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Abstract:
The main problem with localized discriminant techniques is
the curse of dimensionality, which seems to restrict their use
to the case of few variables. This restriction does not hold
if localization is combined with a reduction of dimension. In
particular it is shown that localization yields powerful clas-
sifiers even in higher dimensions if localization is combined
with locally adaptive selection of predictors. A robust local-
ized logistic regression (LLR) method is developed for which
all tuning parameters are chosen data-adaptively. In an ex-
tended simulation study we evaluate the potential of the pro-
posed procedure for various types of data and compare it to
other classification procedures. In addition we demonstrate
that automatic choice of localization, predictor selection and
penalty parameters based on cross validation is working well.
Finally the method is applied to real data sets and its real
world performance is compared to alternative procedures.

Key words: Local logistic regression, discrimination, data
adaptive tuning parameters, selection of predictors, localized
discrimination



1 Introduction

There are various ways of structuring the world of classification and dis-
crimination by distinguishing between parametric and nonparametric ap-
proaches, Bayesian or non-Bayesian approaches or linear and nonlinear
methods. A different type of structuring is based on distinguishing be-
tween global classification rules and observation specific rules.

In global classification rules a set of parameters is estimated from the
total sample of observations. Classification of individual observations is
obtained by transformations of the predictor values which are based on
these estimated parameters. In this sense Fisher’s discriminant analysis,
logistic discrimination, quadratic discriminant analysis, classification trees
and neural networks are global classifiers.

In observation specific approaches the classifier is adapted to each observa-
tion. The k-nearest-neighbourhood classifier (Fix and Hodges, 1951) finds
the k observations from the training set which are closest to the present
predictor value and uses a majority vote among the k neighbours. Al-
though following a common principle, for each observation to be classified
a new classification rule is computed. The same principle, computation
of a specific rule for a specific observation, is used in localized estimation
where a model is fit locally at a given predictor value. Observation specific
rules usually are memory-based, instead of parameters the total sample
is kept in the memory.

In the present paper the focus is on observation specific approaches by
using localization. The technique may be applied to any global classifier.
By using a localized version it turns into an observation specific approach.
In particular we will consider local versions of logistic discrimination. Lo-
cal fitting of binary regression models has been investigated carefully by
Fan and Gijbels (1996) and Loader (1999). Loader also investigated the
use in discrimination. The main problem in using localizing techniques is
the curse of dimensionality (Bellman, 1961), see also Hastie et al. (2001).
Since in high dimensions local estimates are hardly local localization seems
to work properly only for few dimensions. When considering local logistic
regression Loader (1999, Chapter 8) applied the method to examples with
two covariates, in one case, Fisher’s iris data set, he used four variables.
The basic idea how to use localization successfully is to combine it with
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dimension reduction. A strong tool for dimension reduction is the selec-
tion of relevant predictors. Even for global classifiers performance often
improves if only a small subset of informative predictors is used instead of
the whole set of predictors. It is to be assumed that this also works locally.
Moreover, for different values different predictors may carry the relevant
information. Thus in the following dimension reduction is obtained by
locally adaptive selection of predictors. For alternative approaches of lo-
cal dimension reduction see Shaal et al. (1998), Hastie and Tibshirani
(1996). In contrast to these approaches variable selection has the advan-
tage that one obtains information about the relevance of variables even
if the selection is performed locally. In statistical applications the user is
often interested which variables are relevant and have to be collected in
the future.

Localization of a global classifier in certain aspects is similar to boosting
where a global procedure is used repeatedly with different weights on
observations. In the same way as boosting (Breiman, 1999; Friedman
et al. 2000; Friedman, 2001) (often) improves simple global learners,
localization in combination with appropriate dimension reduction should
be able to improve global learners. In the following this is demonstrated
for localized versions of logistic discrimination.

2 Localized classification

Let (xi, yi), i = 1, . . . , nL, denote the training set with x′
i = (xi1, . . . , xip)

denoting measurements on p variables and yi ∈ {1, . . . , k} representing
class membership. The objective is to predict the class membership of an
observation with measurement x by using x and the information from the
training set. We restrict consideration to the two class situation (k = 2)
where for simplicity yi can take values 0 and 1. In the following we focus
on logistic discrimination, although alternative parametric approaches like
linear or quadratic discrimination could be applied in a similar way.

Successful use of localization and selection of predictors depends on tuning
parameters which have to be chosen. These parameters which for example
determine the amount of localization and thresholds for predictor selection
are introduced in the following. They are considered as flexible parameters
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that are chosen data-adaptively.

2.1 Localized logistic regression

The parametric model that is localized is the well known logistic regression
model

log
{

P (yi = 1|xi)
1 − P (yi = 1|xi)

}
= z′iβ

where β is a parameter vector of length m + 1 and zi is a design vec-
tor built from xi. For linear logistic discrimination z′i = (1, x′

i) and for
quadratic logistic discrimination z′i = (1, x′

i, x
2
i1, . . . , x

2
ip) is used. Interac-

tion terms of the form xijxkl are deliberately left out to keep the number
of parameters in β small.

Local versions of the model are obtained by introducing weights into the
(log-)likelihood. For target value x the weighted log-likelihood is given by

lx(β) =
∑

i

(yi log π(xi) + (1 − yi) log(1 − π(xi))) wk(z, zi) (1)

where π(xi) = P (yi = 1|xi) and z, zi are the predictor values con-
nected to x, xi, i.e. z′ = (1, x′), zi = (1, x′

i) in the linear case and
z′ = (1, x′, x2

1, . . . , x
2
p), z′i = (1, x′

i, x
2
i1, . . . , x

2
ip) in the quadratic case. The

locally adaptive weights wk(z, zi) are chosen to depend on the (Euclidian)
distance between the (transformed) target value z and the (transformed)
observation zi and a kernel window

wk(z, zi) = K

( ||z − zi||
dk(z)

)

where the kernel width parameter dk(z) is locally adaptive to the density
at z. It is chosen as the distance to the kth nearest neighbour z(k) of z,
i.e.

dk(z) = ||z − z(k)||.
The order k of the nearest neighbourhood is considered as a flexible pa-
rameter of the algorithm.

In contrast to the use of localizing in smoothing, here the weighting scheme
is based on the distance in the predictor space instead of the distances in
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the space of the original variables. While the spaces are identical in the
linear case the distances differ for the quadratic case. The performance
seems not to depend strongly on the type of weighting. This might be
due to the strong relation between the distances in predictor and variable
space. By partitioning the vectors into z′ = (1, x′, x̃′), z′i = (1, x′

i, x̃
′
i) one

obtains the simple relation ||z−zi||2 = ||x−xi||2+ ||x̃− x̃i||2 which implies
that the distance between z and zi increases with the distance between x
and xi. The use of distances in the predictor space is preferred because it
is easier to handle.

Various kernel functions K can be used. For our investigations we mainly
used the Gaussian kernel

KG(x) = exp(−x2)

and the tricube kernel

KT (x) =
{

(1 − |x|3)3 for|x| < 1
0 otherwise .

We found parameter estimation to be more stable with the Gaussian ker-
nel because even points far away from x receive non-zero weight. On the
other hand for localization methods the tricube kernel has the advantage
that in estimation only points in the neighbourhood are included since all
other points receive weight zero. The tricube kernel in effect uses only
the k nearest neighbours of z. Because of the computational advantages,
in applications the tricube kernel is used.

Parameter estimation is performed by solving the local score equation
sx,k(β) = 0 by iterative Fisher scoring of the form

β̂(s+1)
x = β̂(s)

x + Fx,k(β̂(s)
x )−1sx,k(β̂(s)

x ) (2)

where sx,k(β) = ∂lx/∂β is the local score function which for the logistic
model has the simple form

sx,k(β) =
∑

i

wk(z, zi)zi(yi − πi(β))

with πi(β) denoting the response probability evaluated at β and Fx,k =
E(−∂2lx/∂β∂β′) denoting the weighted Fisher matrix

Fx,k =
∑

i

wk(z, zi)ziz
′
i

∂h(ηi)
∂η
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whith ηi = z′iβ and h(x) = exp(x)
1+exp(x) being the response function of the

logistic regression model. The dependence of the parameter estimates on
the target value shows in the notation “β̂x”. For the asymptotic behaviour
of local estimates see Fan and Gijbels (1996).

2.2 Local reduction of dimensions by selection of pre-
dictors

A second step in localizing the logistic regression model is to do local
selection of predictors. This is based on the assumption that not all
predictors are equally informative on class membership throughout the
space spanned by all predictors.

Kohavi and John (1998) distinguish between the filter and the wrapper
approach for selection of predictors. Algorithms from the first class judge
the usefulness of predictors for classification based on the algorithm used
for classification whereas in the wrapper approach predictors are judged
irrespectively of the classification algorithm. In our case the filter ap-
proach corresponds to evaluating the relevance of the coefficients of the
fitted local model. We considered one-step selection by including only
predictors with standardized coefficients above a certain threshold as well
as a stepwise exclusion of predictors with small standardized cofficients
and re-estimation in each step. Since the stepwise procedure has not
been superior to the one-step selection we decided in favor of the former,
computationally more attractive, alternative. From the class of wrapper
algorithms, that judge predictors irrespectively of the algorithm used for
classification, we employed a weighted variant of the “Relief” algorithm
(Kira and Rendell, 1992) because of its low computational complexity. A
sample of points is taken and for each predictor separately the distance
to the nearest point of the same class and to the nearest point of the
different class is calculated. Predictors that have a larger mean difference
between these two distances are judged to be more relevant. As we could
not find an overall improvement when using this procedure for selection of
predictors instead of the one-step coefficient-based method we are going
to employ the latter approach.

In methods of dimension reduction one often distinguishes between unsu-
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pervised and supervised techniques (e.g. Bishop, 1995) where the former
ignores the response values in the sample whereas the latter explicitly
uses them. Using the parameter estimates of an initial local classifica-
tion model for selection of predictors has the advantage that the response
is taken into account for dimension reduction. This is in contrast to ap-
proaches for local dimension reduction like locally weighted factor analysis
or locally weighted principal component analysis that ignore the response
(see e.g. Schaal et al. 1998).

In the proposed one-step selection procedure the relevance of predictors
is determined by a simple variant of Wald tests. For the local estimates
β̂x at target value x the variance may be approximated by

ˆcov(β̂x) = Fx,k(β̂x)−1.

(see Kauermann and Tutz, 2000). This approximation is used to select
predictors based on the studentized value

cx,k(β̂x,j) =
|β̂x,j|√
v̂ar(β̂x,j)

, j = 1, . . . , m,

where β′
x = (βx,0, βx,1, . . . , βx,m). In a single step those predictors are se-

lected for which cx,k(β̂j) exceeds a value cβ . cx,k(β̂) is a localized version
of the Wald statistic for testing the null hypothesis βj = 0 locally. With cβ

one obtains the second flexible parameter of the algorithm. In the case of
linear logistic discrimination where zi is given by (1, xi1, . . . , xip) predictor
selection refers to the original variables x1, . . . , xp whereas in quadratic lo-
gistic discrimination where zi is given by (1, xi1, . . . , xip, x

2
i1, . . . , x

2
ip) pre-

dictor selection refers to the extended set of variables x1, . . . , xp, x
2
1, . . . , x

2
p.

When the number of predictors has been reduced the weights w(z, zi) are
recalculated for the subspace spanned by the selected predictors and the
estimation is performed for the reduced β-vector of the final local model.
Prediction for target value x then is based on the reduced and re-estimated
model.

As all predictors are judged separately by the statistic cx,k(β̂) predictor
selection resembles a multiple test situation. Instead of a threshold cβ

which is used for single predictors an overall level of significance α could
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be used. To guarantee that the overall level holds the significance level for
the judgment of a single predictor has to be adjusted. We investigated the
use of a sequentially rejective Bonferroni test [19], but could not find any
improvement in performance over the simpler procedure. For that reason
the latter is retained. One might also argue that selection of predictors
should not be guided by a flexible parameter cβ but by a fixed level of
significance (e.g. α = 0.05), because an additional flexible parameter of
the algorithm could increase the danger of overfitting. We compared the
performance of a fixed level procedure to that with a flexible parameter
cβ which is chosen data-adaptively. We found that having a flexible pa-
rameter which is optimized automatically by cross validation techniques
leads to superior performance compared to a fixed level of significance
procedure.

2.3 Computational optimization

The basic algorithm needs some refinements. A problem that occurs is
that parameters tend towards infinity as a result of local complete or quasi-
complete separability (Albert and Anderson). In such cases iterations
are stopped at the point where πi(β̂) gets too close to 0 or 1. Then
the estimates from that stage are used, but we refrain from using the
variance-estimates and so we do no covariate selection.

Additional numerical problems are due to (local) collinearities of the co-
variates. These often cause instability and large estimates of parameters.
To avoid these problems a penalization of the parameter estimates is in-
troduced. The likelihood (1) is modified by a penalty term. The resulting
penalized weighted log-likelihood is

l(β) =
∑

i

(yi log π(xi) + (1 − yi) log(1 − π(xi))) wk(z, zi) − λβ′Pβ. (3)

where P is the penalization matrix and λ determines the strength of the
penalization. Setting λ to 0 would result in the un-penalized likelihood
(1). For the penalty matrix P a simple identity-matrix is used. This leads
to a penalization of β2

j and is similar to logistic ridge regression (Le Cessie
and van Houwelingen, 1992). So λ is the third flexible parameter of the
model.
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The modifed expression for the penalized weighted local score function
and Fisher matrix are

sx,k(β) =
∑

i

wk(z, zi)zi(yi − πi(β)) − 2λPβ

and
Fx,k =

∑
i

wk(z, zi)ziz
′
i + 2λP.

Special attention has to be given to the intercept parameter β0, because
in logistic discrimination it includes the prior probabilities of class mem-
bership. This effect is lost for local estimates. For localized estimates
β0 reflects the predicted local class membership probability. When using
penalization this special parameter cannot be penalized, because penaliza-
tion would force it towards zero, resulting in a 0.5 local class membership
probability that is not always optimal. On the other hand without penal-
ization convergence problems arise. Le Cessie and van Houwlingen (1992)
suggest to center the predictors (in addition to the standardization that
is necessary because of the penalization) and to set the intercept to a
fixed value. As for localized procedures the weights have to be taken into
account the predictors here are centered and standardized in a weighted
way and the intercept is kept fixed at the value of the transformed local
class membership proportion.

For given measurement x and fixed parameters of the algorithm k, cβ and
λ the estimation and prediction procedure may be summarized into:

1. Determine dk(z); calculate weights wk(z, zi) = K( ||z−zi||
dk(z) ).

2. Use iterative Fisher scoring with penalized weighted score function
and Fisher matrix (with penalty λ) to determine β̂.

3. If Fisher scoring converges: Use a subset of predictors where cx,k(β̂j) >
cβ , re-calculate wk(z, zi) for that subspace and repeat the Fisher
scoring with that subset of predictors.

4. Use the (reduced) model to predict class for x.

In order to obtain an applicable algorithm that does not suffer from ad
hoc choices a fully automatic choice of the parameters of the algorithm
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based on cross validation is suggested. The parameters of localized logistic
regression are k (index of the neighbour determining the window size),
cβ (cutoff for predictor selection) and λ (penalty on parameters). Cross
validation is performed by minimizing the error rate in dependence on the
parameters k, cβ and λ.

2.4 Relevance of variables

Users of classifiers are not only interested in the performance of classi-
fiers in terms of misclassification rates. Often they want to know which
variables are relevant and and have to be collected in the future. An
advantage of simple parametric classification like Fisher’s linear discrim-
inant analysis or (global) logistic discrimination is that the relevance of
variables may be evaluated by considering the parameter estimates. For
nonparametric approaches or advanced procedures like boosting the im-
pact of variables is much harder to evaluate. For approaches in boosting
see Friedman (2001).

In the case of linear localizing the approach presented here is explicitly
based on variable selection but in a localized way. The underlying assump-
tion is that different variables are relevant at different points in predictor
space. Nevertheless based on the distribution of predictor values (or their
empirical equivalent, the data x1, . . . , xnL) one might construct global
measures for the relevance of covariates. By considering

Ij(x) =
{

1 if variable xj is selected for prediction of x
0 otherwise

one obtains the simple relevance score

rj =
1

nT

nT∑
i=1

Ij(xi)

where nT is the number of points x ∈ {x1, . . . , nT } for which a prediction
is wanted. This measure reflects how often variable xj is considered to be
relevant in the observed predictor space. Instead of single variables one
might also consider the relevance of combinations or subsets of variables
by defining IS(x) as the indicator function for selection of the subset
S ⊂ {x1, . . . , xp}.
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3 Simulation study

In the following we will compare the localized logistic regression (LLR)
algorithm introduced above to several other procedures for classification.
We use a linear version of LLR (denoted by lLLR) and a quadratic version
(denoted by qLLR). The following procedures are used for comparison:

• LDA: Linear discriminant analysis.

• NNet: Single-hidden-layer neural networks with five units in the
hidden layer. 20 networks are trained with different starting values
and classification is done by committee voting (as suggested e.g. by
Venables and Ripley, 1999).

• 1-NN: 1-nearest-neighbourhood classification (see e.g. Fix and Hodges,
1951).

• 10-NN: 10-nearest-neighbourhood classification.

• Tree: Classification trees (Breiman et al., 1984; Ripley, 1996). Tree
size was determined by 10-fold cross-validation.

• Bag: Bagging with classification trees (Breiman, 1996).

• RF: Random forests (Breiman, 2001, 2002).

These procedures have been chosen because they represent a mix of linear,
partition-based and model-free methods. So it will be instructive to see
in which situations LLR performs similar to which methods. The imple-
mentations used are those from the statistical environment R (Ihaka and
Gentleman, 1996) and we used the standard settings for all procedures.

A threshold of parameters k, cβ and λ that leads to optimal cross valida-
tion scores is obtained by a search on a 3-dimensional grid. Optimization
of these parameters is done here in a global way, i.e. cross validation is
used to find one set of parameters that is going to be used for all predic-
tions based on that set of training data. This global optimization implies
that the same amount of localization, predictor selection and penalization
is needed everywhere in predictor space. To evaluate this assumption
we employed local optimization based on a weighted version of Akaike’s
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information criterion (see e.g. Loader, 1999). This local selection of pa-
rameters led to better results in cases where LLR with global optimization
did not work very well (e.g. example HT4), but worsened performance in
several examples with simple structure. Given the additional computa-
tional burden that results from local optimization at the time of prediction
global optimization is retained.

In situations where parameter search on a 3-dimensional grid is compu-
tationally not feasible procedures that make assumptions on the cross
validation score as a function of the three parameters and optimize them
based on these assumptions can be employed. We investigated a proce-
dure that uses quadratic approximations (Powell, 2002)and found that
it worked well, i.e. in most examples it produced only slightly inferior
results compared to the grid evaluation.

3.1 Example data and results

We used a variety of types of data following Friedman (1994) and Hastie
and Tibshirani (1996). The examples vary with respect to importance
of variables, number of noise variables, distribution of variables per class
and the shape of the class regions. Presentation distinguishes between
normally distributed classes, examples with non-overlapping class regions
and examples with fractioned class regions. For each example 50 replica-
tions have been done.

The size of the learning data was set to nL = 200 and the number of ob-
servations in the test data was set to nT = 1000 for most of the examples.
Both are equally divided between the two classes used in each example.

3.1.1 Classes with covariates from multivariate normal distri-
butions

We start with a simple example (HT1) which is equivalent to example 1
of Hastie and Tibshirani (1996) where two covariates are drawn from a
normal distribution with variance given by var(x1) = 1, var(x2) = 2 and
correlation 0.75. The mean of the two classes is separated by two units
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Figure 1: Relative error rates for two classes with covariates with a 2-
dimensional normal distribution with non-zero covariance. Top panel:
Two covariates (HT1). Bottom panel: Two covariates with additional 14
noise covariates drawn from a standard normal distribution (HT2).

on the first dimension. The top panel of Figure 1 shows the mean relative
error rates for 50 replications with nL = 200 and nT = 1000. Relative
error rates here means that for each replication the error rate of each
procedure is divided by the smallest error rate which for this replication
is achieved by any of the classification methods under comparison. So
for example a procedure that is the best in each replication would always
have the relative error rate one. This type of illustration is used e.g. by
Friedman (2001) and makes it easier to judge relative performance.

Linear discriminant analysis (LDA) is seen to have the best performance.
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This does not come as a surprise because the decision boundary is a
straight line and can be matched very well by LDA. Localized logistic
regression (LLR) is similar to LDA in performance. In most of the repli-
cations the optimization procedure chooses parameters that result in no
localization and no variable selection and so LLR becomes a global logistic
discrimination procedure which is similar to LDA. The local fitting of a
quadratic model is rather stable. The performance is slightly worse than
for the linear localization but still outperforms most of the alternative
procedures.
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Figure 2: LLR (linear) relevance scores of variables for an example where
the first two variables carry information and the other 14 are noise vari-
ables (LLR parameters: k = nL, cβ = 1.6 and λ = 0.42).

To test the variable selection component of LLR we augmented the two
covariates providing information on class membership by 14 noise vari-
ables taken from a standard normal distribution (HT2) as in example 2
of Hastie and Tibshirani (1996). As seen in the bottom panel of Figure
1 LLR again performs very well. When noise variables are included it
also outperforms LDA. Figure 2 shows the relevance scores of the vari-
ables, i.e. which variables have been selected by lLLR. It can be seen
that the variables that carry information on class membership have been
distinctly identified. This taken together with the good performance indi-
cates that selection of predictors succeeds here. Another indicator for the
usefulness of local variable selection is the worsening performance of the
nearest-neighbourhood algorithms due to the addition of noise variables.
They share with LLR the notion of localization, but lack the possibility
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of predictor selection. Moreover, it can be seen from Figure 2 that the
true relevance of variables is uncovered very well by local techniques.

The performance of quadratic LLR is similar to the linear version. This
indicates the even in the presence of a considerable amount of noise the
superfluous complexity of the quadratic version does not result in over-
fitting but is reduced to a level that is appropriate for the underlying
structure.

In the next two examples (F1 and F2), equivalent to example 1 and 2 of
Friedman (1994), the amount of information provided by the variables is
systematically varied. For both classes the covariates are drawn from a
10-dimensional normal distribution. For the class with yi = 0 the data
are generated from standard normal distributions. For the other class the
mean and the variance depend on the variable index. Covariance is set to
zero in both examples.

In the first example (F1) the covariates with the higher index j are in-
tended to be more relevant. So for yi = 1 data are generated from a
normal distribution xi ∼ N(m, C) where

{
mj =

√
j/2

}p

1
, C = diag

{
1/

√
j
}p

1
.

The top panel of Figure 3 shows the relative error rates for 50 replications
with nL = 200 and nT = 1000. The good performance of procedures using
linear combinations of predictors (LLR, LDA and neural networks) indi-
cates that the Bayes decisions boundary can be approximated very well
by hyperplanes. Similar to the example with a two-dimensional normal
distribution without noise LLR does not make much use of localization
and predictor selection and so resembles a global procedure.

In the second example (F2) the mean structure of the second class is
changed to {

mj =
√

p − j + 1/2
}p

1

and so the variables with lower index contain more relevant information
on class membership due to the mean and the variables with higher index
due to the variance. The bottom panel of Figure 3 shows the relative
error rates for this example. Again a hyperplane approximation of the
Bayes decision boundary seems to be very efficient and so the procedures
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Figure 3: Relative error rates for data with covariates from 10-dimensional
normal distributions. Top panel: Variables with higher index carry more
information on class membership (F1). Bottom panel: Variables with low
index have more information due to the mean, variables with higher index
have more information due to the variance (F2).

that employ linear combinations of predictors have the best performance.
Local quadratic approximation in combination with predictor selection
again performs very stable.
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3.1.2 Classes with non-overlapping connected class regions

In the examples presented in this section the variables that carry infor-
mation on class membership define non-overlapping and connected class
regions. In some examples they are augmented by noise variables.

In the first example (F5), which is equivalent to example 5 of Friedman
(1994), the class boundary is defined by a linear combination of the covari-
ates. It is constructed in a way so that all input variables have equal local
relevance everywhere in the space spanned by the covariates. However,
there is a single direction in that space that contains all the discriminating
information. There are p = 10 covariates. The class membership rule is

10∑
j=1

xij ≤ 9.8 ⇒ yi = 0, otherwise ⇒ yi = 1.

The top panel of Figure 4 shows the relative error rates for 50 replications
with nL = 200 and nT = 1000. The procedures that utilize a linear
combination of predictors clearly have the best performance (with LLR
among them). Quadratic approximation is outperformed only by neural
networks (and lLLR).

The situation changes for example F4 (as in example 4 of Friedman, 1994)
where a quadratic combination of covariates is used to define the class
boundary: The bottom panel of Figure 4 shows the results for the class
membership rule

10∑
j=1

x2
ij ≤ 9.8 ⇒ yi = 0, otherwise ⇒ yi = 1

and training sample size of nL = 500 and nT = 1000. The performance of
the linear procedures LDA and neural networks degrades. Localized pro-
cedures show the best performance, only bagging and random forest are
comparable to local linear procedures. Of course quadratic LLR is the
distinct winner in this example, because by utilizing quadratic compo-
nents the quadratic class boundary can be approximated very well. But
it should be noted that linear localization works very well even in this
case. If consideration of localized procedures is limited to linear proce-
dures localization is still the best procedure for this example.
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Figure 4: Relative error rates for classes with non-overlapping connected
class regions defined by a linear (example F5; top panel) or quadratic
(example F4; bottom panel) combination of covariates.

In particularly for the last two examples classification trees show very bad
performance compared to other tree-based procedures. Based on the good
performance of LLR in these examples we conjectured that local models
beyond the capabilities for localization found in classification trees are
required here. We therefore investigated the use of a locally weighted ver-
sion of classification trees. An experimental implementation of localized
trees was found to have improved classification performance, especially
for the example with a linear class boundary. As it did not come close to
the performance of bagging or random forests we did not investigate this
class of models further. Nevertheless this result emphasizes the necessity
of localized models.
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Figure 5: Top panel: Relative error rates for an example with non-
overlapping connected class regions with a boundary defined by a weighted
quadratic combination of covariates (F3). Bottom panel: Relevance
scores of variables from linear LLR predictor selection (LLR parameters:
k = 0.6 · nL, cβ = 0.4 and λ = 0.9)

A variant of the considered data structure is characterized by varying
relevance of predictors. When a weighted contribution of the variables

10∑
j=1

x2
ij/j ≤ 2.5 ⇒ yi = 0, otherwise ⇒ yi = 1.

with training sample size of nL = 200 and nT = 1000 is used (F3), as in
example 3 of Friedman (1994), the performance of linear LLR degrades to
the level of neural networks (top panel of Figure 5). One of the reasons
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for this might be unwaranted exclusion of variables: As is shown in the
bottom panel of Figure 5 covariates with high index that receive less
weight in the definition of the class boundary are excluded in more than
half of the cases from local model building and even the covariates with
low index that carry much information are not always used. This indicates
that the class boundary is too complicated to be approximated very well
by local linear models. In contrast quadratic LLR again performs very
well here due to the quadratic approximation of the class boundary.

In the next three examples (HT5), based on example 5 of Hastie and
Tibshirani (1996), there are four covariates drawn from standard normal
distributions. Class membership is assigned by the following rule:

√√√√ 4∑
j=1

x2
ij ≤ 3 ⇒ yi = 0, otherwise ⇒ yi = 1.

These variables are augmented with a varying number of noise variables
drawn from a standard normal distribution. The top panel of Figure
6 shows the relative error rates for an example with no noise variables.
LLR performs very well here. When adding six standard normal noise
variables the performance of linear LLR decreases relative to procedures
like Bagging and Random Forest (bottom panel of Figure 6). With 16
noise variables the performance decreases even more (not shown). These
results indicate that predictor selection for linear LLR when dealing with
quadratic structure only works well up to a certain amount of noise and
then fails gradually when too many variables (with irrelevant informa-
tion) are present. The performance of quadratic LLR relative to other
procedures does not seem to be impaired by the inclusion of noise vari-
ables. This indicates that selection of predictors works very well if the
local models have the appropriate structure.

3.1.3 Fractioned class structure

The examples presented until now used classes where either observations
were drawn from one distribution per class or one connected class region
was used. In the following we will look at examples with extremely frac-
tioned class regions denoted by HT3 and HT4 similar to examples 3 and
4 of Hastie and Tibshirani (1996).
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Figure 6: Relative error rates for examples where the class region of one
class is a four-dimensional sphere (HT5) without any noise variables (top
panel) or with six noise variables in addition (bottom panel).

In the first example (HT3) the distribution of each of the two classes
is defined as a mixture of six spherical bivariate normal subclasses. The
standard deviation of each subclass is 0.25. The means of the 12 subclasses
are chosen for each replication at random (without replacement) from the
integers [1, 2, . . . , 5] × [1, 2, . . . , 5]. There are 20 observations drawn from
the distribution of each subclass and so there are 140 observations per
class with a total of nL = 240 observations (nT = 960). As seen in the
top panel of Figure 7 all procedures (except LDA) perform very similar
on the data. The best performance is found for LLR and 10-nearest
neighbourhood. The optimal selection of the localization parameter for
LLR leads to very local models here and this indicates that LLR can
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Figure 7: Relative error rates for an extremely fractioned class structure.
Top panel: without noise variables (HT3). Bottom panel: with eight
noise variables (in addition to two variables carrying information on class
membership) (HT4).

become a nearest neighbourhood method in the limiting case.

In the next example (HT4) we augmented the two variables carrying in-
formation on class membership with eight noise covariates having stan-
dard normal distribution. As seen in the bottom panel of Figure 7 the
performance of LLR degrades compared to the partition-based classifica-
tion tree, bagging and random forest procedures. The latter procedures
seem to perform very well in seperating informative variables from noise
variables. When looking at which variables got selected by (linear) LLR
(Figure 8) it can be seen that selection of predictors did not work very
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Figure 8: LLR (linear) relevance scores of variables for data with ex-
tremely fractioned class regions defined by two variables augmented by
eight noise variables. Only the first two variables carry information on
class membership. (LLR parameters: k = 0.2 ·nL, cβ = 0.4 and λ = 0.58)

well for the local models. This may be due to the relatively low number
of data points for each subclass compared to the number of noise vari-
ables. This is an example where LLR local model building does not work
because there are too many noise variables.

3.2 Summary of simulation results

Table 1 gives the mean error rates for all procedures and all examples.
The error rates of the two best procedures in each example are printed in
boldface. Table 2 shows for each procedure used in the simulation study
the ratio between the mean error rate of the procedure and the mean error
rate of quadratic localized logistic regression (qLLR).

It is seen that for different situations different classification methods turn
out to be the best choice, but some procedures react more flexible to vary-
ing data structures. Given that it cannot be expected that one method
is superior in all data situations LLR performs rather well in a variety of
different data structures.
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Table 1: Mean error rates for different simulated data examples and
classification procedures (lLLR: linear localized logistic regression; qLLR:
quadratic LLR; LDA: linear discriminant analysis; NNet: neural networks
with committee voting; 1-NN/10-NN: 1- and 10-nearest-neighbourhood
classification; Tree: cross validated classification trees; Bag: bagging with
trees; RF: random forests).

lLLR qLLR LDA NNet 1-NN 10-NN Tree Bag RF
multivariate
normal

HT1 0.069 0.072 0.065 0.070 0.098 0.074 0.104 0.090 0.086
HT2 0.072 0.074 0.077 0.089 0.252 0.178 0.115 0.114 0.135
F1 0.016 0.017 0.019 0.019 0.028 0.026 0.089 0.050 0.019
F2 0.021 0.023 0.022 0.026 0.037 0.031 0.124 0.052 0.021

no overlap,
connected

F5 0.045 0.046 0.053 0.030 0.236 0.171 0.329 0.214 0.166
F4 0.156 0.021 0.453 0.263 0.339 0.413 0.309 0.213 0.179
F3 0.250 0.074 0.507 0.240 0.354 0.403 0.229 0.180 0.164
HT5
no noise 0.097 0.057 0.496 0.128 0.176 0.223 0.196 0.139 0.126
some noise 0.219 0.056 0.499 0.241 0.280 0.325 0.210 0.146 0.145
more noise 0.312 0.058 0.505 0.397 0.346 0.381 0.218 0.150 0.180

fractioned
class structure

HT3 0.024 0.026 0.330 0.045 0.032 0.023 0.048 0.035 0.031
HT4 0.246 0.194 0.342 0.164 0.281 0.262 0.059 0.053 0.096

1. LLR shows better performance than LDA and nearest neighbour-
hood approaches in almost all examples (one exception for LDA,
one exception for 10-NN). In the examples where LLR and LDA
have similar performance (HT1 and HT2) the optimal LLR local-
ization parameter with respect to the cross validation score is found
to be k = nL. This indicates that local models are not necessary for
these examples and LLR becomes a global procedure. For the few
examples where nearest neighbourhood methods perform well (e.g.
HT3) LLR performance is similar. LLR parameter selection here is
found to favour very local models and so LLR becomes a nearest
neighbourhood method.

2. Surprisingly the comparison to Neural Networks is in favour of LLR,
despite the fact that in contrast to LLR neural networks can model
interactions of covariates directly. Neural networks as used here
perform distinctly better only in two examples. The same holds for
simple trees which are no serious alternative.

3. In all the examples where observations are drawn from a multivari-
ate normal distribution per class, with and without noise the per-
formance of LLR is one of the best of all methods. Trees perform
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Table 2: Ratios of mean error rate relative to the mean error rate of
quadratic localized logistic regression for different simulated data exam-
ples and classification procedures (lLLR: linear localized logistic regres-
sion; LDA: linear discriminant analysis; NNet: neural networks with com-
mittee voting; 1-NN/10-NN: 1- and 10-nearest-neighbourhood classifica-
tion; Tree: cross validated classification trees; Bag: bagging with trees;
RF: random forests).

lLLR LDA NNet 1-NN 10-NN Tree Bag RF
multivariate
normal

HT1 0.96 0.91 0.97 1.36 1.04 1.45 1.25 1.20
HT2 0.97 1.04 1.19 3.39 2.40 1.55 1.53 1.82
F1 0.94 1.12 1.13 1.70 1.58 5.35 2.97 1.11
F2 0.91 0.98 1.15 1.61 1.38 5.44 2.29 0.94

non-overlapping
connected

F5 0.99 1.15 0.66 5.12 3.72 7.15 4.64 3.60
F4 7.32 21.3 12.4 15.9 19.5 14.6 10.0 8.44
F3 3.38 6.84 3.24 4.77 5.44 3.09 2.43 2.21
HT5
no noise 1.72 8.78 2.26 3.11 3.94 3.47 2.46 2.23
some noise 3.89 8.87 4.27 4.98 5.78 3.73 2.58 2.57
more noise 5.42 8.77 6.89 6.01 6.61 3.78 2.60 3.13

fractioned
class structure

HT3 0.92 12.5 1.72 1.20 0.87 1.82 1.32 1.18
HT4 1.27 1.76 0.84 1.45 1.35 0.30 0.27 0.49

very badly, only random forests come close.

4. For the investigated data structures with non-overlapping class re-
gions the only competitors to localizing techniques are advanced
tree methodologies as bagging and random forest. For F3 and HT5
(some noise) random forests outperform linear localizing procedures.
When quadratic terms are included into localizing LLR dominates
distinctly which in these cases is due to the underlying quadratic
structure.

5. For data with fractioned class structure with noise variables tree-
based approaches perform very well in particular if noise variables
are included. Although LLR performs better without noise vari-
ables it is outperformed if much noise is present. Advanced tree
methodology as bagging and random forests clearly perform best in
this case.
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6. The comparison between linear and quadratic LLR shows that the
quadratic version performs only slightly worse in examples where
linear local models work well. This indicates that penalization and
predictor selection succeed in preventing overfitting when quadratic
local models have superfluous complexity. On the other hand there
are several examples (e.g. F3 and HT5) where linear LLR is clearly
outperformed by quadratic LLR and so the latter should be pre-
ferred.

One my argue that these examples are artificially constructed to
favor quadratic models, but it can be seen that even with quadratic
structure in some examples (e.g. F4) linear LLR performs well com-
pared to other procedures. So the examples illustrate for which kind
of structure linear local models are sufficient and for which not.

4 Application to real data

In the previous section simulated examples have been used to investigate
how different types of structure affect the performance of localized logistic
regression (LLR). As simulated data are, by definition, always artificial in
this section we will use real data sets to investigate real world performance.

We use the Australian credit data from the Statlog project (Michie et al.,
1994) and the breast cancer and the sonar data from the UCI machine
learning repository Blake and Merz (1998). One reason for this selection of
data sets is that they have been used in recent work on boosting methods
(Bühlmann and Yu, 2003) and so information on error rates is available
for a class of procedures that is considered to perform very well.

For the Australian credit data the aim is to devise a rule for assessing
applications for credit cards. The data set has 14 covariates and 690 ob-
servations. Due to confidentiality neither the meaning of the covariates
nor the exact meaning of the two classes is known. For the use with LLR,
LDA, neural networks and the nearest neighbourhood methods some vari-
ables had to be transformed from categorical to binary dummy variables,
with categories that have a relative frequency below five percent being dis-
carded. The sonar data contains 208 sonar patterns from either “mines”
or “rocks” at various angles and under various conditions. Each pattern
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is a set of 60 numbers in the range 0.0 to 1.0. The aim is to classify
an object as “mine” or “rock” given a pattern. The breast cancer data
has nine predictors and 699 observations. The classes are “benign” and
“malignant” and the covariates contain various cell characteristics.

Each data set has been split 50 times randomly into a 90% training and
10% test set and all procedures used in the simulation study have been
applied. We used linear instead of quadratic LLR because it is much faster
and shows sufficently good performance. Table 3 shows the error rates
for the three data sets and all procedures used in the simulation study.
In addition the error rates for several boosting procedures as given in
Bühlmann and Yu (2003) are shown. For two data sets results for boosting
with splines in addition to boosting with tree stumps are available.

For the Australian credit data nearest neighbourhood classification rules
yield very bad performance while the rest of the procedures are well com-
parable. For the breast cancer example LLR, 10-nearest neighbourhood
classification and random forests distinctly outperform the rest. It can
be seen that LLR performs well for all three data sets. Special atten-
tion should be given to the superior performance for the sonar data.
The relatively good performance of 1-nearest neighbourhood compared to
10-nearest neighbourhood classification hints at a very local data struc-
ture. The good performance of neural networks and that of boosting with
splines compared to boosting with tree stumps indicates that there is
some kind of linear structure. LLR is able to model local as well as linear
structures. This combination might explain the superior performance.

Although averaging across various splits is preferable for the sonar data
a specific 50% split is used because it is a reference suggested by Gor-
man and Sejnowski (1988) and has been used by Hastie and Tibshirani
(1996). For this specific split one obtains error rates 0.106 (lLLR), 0.240
(LDA), 0.115 (neural networks), 0.087 (1-nearest neighbourhood), 0.288
(10-nearest neighbourhood), 0.269 (trees), 0.192 (bagging) and 0.173 (ran-
dom forests). Thus also for the fixed splitting LLR performs very well.
Hastie and Tibshirani (1996)obtained for their discriminant adaptive near-
est neighbour classifier (DANN) the test error rate 0.048 which is better
than the LLR procedure. When a finer grid is used for parameter se-
lection the LLR error rate reduces to 0.010. This may be interpreted as
an artifact, but it also shows that with some tuning of the parameter
selection procedure the LLR results are well comparable to the results
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Table 3: Error rates for real data and various classification procedures.
The numbers are mean error rates for 50 random splits into a 90% training
and 10% test set. (lLLR: linear localized logistic regression; LDA: linear
discriminant analysis; NNet: neural networks with committee voting; 1-
NN/10-NN: 1- and 10-nearest-neighbourhood classification; Tree: cross-
validated classification trees; Bag: bagging with trees; RF: random forests;
L2Boost, L2WCBoost and LogitBoost: various boosting algorithms with
tree stump and spline base learners).

Australian credit breast cancer sonar
lLLR 0.126 0.029 0.078
LDA 0.146 0.037 0.273
NNet 0.140 0.035 0.165
1-NN 0.325 0.039 0.181
10-NN 0.313 0.029 0.336
Tree 0.153 0.054 0.271
Bag 0.138 0.039 0.212
RF 0.125 0.028 0.164
L2Boost* 0.123 0.037 0.228

with spline* 0.036 0.178
L2WCBoost* 0.123 0.040 0.190

with spline* 0.043 0.168
LogitBoost* 0.131 0.039 0.158

with spline* 0.038 0.148
* from Bühlmann and Yu (2003)

for DANN and other procedures given by Hastie and Tibshirani (1996),
which indicates good local adaptivity.

5 Concluding remarks

A localized discrimination procedure has been proposed which in combina-
tion with local selection of predictors shows promising results. Although
a method cannot be expected to be best for all potential data structures
the performance is surprisingly good over a wide range of data structures.
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While it outperforms tree methodology as bagging and boosting for simple
structures, the latter dominate at least the linear version for quadratically
separated classes with many noise variables. For real data sets, the localiz-
ing methodology works very well with the best performance for two of the
considered data sets. This shows the potential in statistical applications.

It should be noted that the method is not intended to compete with
methods from machine learning which are designed for image processing
or pattern recognition where highly fractioned class structures with many
noise variables might occur. The focus is on statistical applications where
also the relevance of variables might be of interest. For these applications
it is a serious alternative to existing methodology which might supplement
the statistical tool box for classification.
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