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Abstract

The study of the network between transcription factors and their targets is important

for understanding the complex regulatory mechanisms in a cell. However, due to

post-translational modifications the regulator transcription levels (as measured, e.g.,

by microarray expression arrays) generally provide only little information about the

true transcription factor activities (TFAs).

Here we propose an approach based on partial least squares (PLS) regression to infer

true TFAs from expression data integrated with information from DNA-protein

binding experiments (e.g., ChIP). This method is statistically sound also for a small

number of samples and enables to detect functional interaction among the

transcription factors themselves via the inference of “meta”-transcription factors. In

addition, it allows to identify false positives in ChIP data as well as to predict

activation and suppression activities (which is not possible from ChIP data alone).

Subsequent to PLS inference, the estimated transcription factor activities may be

subject to further analysis such as tests of periodicity or differential regulation. This

method overcomes the limitations of previously used approaches, and is illustrated by

analyzing expression and ChIP data from Yeast andE. Coli experiments.
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Introduction

The transcription of genes is regulated by DNA binding proteins that attach to

specific DNA promoter regions. These proteins are known as transcriptional

regulators or transcription factors and recruit chromatin-modifying complexes and the

transcription apparatus to initiate RNA synthesis1;2.

In the last few years, considerable effort was produced by both experimental and

computational biologists to identify transcription factors, their target genes and the

sensitivity of the regulation mechanism to changes in environment3;4;5. An important

technique for the identification of target genes bound in vivo by known transcription

factors is the combination of a modified chromatin immunoprecipitation (ChIP) assay

with microarray technology as proposed by Ren et al.1. For instance, in the budding

yeastSaccharomyces cerevisiaeChIP experiments have been utilized to elucidate the

binding interaction between 6270 genes and 113 preselected transcription factors2.

However, as physical binding of transcription factors is only a necessary but not a

sufficient condition for transcription initiationChIP data typically suffer from a large

proportion of false positives.

Several attempts have also been made to recover the network structure between

transcription factors and their targets using only the gene expression levels of both the

transcription factors and the targets, either with6 or without7 assuming a subset of

putative regulators. Such approaches implicitly assume that the measured gene

expression levels of the transcription factors reflect their actual activity. However, due

to various complex post-translational modifications as well as due to interaction

among transcription factors themselves,regulator transcription levels are generally

inappropriate proxies for transcription factor activities (TFA).

In a few recent papers, integrative analysis of gene expression data and ChIP

connectivity data has been suggested to overcome these issues8. Most prominently,

Liao and coworkers have developed the technique of “network component analysis”

(NCA)9;10, a dimension reduction approach toinfer the true regulatory activities. In

NCA one can also incorporate further a priori qualitative knowledge about

gene-transcription factor interactions11. Unfortunately, a major drawback of the
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original NCA method is that for identifiability reasons it imposes very strong

restrictions on the allowed network topologies which renders application of classic

NCA difficult in many practical cases. Alter and Golub12 introduced an approach to

integrate ChIP and microarray data using pseudo-inverse projection. Like NCA, this

method is based on an algebraic matrix decomposition (in this case singular value

decomposition). However, this ignores measurement and biological error present in

both connectivity and gene expression data. Kato et al.13 proposed yet another

integrative approach consisting of several steps combining sequence data, ChIP data

and gene expression data. However, here gene expression is used only to check the

coherence of expression profiles of genes with common sequence motifs, and not to

estimate transcription factors activities. Finally, Gao et al.14 suggested the

“MA-Networker” algorithm which employs multivariate regression to estimate TFAs

and backward variable selection to identify the active transcription factors. Unlike the

other approaches, it fully takes account of stochastic error. However, for classical

regression theory to be valid it is not only necessary that the number of gene targets is

much greater than both the number of samples and the number of transcription

factors, but also that the transcription factors are independent of each other. In

particular the latter condition is clearly not generally satisfied with genome data.

Here, we suggest an alternative statistical framework to tackle the problem of network

component and regulator analysis. Our approach centers around multivariate partial

least squares (PLS) regression, a well-known analysis tool for high-dimensional data

with many continuous response variables that has been widely applied, especially to

chemometric data15;16;17. Using PLS we are not only able both to integrate and

generalize previous NCA approaches, but also to overcome their respective

limitations. In particular, PLS-based network component analysis offers a

computationally highly efficient and statistically sound way to infer true TFAs for any

given connectivity matrix. In addition, it allows to statistically assess the available

connectivity information, and also to discover interactions and natural groupings

among regulatory genes (corresponding to “meta”-transcription factors).
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Methods

Network model.

Suppose gene expression data forn genes andm samples (= arrays, tissue types, time

points etc.) are collected in an×m data matrixỸ. Furthermore, let̃X denote the

so-called connectivity matrix withn rows andp columns. Each column iñX

describes the strength of interaction between one ofp transcription factors and then

considered gene targets. The entries ofX̃ can either be binary (0-1) or numeric (e.g.

ChIP data), with a zero value indicating no physical binding between a transcription

factor and a target.

In order to relate expression with connectivity data we consider the linear model

Ỹ = A + X̃B̃ + E, (1)

whereA is n×m constant matrix,̃B is ap×m matrix of regression coefficients and

E is an×m matrix containing error terms.A contains them different offsets, and̃B

may be interpreted as the matrix of the true transcription factor activities (TFAs) of

thep transcription factors for each of them samples.

It it worthwhile to note that in this setting, unlike in most other gene expression

analysis studies, the number of genesn is considered as the number ofcasesrather

than the number of variables. In the present case the latter corresponds to the number

of transcription factorsp (hence in generalp < n).

NCA and MA-Networker algorithms.

The above model linking TFAs both with gene expression of the regulated genes and

external connectivity information has been the subject of a series of recent studies.

In the classic network component analysis approach9;10 the offset matrixA is set to

zero and the remainder of Eq. 1 is interpreted as dimension reduction that projects the

output layerỸ with m samples onto a “hidden” layer ofp < m transcription factors.
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In the original NCA algorithm the coefficients̃B are obtained via a novel matrix

decomposition that respects the constraints provided by the connectivity matrixX̃.

Unfortunately, this also imposes rather strict identifiability conditions. As a

consequence, classic NCA may only be employed with certain classes of “NCA

compatible”X̃9.

In contrast, the “MA-Networker” algorithm by Gao et al.14 employs standard multiple

least-squares regression in conjunction with step-wise variable selection to estimate

the true transcription factor activities̃B. This requires that the number of target genes

is much larger than both the number of transcription factors and the number of

samples. More important, however, is that the step-wise model selection procedure

employed is only poorly suited if the regulator genes are themselves interacting with

each other. This is a major drawback as it is biologically well-known that transcription

factors often work in conjunction with other regulators, and rarely act independently.

Partial least squares regression.

Here we propose to employ the method of partial least squares regression15;17 to

inferring true TFAs and the functional interaction of regulators.

PLS is a well-known analysis tool for high-dimensional data with many continuous

response variables that has been widely applied, especially to chemometric data16.

PLS is particularly suited to the case of non-independent predictors and for

small-sample regression settings. It is computationally highly efficient, it does not

necessitate variable selection, and it additionally infers meaningful structural

components.

For these reasons PLS is now being adopted as a standard tool for multivariate

microarray data analysis, particularly in classification problems18;19;20;21. We believe

that PLS also provides an excellent framework for integrative network analysis, as

PLS combines dimension reduction with regression and variable selection, the two

key elements from both the NCA and the MA-Networker approaches.

In a nutshell, the PLS algorithm consists of the following consecutive steps:
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1. First, the data matrices̃X andỸ are centered to column mean zero, resulting in

matricesX andY, in order to estimate and to remove the offsetA. In addition,

it is common practice in PLS analysis (and also recommended here) to scale the

input matrices to unit variance.

2. Second, using linear dimension reductionT = XR thep predictors inX are

mapped ontoc ≤ rank(X) ≤ min(p, n) latent components inT (ann× c

matrix). See the section “SIMPLS algorithm” below for the precise procedure

employed in this paper.The important key idea in PLS is that the weightsR (a

p× c matrix) are chosen with the responseY explicitly taken into account, so

that the predictive performance is maximal even for smallc.

3. Next, assuming the modelY = TQ
′
+ E, Y is regressed by ordinary least

squares against the latent componentsT (also known as X-scores) to obtain the

loadingsQ (am× c matrix), i.e.Q = Y
′
T(T

′
T)−1.

4. Subsequently, the PLS estimate of the coefficientsB in Y = XB + E is

computed from estimates of the weight matrixR and the Y-loadingsQ via

B = RQ
′
.

5. Finally, the coefficients̃B for the original Eq. 1 are computed by rescalingB.

Note that it is step 2 that greatly distinguishes PLS from related bilinear regression

approaches, such as principal and independent components regression (PCR/ICR)

and the pseudo-inverse-based method by Alter and Golub12. In the latter approaches

the scoresT are computed solely on the basis of the data matrixX without

considering the responseY16.

Other quantities often considered in PLS include, e.g., the X-loadingsP that are

obtained by regressingX againstT, i.e.X = TP
′
+ F andP = Y

′
T(T

′
T)−1.

SIMPLS algorithm.

PLS aims to find latent variablesT that simultaneously explain both the predictorsX

and the responseY. The original ideas motivating the PLS decomposition were
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entirely heuristic. As a result, a broad variety of different but in terms of predictive

power equivalent PLS algorithms have emerged – for an overview see, e.g.,

Martens17.

For the present application to infer true TFAs we suggest to use the SIMPLS

(“Statistically Inspired Modification of PLS”) algorithm which has the following

appealing properties22;23;24:

• it produces orthogonal, i.e. empirically uncorrelated, latent components,

• it allows for a multivariate response, and

• it optimizes a simple statistical criterion.

A further added advantage of SIMPLS is that it is also computationally more efficient

than most other PLS algorithms. Note that other PLS variants are known in the

literature that have predictive power equal to SIMPLS. However, these either provide

orthogonal loadings rather than orthogonal latent componentsT (Martens’ PLS), or

they do not elegantly extend from 1-dimensional tom-dimensional responseY in

terms of their optimized objective function (NIPALS).

In SIMPLS the latent componentst1, t2, . . . , tc of the columns inT are inferred by

sequentially estimating the column vectorsr1, . . . , rc of R according to the following

criterion24:

1. r1 is the unit vector (with|r1| = 1) maximizing the length|Y′
Xr1| of the

m× 1 covariance vector cov(Y, t1).

2. For allj = 2, . . . , c, rj are the unit vectors (with|rj| = 1) maximizing the

length|Y′
Xrj| of the vector cov(Y, tj) subject to the orthogonality constraint

t
′
itj = r

′
iX

′
iXjrj = 0 for all i = 1, . . . , j − 1.

In the actual implementation of SIMPLS22 the weightsR and the derived quantities

T andQ are obtained by a Gram-Schmidt-type procedure that constructs the desired

orthogonal basis.
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In our analysis we use the SIMPLS implementation as provided in the R package

“pls.pcr” by Ron Wehrens (University of Nijmegen). In contrast the our definition

given above his program returns orthonormal X-scoresT∗ and non-unit weightsR∗.

For conversion defineM = diag(|r∗1|, . . . , |r∗c |, ) and setT = T∗M−1, R = R∗M−1,

Q = Q∗M, andP = P∗M. This provides orthogonal scores and unit-norm weights.

The resulting estimates of the matricesB, T, andR are now straightforward to

interpret in terms of transcriptional regulation.B (andB̃) give the inferred activities

of thep transcription factors in each of them experiments. The inferred latent

componentsT describe “meta”-transcription factors that combine related groups of

transcription factors.R reflects the involvement of each of thep regulators in thec

meta-factors.

Determining the number of PLS components.

A remaining aspect of PLS regression analysis is the optimal choice of the numberc

of latent components. If the maximal valuecmax = rank(X) is chosen, then PLS

becomes equivalent to principal components regression (PCR) with the same number

of components, and if additionallyn > p both PLS and PCR turn into ordinary

least-squares multiple regression.

Hence, with PLS it is desirable to choose as small a value ofc as possible without

sacrificing too much predictive power. One straightforward statistical procedure to

estimate this minimum valuecmin is the method of cross-validation, which proceeds

as follows:

1. Split the set ofn genes randomly into 2 sets: a learning set containing2/3 of

the genes and a test set containing the remaining genes.

2. Use the learning set to determine the matrix of regression coefficientsB for

different valuesc = 1, 2, . . . , cmax.

3. Predict the gene expression of then/3 genes from the test set usingB with the

different values ofc.
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4. Repeat steps 1-3K = 100 times and compute the mean squared prediction

error for eachc.

Subsequently, the value ofc yielding the smallest mean squared prediction error is

selected. The results of this procedure can also be visualized graphically (see Figure 1

below for an example with real data).

Alternatively, the optimal number of components may also be determined by

considering the value of the criterionZi = |Y′ti| for a given latent componentti. If

Zi falls below an a priori specified threshold thencmin = i is reached.
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Results

Data sets

Next, we illustrate the versatility of the proposed PLS approach to network

component analysis by analyzing several real biomolecular data sets.

First, in order to validate the linear regression approach (Eq. 1) we reanalyzed

hemoglobin data by Liao et al.9 . Second, we analyzed two differentS. Cerevisae

gene expression data sets in conjunction with a regulator-target connectivity matrix

from the large-scale ChIP experiment of Lee et al.2. The investigated yeast expression

data comprise a time series experiment25 and a compilation of yeast stress response

experiments26;6. Finally, we analyzed expression and connectivity data for anE. Coli

regulatory network containing 100 genes and 16 transcription factors10. The general

characteristics of these four data sets are summarized in Table 1.

TABLE 1 ABOUT HERE

The investigated data were preprocessed as follows. The yeast ChIP data set2 contains

protein-DNA interaction data for 6270 genes and 113 transcription factors. It includes

missing values that correspond to non-interacting gene-transcription factor pairs.

Although ChIP data are essentially continuous, it is common practice to dichotomize

the data according to thep-values into discrete levels of interaction (0 or 1). In this

study, we used the data obtained at ap-value threshold of 0.001, as suggested by Lee

et al.2. However, note that in contrast to the NCA method, the dichotomization of the

ChIP data is optional in our approach.

The Spellman et al.25 microarray data originally contains the gene expression of 4289

genes at 24 time points during the cell-cycle. From these genes, a subset of 3638 are

also contained in the Lee et al.2 ChIP data set. Our analysis is based on these 3638

genes. Similarly, the Segal-Gasch expression data set26;6 contains the gene expression

of 2292 genes for 173 arrays corresponding to different stress conditions (e.g., heat

shock, amino acid starvation, nitrogen depletion). From 2292 genes a subset of 1993
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overlap with the genes considered in the ChIP data.

The connectivity matrix for theE. coli data was compiled mainly by Kao et al.10 from

the RegulonDB11 database, in addition they also incorporated a few corrections using

literature data. The temporalE. coli expression data for 100 genes across 25 time

points was introduced in Kao et al.10 and is publicly available at

http://www.seas.ucla.edu/˜liaoj/ .

Validation of the regression approach

The hemoglobin data used in Liao et al.9 for validation of the classic NCA approach

have the advantage that the true coefficientsB̃ of the network model in Eq. 1 are

known, and therefore can be directly compared with the inferred values.

Reanalyzing this data we showed that the true regression coefficients can be

recovered exactly by multivariate regression (of which PLS is a special case).

According to Liao et al.9 this is also true for classic NCA but not for PCA and ICA

interpretations of Eq. 1. This can be explained by the fact the both PCA and ICA do

not explicitly take account of the responseY, whereas NCA and PLS do.

PLS components and Y-loadings

Subsequently, we determined the minimum number of PLS components for the yeast

andE. coli data sets using cross-validation. The results are plotted in Figure 1 (top)

after normalization (the mean cross-validation error with one PLS component is set to

1). As can be seen from Figure 1, the minimal mean cross-validation error is obtained

with 5 PLS components for the Spellman data, 8 PLS components for the

Gasch-Segal data and 2 PLS components for theE. coli data. For comparison, the

(normalized) objective criterion|Y′
ti| of the SIMPLS algorithm is also represented

on Figure 1 (bottom) for different numbers of PLS components. These results are in

good agreement with the cross-validation error: the cross-validation error increases

when PLS components with a low objective criterion are added.
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FIGURE 1 ABOUT HERE

TheY -loadings contained in them× c matrixQ give the projection of thec

”meta”-transcription factors for each of them experiments. As can be seen from

Figure 2 for the Spellman data, both the first and the third meta-factors explain the

periodic part of the expression data, but with different phases. The second meta-factor

corresponds to small oscillations with very short period, whereas the fourth and the

fifth meta-factors reflect long-time trends (slow and step-wise increasing,

respectively). Using Fisher’sg-test as proposed in Wichert et al.27, we detected

statistically relevant periodicity for the four first meta-factors. In Figure 2, the

Y -loadings are also represented for theE. coli data. Whereas the projection of the

first meta-factor is approximately constant over time, the projection of the second

meta-factor increases strongly and (almost) uniformly. Thus, in both data sets, the

PLS algorithm allows to extract from the data meta-factors corresponding to distinct

latent trends.

FIGURE 2 ABOUT HERE

For the Gasch-Segal data, them experiments do not correspond to different time

points but to 13 different stress conditions (see Gasch et al.26 for further details, and

Table 2 for the list of the conditions). In this case theY -loadings may be interestingly

analyzed using Wilcoxon’s rank sum test. For each conditionk and each meta-factor

j, we tested theH0 hypothesis that the median of the projection of thej-th

meta-factor is the same in conditionk as in all the other conditions

({1, . . . , k − 1, k + 1, . . . , 13}). In this situation, Wilcoxon’s rank sum test is

preferable to the well-known two-samplet-test, because some of the conditions

include only a very small number of experiments. The results obtained with ap-value

threshold of 0.05 are displayed in Table 2. The entries 1 and 0 correspond to

significant and unsignificant (FDR adjusted)p-values, respectively. As can be seen

from Table 2, each PLS component carries a particular pattern of associated

significant conditions, indicating that the meta-factors capture a distinctdirectionof

the data.
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TABLE 2 HERE

Inferred transcription factor activities

One of the main objectives of our PLS-based approach is to estimate the true

transcription factor activities (TFAs). Although all the TFAs can be estimated in the

same way for the three data sets, we display only the evolution over time of a few

interesting TFAs for the two time series data sets Spellman andE. coli.

The TFAs (top) and expression profiles (bottom) of 4 well-known cell-cycle

regulators are depicted in Figure 3 for the Spellman data. The TFAs of MCM1, SWI4,

SWI5 and ACE2 show highly periodic patterns, which is consistent with common

biological knowledge. In contrast, theexpressionprofiles of MCM1 and SWI4 are not

periodic (this can be confirmed by Fisher’sg-test27). On the other hand, the

expression profiles of SWI5 and ACE2 are periodic, however not with the same phase

as the inferred TFAs. This may indicate either inhibiting or a phase-shift effect of the

transcription factors on the regulated genes.

FIGURE 3 ABOUT HERE

The remainder of the TFAs and the regulated genes were also tested for periodicity

with theg-test27. After FDR adjustment of thep-values, we obtained that 62 of the

113 transcription factors (= 55%) in the Spellman/Lee data have significantly periodic

TFAs at the level 0.05. In contrast, only 804 of the 4289 genes (= 19%) exhibit

significantly periodic expression profiles.

For theE. coli data the time profiles of the estimated TFAs of the 16 transcription

factors are represented in Figure 4. The TFAs of ArcA, GatR, Lrp, PhoB, PurR, RpoS

decrease over time, the TFAs of CRP, CysB, FadR, IcIR, NarL, RpoE, TrpR and TyrR

remain approximately constant and the TFAs of FruR and LeuO increase strongly.

This is consistent with previous results obtained by NCA10. We point out, however,

that unlike NCA our approach may be applied to any arbitrary network topology,
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whereas the presentE. coli network was chosen specifically to meet the NCA

compatibility criteria9.

FIGURE 4 ABOUT HERE

As can be seen already from the few examples depicted in Figure 3, the TFAs do not

always correlate with the respective expression profiles. We tested this for all the

transcription factors whose expression profile was also included in the data sets. For

the Segal-Gasch data, we found that only 63 from the 90 available transcription

factors exhibit expression profiles that are correlated with TFAs (at the level 0.05 with

FDRp-value adjustment). For the Spellman time series data none of the 78 available

TFA-expression profile pairs are correlated. These results clearly indicate that

methods investigating transcriptional regulation with expression data as their sole

basis are likely to miss potentially important regulation activities.

Gene-regulator coupling factors

Another topic of interest is the identification of false positives in ChIP data.

Following Gao et al.14 we investigate this problem via Pearson’s correlation test. For

each supposed gene-transcription factor pair (according to the dichotomized ChIP

data) we test if the inferred TFA is significantly correlated with the expression profile

of the regulated gene. For the Segal-Gasch data, we obtain that 73% of the 1495

gene-transcription factor pairs are correct (i.e. the TFA is significantly correlated with

the expression profile at the level 0.05 with FDRp-value adjustment). The

concordance with the ChIP connectivity information is much worse for the Spellman

data where only 32% of the 2535 gene-transcription factor pairs are significantly

correlated. Note that the false positive rates as obtained above actually constitutes an

underestimation, since the TFAs are estimated regression coefficients, and even if all

the pairs were false positives, some of them would still yield a high correlation.
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Discussion

Network component analysis combines microarray data with ChIP data with the aim

to enhance the estimation of regulator activities and of connectivity strengths. In this

paper we have presented an approach to NCA based on partial least squares, a

computationally efficient statistical regression tool.

Our PLS framework allows to overcome several drawbacks inherent both in the

classic NCA methods based on matrix decomposition and in the MA-Networker

algorithm. Its simplicity (no iterative step, no variable selection, no stochastic search)

and its flexibility (no distributional assumptions, no topological constraints, no

conditions on the dimensions) compared to competing approaches make it

particularly attractive as an integrative method for analyzing complex regulatory

networks. Moreover, the PLS algorithm not only extracts information on

gene-regulator and on TFA-expression profile pairs but also identifies coherent

meta-factors reflecting the main directions of variation of the data, taking account

both of the expression (̃Y) and the connectivity information (̃X).

Our analysis of biological data shows the versatility of our PLS approach and at the

same time dramatically confirms the necessity of a combined expression-ChIP

analysis for regulatory inference. Particularly striking are the in part drastic

differences between the measured transcription levels, and the PLS-inferred

transcription activities. According to Segal et al.6 some transcription factors may also

not be active in all conditions. Note that this assumption is also automatically taken

into account by our approach.

NCA in general, and the present PLS-based variant in particular, may be criticized for

relying on a simple linear model. While biological analysis to a large extent validates

that assumption, more elaborate regression approaches such as generalized linear

models (GLMs) or generalized additive models (GAMs) are conceivable that,

combined with PLS, may potentially even further enhance our current understanding

of the complex structures governing genetic networks.
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Appendix: Computer program

A computer program (written in the R language28) for estimating true transcription
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Table 1. Characteristics of the analyzed data sets.

Data Reference n p m cmin

Hemoglobin Liao et al.9 7 3 321 3

S. cerevisiae Spellman et al.25 3638 113 24 5

S. cerevisiae Segal et al.6; Gasch et al.26 1993 113 173 8

E. coli Kao et al.10 100 16 23 2

Abbreviations:n, number of genes;p, number of transcription factors;m, number of

arrays resp. measurements.
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Table 2. Significant conditions for the first 8 PLS components of the Segal-Gasch

yeast data set.

Condition\ PLS Component 1 2 3 4 5 6 7 8 Arrays

Heat shock 0 0 0 0 0 0 0 0 1-9,12-15

Variable temperature shocks 0 0 1 0 1 0 0 0 21-25

Hydrogen peroxide 0 0 0 0 0 1 0 0 36-45

Menadione 0 1 0 0 1 1 0 0 46-54

DTT 0 0 0 0 0 0 0 0 55-69

Diamide 1 1 1 0 0 0 1 1 70-77

Sorbitol osmotic shock 0 0 0 0 0 0 0 0 78-89

Amino acid starvation 0 0 1 1 1 0 1 1 91-95

Nitrogen depletion 0 0 1 0 0 1 1 1 96-105

Diauxic shift 0 0 1 0 0 0 1 0 106-112

Stationary phase 1 1 0 1 1 1 1 0 113-134

Continuous carbon sources 1 0 0 0 0 1 0 1 148-160

Continuous temperatures 1 0 0 0 0 0 1 0 161-173
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Figure Legends

Figure 1. Top row:Mean sum of squared prediction error forE. Coli and yeast data

sets over 100 cross-validation runs.Bottom row:maximized objective criterion for

each PLS component.

Figure 2. Y-loadings for theE. Coli (top row) and Spellman (bottom row) data sets.

Figure 3. Time profiles of the TFAs (top row) of four well-known cell-cycle

transcription factors from the Spellman data compared to the respective gene

expression measurements (bottom row).

Figure 4. Time profiles of the 16 estimated TFAs (E. Coli data).
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