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Abstract: Sensors are commonly employed to monitor products during their life cycles and to
remotely and continuously track their usage patterns. Installing sensors into products can help
generate useful data related to the conditions of products and their components, and this information
can subsequently be used to inform EOL decision-making. As such, embedded sensors can enhance
the performance of EOL product processing operations. The information collected by the sensors can
also be used to estimate and predict product failures, thereby helping to improve maintenance
operations. This paper describes a study in which system maintenance and EOL processes
were combined and closed-loop supply chain systems were constructed to analyze the financial
contribution that sensors can make to these procedures by using discrete event simulation to model
and compare regular systems and sensor-embedded systems. The factors that had an impact on the
performance measures, such as disassembly cost, maintenance cost, inspection cost, sales revenues,
and profitability, were determined and a design of experiments study was carried out. The experiment
results were compared, and pairwise t-tests were executed. The results reveal that sensor-embedded
systems are significantly superior to regular systems in terms of the identified performance measures.

Keywords: closed-loop supply chain; maintenance; sensor embedded product; remanufacturing;
disassembly

1. Introduction

Constructing and sustaining efficient closed-loop supply chain systems has become extremely
important for organizations because technology advances very quickly and the manufacturing
business is highly competitive. In addition, consumers’ increasing environmental awareness and
the introduction of legislation that governs the management of EOL products has forced firms to
increase the amount of EOL products that are recovered and reprocessed as part of a closed-loop
supply chain. While these activities come at a cost, they are also a source of additional revenue if they
are managed efficiently.

Closed-loop supply chains take into consideration the use phase of products, as well as their
reprocessing potential once they complete their life cycles. Maintenance is one prominent activity that
takes place during the use phase of products. Maintenance activities should provide higher value to
customers by repairing the products and extending the period over which they can be used. However,
maintenance costs can be financially burdensome to firms. In this study, the use of sensors to improve
the performance of a predictive maintenance strategy was assessed. The use of embedded sensors in
products during their use phases was modeled and tested.

Sensors enable operators to retrieve condition information about the products and their
components during the use phase. This information is then interpreted and used to predict the
failure of the internal components of a product. Identifying the risk of failures in advance can help
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operators to proactively take appropriate actions to prevent such failures. Thus, downtime due to
failures can be reduced. In addition, sensors eradicate the need for inspection processes because they
proactively track and collate the required condition information. Moreover, continuous condition
monitoring could increase the lifetime of the products. Since the sensors provide estimation of the
failures, taking actions prior to failure prevents further damage to products and subsequently enhance
their lifetime. Therefore, number of returned products can be reduced.

Sensors also have the potential to improve the performance of EOL processes. Condition
information about the components can be used before products are disassembled. If the data indicates
that reprocessing the products and their components will not be of benefit to the system, the operator
can make the decision not to disassemble the components and to disassemble only those that are in
good condition. This can reduce disassembly costs. As is the case with maintenance, the use of sensors
can also eliminate the need for an inspection operation during the EOL processing phase.

This paper presents a model for a closed-loop supply chain study that included maintenance
operations and EOL product processing. The performance of sensor-embedded laptop systems and
regular laptop systems were compared. The systems were modeled using discrete event simulation.
Design of experiments was used for the experimentation. The results revealed that embedding sensors
into laptops can significantly improve the performance of closed-loop supply chain systems that are
constructed for laptops.

2. Literature Review

2.1. Closed-Loop Supply Chains

This paper evaluates the performance of closed-loop supply chain (CLSC) systems to determine
how valuable sensors are when they are used for CLSCs. Govindan et al. [1] defined CLSC management
as the design, control, and operation of a system with the intention of maximizing value creation
over the entire life cycle of a product through the dynamic recovery of value from different types
and volumes of returns over time. According to this definition, CLSC systems aim to achieve zero
waste by completely reusing, recycling or composting all materials. Product lines and supply chains
that have not carefully considered all the environmental and legal ramifications associated with
product disposal can find themselves at risk [2]. In this paper, CLSC systems were developed that
were designed to enhance customers’ perception of their value during their life cycles while also
providing a mechanism by which further profits can be generated by optimizing decisions related to
remanufacturing, refurbishing, or recycling products at the end of their life cycles.

Chen et al. [3] presented a case study that evaluates the performance of a CLSC under uncertainty
of market size, return quality, and return quantity. Das and Posinasetti [4] addressed environmental
concerns in CLSCs. They developed a new CLSC design that aims to reduce harmful emissions and
spent energy. Sgarbossa and Russo [5] examined reuse of food waste in a CLSC. They contribute to the
field by constructing efficient, sustainable and cost effective CLSC systems.

2.2. Remanufacturing

Remanufacturing is an industrial process and potential recovery option that involves converting
worn-out products into like-new condition [6,7]. Remanufacturing processes add difficulty to the
closed-loop supply chain systems because they are highly variable and uncertain. To this end,
researchers have proposed various solutions to remanufacturing-related problems.

The remanufacturing scheduling problem is an example of these problems. Scheduling
remanufacturing tasks can be viewed as an element of regular assembly scheduling because items that
are suitable for remanufacturing follow the assembly process after they are extracted from the used
products. However, uncertainty surrounding the conditions of the disassembled items and the number
of returns may mean that remanufacturing scheduling presents different problems to those that are
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associated with regular assembly scheduling. Existing literature has described the methods that can be
used to reduce the uncertainty involved in remanufacturing scheduling.

Giglio et al. [8] presented a paper that solves the job scheduling problem by using a relax-and-fit
heuristics approach. Quariguasi-Frota-Neto and Bloemhof [9] compared the eco-efficiency of the
remanufactured computer and mobile phones to their new counterparts. Abbey et al. [10] presented
an empirical study that evaluates the perception of remanufactured products. Green perception
enhances the attractiveness of the remanufactured products. Component reuse gains importance in
remanufacturing. A model that employs component reuse in remanufacturing was revealed in [11].
Colledani et al. [12] published a paper that explains de-manufacturing systems concept which consists
of disassembly, remanufacturing, recycling, and recovery processes. They provide detailed research
framework for this area.

2.3. Disassembly

Disassembly can be defined as a systematic method for separating a product into its constituent
parts, components, subassemblies, or other groupings [13]. After products are collected for EOL
processing, they are disassembled; as such, disassembly plays a crucial role in product recovery.
Relevant literature with disassembly scheduling was reviewed for this study.

Scheduling within the context of disassembly processes aims to disassemble components in a
given order in accordance with the relationships between them. Disassembly scheduling has been of
interest to many researchers. Kim et al. [14] defined the basic disassembly scheduling problem and
presented a literature review of existing studies on disassembly scheduling. Morgan and Gagnon [15]
published a detailed review paper about disassembly and remanufacturing scheduling.

Gupta and Taleb [16] used a modified reverse MRP for disassembly scheduling and planning.
Based on this method, the quantity of the products to be disassembled to fulfill the demand for
components and the disassembly schedule over a given time span were determined. Taleb and
Gupta [17] proposed a two-phase algorithm to reach the same goal as [16], but for multiple product
structures. The algorithm consisted of two phases: core and allocation algorithms. The core
algorithm was used to identify the required quantity of products for disassembly, and the allocation
algorithm helped plan the disassembly schedule over a time horizon. Taleb et al. [18] considered parts
commonality in disassembly scheduling as an extension of the problem presented in [16]. Lee and
Xirouchakis [19] developed two-stage heuristics for the disassembly scheduling problem to minimize
the total cost of the process; i.e., the sum of the inventory and disassembly costs. The first phase
employed the existing algorithm proposed by Gupta and Taleb [16]. In the second phase, improvement
heuristics were used to improve the initial solution. Barba-Gutierrez et al. [20] considered lot sizing in
disassembly scheduling by further extending Gupta and Taleb’s [16] study.

Habibi et al. [21] published a paper that proposes a model to support circular economy of supply
chains. This model considers disassembling EOL products to fulfill component demand of EOL
products and gain profit by remanufacturing/recycling products. Jeihoonian et al. [22] presented a
case study of durable products to solve a closed-loop supply chain problem. In this paper, they used
Benders decomposition to find optimal set of disassembly facilities in the reverse part of the network.

2.4. Maintenance

Maintenance is defined as the combination of activities by which equipment or a system is
detained or restored to a state in which it can perform its designated function [23]. Several different
maintenance strategies can be employed to maintain products: preventive maintenance, corrective
maintenance, predictive maintenance, and proactive maintenance. Olanrewaju and Abdul-Aziz [24]
described these strategies in depth. Predictive maintenance is interest of this study. Using sensors
for predictive maintenance is a relatively new implementation and the literature does not have a
significant contribution to this paper. Hashemian [25] demonstrated the use of wireless sensors for
the predictive maintenance of rotating equipment in research reactors. Sensors allow continuous
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monitoring and provide operators with an opportunity to identify equipment degradation and failures
ahead of time so that maintenance can be planned accordingly. In addition, sensors eliminate the need
for manual data collection. Vijay Kumar et al. [26] proposed the use of fuzzy modeling to process the
condition-monitoring data for predictive maintenance.

2.5. Information Retrieval Systems

The majority of contemporary supply chain networks incorporate information retrieval systems
because these systems offer numerous benefits; for example, providing effective inventory management
and real-time tracking information, which facilitates efficient routing and planning. Depending on
the information flow they provide, information retrieval systems can be divided into two categories:
radio-frequency identification (RFID) and sensor embedded systems. RFID tags and embedded
sensors allow the unique identification of products. Recent literature refers to sensor-embedded and
RFID-attached products as intelligent products.

Angeles [27] explained the benefits of RFID applications in supply chains. They described how
visibility throughout the supply chain system is improved by using these technologies. Moreover,
they provided an overview of implementation strategies through describing case studies that were
conducted in several places including Walmart and the Department of Defense. Bose et al. [28]
highlighted the benefits that RFID technology can provide to supply chain systems by explaining
how they can increase the efficiency of inventory control. RFID can save labor and inventory costs
and reduce the occurrence of stock-outs in the systems. A study by Dutta et al. [29] examined the
value that RFID technology can bring to supply chains by improving the inventory performance of
the system. As was the case with the work of [28], the main benefits were highlighted as labor cost
savings, reduced stock-outs, and enhanced visibility. Dutta and Whang [30] presented several case
studies to determine the benefits of RFID applications in inventory control. Dai et al. [31] explained
how RFIDs could be helpful in inventory control and pointed out that they can explicitly increase
item-level visibility. Madni et al. [32] introduced RFID technology by defining classifications of RFID
tags, active and passive, and providing examples of their use in real life. They emphasized the increase
in the visibility of supply chain systems and explained the quantitative benefits of RFIDs. Ngai and
Riggins [33] summarized the use of RFIDs in supply chain operations and inventory control. Ngai [34]
argued that the value that RFID brings to assembly lines, logistics, and supply chain management
results from the unique information that they provided.

Vadde et al. [35] assessed the use of embedded sensors in products as a means of collecting
information about these products and their components during their life cycles. This information
was stored within the sensors’ data storage units. The information was divided into two categories:
static and dynamic data. Static data consisted of the product’s bill of materials, details about its
components and materials, disassembly sequence, the age of the product and estimated lifetime, and
which servicing operations it required during its life cycle. Dynamic data provided simultaneous
information about the product. It showed the usage patterns, how many hours the product had been
in use, and the environmental conditions to which the product had been exposed. The data was used
to determine the conditions of the product components and produce a remaining life estimation for
each component. Petriu et al. [36] introduced the use of sensor-based appliances and discussed how
they could be beneficial for the environment. Borriello [37] highlighted that sensors could potentially
be applied as an extension of passive RFID tags and subsequently used to track products during their
life cycles.

Ilgin and Gupta [38] presented a study to evaluate the economic benefits of sensors when they
are embedded into products on a multi-product disassembly line. The main purpose of embedding
sensors into the products within the context of their study was to estimate the remaining life spans of
the components of the products [35]. By using the remaining life information, Ilgin and Gupta [38]
aimed to reduce the disassembly, inspection, holding, backordering, transportation, and disposal
costs of a reverse supply chain system. They argued that the cost of the disassembly process could be



Logistics 2018, 2, 3 5 of 22

reduced by eliminating any unnecessary disassembly operations related to non-operable components.
Since the sensors provided important information about the functionality of the components before
the products were disassembled, those that were inoperable were not disassembled unless they were
required for the precedence relationship. Moreover, there was no need to inspect the disassembled
components because the sensors provided the required information about the respective conditions of
the components. Therefore, the inspection costs were eliminated from the expenses. Furthermore, the
inventory was managed and updated simultaneously using the data collected by the sensors and this
information was used to manage inventory efficiently and fulfill demand on time, resulting in lower
holding and backordering costs. Finally, transportation and disposal costs were reduced because the
operators had the ability to proactively plan the disposal of non-functional components. In a series of
papers, [39–43], the authors experimented the cases that proposes using sensors in different products
and discussed the economic benefits of using sensors in product recovery. Ilgin and Gupta [39]
presented a single-product disassembly line controlled by a multi-kanban system and investigated
the use of sensors in product recovery of this system. Ilgin and Gupta [40] studied the benefits of
sensors in a system which requires less complex disassembly compared to [39]. Ilgin et al. [42,43]
considered commonality between products and modeled systems allowing for different product types
to be disassembled through the same disassembly line.

Ondemir and Gupta [44] developed a model for a sensor-embedded product system to optimize
the fulfillment of refurbished product demands by refurbishing products after disassembly or by
procuring them from outside vendors. They used a hybrid generic algorithm to solve the model.
Ondemir et al. [45] and Ondemir and Gupta [46] introduced DTO and a repair-to-order system. This
system operated on the basis of a pull strategy by which demand dictated the disassembly operation.
Disassembled components were repaired, and demand was fulfilled. Mathematical modeling and
multi-criteria decision-making models were adopted to solve the problem. Ondemir and Gupta [47–49]
examined a DTO and remanufacturing-to-order system, which operated based on a pull strategy by
which remanufactured product demand, component demand, and material demand dictated the
disassembly operation. Following the disassembly operation, sensor-embedded products were either
remanufactured, refurbished, or recycled to fulfill the respective demands. The authors used fuzzy
goal programming [47], integer programming [48], and an Internet of Things approach [49] to solve
the problem.

Dulman and Gupta [50–52] combined the sensor-embedded product systems of Ilgin and
Gupta [38] with those suggested by Ondemir and Gupta [49] and introduced a closed-loop supply
chain system that consisted of collecting EOL products, disassembling the EOL products, classifying
disassembled components into different quality bins based on their conditions, and gaining revenue
by remanufacturing, refurbishing, and recycling the disassembled components. They quantified the
benefits of the sensors embedded in cell phones by modeling the proposed system with discrete event
simulation. The major benefit of this model was that it could reduce the disassembly and inspection
costs of a closed-loop supply chain system. In a later study, Dulman and Gupta [53], demonstrated
the use of sensors to improve the performance of maintenance activities in closed-loop supply chains.
Alqahtani and Gupta [54,55] presented the use of sensors to determine an optimal warranty policy
which is offered for remanufactured products. By using sensors, remaining lives of the products can
be estimated prior to remanufacturing products. Thus, a proper warranty period can be determined
for those remanufactured products. In these papers, authors examined different warranty policies,
such as renewable, one-dimensional, free replacement warranty, pro-rata warranty, and a combination
of them.

3. System Description

In this section, regular laptop (RL) and sensor-embedded laptop (SEL) systems are described
and compared within two subsystems: maintenance operations, which affect the first life cycle of
the laptops; and EOL operations, which occur during the second life cycle of the laptops. Figure 1
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provides an overview of two life cycles that were modeled in this paper and the relevant operations
for each cycle.

After laptops are produced and sold to the customers, the first life cycle starts. In this phase, if a
laptop fails, service is provided to the customer. Once laptops complete their useful lives, they are
utilized for several EOL processes such as recycling, refurbishing, and/or remanufacturing.Logistics 2018, 2, 3  6 of 22 
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3.1. Maintenance of Laptops

The first life cycle of the laptops involves maintenance operations. Figure 2 demonstrates the
maintenance part of the systems that was considered in this study. Laptops are introduced into the
system following production and sales. They have an expected usage of three years on average. RL
laptops follow a corrective maintenance strategy. If they fail during their use phase, a maintenance
service is provided. In this study, it was assumed that failed components are replaced with new parts
as opposed to being repaired. The purpose of replacing the failed components with new ones is to
increase the EOL quality of the components. Once the laptops complete their life cycles, they are sent
to an EOL processing facility.
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3.1.1. Maintenance of RL Systems

In RL systems, once the laptops fail, they are inspected to determine which of the components
failed. The information about the failure is transmitted to the service personnel who conduct the
required service operations; for example, replacing the failed component or components. These
operations are represented by the recognition of failure and service activation processes, which are
presented in Figure 3. After this process, failed laptops are transferred to the service facility. The
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replacement process takes place, and laptops are brought back to working condition. Once the service
operations are complete, the products are returned to the customers.Logistics 2018, 2, 3  7 of 22 
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Productivity loss occurs when laptops are not in use due to failures. In the system, productivity
loss time is calculated by determining the time between the laptop failure and the service completion
time. Productivity loss time incurs costs and is a function of the expected lifespan of laptops and their
purchase price. Maintenance costs include the costs that are incurred as a result of inspecting the
failure. Since a corrective maintenance strategy is chosen and the failed components are replaced, the
material cost associated with the replacement of the components is added to the overall maintenance
cost. Finally, logistics costs are also taken into consideration within maintenance costs.

3.1.2. Maintenance of SEL Systems

For SEL systems, a predictive maintenance strategy is followed. Failures can be estimated prior to
failure in SEL systems since the condition information about the components can be retrieved from the
embedded sensors. Inspection operation to detect the failure is not needed because sensors provide
required information. By using this information, sensors can estimate the failure and send signals
to the service facility to activate the maintenance service. Thus, proper actions can be taken prior to
failure. As a result, recognition and service activation process in maintenance operations of RL systems
is eliminated in the SEL systems. Figure 4 presents the maintenance operations of SEL systems.
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Sensors can provide cost savings in SEL systems by eliminating or reducing inspection and
productivity loss costs. Eliminating the inspection operation reduces labor costs. In addition, the
maintenance operations required to return the laptops to full working condition can be completed
in a shorter time. This will entail that the productivity loss costs are lower in SEL systems than they
are in RL systems. In addition to cost saving benefits of sensors, laptops can last longer because the
components that are predicted to fail are replaced with the new ones prior to failure and catastrophic
failures are avoided.

3.2. Laptop EOL Processes

EOL processes take place after the laptops complete their useful lives. EOL laptops are sent to
the facility for EOL processing. Disassembly is performed through a five-station disassembly line.
Figures 5 and 6 illustrate the disassembly stations that are used within RL and SEL systems. Within
the model, the laptops are disassembled according to the sequence presented in Figures 5 and 6.

Logistics 2018, 2, 3  8 of 22 

 

Sensors can provide cost savings in SEL systems by eliminating or reducing inspection and 
productivity loss costs. Eliminating the inspection operation reduces labor costs. In addition, the 
maintenance operations required to return the laptops to full working condition can be completed in 
a shorter time. This will entail that the productivity loss costs are lower in SEL systems than they are 
in RL systems. In addition to cost saving benefits of sensors, laptops can last longer because the 
components that are predicted to fail are replaced with the new ones prior to failure and catastrophic 
failures are avoided. 

3.2. Laptop EOL Processes 

EOL processes take place after the laptops complete their useful lives. EOL laptops are sent to 
the facility for EOL processing. Disassembly is performed through a five-station disassembly line. 
Figures 5 and 6 illustrate the disassembly stations that are used within RL and SEL systems. Within 
the model, the laptops are disassembled according to the sequence presented in Figures 5 and 6. 

 
Figure 5. RL systems disassembly and inspection processes. 

3.2.1. Disassembly and Inspection Operations of RL Systems 

In RL systems, components are disassembled via a disassembly line that follows the given 
sequence unless they are missing. If a component is missing, the laptop is sent to the next station. The 
disassembly cost is the function of labor cost and the time required to disassemble the components. 
As mentioned in the previous sections, inspection follows the disassembly process and is necessary 
for determining the reusability and quality levels of the components. The inspection costs differ 
according to inspection time, labor cost, and machining cost. After the inspection process, EOL 
processes are performed based on the determinations given in the component flows for each quality 
level. Figure 5 presents the details of EOL processes associated with RL systems that were considered 
in this research. 
  

Figure 5. RL systems disassembly and inspection processes.

3.2.1. Disassembly and Inspection Operations of RL Systems

In RL systems, components are disassembled via a disassembly line that follows the given
sequence unless they are missing. If a component is missing, the laptop is sent to the next station.
The disassembly cost is the function of labor cost and the time required to disassemble the components.
As mentioned in the previous sections, inspection follows the disassembly process and is necessary for
determining the reusability and quality levels of the components. The inspection costs differ according
to inspection time, labor cost, and machining cost. After the inspection process, EOL processes are
performed based on the determinations given in the component flows for each quality level. Figure 5
presents the details of EOL processes associated with RL systems that were considered in this research.
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3.2.2. Disassembly and Inspection Operations of SEL Systems

The flow of EOL processes in SEL systems are depicted in Figure 6. The disassembly and
inspection structure of the SEL systems are more complex than those of the RL systems. Using the
information provided by the sensors, the EOL processes can be planned differently.
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In the case of SEL, missing components have already been identified prior to disassembly; as
such, laptops are transferred to the following station without visiting the station associated with that
missing component. If the components are not missing, reusability information is retrieved from
the sensors, and the flow is determined based on this information. If they are not reusable, they are
not disassembled and sent to the next station. If the other component at the next station requires
disassembly, they are disassembled together. Disassembly costs can be reduced by disassembling the
reusable and non-reusable components together at the same station. This is not applicable in the RL
system because components require manual inspection at the stations. If the components are reusable,
the inventory levels are checked for each quality level. If the number of components has not reached
maximum inventory levels, they are disassembled and sent to the reprocessing area. Otherwise,
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they are sent to the next station. If the other component at the next station requires disassembly,
they are disassembled together. An upfront inventory check can reduce both the disassembly and
inventory costs.

3.2.3. Reprocessing Operations

The quality levels of the components are divided into categories, such as high-quality (HQ),
medium-quality (MQ), and low-quality (LQ) components in RL and SEL systems. The expected
lifespan of HQ components is between two and three years. MQ components last for between 12
months to two years, and LQ components can last about six months up to one year. Disassembled and
inspected components that have quality labels attached to them are transferred to the reprocessing
area. The flows of these components are different for each quality level.

The HQ-component flow includes each quality level in the flow. If the maximum HQ
remanufactured laptop inventory level is not reached in the system, HQ components are sent to
the HQ remanufacturing buffer area. Otherwise, the maximum HQ component inventory is checked
for component sale. If the maximum HQ component inventory level is reached, HQ components are
sent for use in MQ processes instead of being recycled because they can increase the quality of the MQ
level either by using them for remanufacturing or selling them as components. A similar flow can be
observed in the MQ level. If the HQ components are not required at the MQ level, they can be used at
the LQ level. If none of the options are chosen, HQ components are recycled or disposed of based on
the materials they contain. Figure 7 depicts the HQ component flow.
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Based on the flow, if the components are sold, they generate revenue for the system, and this is
added to sales revenue. If they are not remanufactured or sold as used components, they are recycled,
and scrap revenue is generated. If they are not recyclable, disposing of them will increase the disposal
cost of the systems.

The MQ-component flow is like the HQ component flow with one exception: the MQ components
are not sent to the upper level for replacement. They are sent to the LQ level for replacement if they
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are not used at the MQ level. The LQ-component flow only considers the flow of LQ-level components
without replacement with components of a higher quality.

The components are renewed when they fail and the renewal time of the components is tracked in
the systems. Based on this, the time that the components have been in use can be calculated and used
to estimate quality of the components when they are disassembled at the end of products’ life cycles.
In the study, it was assumed that if the components of laptops are in use for more than 1.5 years, their
expected quality levels are lower, and their chance of reuse decreases.

If the remanufacturing option is chosen in these component flows, the components are sent to the
remanufacturing buffer area, as previously mentioned. Figure 8 shows the buffer area for each of the
components of a laptop. They wait in the buffer area until one component from each component type
is available. Once the component package is complete, they are assembled to remanufacture a laptop.
The system costs increase relative to the assembly costs associated with remanufacturing laptops. The
remanufactured laptops are added to the remanufactured laptop inventory. If there is demand, they
are sold. Otherwise, they remain in the inventory, and this increases the inventory cost.

In the current study, demand was anticipated to follow a Poisson distribution. If inventory is
sufficient to fulfill the demand, remanufactured laptops are sold, and revenue is generated. If the
inventory is insufficient, demand is backordered and the backordering costs in the system increase.
Figure 8 reveals the remanufacturing and demand flow of the laptops and the relevant revenue
and costs.
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4. Design of the Experimental Study

In the current study, a design of experiments study was used to compare the SEL and RL systems.
The factors that might affect the revenue and costs were determined. A total of 63 factors and a
significant number of experiments were needed to produce a full factorial design. The orthogonal
arrays method considers a subset of combinations of those factors and reduces the number of
experiments. Using this method, 63 factors with two levels were identified in such a way that
64 experiments were carried out for both systems. The combinations of the factors can be seen in the
L64(263) orthogonal array [56]. Relevant data to determine the factor levels was extracted from the
study conducted by Ilgin and Gupta [40].

The remanufactured laptop and component prices applied in this study are shown in Table 1.
The factorial design considered only HQ- and MQ-level prices. LQ-level prices were not considered
because they have insignificant impact on performance measures.
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Table 1. Remanufactured laptop, subassembly, and component prices.

Factor Level 1 Level 2

HQ Laptop ($) 660 550
HQ Hard Disk ($) 90 75

HQ Battery ($) 60 50
HQ LCD ($) 144 120

HQ Memory ($) 36 30
HQ Motherboard ($) 180 150

MQ Laptop ($) 480 400
MQ Hard Disk ($) 60 50

MQ Battery ($) 48 40
MQ LCD ($) 96 80

MQ Memory ($) 24 20
MQ Motherboard ($) 120 100

Disassembly is an essential process that can be improved by efficiently utilizing the data provided
by sensors. Disassembly-related factors, such as time taken to disassemble the components and the
disassembly costs, were considered in the factorial design. These factors and their levels are shown in
Table 2.

Table 2. Disassembly cost and time factors.

Factor Level 1 Level 2

Disassembly Cost ($/min) 3 2
Hard Disk Disassembly Time (min) 0.9 0.75

Battery Disassembly Time (min) 0.6 0.5
LCD Disassembly Time (min) 0.9 0.75

Memory Disassembly Time (min) 0.6 0.5
Motherboard Disassembly Time (min) 1.8 1.5

Table 3 presents the inspection-related factors that were assessed in the current study: component
inspection time and costs.

Table 3. Inspection cost and time factors.

Factor Level 1 Level 2

Inspection Cost ($/min) 0.6 0.5
Hard Disk Inspection Time (min) 2.4 2

Battery Inspection Time (min) 2.4 2
LCD Inspection Time (min) 6 5

Memory Inspection Time (min) 6 5
Motherboard Inspection

Time(min) 9 7.5

In the current study, missing components, component reusability, and the conditions of the
components followed probability distributions, and each of these was deemed to have a direct impact
on the number of remanufactured laptops and the number of components that were sold. These
measures are also directly related to revenue; therefore, they were considered as factors and included
in the factorial design of the study. Condition information of the components is employed in three
categories such as HQ, MQ, and LQ levels. Total probability of retrieving HQ-, MQ-, and LQ-level
components is equal to 1. For example, if HQ- and MQ-level probability levels are set at 0.5 and 0.3,
respectively, LQ-level probability is calculated by subtracting the sum of 0.5 and 0.3 from 1. Thus, in
this case, the LQ-level probability will be 0.2. This allows that once HQ- and MQ-level probabilities
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are identified in the experiments, LQ-level probabilities could be determined. As a result, only HQ-
and MQ-level probabilities are included in the factorial design. Table 4 presents probability levels used
in the factorial design. Table 5 shows LQ-level probabilities which are excluded in the factorial design.

Table 4. Probability factors (%).

Factor Level 1 Level 2

Missing Hard Disk 10 20
Missing Battery 10 20

Missing LCD 10 20
Missing Memory 10 20

Missing Motherboard 10 20
Usable Hard Disk 90 80

Usable Battery 90 80
Usable LCD 90 80

Usable Memory 90 80
Usable Motherboard 90 80

HQ Hard Disk Return 55 50
MQ Hard Disk Return 30 30

HQ Battery Return 55 50
MQ Battery Return 30 30

HQ LCD Return 55 50
MQ LCD Return 30 30

HQ Memory Return 55 50
MQ Memory Return 30 30

HQ Motherboard Return 55 50
MQ Motherboard Return 30 30

Table 5. Low-quality subassembly and component probabilities (%).

Factor Level 1 Level 2

LQ Hard Disk Return 15 20
LQ Battery Return 15 20

LQ LCD Return 15 20
LQ Memory Return 15 20

LQ Motherboard Return 15 20

In addition to the probabilities defined in Tables 4 and 5, Table 6 shows another level of
probabilities that were applied when the renewal-time threshold of 1.5 years was exceeded. It was
assumed that, if a component had been in use for more than 1.5 years, retrieving it in HQ condition
was less likely; as such, the probability of this occurring was reduced by 0.3.

Table 6. Quality level probabilities when renewal-time threshold is exceeded (%).

Factor Level 1 Level 2

HQ Hard Disk Return 25 20
MQ Hard Disk Return 30 30
LQ Hard Disk Return 45 50

HQ Battery Return 25 20
MQ Battery Return 30 30
LQ Battery Return 45 50
HQ LCD Return 25 20
MQ LCD Return 30 30
LQ LCD Return 45 50

HQ Memory Return 25 20
MQ Memory Return 30 30
LQ Memory Return 45 50

HQ Motherboard Return 25 20
MQ Motherboard Return 30 30
LQ Motherboard Return 45 50
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The maintenance costs of the systems modeled in the current study consisted of several
subcategory costs such as labor cost, productivity loss cost, material replacement cost, and logistics
costs. Some of the factors that might make difference between SEL and RL systems were considered
in the factorial design and can be observed in Table 7. The time taken to recognize the problem and
activate the laptop service was among them. In addition, the time at which the failure was inspected
was also included, and it was assumed that this followed a normal distribution. The mean and
standard deviation values of the normal distribution are presented in the parenthesis in Table 7.

Table 7. Maintenance factors.

Factor Level 1 Level 2

Recognition of Failure and Service Activation 3 days 1 day
Inspection Time of Failure (min) (Normally Distributed) (25, 2) (20, 2)

Labor Cost $30/h $20/h
Productivity Loss Cost $2/day $1/day

Demand represents an important consideration among the factors because, if there is a demand,
producers can generate revenue by selling remanufactured laptops and disassembled components.
HQ- and MQ-level demands were considered in the factorial design and were assumed to follow a
Poisson distribution. The average daily rates for both levels that were applied are shown in Table 8.
As was the case with the LQ-prices, the LQ-level demands were not included in the factorial design.

Table 8. Remanufactured laptop, subassembly, and component demands (following a Poisson distribution).

Factor Level 1 Level 2

HQ Laptop (/day) 100 80
MQ Laptop (/day) 80 60

HQ Hard Disk (/day) 100 80
MQ Hard Disk (/day) 80 60

HQ Battery (/day) 100 80
MQ Battery (/day) 80 60

HQ LCD (/day) 100 80
MQ LCD (/day) 80 60

HQ Memory (/day) 100 80
MQ Memory (/day) 80 60

HQ Motherboard (/day) 100 80
MQ Motherboard (/day) 80 60

In the SEL and RL systems, the failure of a component might cause defects in the other components.
There is a rate for this measure, and this was included in the factorial design. In addition, the
remanufacturing process involves an assembly operation by which the disassembled components are
reassembled. The assembly cost and assembly time were of relevance within this process and were
considered in the factorial design. These three factors can be seen in Table 9.

Table 9. Remanufacturing assembly and failure impact rate factors.

Factor Level 1 Level 2

Laptop Assembly Time (min) 6 5
Assembly Cost($/min) 4 3

Failure Impact Rate for Other Components 0.15 0.1

Discrete event simulation was used to model the RL and SEL systems. Arena 14.7 simulation
software (Rockwell, Austin, TX, USA) was used for the modeling process [57]. To validate the models,
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they were run by assigning extreme values to variables and corresponding performance measures
were observed with these runs. For example, if probability of retrieving HQ components is 1 the
systems should not produce any output related to MQ and LQ components such as number of sold
MQ and LQ components and remanufactured MQ and LQ laptops. The run length of the simulation
experiments was 1500 days, which is approximately 4 years. After a laptop had completed its expected
life span of three years, the models were run over the duration of one more year for EOL operations.
A total of 63 factors were used within the factorial design, and these were described in this section.
The data that were not included in the factorial design, but were required to run the experiments, are
shown in Tables A1–A7.

SEL and RL systems were introduced, and the design of experiments study was explained. The
purpose of this study was to determine whether SEL systems can substantially increase EOL profit and
reduce maintenance costs in comparison to RL systems. The performance measures that were used to
calculate this amount is shown below.

Maintenance Cost = Labor Cost + Logistics Cost + Productivity Loss Cost + Material Replacement Cost (1)

Total Pro f it = Total Revenue − Total Cost (2)

Total Revenue = Sales Revenue + Scrap Revenue (3)

Total Cost = Collection Cost + Disassembly Cost + Inspection Cost+
Remanu f acturing Cost + Holding Cost + Backordering Cost + Disposal Cost

(4)

Sensor Value =
Maintenance Cost Savings + Total Pro f it Improvement

Total number o f Sensors
(5)

5. Results and Analysis

For each system, RL and SEL, experiments were carried out, and the data pertaining to the EOL
profit per laptop, maintenance cost per laptop, total profit, disassembly cost, and inspection costs
were tracked.

The average value of EOL profit per laptop was $203.30 for the SEL system and $190.59 for the RL
system. These profits were generated by EOL processes, such as recycling, resale, and remanufacturing.
Another important measure that is of significance to sensor value is the maintenance cost. In the
SEL systems, the maintenance cost per laptop was, on average, $56.94. In RL systems, it was $60.31.
Maintaining laptops throughout their life cycles incurs these costs in both systems.

The data indicated that the use of sensors significantly reduced the cost of the inspection process.
In RL systems, the inspection cost for the simulation period was $107,274.80 while this reduced to
$1264.20 in the SEL systems. The disassembly costs were $83,127.33 and $90,726.56 for the SEL and RL
systems, respectively. Table 10 presents the average values of the performance measures mentioned
above, as well as the total profit for both systems.

Table 10. Experiment results for SEL and RL systems.

Measure SEL System ($) RL System ($)

EOL Profit/Laptop 203.30 190.59
Maintenance Cost/Laptop 56.94 60.31

Total Profit 1,975,867.00 1,852,686.00
Disassembly Cost 83,127.33 90,726.56
Inspection Cost 1264.20 107,274.80

A pairwise t-test was used to determine if the difference between the RL and SEL systems was
statistically significant. A factorial design with orthogonal arrays corresponding to unique factors for
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each experiment was employed; as such, the experiments were paired. The results of the pairwise
t-tests, including mean differences and p-values, are presented in Table 11.

Table 11. Pairwise t-test results for mean difference.

Measure Mean Difference (SEL-RL) ($) p-Value

Sensor Value 16.09 N/A
EOL Profit/Laptop 12.71 <0.0001

Maintenance Cost/Laptop −3.38 <0.0001
Total Profit 123,181.10 <0.0001

Disassembly Cost −7599.23 <0.0001
Inspection Cost −106,010.60 <0.0001

The test results for the EOL profit per laptop value indicated that the mean difference between
the two systems was $13.20 in favor of the SEL systems. The p-value presented in Table 11 was less
than 0.0001 and reveals that the EOL profit difference between the systems was statistically significant.
Furthermore, the mean value of the maintenance cost difference between the systems was $−3.38.
This indicates that the use of the SEL system as opposed to the RL system generated a cost saving of
$3.38. The t-test results for the other performance measures, such as total profit, disassembly cost, and
inspection cost, are presented in Table 11.

The sensor value is the sum of EOL profit improvement and maintenance cost savings and, in the
study, was calculated to be $16.09. It can, therefore, be concluded that it is worthwhile embedding
sensors in laptops if the cost of these sensors is below $16.09 per unit. In addition to the mean
differences and p-values, 95% confidence in the mean difference of the measures was achieved, as per
the data presented in Table 12.

Table 12. 95% Confidence interval of mean difference.

Measure
95% Confidence Interval of Mean Difference (SER-RR)

Lower Limit ($) Upper Limit ($)

Sensor Value 15.17 17.02
EOL Profit/Laptop 11.83 13.60

Maintenance Cost/Laptop −3.58 −3.18
Total Profit 114,586.40 131,775.90

Disassembly Cost −8228.23 −6970.23
Inspection Cost −108,852.60 −103,168.70

In the study, failures were assumed to arrive into the system at exponential interarrival times.
A total of 63 factors were used in the design of experiments, and failure interarrival times were not
considered as a factor. Further runs were taken to determine the impact of different interarrival times
on the maintenance cost and sensor value. Figure 9 presents the maintenance costs of the systems if
interarrival times are reduced; namely, failure rate increases. The maintenance cost increased with the
reduction of failure interarrival times, and a negative correlation between the failure interarrival times
and the maintenance costs was observed.

In addition, differences between the two systems in terms of maintenance costs also had a negative
correlation with the failure interarrival times. Figure 10 presents information related to the increase in
maintenance costs that were observed when the failure interarrival times were reduced.

Furthermore, Figure 11 demonstrates the relationship between the EOL profit difference between
the systems and the failure interarrival times. A failure interarrival rate reduction from 0.068 to
0.051 had a negative impact on the profit difference because the quality of the returned components
decreased. However, when the failure interarrival time was 0.034, the profit difference increased. This
can be attributed to the renewal time consideration in the system. It was assumed that if laptops fail



Logistics 2018, 2, 3 17 of 22

more frequently, it is more likely that most of the components will be renewed and their EOL quality
will be higher. This will lead to higher EOL profit. The best scenario for EOL profit among all the
failure interarrival times was 0.034.
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Finally, Figure 12 presents the impact of the failure interarrival times on the overall sensor value.
The best scenario for the sensor value was 0.0085.
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decrease the maintenance cost of the products during their life cycles. Beyond their financial benefits, 
sensors can provide enhanced visibility through the supply chain because they allow remote and 
simultaneous tracking. This can result in improved supply and inventory planning. This study 
examined the use of sensors to enhance the performance of maintenance activities and EOL 
operations of the returned products. They can also be helpful in reducing the inventory costs. Future 
research could examine this benefit financially. 

In this study, it was discussed that sensors will be embedded into laptops and provide condition 
information about them through their lifecycles. It was assumed that sensors would give accurate 
estimations about the condition and they would not fail during this time period. This study can be 
expanded by employing the reliability of the sensors. It is critical that they should provide accurate 
information because replacing some of the components can be costly and this would exceed even the 
cost savings gained during the maintenance stage. 
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6. Conclusions

SEL systems performed better than RL systems in terms of the maintenance cost of the systems
and the EOL profit that the systems generated. The information about the conditions of the components
is of particular relevance because it can be used to gain an economic advantage in a closed-loop supply
chain system. The maintenance cost of the system can be reduced, on average, by $3.38. Furthermore,
the disassembly costs that are incurred in the SEL system were calculated to be $7599.23 less than the
disassembly costs in the RL system for the simulation period. The inspection cost saving is higher
than the disassembly cost saving and is $106,010.60. These savings increase the total profit of the SEL
system by $123,181.10. The overall sensor value was calculated to be $16.09.

Our results illustrate that firms can invest in remote monitoring technologies, such as sensors, and
increase the profit that they make out of selling EOL products and their components, as well as decrease
the maintenance cost of the products during their life cycles. Beyond their financial benefits, sensors
can provide enhanced visibility through the supply chain because they allow remote and simultaneous
tracking. This can result in improved supply and inventory planning. This study examined the use
of sensors to enhance the performance of maintenance activities and EOL operations of the returned
products. They can also be helpful in reducing the inventory costs. Future research could examine this
benefit financially.

In this study, it was discussed that sensors will be embedded into laptops and provide condition
information about them through their lifecycles. It was assumed that sensors would give accurate
estimations about the condition and they would not fail during this time period. This study can be
expanded by employing the reliability of the sensors. It is critical that they should provide accurate
information because replacing some of the components can be costly and this would exceed even the
cost savings gained during the maintenance stage.
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Appendix A

Table A1. Low-quality remanufactured laptop, subassembly, and component prices.

LQ Laptop ($) 200
LQ Hard Disk ($) 25

LQ Battery ($) 20
LQ LCD ($) 50

LQ Memory ($) 10
LQ Motherboard ($) 50

Table A2. Low-quality remanufactured laptop, subassembly, and component demands.

(Follows Poisson Distribution)

LQ Laptop (day) 50
LQ Hard Disk (day) 50

LQ Battery (day) 50
LQ LCD (day) 50

LQ Memory (day) 50
LQ Motherboard (day) 50

Table A3. Maintenance data.

Failure Arrival Rate (Day) (Exponentially Distributed) 0.068
Expected Lifetime (year) 3

Transportation Before Service (day) 1
Delivery After Service (day) (Triangular Distribution) Min (1), Mean (2), Max (3)

Transportation Cost ($) 5
Delivery Cost ($) 30

Table A4. Subassembly and component replacement times for maintenance.

(Normally Distributed) (Mean, Standard Deviation)

Hard Disk (min) (3, 0.2)
Battery (min) (1, 0.1)

LCD (min) (10, 0.5)
Memory (min) (3, 0.4)

Motherboard (min) (10, 0.5)

Table A5. Subassembly and component replacement costs for maintenance.

Hard Disk ($) 150
Battery ($) 100

LCD ($) 240
Memory ($) 60

Motherboard ($) 300

Table A6. Subassembly and component failure probabilities.

Component %

Hard Disk Failure 25
Battery Failure 15

LCD Failure 25
Memory Failure 5

Motherboard Failure 30
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Table A7. Production and cost data.

Laptop Arrival Rate (min) (Exponentially Distributed) 3
Disposal Cost ($/lbs) 0.4
Scrap Revenue ($/lbs) 0.6

Metal Recycle Rate 0.3
Holding Cost Rate 0.2

Backordering Cost Rate 0.6
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