees have been lost for that job position. Moreover, we have the
following key relationships:

(VI) # hires needed for job position j = # desired employees for job position j − # gained/lost positions
for job position j − # current employees for job position j = # current employees of job position j
× (growth rate for job position j + attrition rate for job position j + sum of the advancement rates
from job j to any job position k) − # promotions to job position j

(VII) # of available employees in job position j at the end of a period = # current employees for job
position j at the beginning of that period + # gained/lost positions for job position j + # of hired
employees for job position j.

However, it should be noted here that an employee might not be promoted from job position
l to job position j (or from job position j to job position k). For instance, an employee cannot be
rationally promoted from the mechanical engineering position (l) to the market planning position (j)
in an organization. To consider such a job relation (job seniority) based on organizational structure,
a matrix called the transfer matrix is defined as U = [ul j]n×n, where n is the total number of available
job positions. Let us assume seniority of job position j is higher than that of job position l. In this case,
if an employee can be promoted from the job position l to job position j (or degraded from job position
j to job position l), then ul j = ujl = 1. On the other hand, if there is not such a job relation between job
positions j and l, then ul j = ujl = 0.
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4. Model Development

We propose a multi-period mixed integer nonlinear programming (MINLP) model with stochastic
parameters to study the formerly described talent management problem. We introduce the required
indices, parameters and decision variables as follows:

Indices

i index of recruitment channels; i = 1, . . . , m.
j index of job positions; j = 1, . . . , n.
t index of time periods; t = 1, . . . , T.

Parameters

b̃j the acceptance rate by candidates for job position j.
ιj the number of current employees for job position j at the beginning of planning horizon.
et

j the unit cost per hour of having extra hires for job position j in period t than it is required.

et
j the unit cost per hour of having less hires for job position j in period t than it is required.

δ
t
j the maximum application capacity for job position j in period t.

β
t
j the total interview rate for job position j in period t.

λt
j the maximum offering rate for job position j in period t.

gt
j the maximum expected development for job position j in period t.

k̃j the time (hour) required for considering initial documents and selecting candidates for being
interviewed for job position j.

k̃j the time (hour) required for analyzing the results of interviews for job position j.
rt

j the unit revenue per hour yielded by each employee in job position j in period t.

ψt
j the unit salary per hour paid to each employee in job position j in period t.

ot
j the unit cost of interview per hour for job position j in period t.

ϑt
j the maximum number of employee changes for job position j in period t.

wi the relative closeness of recruitment channel i derived from TOPSIS.
δt

i the maximum application capacity of recruitment channel i in period t.
βt

i the total amount of interview rate in recruitment channel i in period t.
ujk the indicator parameter which is equal to 1 if someone can be promoted from job position j to

job position k and vice versa, otherwise; is 0.
RTt total recruitment process time (person-hour) in period t.
ε a very small positive number.
M a big positive number.

It should be noted that the symbols with a tilde indicate parameters characterized by uncertainty.
We characterize such parameters by appropriate probability distribution functions such as uniform,

triangular, normal (Gaussian), etc. The main reason why we regard b̃j, k̃ j and k̃j as stochastic parameters
is that their exact values are usually out of an organization’s control. According to their definitions,

k̃ j and k̃j are directly affected by the number of applicants applied and their qualifications. Since
an organization does not formerly know how many applicants are going to apply for a specific job
position and what their qualifications would be, it cannot precisely determine the values of these time
parameters. In addition, it is not clear in advance that how many offered applicants would accept their
offerings. It is a subjective issue for applicants about which an organization does not rationally know.
Hence, these points altogether prevent an organization to have any control on determining the exact

values of b̃j, k̃ j and k̃j in data collection phase of the work.
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Decision variables

At
ij the number of candidates for job position j applied via recruitment channel i in period t.

Xt
ij the interview rate per candidate for job position j in recruitment channel i in period t.

Yt
j the offering rate per candidate for job position j in period t.

Φt
j the attrition rate per employee for job position j in period t.

Vt
l j the advancement rate per employee from job position l to job position j in period t.

Gt
j the growth need by role for job position j in period t.

St
j the number of employees for job position j at the end of period t.

Ct
j the number of current employees for job position j at the beginning of period t.

Zt
j the number of candidates hired for job position j in period t.

Ht
j the number of hires needed for job position j in period t.

Pt
j the binary variable which is one (zero) if we have less (more) hires for job position j in period t.

Regarding these notes altogether and the problem statement, we construct a multi-period mixed
integer nonlinear programming (MINLP) model as follows.

4.1. Objective Function

The objective function in the developed programming model seeks to maximize the total average
profit per hour, which is defined as the difference between total average revenue per hour and total
cost per hour. The total cost per hour is itself characterized as the summation of total recruitment
process cost and total salary, both per hour. We formulize this objective function as follows:

max f = 1
T

{
0.5

n
∑

j=1

T
∑

t=1
rt

j(S
t
j + Ct

j )− {
n
∑

j=1

m
∑

i=1

T
∑

t=1
ot

j X
t
ij A

t
ij +

n
∑

j=1

T
∑

t=1
[pt

je
t
j(Ht

j − Zt
j ) + et

j(Zt
j − Ht

j )(1− Pt
j )]+ 0.5

n
∑

j=1

T
∑

t=1
ψt

j(S
t
j + Ct

j )}
}

= 1
T

{
0.5

n
∑

j=1

T
∑

t=1
(rt

j − ψt
j)(S

t
j + Ct

j )−
{

n
∑

j=1

m
∑

i=1

T
∑

t=1
ot

j X
t
ij A

t
ij +

n
∑

j=1

T
∑

t=1
(Pt

j et
j + (1− Pt

j )e
t
j)
∣∣∣Ht

j − Zt
j

∣∣∣}} (11)

Notably, the revenue generated by job position j at each period is calculated by multiplying
its corresponding unit revenue per hour by the average number of available employees in that job
position. Hence, 0.5∑n

j=1 ∑T
t=1 rt

j(S
t
j + Ct

j ) denotes the total average revenue generated per hour over all
job positions during all periods. We have assumed a linear relationship between the average number
of available employees and the total average revenue they generate in an organization. Meanwhile,
we could have calculated the total average revenue using a nonlinear regression model, in which
the total average revenue yielded is estimated by the average number of all available employees.
In addition, the total cost per hour represented in the accolade consists of interview costs, the cost of
having both less and extra hires than required and total average salary paid to all job positions in all
time periods.

4.2. Constraints

As stated before, one of the main aspects of talent management problem is to hire the right
people at the right time. In order to address the issue of “time rightness”, we set an upper bound
to the time of recruitment process towards employing the “right people” in each period. When an
organization needs someone to be employed, all necessary activities for employing him/her should
be reasonably completed during a desirable time. In this regard, Constraint (12) bounds the total
recruitment process time from applying to a specific job position to proposing offerings to the selected
candidates in each period. This portion of recruitment process for the specific job position j contains (a)
gathering, organizing and analyzing all documents related to applying candidates and inviting the top
ones to interview; and (b) conducting interview, analyzing its outcome and recommending offers to

finally selected candidates. The times associated with parts a and b equal k̃ j∑m
i=1 At

ij and k̃j∑m
i=1 At

ijX
t
ij
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for job position j in period t, respectively. The summation of these two terms over all job positions
yields to left hand side of Constraint (12).

n

∑
j=1

m

∑
i=1

(k̃ j + k̃jXt
ij)At

ij ≤ RTt ; ∀t (12)

Constraints (13) and (14) denote the relationships derived before in Parts VI and VII of Remark 2.
Constraint (15) implies that the number of available employees at the end of some period t is naturally
equal to the number of current employees at the beginning of next period, where C1

j = ιj; ∀j.

Ht
j − Ct

j (G
t
j + Φt

j +
n

∑
k=1
k 6=j

ujkVt
jk) +

n

∑
l=1
l 6=j

ul jCt
l V

t
l j = 0 ; ∀j, t (13)

St
j − Zt

j − Ct
j (1−Φt

j −
n

∑
k=1
k 6=j

ujkVt
jk)−

n

∑
l=1
l 6=j

ul jCt
l V

t
l j = 0 ; ∀j, t (14)

St−1
j − Ct

j = 0 ; ∀j, t ≥ 2 (15)

By consulting some HR managers in different industries, we noticed that it is not of interest for
an organization to have its employees working in a particular job position change too much. In other
words, an organization tends to retain its employees in a job position as long as possible. In this
case, not only does an organization keep its uniformity in terms of the combination of its employees
working in a job position, but also the employees enjoy job stability and are able to gain experience
in a particular job position over time. To address this concern, we need to define an upper bound on
the total number of changes in each job position, which is derived as the maximum of the total number
of incoming employees to a job position and the total number of outgoing employees from that job
position in each period. Hence, we have the following constraint:

max (Zt
j +

n

∑
l=1
l 6=j

ul jCt
l V

t
l j , Ct

j (Φ
t
j +

n

∑
k=1
k 6=j

ujkVt
jk)) ≤ ϑt

j ; ∀j, t (16)

Furthermore, Constraint (17) is used to restrict the number of candidates hired for each job
position in each period. In this regard, we know that Xt

ij At
ij is the number of interviewed candidates

for job position j in period t, who had applied via the recruitment channel i. Thus, ∑m
i=1 Xt

ij At
ij gives the

total number of interviewed candidates for job position j, from whom Yt
j percent are offered in period t.

Now, b̃j percent of all offered candidates accept the offerings. Hence, b̃jYt
j ∑m

i=1 Xt
ij At

ij yields the total
number of candidates accepting the offerings for job position j in period t. However, for any reason,
there might be situations in which an organization does not finally employ someone who has accepted
an offering. This frequently happen especially when it does further considerations and withdraws its
offering from a candidate. Considering such special cases, Constraint (17) implies the number of hired
candidates in period t should be less than or equal to the number of accepted offerings.

Zt
j − b̃jYt

j

m

∑
i=1

Xt
ij At

ij ≤ 0 ; ∀j, t (17)

The condition in which we have either excessive hires or shortages is determined by
Constraint (18). In this constraint, if the binary variable Pt

j equals one (zero), then we have a hire
shortage (excess) for the specific job position j in period t.

(Zt
j − Ht

j )Pt
j + (Ht

j − Zt
j ) (1− Pt

j ) ≤ 0 ; ∀j, t (18)
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Certainly, each recruitment channel has a maximum capacity of application. For instance,
we might be able to register a specific number of candidates for all job positions in a career fair
in each period. To take into account this condition, Constraint (19) restricts the total number of
candidates applying via recruitment channel i in period t to be less than or equal to δt

i , where wi
denotes the relative closeness of the recruitment channel i computed by TOPSIS. As it is observed, this
constraint appropriately combines the priority and capacity of recruiting channel together.

n

∑
j=1

At
ij ≤ wi δt

i ; ∀i, t (19)

Moreover, we impose a maximum capacity of application for a specific job position in all
recruitment channels in each period. For instance, we might determine an upper bound for the number
of candidates of job position financial clerk in all recruitment channels to be less than or equal to 15.
On the other hand, when a job opportunity is announced, we would like to rationally have at least one
candidate applied for it. Constraint (20) satisfies these conditions and sets upper and lower bounds on
the total number of candidates for job position j applied via all recruitment channels in period t.

1 ≤
m

∑
j=1

At
ij ≤ δ

t
i ; ∀j, t (20)

In addition, Constraint (21) implies that the total amount of interview rates for all job positions
in recruitment channel i in period t should be less than or equal to βt

i . For example, an organization
might desire having at most 25% of its total interviews from its website. Recall that this constraint
appropriately uses the priority of recruitment channel i by combining the relative closeness wi.

n

∑
j=1

Xt
ij ≤ wi βt

i ; ∀i, t (21)

Constraint (22) limits the interview rate for specific job position j in all recruitment channels
in period t to be less than or equal to β

t
j. For instance, a company might want to have at most 30% of

all candidates for financial clerk position interviewed during some period t.

m

∑
i=1

Xt
ij ≤ β

t
j ; ∀j, t (22)

Furthermore, we know that if no candidate for job position j in period t applies through
recruitment channel i, i.e., At

ij = 0, then we will not have someone to be interviewed for that job
position in recruitment channel i. In other words, the corresponding interview rate Xt

ij will certainly
equal zero in this case. Moreover, if job position j is not going to be offered to someone in period
t, i.e., Yt

j = 0, then it is economically reasonable that the interview rate for that job position will be
zero, i.e., ∑m

i=1 Xt
ij = 0, which results in Xt

ij = 0. Hence, if either At
ij = 0 or Yt

j = 0, then we must
have Xt

ij = 0. On the other hand, if someone applies for job position j via recruitment channel i
in period t, i.e., At

ij > 0, then we would like to interview with some applied candidates (at least one
candidate). In this case, the respective interview rate should be greater than zero, i.e., Xt

ij > 0. The key
Constraint (23) is to satisfy all aforementioned conditions, where ε and M are very small and big
positive numbers, respectively.

ε At
ij ≤ Xt

ij ≤ MAt
ij Yt

j ; ∀i, j, t (23)

In addition, if the interview rate for job position j is equal to zero in period t, i.e., ∑m
i=1 Xt

ij = 0,
then the respective offering rate for that job position should be zero, i.e., Yt

j = 0, because there is no
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candidate available to be offered. On the other hand, if the interview rate for job position j is greater
than zero in period t, i.e., ∑m

i=1 Xt
ij > 0, then we need to logically offer job position j to some applicants

(at least one candidate), i.e., Yt
j > 0. We imply these key conditions by Constraint (24).

ε
m

∑
i=1

Xt
ij ≤ Yt

j ≤ min{M
m

∑
i=1

Xt
ij, λt

j} ; ∀j, t (24)

Based on the definition of advancement rate, we impose Constraint (25) to restrict the summation
of advancement rates from job position j to any job position k in each period to be less than or equal
to one.

n

∑
k=1

ujkVt
jk ≤ 1 ; ∀t, j, k 6= j (25)

Constraint (26) restricts the growth rate to lie within an interval whose upper bound reflects
the maximum expected development for the respective job position in period t. Furthermore, it is
known that all operational rates are between zero and one. The current requirement is satisfied
by Constraint (27). In addition, according to the definitions of variables At

ij, Ht
j , Zt

j and St
j ,

∀i, j, t (Constraint (28)) satisfy their integrity conditions. Finally, following our discussion before,
Constraint (29) requires that the decision variable Pt

j be binary.

Gt
j ∈ [0, gt

j ] ; ∀j, t (26)

Xt
ij, Φt

j, Yt
j , Vt

l j ∈ [0, 1] ; ∀i, j, l, t (27)

At
ij, Ht

j , Zt
j , St

j , Ct
j : integer ; ∀i, j, t (28)

Pt
j ∈ {0, 1} ; ∀j, t (29)

5. Solution Procedure

5.1. Linearization

The programming model developed in the preceding section is a multi-period mixed integer
nonlinear problem, which might arise hardships to be solved. To conquer any of such difficulties,
we linearize nonlinear terms that are present in the objective function and constraints by some
mathematical programming techniques [39,40] and obtain an equivalent mixed integer linear
programming (MILP) model.

The absolute term appeared in Objective Function (11), i.e.,
∣∣∣Ht

j − Zt
j

∣∣∣, can be eliminated from

the model by substituting with a new integer variable γt
j and adding two constraints as γt

j ≥ Ht
j − Zt

j
and γt

j ≥ Zt
j − Ht

j . Consequently, the integer decision variable γt
j is multiplied by binary variable pt

j

in the last term of the objective function. Now, the product γt
j P

t
j denoted by γt

j can be linearized by

adding the following four constraints: γt
j ≤ MPt

j , γt
j ≥ 0, γt

j ≤ γt
j and γt

j ≥ γt
j −M(1− Pt

j ) for ∀j, t.
Such a linearization is authentic because if Pt

j = 0, then the first two constraints imply that γt
j = 0, and

if Pt
j = 1, then the last two constraints gives γt

j = γt
j .

Another nonlinear term in the objective function is ∑n
j=1 ∑m

i=1 ∑T
t=1 ot

j X
t
ij A

t
ij in which Xt

ij and

At
ij are continuous and integer decision variables, respectively. Assuming Ât

ij = min
{

wi δt
i , δ

t
j

}
with respect to Constraints (19) and (20), we determine a bound on At

ij as 0 ≤ At
ij ≤ Ât

ij. In this

case, the integer decision variable At
ij is characterized as follows: At

ij = ∑r1
r1=0 2r1(At

ij)r1
along

with the constraint At
ij ≤ Ât

ij, where r1 =
⌊

log2(Ât
ij + 1)

⌋
and (At

ij)r1
∈ {0, 1} for ∀i, j, t, r1.

Now, the abovementioned nonlinear term is rewritten as ∑n
j=1 ∑m

i=1 ∑T
t=1 ∑r1

r1=0 2r1 ot
j X

t
ij(At

ij)r1
, which
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contains multiplication of the continuous variable Xt
ij by the binary variable (At

ij)r1
. To handle

the current nonlinearity, we substitute Xt
ij(At

ij)r1
by (Xt

ij)r1
, i.e., (Xt

ij)r1
= Xt

ij(At
ij)r1

, and add

the following four sets of linear constraints: (Xt
ij)r1

≤ (At
ij)r1

, (Xt
ij)r1

≥ 0, (Xt
ij)r1

≤ Xt
ij and

(Xt
ij)r1
≥ Xt

ij − (1− (At
ij)r1

) for ∀ i, j, t, r1. We also use the later procedure to eliminate the nonlinearity
appeared in Constraint (12).

Using some arithmetic on Constraints (14)–(16), an upper bound for Ct
j ; ∀j, t ≥ 2 is derived as

Ĉt
j = max Ct

j = 2ϑt−1
j ; ∀j, t ≥ 2. Based on the current upper bound, the products Ct

j G
t
j , Ct

j Φ
t
j and Ct

j V
t
jk

in Constraints (13) and (14) can be linearized in the same way as described above. In this case, Ct
j G

t
j

is rewritten as ∑r2
r2=0 2r2(Ct

j)r2
Gt

j , where (Ct
j)r2
∈ {0, 1} for ∀j, r2 and t ≥ 2, and r2 =

⌊
log2(Ĉ

t
j + 1)

⌋
.

Moreover, the following four sets of linear constraints are added: (Gt
j)r2
≤ (Ct

j)r2
gt

j , (G
t
j)r2
≥ 0,

(Gt
j)r2
≤ Gt

j and (Gt
j)r2
≥ Gt

j − (1− (Ct
j)r2

)gt
j where (Gt

j)r2
= (Ct

j)r2
Gt

j for ∀j, r2 and t ≥ 2. To linearize

the next quadratic term, we rewrite Ct
j Φ

t
j as ∑r2

r2=0 2r2(Ct
j)r2

Φt
j and then include the following four

sets of linear constraints: (Φt
j)r2
≤ (Ct

j)r2
, (Φt

j)r2
≥ 0, (Φt

j)r2
≤ Φt

j and (Φt
j)r2
≥ Φt

j − (1− (Ct
j)r2

)

where (Φt
j)r2

= (Ct
j)r2

Φt
j for ∀j, r2 and t ≥ 2. Ultimately, we linearize the last quadratic term ct

jV
t
jk by

rewriting it as ∑r2
r2=0 2r2(Ct

j)r2
Vt

jk and imposing the following four sets of constraints: (Vt
jk)r2
≤ (Ct

j)r2
,

(Vt
jk)r2

≥ 0, (Vt
jk)r2

≤ Vt
jk and (Vt

jk)r2
≥ Vt

jk − (1− (Ct
j)r2

) where (Vt
jk)r2

= Vt
jk(C

t
j)r2

for ∀j, r2 and
t ≥ 2.

Constraint (16) can be transformed into two separate constraints as Zt
j + ∑n

l=1,l 6=j ul jCt
l V

t
l j ≤ ϑt

j

and Ct
j (Φ

t
j + ∑n

k=1,k 6=j ujkVt
jk) ≤ ϑt

j for ∀j, t. We can linearize the product terms Ct
l V

t
l j, Ct

j Φ
t
j and Ct

l V
t
jk

in these separate constraints in same way as described before.
Constraint (17) seems more complicated to be linearized because it contains a product of one

integer and two continuous decision variables. We first handle the product of two continuous decision
variables, i.e., Xt

ijY
t
j , and introduce two new continuous variables yt

ij and yt
ij, where yt

ij = (Xt
ij + Yt

j )/2,

yt
ij = (Xt

ij −Yt
j )/2, 0 ≤ yt

ij ≤ 1 and −1/2 ≤ yt
ij ≤ 1/2. In this case, we rewrite the product Xt

ijY
t
j as

a separable function (yt
ij)

2 − (yt
ij)

2
. The quadratic terms of the current separable function are then

piecewisely linearized using three breakpoints, which sounds a good approximation because the
feasible intervals of the quadratic terms are not too wide. In this case, using three breakpoints of 0,
0.5 and 1, we obtain (yt

ij)
2
= 0.25λ

t
ij2 + λ

t
ij3 where λ

t
ij1 + λ

t
ij2 + λ

t
ij3 = 1, λ

t
ij1 ≤ δ′tij1, λ

t
ij2 ≤ δ′tij1 + δ′tij2,

λ
t
ij3 ≤ δ′tij2, δ′tij1 + δ′tij2 = 1, λ

t
ij1, λ

t
ij2, λ

t
ij3 ∈ [0, 1] and δ′tij1, δ′tij2 ∈ [0, 1]; ∀i, j, t. In the same way, using

three breakpoints of −1/2, 0 and 1/2, we have (yt
ij)

2
= 0.25λ

t
ij1 + 0.25λ

t
ij3 where λ

t
ij1 + λ

t
ij2 + λ

t
ij3 = 1,

λ
t
ij1 ≤ δ′′ tij1, λ

t
ij2 ≤ δ′′ tij1 + δ′′ tij2, λ

t
ij2 ≤ δ′′ tij1 + δ′′ tij2, δ′′ tij1 + δ′′ tij2 = 1, λ

t
ij1, λ

t
ij2, λ

t
ij3 ∈ [0, 1] and

δ′′ tij1, δ′′ tij2 ∈ [0, 1]; ∀i, j, t. Consequently, the term ∑m
i=1 Yt

j Xt
ij At

ij in Constraint (17) is transformed into

∑m
i=1 (0.25λ

t
ij2 + λ

t
ij3 − 0.251λ

t
ij1 − 0.25λ

t
ij3) At

ij with respect to all added constraints above. The later
term contains products of continuous and integer variables and hence, as explained earlier, can be

fully linearized. Assuming λ̂t
ij = 0.25λ

t
ij2 + λ

t
ij3 − 0.251λ

t
ij1 − 0.25λ

t
ij3 with lower and upper bounds

of −0.25 and 1, respectively, we write λ̂t
ij At

ij as λ̂t
ij At

ij, then substitute λ̂t
ij (At

ij)r1
with (

Φ
λ

t

ij)r1
and

finally add the following four sets of linear constraints: (
Φ
λ

t

ij)r1
≤ (At

ij)r1
, (

Φ
λ

t

ij)r1
≥ −0.25 (At

ij)r1
,

(
Φ
λ

t

ij)r1
≤ λ̂t

ij + 0.25 ((1− (At
ij)r1

) and (
Φ
λ

t

ij)r1
≥ λ̂t

ij − (1− (At
ij)r1

) for ∀ i, j, t, r1.

According to Constraint (16), an upper bound for Zt
j is obtained as ϑt

j . Hence, in Constraint (18),

we linearize the quadratic term Zt
j P

t
j by replacing it with Zt

j where Zt
j ≤ ϑt

j P
t
j , Zt

j ≥ 0, Zt
j ≤ Zt

j and
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Zt
j ≥ Zt

j − ϑt
j(1− Pt

j ). In addition, based on Constraints (13) and (16), and that max Ct
j = 2ϑt−1

j ; ∀j, t ≥ 2,

an upper bound for Ht
j can be obtained as Ĥt

j = maxHt
j = 2ϑt−1

j + ϑt
j ;∀j, t where ϑ0

j = 0; ∀j. Therefore,

we substitute the product Ht
j Pt

j in Constraint (18) with Ht
j where Ht

j ≤ Ĥt
j Pt

j , Ht
j ≥ 0, Ht

j ≤ Ht
j and

Ht
j ≥ Ht

j − Ĥt
j (1− Pt

j ).

We rewrite the quadratic term At
ij Yt

j in Constraint (23) as ∑r1
r1=0 2r1Yt

j (At
ij)r1

, replace Yt
j (At

ij)r1

by (ŷt
j)r1

and add the following four sets of constraints: (ŷt
j)r1

≤ (At
ij)r1

, (ŷt
j)r1

≤ Yt
j and

(ŷt
j)r1
≥ Yt

j − (1− (At
ij)r1

) for ∀ i, j, t, r1.

Finally, we transform Constraint (24) to three usual linear constraints as: ε ∑m
i=1 Xt

ij ≤ Yt
j ,

Yt
j ≤ M∑m

i=1 Xt
ij and Yt

j ≤ λt
j for ∀j, t.

5.2. Stochastic Constraints

According to the theory of CCP, it might be possible to convert the stochastic constraints to
their deterministic equivalents for the predetermined confidence levels. Then, the deterministic
programming problem is solved by typical solution approaches. Although this procedure seems
relatively difficult to employ and only successful for special cases, we explain how it is effectively
utilized along with Lemma 1 to deal with the stochastic Constraint (17) after being linearized.
Nonetheless, we should use the stochastic simulation to encounter the stochastic Constraint (12),
because the aforementioned conversion to obtain its deterministic equivalent after linearization is not
easily applicable on it.

Lemma 1. Assuming g(x, ξ) = h (x)− ξ, the deterministic equivalent of Pr{g(x, ξ) ≤ 0} ≥ α in CCP model
is derived as h(x) ≤ κα, where κα = φ−1 (1− α) and φ−1 is the inverse of cumulative distribution function
φ (.) [37].

In the preceding section, we linearized the stochastic Constraint (17) as Zt
j −

b̃j∑m
i=1 ∑r1

r1=0 (λ̂
t
ij)r1

2r1 ≤ 0 ; ∀j, t along with some additional constraints, which are avoided

being rewritten here. Manipulating this linear constraint results in:

g(x, ξ) =
Zt

j
m
∑

i=1

r1
∑

r1=0
(λ̂t

ij)r1
2r1

− b̃j ≤ 0 ; ∀j, t (30)

Regarding Zt
j /∑m

i=1 ∑r1
r1=0 (λ̂

t
ij)r1

2r1 and b̃j as h(x) and ξ, respectively, we derive the following

expression based on Constraint (10) in CCP theory and Lemma 1:

Pr{g(x, ξ) ≤ 0} = Pr{
Zt

j
m
∑

i=1

r1
∑

r1=0
(λ̂t

ij)r1
2r1

≤ b̃j} ≥ α1 ; ∀j, t

= 1− φBj

 Zt
j

m
∑

i=1

r1
∑

r1=0
(λ̂t

ij)r1
2r1

 ≥ α1 ; ∀j, t

(31)

where φBj (.) is the cumulative distribution function of b̃j. The latter expression can be further
simplified as:

Zt
j

m
∑

i=1

r1
∑

r1=0
(λ̂t

ij)r1
2r1

≤ φ−1
Bj

(1− α1) ; ∀j, t (32)
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Now, we substitute the stochastic Constraint (17) with Constraint (32), which is its deterministic
equivalent, in the proposed mathematical programming model. We could even more simplify
Expression (32) providing that the stochastic variable b̃j followed a well-defined distribution function
with a closed form cumulative distribution function. However, the exact distribution function of b̃j that
can be exploited to derive its cumulative distribution function is available in rare situations. Therefore,
we should infer in many cases the distribution function of b̃j from the available historical data. In such
circumstances, the most fitted distribution function to the available data is estimated using statistical
methods such as Chi-square or Kolmogorov–Smirnov test.

In addition, we linearized the stochastic Constraint (12) in the former section as

∑n
j=1 ∑m

i=1 (At
ij k̃ j + ∑r1

r1=1 k̃j2r1(Xt
ij)r1

) ≤ RTt; ∀t (again, we avoid citing the additional constraints

here). Now, according to Constraint (10) in the CCP theory, we impose confidence level α2 on this
constraint and rewrite it as follows:

Pr{
n

∑
j=1

m

∑
i=1

(At
ij k̃ j +

r1

∑
r1=1

k̃j2r1(Xt
ij)r1

) ≤ RTt} ≥ α2 (33)
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Now, we can follow a somewhat similar argument in Lemma 1 to derive a deterministic equivalent
to Constraint (33) as RTt ≥ µτt + στt κα2 , where κα2 = φ−1

Z (α2) and φ−1
Z (.) denotes the inverse of

cumulative distribution function of a standard normal random variable. In this case, we substitute
the stochastic Constraint (12) by the deterministic constraint RTt ≥ µτt + στt κα2 in the developed
programming model.

However, the aforementioned very special case restricts us to a couple of strict assumptions:

having independent random variables k̃ j and k̃j, and following the normal distributions. Based on

the definitions of k̃ j and k̃j in Section 4, we might not be able to infer in every situation that these
two random variables are naturally independent to each other. More importantly, there might be
lots of cases in which these two random variables do not follow a normal distribution. In such
conditions, it might be extremely arduous to extract deterministic equivalent to the recently added
stochastic Constraint (33). Instead, it is recommended applying Monte Carlo stochastic simulation.
In the literature, there are several studies suggesting Monte Carlo stochastic simulation incorporated
with genetic algorithm (GA) for solving chance constrained programming [41–43]. Meanwhile, we
implement this kind of simulation in this paper using Lingo 16 optimization software [44], which
provides us with a very suitable facility to handle the stochastic Constraint (33). In this regard,
Appendix A, Part (a) presents the required built-in functions of Lingo 16 software to generally model
a chance-constrained programming problem.

6. Empirical Study

In this section, we present how to use the proposed mathematical programming model and its
solution procedure in a practical context. The model was validated with a logistics department of
a Fortune 500 mining and construction corporation that designs, manufactures, markets and sells
machinery and engines. The logistics department in this study was looking to hire candidates for

five job positions including: coordinator, analyst, senior analyst, manager and senior manager (k̃j)
in the course of three years (T = 3). In doing so, it usually uses three main recruitment channels to
identify the potential candidates; i = 1, 2, 3. These channels consist of career fair, company website
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and social media. The career fairs are held regularly in a variety of universities across the United
States at specific time slots. Furthermore, the company’s website is always accessible for candidates
to look for available job positions and apply to any of them. Moreover, this company also posts
its job opportunities into some social media applications such as LinkedIn, CareerBuilder and so
forth. The company expressed challenges in recruiting as it expanded its global presence and sought
the advice of the research team, providing motivation for this study.

6.1. Data Acquisition

In our talent planning model, many parameters require that a company gather data from a number
of sources. Data collection constitutes a fundamental step in implementing the proposed mathematical
model in practice, so considerable attention to this step is needed to ensure data quality. The parameters
described in Section 4 are categorized into two classifications based on their natures: deterministic and
stochastic parameters. The most reasonable approach to quantifying deterministic parameters involved
consulting with human resource experts to determine their most accurate estimates. On the other hand,
relying on historical data and using statistical methods were considered appropriate for estimation of
stochastic parameters, such as mean, variance, mode and so forth.

Table 1 presents the values of required parameters related to five job positions in the three time
periods for this company. The number of current employees in this table, (ιj), reveals that a large
logistics department in this company. It worth noting that ιj is the number of employees presently
working in the respective job position across the United States.

On the other hand, Table 2 shows the values of parameters associated with three recruitment
channels over three time periods. As mentioned in Section 2.1, we defined criteria C1, C2, . . . based
on how recruitment channels are prioritized. The company identifies three criteria in this regard:
the average of applicants’ job experience (C1), the average of applicants’ requested salary per year (C2)
and the average score of applicants’ university degree (C3). From the company’s standpoint, C1 and
C3 are obviously positive criteria, while C2 is a negative criterion. In order to obtain the average score
of an applicant’s university degree, we count the number of applicants with PhD, master, bachelor
and associate degrees, who have already applied through each recruitment channel, and then assign
a score of 9 to PhD degree, 7 to master degree, 5 to bachelor degree and 3 to associate degree. Then, we
calculate C3 by averaging the scores of all candidates. The quantities of each evaluating criterion for
each recruitment channel are presented in Table 3. Following TOPSIS method, the company’s experts
assign equal weights of 1/3 to each criterion. In this case, the positive ideal and negative ideal solutions
are determined as: A+ = {0.2396, 0.1698, 0.2307} and A− = {0.1430, 0.2101, 0.1643}, respectively.
Therefore, we have: S+

1 = 0.0966, S+
2 = 0.0711, S+

3 = 0.0889, S−1 = 0.0777, S−2 = 0.0977, and
S−3 = 0.0411. Consequently, we derive the relative closeness (importance weight) of each recruitment
channel as: 44.6%, 57.9% and 31.6%, respectively.

In the next step, we walk through estimating the stochastic parameters k̃ j, k̃j and b̃j; j = 1, . . . , 5.
As mentioned before, the stochastic parameters are usually characterized using statistical methods
such as Chi-square or the Kolmogorov–Smirnov test from the available historical data. We examined
recorded data in the logistics department of this company from 1981 to 2013, a period during which
the required data have been most reliably documented. Afterwards, some probability distribution

functions are fitted to the available data sets of k̃ j, k̃j and b̃j; j = 1, . . . , 5 using Chi-square test.
For instance, we fit a lognormal distribution function to k̃5 for senior management job position and
derived a probability plot as depicted in Figure 2. Since all data points are placed between 95%
confidence interval and the p-value of the goodness of fit test is significantly greater than 0.05 as
the critical value, we conclude based on Figure 2 that k̃5 appropriately follows a lognormal distribution
with location and scale parameters as 0.777 and 0.521, respectively.
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Table 1. The required parameters associated with job positions in three time periods.

Job Positions (j) Time Period (t) ´j et
j et

j fi
t
j ffi

t
j ˘t

j rt
j ψt

j

Coordinator
1 125 $5.90 $47.73 0.2 1000 0.9 $30.53 $29.00
2 - $8.40 $50.73 0.2 1000 0.9 $32.20 $30.68
3 - $9.40 $53.78 0.2 1100 0.9 $34.35 $31.28

Analyst
1 96 $7.40 $49.50 0.2 700 0.9 $37.80 $36.25
2 - $10.40 $52.50 0.2 700 0.9 $39.48 $37.93
3 - $11.15 $54.22 0.2 770 0.9 $41.63 $38.53

Senior analyst
1 43 $10.68 $60.75 0.2 450 0.66 $48.05 $46.98
2 - $14.68 $64.25 0.2 450 0.66 $49.73 $48.66
3 - $16.53 $67.30 0.2 495 0.66 $51.88 $50.40

Manager
1 16 $24.81 $142.6 0.25 100 0.5 $74.10 $72.40
2 - $29.93 $146.1 0.25 100 0.5 $75.78 $74.08
3 - $31.08 $149.2 0.25 110 0.5 $77.43 $75.33

Senior manager
1 6 $47.90 $245.9 0.33 30 0.4 $96.18 $90.62
2 - $50.60 $252.9 0.33 30 0.4 $97.85 $92.30
3 - $52.18 $256.0 0.33 33 0.4 $98.55 $93.79

Table 2. The required parameters related to recruitment channels.

Recruitment Channels (i) Time Period (t) fit
i ffit

i

Career fair
1 0.65 1000
2 0.65 1080
3 0.65 1166

Company website
1 0.7 1000
2 0.6 1080
3 0.5 1166

Social media
1 0.8 500
2 0.75 540
3 0.75 583

Table 3. Decision matrix for evaluating recruitment channels.

Recruitment Channels C1 (Year) C2 ($) C3

Career fair 1.85 $56,000 7.61
Company website 3.10 $64,400 5.42

Social media 2.36 $69,300 5.80

We pursue the same procedure to identify the probability distribution functions of all remained
stochastic parameters, as given in Table 4:

Table 4. Characterization of PDFs of stochastic parameters.

Job Positions k̃j k̃j b̃j

Coordinator exp (2.6570) exp (1.2091) uniform (0.06,1.00)
Analyst exp (1.3422) exp (0.8482) uniform (0.16,0.87)

Senior analyst exp (1.1328) exp (0.7617) uniform (0.42,0.82)
Manager exp (0.9961) exp (0.6957) uniform (0.72,1.00)

Senior manager Lognormal (0.777,0.521) Lognormal (1.019,0.467) uniform (0.83,1.00)
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As stated in Section 3, we sought to define the indicator parameter ujk to consider organizational
structure in promoting an employee from job position j to k and vice versa. Table 5 presents the
values of this indicator parameter for five available job positions. According to this table, an employee
can be promoted to or demoted only from adjacent job positions, i.e., there is no skipping of levels
in promotion or demotion processes in this department. For instance, since uAnalyst,Manager = 0,
an employee cannot be promoted from analyst position to manager position in this department and
vice versa, i.e., a manager is not demoted directly to an analyst position.

The next parameter identified in this study is the total number of employee changes for a job
position in each period, i.e., ϑt

j . In each period, the company sought to have employees changed
in a job position by at most 50% of the respective number of employees in that position at the
beginning of the period. In other words, ϑt

j = 0.5 Ct
j ; ∀j, t. At the end of data acquisition phase,

we determined three remained parameters including ε, M and RTt as 0.001, 10,000 and 480 person-hour,
t = 1, 2, 3, respectively.

Table 5. Transfer matrix for five available job positions.

Coordinator Analyst Senior Analyst Manager Senior Manager

Coordinator - 1 0 0 0
Analyst 1 - 1 0 0

Senior analyst 0 1 - 1 0
Manager 0 0 1 - 1

Senior manager 0 0 0 1 -

6.2. Results Analysis

Up to this step, we succeeded in gathering/defining all required parameters for the developed
mathematical programming model. The next step was to solve the model by taking advantage of
the stochastic programming facility in Lingo 16 optimization software [44] on a dual-core 2.5 GHz
computer with 6 GB RAM. Table 6 presents the dimension of both original MINLP and linearized MILP
models with the solution time of the latter model. According to this table, it appears that the dimension
of MILP model is greater than that of original MINLP model. However, since the derived MILP model
can effectively be solved using the available algorithms, its solution time does not sound irritating.
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Table 6. Dimension of original MINLP and linearized MILP models.

Original MINLP Linearized MILP

# of decision variables 103 839
# of constraints 113 1153

Solution time (sec) - 89.3

Appendix A, Part (b) represents all the required commands of Lingo 16 that are associated with
modeling stochasticity of the proposed mathematical programming problem. In this case, Tables 7
and 8 present the optimal values for At

ij and Xt
ij, respectively:

Table 7. The optimal solutions of At
ij in three time periods.

Job Positions

Recruitment Channels

Career Fair Company Website Social Media

1 2 3 1 2 3 1 2 3

Coordinator 0 92 78 82 0 0 0 0 0
Analyst 0 88 66 92 0 0 0 0 0

Senior analyst 15 0 0 0 27 21 0 0 0
Manager 0 0 0 0 49 56 27 0 0

Senior manager 0 0 0 0 0 0 18 14 33

Table 8. The optimal solutions of Xt
ij in three time periods.

Job Positions

Recruitment Channels

Career Fair Company Website Social Media

1 2 3 1 2 3 1 2 3

Coordinator 0 0.092 0.079 0.198 0 0 0 0 0
Analyst 0 0.198 0.067 0.194 0 0 0 0 0

Senior analyst 0.187 0 0 0 0.104 0.053 0 0 0
Manager 0 0 0 0 0.204 0.223 0.092 0 0

Senior manager 0 0 0 0 0 0 0.158 0.217 0.237

For instance, in period one, the company collects 82 applications of candidates for coordinator
position via its website. After that, it will not accept any application for this job position in its website
and will remove the associated job opportunity announcement from the website. Hence, in period
one, the total number of candidates for job positions coordinator, analyst, senior analyst, manager
and senior manager invited to be interviewed is computed as 16.24 (=0.198 × 82), 17.85 (=0.194 × 92),
2.81 (=0.187 × 15), 2.48 (=0.092 × 27) and 2.84 (=0.158 × 18), respectively. Obviously, applicants with
the highest qualifications are selected in this step to be interviewed. We can round these quantities as
16, 18, 3, 2 and 3 to be meaningful in practice. In addition, Table 9 gives the optimal solutions of the
operational rates in conjunction with Zt

j , Ht
j and St

j :

Table 9. The optimal solutions of operational rates, Zt
j , Ht

j and St
j in three time periods.

Job Positions
Φt

j Gt
j Yt

j Zt
j Ht

j St
j

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Coordinator 0 0 0 0 0 0 0.90 0.69 0.90 5 2 1 5 2 1 125 125 125
Analyst 0 0 0 0.073 0.049 0.046 0.90 0.90 0.90 6 5 1 6 5 1 103 108 113

Senior analyst 0 0 0 0 0 0 0.66 0.66 0.66 1 1 1 1 1 1 43 43 43
Manager 0 0 0 0.313 0.286 0 0.50 0.50 0.50 1 4 5 1 4 5 21 27 27

Senior manager 0 0 0 0.333 0.250 0.500 0.40 0.37 0.40 1 1 2 1 1 2 8 10 15
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The retention rate of one (attrition rate of zero) in period one given in this table implies that the
company should retain all its current employees. Furthermore, according to the optimal values of
offering rates in period one, the company is supposed to offer the job positions to 14.4 (=0.9 × 16),
16.2 (=0.9 × 18), 1.98 (=0.66 × 3), 1 (=0.5 × 2) and 1.2 (=0.4 × 3) interviewed candidates with the
highest qualifications, respectively. Again, we may round these values as 14, 16, 2, 1 and 1 in practice.
The offered candidates will respond to their offerings based on their respective stochastic acceptance
rates given as b̃j in Table 4. The number of candidates hired in period one for each abovementioned
job position is 5, 6, 1, 1 and 1, presented as Z1

j . This implies the actual acceptance rates of offered
candidates for each job position in period one are equal to 0.3571 (=5/14), 0.375 (=6/16), 0.5 (=1/2),
0.1 (=1/1) and 0.1 (=1/1), respectively. We observe that the actual acceptance rate for each job position
in period one drops within its corresponding range of uniform distribution function given in Table 4.

Moreover, the optimal values of advancement rates are presented in Table 10:

Table 10. The optimal solutions of advancement rates in three time periods.

Job Positions
Coordinator Analyst Senior Analyst Manager Senior Manager

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Coordinator 0 0 0 0.040 0.016 0.008 0 0 0 0 0 0 0 0 0
Analyst 0 0 0 0 0 0 0.042 0.019 0 0 0 0 0 0 0

Senior analyst 0 0 0 0 0 0.069 0 0 0 0.116 0.07 0 0 0 0
Manager 0 0 0 0 0 0 0 0 0.074 0 0 0 0.063 0.047 0.111

Senior manager 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Using the rates given in the current table, we are able to calculate the number of employees
to be promoted to/demoted from each job position in each time period. For instance, in period
one, since V1

12 = 0.040, V1
23 = 0.042, V1

34 = 0.116, and V1
45 = 0.063, the company should

promote five (= 0.04 × 125) coordinators to analysts, 4.03 (= 0.042 × 96) analysts to senior
analysts, 4.99 (= 0.116 × 43) senior analysts to managers and 1.01 (= 0.063 × 16) managers to senior
managers. Reasonably, after rounding to the nearest integers, we select the employees with the highest
qualifications for promotion. As observed, no degradation happens in this department during the first
time period.

We interpreted the obtained results only for the first time period. Following the same procedure,
one is able to understand the given results in the remained periods.

Table 9 also represents the number of required hires for each job position in each period, i.e., Ht
j .

Comparing these values with the number of hired candidates in the respective time period, i.e., Zt
j ,

we understand in the optimal condition that the company should employ the exact number of
candidates it needs, i.e., no excess or shortage in employment is observed in this study. This observation
refers to the optimal equilibrium between recruiting on the external labor market and the training and
development of internal candidates.

Under the current optimal condition, the employees in the logistics department will yield $461.86,
$490.29 and $904.61 profit per hour in consecutive time periods with an average of $618.92. The reason
why we observe a significant increase in period three is the increase in net profit per hour, which is
defined as the difference between generated revenue and paid salary per hour, yielded by a coordinator
and an analyst in this period. According to Table 1, the net profits generated by a coordinator and
an analyst in the third period are equal to $3.07 (=$34.35 − $31.28) and $3.10 (=$41.63 − $38.53) per
hour, respectively, which both are almost twice as much the respective profits in the preceding periods.
Furthermore, assuming 250 business days per year each with eight working hours, the logistics
department in this company will annually generate $923,720, $980,580 and $1,809,220 in consecutive
periods and consequently $3,713,520 in the whole time horizon.

Exploring the results obtained displays how the proposed approach in this paper is capable of
managing the required talents in an organization. The right number of candidates for any job position
from any recruiting channel in any time period was determined by introducing the decision variable
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At
ij; ∀i, j, t. Then, highly qualified persons were determined as the right candidates (employees) to

be interviewed and offered (promoted). If necessary, inside an organization, the right employees to
fire were selected among the less qualified persons in a particular job position. Moreover, the right
place, i.e., job position, to employ the required candidates in each time period was also determined by
introducing the respective decision variable Ht

j ; ∀j, t. The issue of time rightness in hiring the required
employees was addressed by setting an upper bound for the total time of recruiting activities, which
guarantees they would be certainly hired during a desired time in each period. The results of the
model were presented to the senior logistics executive at the company, as well as the human resources
team responsible for recruiting and placement. The team agreed the model provided them with
a much more concrete set of estimates for planning their recruiting strategies, and subsequently used
to plan university events and website placement advertisements in the following year. Managers also
commented that the model was relatively easy to use, as an Excel spreadsheet allowed easy input of
parameters and reporting of results.

6.3. Stochastic Analysis

As stated in Appendix A, Part (b), we set the stochastic programming module of Lingo
16 optimization software to generate 60 random numbers of each stochastic parameter. Figure 3
illustrates the histograms of generated random numbers. In addition, the sample mean and standard
deviation of generated random numbers associated with each stochastic parameter along with
the p-values of goodness of fit tests are presented in Table 11. Examining Figure 3 and the statistics
given in Table 11, we comprehend that the generated random numbers follow appropriately their
respective theoretical distribution functions, as presented in Table 4.

Table 11. The characteristics of generated random numbers by Lingo.

Job Positions
k̃j k̃j

Sample Mean Sample StdDev p-Value Sample Mean Sample StdDev p-Value

Coordinator 0.3725 0.3597 1.00 0.8718 1.0136 0.997
Analyst 0.7382 0.7177 1.00 1.1606 1.0972 1.00

Senior analyst 0.9083 1.0021 1.00 1.3012 1.2729 1.00
Manager 1.0033 1.0017 1.00 1.4028 1.3258 1.00

Senior manager 2.4700 1.2948 1.00 3.1183 1.6386 1.00

In the theory of stochastic programming, there is a measure used for evaluating the importance of
randomness involved in the problem: Expected Value of Perfect Information (EVPI). EVPI indicates
the maximum amount a decision maker would be ready to pay in return for complete information
about the future [45]. Although the concept of EVPI was initially developed in the context of decision
analysis, it can be derived in the stochastic programming setting as follows [45]: for each set of
realizations of stochastic parameters in the problem, we solve the stochastic program separately to
obtain the corresponding objective function values. In this case, if we realize the stochastic parameters
ns times (as the sample size), then ns different values of objective function will be attained, say
ζl ; l = 1, . . . , ns, which is known as the distribution problem. The expected value of the current
quantities, i.e., ζ = ∑ns

l=1 ζl/ns, is called the wait-and-see solution (WS). If value of the objective function
in the original stochastic program is denoted by VRP, then EVPI = VRP−WS.
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of randomness involved in the problem: Expected Value of Perfect Information (EVPI). EVPI 
indicates the maximum amount a decision maker would be ready to pay in return for complete 
information about the future [45]. Although the concept of EVPI was initially developed in the 
context of decision analysis, it can be derived in the stochastic programming setting as follows [45]: 
for each set of realizations of stochastic parameters in the problem, we solve the stochastic program 
separately to obtain the corresponding objective function values. In this case, if we realize the 
stochastic parameters sn  times (as the sample size), then sn  different values of objective function 
will be attained, say sl nlζ ,...,1; = , which is known as the distribution problem. The expected value 

of the current quantities, i.e.,  =
= sn

l sl nζζ
1

, is called the wait-and-see solution (WS). If value of the 

objective function in the original stochastic program is denoted by VRP, then WSVRPEVPI −= .  

Figure 3. The histograms of generated random numbers by Lingo.

Figure 4 depicts values of the distribution problem in our case study, i.e., ζl ; l = 1, . . . , 60. The red
and black horizontal lines in this figure demonstrate expected value of the distribution problem, which
is equal to $615.33 per hour, and VRP, respectively. Hence, we conclude that the company will be
willing to pay $3.59 (=$618.92 − $615.33) per hour to achieve the perfect information for future.
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Wait-and-see solution (WS) provides a lower bound for objective value of the original stochastic
problem (VRP). We are also able to achieve an upper bound for it by substituting the stochastic
parameters with their corresponding mean values. The obtained problem, called mean value problem
(EEV), is of special interest in practice particularly once perfect information is just not available at
any price [45]. If we solve the proposed model using the mean values of stochastic parameters given
in Table 4, we obtain an upper bound of $693.40 for this case study. Hence, we derive the upper and
lower bounds on value of objective function in the stochastic program as $693.40 and $615.33 per
hour, respectively.

6.4. Sensitivity Analysis

As observed before, a long list of parameters needs to be gathered/defined in developing
the proposed mathematical model. Now, it is of our interest here to investigate more profoundly
the effect of changing in some substantial parameters on the given results, particularly the obtained
value of objective function.

Two parameters that are set up intuitively in this case study are the confidence levels α1 and α2,
which were initially determined to be equal to 0.7 and 0.95, respectively. Figure 5 depicts how the value
of objective function changes if α1 and α2 individually vary within their corresponding feasible ranges.
In Figure 5a, we observe if the confidence level α1 increases from 0.3 to 0.9, then the total average profit
generated in this department decreases. The reasoning behind this observation is that if α1 increases,
then the left hand side of Constraint (32) that is the inverse of cumulative distribution function of some
uniform distributions becomes smaller. As a result, the value of maximization objective function does
not become better, as it is decreasing here. Furthermore, under any specific value for α1, the generated
profit in consecutive time periods is increasing, which is mainly because of increasing net profits
generated by employees over successive time periods.

In addition, once the confidence level α2 increases from 0.1 to 0.95, the value of objective function
decreases as well. It follows because, according to Constraint (33), increasing α2 makes the feasible
region of problem more constrained, which impedes the objective function getting better. Again, due
to increasing net profit yielded by employees over consecutive periods, we observe that, for each
particular value of α2, the profit generated in this department also increases over successive time
periods, as presented in Figure 5b.



Logistics 2017, 1, 5 24 of 29

Logistics 2017, 1, 5  25 of 30 

 

observe that, for each particular value of 2α , the profit generated in this department also increases 
over successive time periods, as presented in Figure 5b.  

0.3 0.5 0.7 0.9
Period 1 471.01 468.77 461.86 453.13
Period 2 500.53 495.35 490.29 455.46
Period 3 1002.38 950.23 904.61 891.79
Avg. 657.98 638.12 618.92 600.12

0.00

400.00

800.00

1200.00

 

(a) 

0.1 0.25 0.5 0.75 0.95
Period 1 532.22 513.17 494.04 480.85 461.86
Period 2 560.09 543.44 522.18 503.00 490.29
Period 3 982.81 973.19 919.45 910.12 904.61
Avg. 691.71 676.60 645.22 631.32 618.92

0.00

400.00

800.00

1200.00

 

(b) 

Figure 5. Sensitivity analysis on: 1α  (a); and 2α  (b). 

As previously stated, we rely on historical data in conjunction with Chi-square test to derive the 

PDF of stochastic parameters including jk~ , jk
~

 and jb~ ; 5,...,1=j . Meanwhile, it is likely the 

future behavior of these uncertain parameters be somewhat different from what we characterize in 
Table 4. In order to encounter such volatility, having the confidence levels 1α  and 2α  fixed at 
their initial values, now we explore the influence of changes in the mean parameters of the derived 
PDF’s presented in Table 4 on the generated total average profit in this department. To do so, we 
assume the mean of the stochastic parameters above can decrease and increase at most by 50%. In 
this case, Figure 6 depicts how sensitive the value of objective function is once the changes in the 

mean of time parameters jk~  and
 jk

~
, and acceptance rates jb~ ; 5,...,1=j  occur.  

We observe that if the mean of either time parameter decreases (increases), then the total 
average profit yielded in this department increases (decreases). We reason that once the mean of a 

time parameter (either jk~  or jk
~

) reduces (increases), more (less) applicants can be considered and 

interviewed for job position j during a particular amount of time in each period. 

Figure 5. Sensitivity analysis on: α1 (a); and α2 (b).

As previously stated, we rely on historical data in conjunction with Chi-square test to derive

the PDF of stochastic parameters including k̃ j, k̃j and b̃j; j = 1, . . . , 5. Meanwhile, it is likely the future
behavior of these uncertain parameters be somewhat different from what we characterize in Table 4.
In order to encounter such volatility, having the confidence levels α1 and α2 fixed at their initial values,
now we explore the influence of changes in the mean parameters of the derived PDF’s presented
in Table 4 on the generated total average profit in this department. To do so, we assume the mean of
the stochastic parameters above can decrease and increase at most by 50%. In this case, Figure 6 depicts
how sensitive the value of objective function is once the changes in the mean of time parameters k̃ j

and k̃j, and acceptance rates b̃j; j = 1, . . . , 5 occur.
We observe that if the mean of either time parameter decreases (increases), then the total average

profit yielded in this department increases (decreases). We reason that once the mean of a time

parameter (either k̃ j or k̃j) reduces (increases), more (less) applicants can be considered and interviewed
for job position j during a particular amount of time in each period.



Logistics 2017, 1, 5 25 of 29Logistics 2017, 1, 5  26 of 30 

 

-50 -40 -30 -20 -10 0 10 20 30 40 50
612

614

616

618

620

622

%

Pr
of

it 
(p

er
 h

ou
r)

 

 

k
kp
b

 

Figure 6. Sensitivity analysis on the mean of jk~  (blue) and
 jk

~
 (red) and jb~  (green). 

Accordingly, to maximize the objective function, the number of hires needed for this job in 
period t, i.e., t

jH , also increases (decreases). Based on Constraint (13), increasing (decreasing) t
jH  

causes increasing (decreasing) the corresponding growth, attrition and advancement rates in period 
t. Now, according to Constraint (14), if t

jZ  and the aforementioned operational rates increase 

(decrease), then the number of employees for job j at the end of period t, i.e., t
jS , increases (reduces). 

Hence, increasing (decreasing) t
jS  and making || t

j
t
j ZH −  small result in increasing (reducing) 

the maximum total average profit generated in this department, as illustrated in Figure 6. That t
jH  

increase (decrease) as a result of increasing (decreasing) t
jZ  implies that the cost of having plethora 

employees for job position j in period t does not increase after reducing the mean of either time 
parameter because otherwise the profit objective function does not maximize. Moreover, if 
Constraint (16) is binding for job position j in time period t, decreasing the mean of a corresponding 
time parameter might not lead to hiring more applicants for that job position in period t. 
Consequently, no increase in the number of available employees happens for job position j at the end 
of period t, which leads to increasing the total average profit yielded no longer. However, according 
to Figure 6, the later circumstance does not happen in the current case study. Furthermore, if we 
increased the mean of either time parameter associated with job position j too much (theoretically to 
positive infinity), then no new candidates would be hired for this job position. However, if this 
happened for all job positions simultaneously, i.e., we increased the mean of either time parameter 
of all jobs too much, then no candidates would be hired in this department and consequently the 
corresponding curve in Figure 6 would become horizontal. It implies that the optimal values of 
operational rates would be determined in such a way that no new hires would be needed, i.e., 

tjH t
j ,,0 ∀= . 

Now, we study the effect of changes in the mean of acceptance rates on the value of objective 
function, where the acceptance rate of all job positions simultaneously varies by ±50%. If the 
acceptance rate of job position j decreases (increases), then fewer (more) candidates are hired to start 
that job in period t. In this case, following the arguments given above in case of reducing (increasing) 
the mean of either time parameter, the number of available employees in job j at the end of period t, 
i.e., t

jS , becomes smaller (larger), which results in declining (increasing) the average profit yielded 

by employees in job j. Since this happens for all job positions, the total average profit generated in 
this department reduces (increases) as illustrated in Figure 6.  

Figure 6. Sensitivity analysis on the mean of k̃j (blue) and k̃j (red) and b̃j (green).

Accordingly, to maximize the objective function, the number of hires needed for this job in period
t, i.e., Ht

j , also increases (decreases). Based on Constraint (13), increasing (decreasing) Ht
j causes

increasing (decreasing) the corresponding growth, attrition and advancement rates in period t. Now,
according to Constraint (14), if Zt

j and the aforementioned operational rates increase (decrease), then
the number of employees for job j at the end of period t, i.e., St

j , increases (reduces). Hence, increasing

(decreasing) St
j and making

∣∣∣Ht
j − Zt

j

∣∣∣ small result in increasing (reducing) the maximum total average

profit generated in this department, as illustrated in Figure 6. That Ht
j increase (decrease) as a result

of increasing (decreasing) Zt
j implies that the cost of having plethora employees for job position j

in period t does not increase after reducing the mean of either time parameter because otherwise the
profit objective function does not maximize. Moreover, if Constraint (16) is binding for job position
j in time period t, decreasing the mean of a corresponding time parameter might not lead to hiring
more applicants for that job position in period t. Consequently, no increase in the number of available
employees happens for job position j at the end of period t, which leads to increasing the total average
profit yielded no longer. However, according to Figure 6, the later circumstance does not happen in the
current case study. Furthermore, if we increased the mean of either time parameter associated with job
position j too much (theoretically to positive infinity), then no new candidates would be hired for this
job position. However, if this happened for all job positions simultaneously, i.e., we increased the mean
of either time parameter of all jobs too much, then no candidates would be hired in this department
and consequently the corresponding curve in Figure 6 would become horizontal. It implies that the
optimal values of operational rates would be determined in such a way that no new hires would be
needed, i.e., Ht

j = 0, ∀j, t.
Now, we study the effect of changes in the mean of acceptance rates on the value of

objective function, where the acceptance rate of all job positions simultaneously varies by ±50%.
If the acceptance rate of job position j decreases (increases), then fewer (more) candidates are hired
to start that job in period t. In this case, following the arguments given above in case of reducing
(increasing) the mean of either time parameter, the number of available employees in job j at the end of
period t, i.e., St

j , becomes smaller (larger), which results in declining (increasing) the average profit
yielded by employees in job j. Since this happens for all job positions, the total average profit generated
in this department reduces (increases) as illustrated in Figure 6.

7. Conclusions

In the present paper, we proposed an innovative multi-period mixed integer nonlinear
programming model in a stochastic environment to plan and manage the talents of an organization.
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The model sought to maximize the total average profit generated by employees in the whole time
horizon. To mitigate much of the uncertainty associated with managerial decisions and talent
management planning activities, we regarded some uncertain parameters in the developed model as
stochastic following any arbitrary PDFs. A solution methodology based on linearization of nonlinear
terms and chance-constrained programming was then proposed to tackle nonlinearity and uncertain
parameters involved.

A review of the literature revealed that such a modeling of talent management problem is unique
and could potentially open a new set of research streams to further studies in talent management
planning. As identified earlier, organizations need to align talent management plans with strategic
operations planning, to ensure that they have the right people with the right capabilities in place to
deploy intended processes [46,47]. The proposed model was applied to the human resource needs
for the logistics division of a large mining and construction company, demonstrating the realistic
application of the developed mathematical model to provide useful and accurate planning directives
to its SCM and HR departments. As a result of multi-periodicity of the proposed model, its output
allocates required resources better during every period of planning horizon and ensures appropriate
planning for successful outcomes. In the words of one manager interviewed, “We have a better sense
of how many people we need to make initial contact with, interview, and recruiting to be able to fill
our future pipeline of talent”.

We seek to apply such models going forward to enable companies to more efficiently and
effectively maximize their efforts related to HRM and TM. Viewing humans from a supply–demand
perspective is an area of future research that will enable effective dynamic capabilities required
to compete in complex global organizational environment [48]. In any future applications and
developments of our model, the uncertain parameters, which were supposed to be stochastic
in the present study, can be tackled by other uncertain programming approaches such as fuzzy
programming. In fuzzy programming, the uncertain parameters are modeled via membership
functions. Furthermore, a combination of both fuzzy and stochastic programming approaches in which
we regard the uncertain parameters as either fuzzy-random or random-fuzzy variables can be applied
to the proposed mathematical model.
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Appendix A

Part (a): In this part, we introduce the related functions of the Lingo 16 optimization software to
model stochasticity in a programming problem, as follows:

• @SPSTGRNDV(1,RANDOM_VAR Name) for identifying the random variables, which are k̃ j and

k̃j in our stochastic program.

• @SPDIST<TYPE>(PARAM_1[,...,PARAM_N],RANDOM_VAR Name) for declaring parametric
distributions such as lognormal distribution; @SPDISTLOGN(MU,SIGMA, RNDVAR),
exponential distribution; @SPDISTEXPO(LAMDA,RNDVAR) and so forth.

• @SPCHANCE('Set_Name','>='|'<=',Probability) for identifying Chance-Constraint set; here
Constraint (33).

• @SPSAMPSIZE (1,SIZE) for setting sample sizes in generating random numbers of
random variables.
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Part (b): In order to define the stochastic parameters k̃ j and k̃j in the program body, the following
commands are utilized:

@for(job_position(j): @SPSTGRNDV(1,k(j)));

@for(job_position(j): @SPSTGRNDV(1,kp(j)));

where k(j) and kp(j) denote k̃ j and k̃j, respectively. Furthermore, we write the following commands

to determine the associated PDFs with k̃ j and k̃j; j = 1, . . . , 5:

@SPDISTEXPO(2.6570,k(1)); @SPDISTEXPO(1.3422,k(2));

@SPDISTEXPO(1.1328,k(3)); @SPDISTEXPO(0.9961,k(4));

@SPDISTLOGN(0.777,0.521,k(5));

@SPDISTEXPO(1.2091,kp(1)); @SPDISTEXPO(0.8482,kp(2));

@SPDISTEXPO(0.7617,kp(3)); @SPDISTEXPO(0.6957,kp(4));

@SPDISTLOGN(1.019,0.467,kp(5));

In addition, the following commands characterize the stochastic Constraint (33):

@SPCHANCE('CCP_TIME','>=',0.95);

@SPCHANCE('CCP_TIME',C_TIME);

@SPSAMPSIZE(1,60);

where CCP_TIME indicates stochastic Constraint (33) in the program body. In fact, the function

@SPCHANCE requires the probability of having
n
∑

j=1

m
∑

i=1
(at

ij k̃ j +
r1
∑

r1=1
k̃j2r1(Xt

ij)
r1

) ≤ RTt being greater

than or equal to 0.95 (= α2). To accomplish this target, 60 random numbers of k̃ j and ; k̃j; j = 1, . . . , 5
following their respective PDFs are generated by defining the function @SPSAMPSIZE within the
program body.
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