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Abstract

This paper introduces an extended multivariate EGARCH model that overcomes the

zero-return problem and allows for negative news and volatility spillover effects, making it

an attractive tool for multivariate volatility modeling. Despite limitations, such as non-

invertibility and unclear asymptotic properties of the QML estimator, our Monte Carlo

simulations indicate that the standard QML estimator is consistent and asymptotically

normal for larger sample sizes (i.e., T ≥ 2500). Two empirical examples demonstrate the

model’s superior performance compared to multivariate GJR-GARCH and Log-GARCH

models in volatility modeling. The first example analyzes the daily returns of three stocks

from the DJ30 index, while the second example investigates volatility spillover effects among

the bond, stock, crude oil, and gold markets. Overall, this extended multivariate EGARCH

model offers a flexible and comprehensive framework for analyzing multivariate volatility

and spillover effects in empirical finance research.
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1 Introduction

In financial decision-making, multivariate GARCH models, especially the CCC or DCC-

GARCH model, are indispensable tools for portfolio selection, risk management, and volatility

spillover analysis. Multivariate modeling of the conditional variance is the first step in this type

of model. However, positive definiteness of the conditional variance must be guaranteed almost

surely at all points in time, which requires all coefficients to be positive. These conditions

may be too restrictive and may exclude some crucial stylized facts such as negative volatility

spillovers. Conrad and Karanasos (2010) proposed less restrictive non-negativity conditions,

which were further extended by Karanasos et al. (2023) in the context of the MEM model1,

allowing some elements of the GARCH coefficients to be negative. However, these conditions

are often violated in practice.

If the non-negativity conditions are violated in a multivariate model estimation, several

solutions are available. One is to ignore the positivity condition and specify an unrestricted

model (e.g., Engle and Gallo 2006). However, this can result in an invalid model, leading to

negative volatility forecasts (see Karanasos et al., 2023 for details). Another solution is to use

a multivariate exponential type of GARCH model, which models logarithmic transformations.

Two types of models are available: the multivariate EGARCH model, inspired by Nelson (1982),

and the multivariate Log-GARCH (LGARCH) model, inspired by Geweke (1986) and Bauwen

and Giot (2000).

The exponential specification does not require non-negativity constraints, allowing the ARCH

and GARCH own and cross coefficients to be negative. This enables not only negative volatil-

ity (conditional) spillovers but also negative shock (unconditional) spillover effects, making it

more flexible than the GARCH formulation. While the multivariate LGARCH (or Log-MEM)

model has been used empirically in several recent papers, such as Sucarrat, Gronneberg, and

Escribano (2016), Francq and Sucarrat (2017), Taylor and Xu (2017) and Xu (2024b), the lit-

erature on multivariate EGARCH is limited. The term ”multivariate” EGARCH found in the

literature (e.g., Koutmos and Booth, 1995; Jane and Ding, 2007; Hansen and Huang, 2016 Asai

and McAleer, 2022) typically refers to univariate EGARCH-X models, where X signifies the

1MEM denotes Multiplicative Error Model, which was originally proposed by Engle and Gallo (2006) and
extended to the multivariate MEM by Cipollini et al. (2013) and multivariate Log-MEM by Taylor and Xu
(2017).
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inclusion of additional exogenous variables.

To fill the gap in the literature, we propose an extended multivariate EGARCH model.

We use the term ”extended” following He and Teräsvirta (2004) and Conrad and Karanasos

(2010), because the off-diagonal coefficients of the ARCH term and the GARCH term are not

restricted to zero. It is also notable the proposed model serves as an exponential version of

Conrad and Karanasos (2010)’s multivariate GARCH model and can be seen as a special case

within Karanasos et al.(2023)’s mixture model. To estimate the model, we propose a QML

estimation. Similar to the univariate EGARCH model, establishing consistency and asymptotic

normality of QML estimates is infeasible, due to the difficulty with the invertibility condition,

which involves writing ln(ht) as a well-defined function of past observables (see for example,

Wintenberger (2013) for the EGARCH(1, 1) model discussion). Instead of establishing asymp-

totic properties, we use Monte Carlo simulations to examine the finite sample properties of the

QML estimator. Our simulation results demonstrate that the QML estimator approaches con-

sistency and normality when the sample size is relatively large (i.e., T ≥ 2, 500). However, when

the sample size is small (i.e., T ≤ 1, 000), the QML estimator can be biased and deviate from

normality. Fortunately, GARCH models are often used in empirical finance, where daily data is

available, and sample sizes are sufficiently large. For example, for daily data from 2000 to 2021,

the sample size is close to 5,000, making QML estimators approach consistency and normality. If

estimation is not an issue, the multivariate EGARCH model offers distinct benefits. Compared

to the multivariate GARCH model, it allows for negative news and volatility spillover effects.

Additionally, it does not suffer from problems caused by zero-valued observations that plague

the multivariate LGARCH model. Therefore, we conclude that the multivariate EGARCH

model is a more attractive model for studying volatility in empirical finance.

We include two empirical examples to illustrate the multivariate EGARCH model. In the

first example, we compare the forecasting performance of the multivariate GARCH, LGARCH,

and EGARCH models with a DCC structure for conditional correlation for the daily returns

of three stocks from the DJ30 index. Our results show that the multivariate EGARCH model

outperforms the GARCH and LGARCH models in forecasting volatility and covariance. In

the second example, we illustrate how the multivariate EGARCH model can be used to study

volatility spillover effects. With bond, stock, crude oil, and gold markets, we find significant
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negative news and volatility spillover effects. We also observe more than 100 zero-valued obser-

vations in the return series, indicating that the multivariate EGARCH model is more suitable

for studying (negative) volatility spillover effects in this case.

The remainder of the paper is organized as follows. Section 2 introduces the multivariate

EGARCH models. Section 3 discusses the QML estimation and the properties of the QML

estimator. Section 4 presents Monte Carlo simulations. Section 5 includes two empirical exam-

ples. Section 6 concludes the paper. A supplementary appendix provides additional theoretical

results.

2 Multivariate Exponential GARCH model

Following He and Teräsvirta (2004) and Nakatani and Teräsvirta(2009), consider the follow-

ing vector stochastic process:

rt = εt (1)

εt = Dtet (2)

where rt is a stochastic (N × 1) vector of financial returns and Dt = diag
(
h
1/2
1,t , . . . , h

1/2
N,t ) is a

diagonal matrix of conditional standard deviations of εt. The sequence {et} with the stochastic

vector et = [e1,t, . . . , eN,t]
′ is a sequence of independent and identically distributed variables

with mean 0 and time-invariant positive definite correlation matrix P = [ρij ] with ones on the

main diagonal. With these assumptions,

E [εt | Ft−1] = 0 and E
[
εtε

′
t | Ft−1

]
= Ht = h

1/2
i,t h

1/2
j,t ρij , (3)

where Ft is the information set up to and including time t, and Ht = DtPDt. Matrix Ht is

the conditional covariance matrix and P is the constant conditional correlation matrix of the

process {εt}.

This specification is independent from the specification of a conditional correlation matrix.

It can therefore be employed for CCC as well as for DCC GARCH models, leading to the same

estimators of the individual volatilities. In the empirical analysis, an example is provided to

demonstrate the inclusion of dynamic conditional correlation estimation.
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The extended multivariate EGARCH(p, q) model of εt takes the form

lnht = ω +

p∑
i=1

Ai|et−i|+
q∑

j=1

Bj lnht−j +

p∑
i=1

Γiet−i. (4)

where ω is an (N × 1) vector, and Ai, Bj and Γi are (N ×N) matrices.

If we define B(L) = (I −
∑q

j=1BjL
j) and A(L) =

∑p
i=1(AiL

i) and Γ(L) =
∑p

i=1(ΓiL
i),

equation (4) can also be written as

B(L) lnht = ω +A(L)|et|+ Γ(L)et. (5)

Equations (1), (2) and (4) jointly define the N -dimensional extended CCC-EGARCH (p, q)

model. In the multivariate EGARCH model, ht is guaranteed to have positive elements for

all t, without any restriction on the elements in Ai and Bj for each i and j. This guarantees

that, together with the positive definiteness of P, the conditional variance matrix Ht is positive

definite for all t.

For comparison purpose, we also suggest the multivariate asymmetric LGARCH(p, q) model

for εt, which takes the form

lnht = ω +

p∑
i=1

(Ai + Γist−i) ln ε
2
t−i +

q∑
j=1

Bj lnht−j . (6)

where st = 0 if rt ≤ 0.

If we define B(L) = (I −
∑q

j=1BjL
j) and A(L) =

∑p
i=1(Ai + Γist−i)L

i, equation (6) can

also be written as

B(L) lnht = ω +A(L) ln ε2t . (7)

Equations (1), (2) and (6) jointly define the N -dimensional extended CCC-LGARCH (p, q)

model. It should be noted that if both Ai and Bj are diagonal for all i and j, the variance

equation in (4) collapses into the N univariate EGARCH (p, q) models of Nelson (1982), the

variance equation in (6) collapses into the N univariate LGARCH (p, q) models of Geweke

(1986).

To simplify our discussion and because first-order models adequately describe many het-

eroskedastic time series in most empirical applications, we will focus on the case of p = q = 1
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and a diagonal Γ, unless otherwise stated. The CCC-EGARCH(1, 1) model has N(5N + 2)/2

parameters, with N(2N + 2) parameters appearing in ht and the remaining N(N − 1)/2 in P.

The multivariate EGARCH process defined in (4) is considered stationary if the modulus

of the roots of |I − B̃1z − B̃2z
2 . . . B̃qzq| = 0 are all greater than one. In the case of the

univariate EGARCH(1,1) process, the stationarity condition is that the largest eigenvalue of

B is smaller than unity. However, the invertibility condition, which is to express ln(ht) as a

well-defined function of past observables, cannot be verified analytically2. The stationarity and

invertibility conditions of the multivariate LGARCH model are well established and can be

found in Appendix A.2 of Taylor and Xu (2017).

3 Quasi-maximum likelihood estimation (QMLE)

In this section, we will derive a quasi-maximum likelihood (QML) estimation method for

the multivariate EGARCH model.

We assume et in equation (2) follows a multivariate normal distribution, et|Ft−1 ∼ N(0,P).

Let θ′ = [θ′
1,θ

′
2], where θ′

1 = vech(P), operator vech stacks the lower triangular (without

diagonal) elements of a symmetric (N ×N) matrix into a N × (N −1)/2 vector and θ′
2 contains

the parameters in εt. The log-likelihood function is given by:

l(θ) =
∑T

t=1
ln f(εt|θ),

where

ln f(εt|θ) = −N

2
ln(2π)− 1

2
ln |DtPDt| −

1

2
ε′t (DtPDt)

−1 εt (8)

= −N

2
ln(2π)− 1

2
ln |Dt| −

1

2
ln |P| − 1

2
ε′tD

−1
t P−1D−1

t εt

= −N

2
ln(2π)− 1

2
ln |Dt| −

1

2
ln |P| − 1

2
e′tP

−1et

where Dt = diag(
√
h1,t,

√
h2,t, ...,

√
hN,t).

Additionally, if the DCC specification is employed for the conditional correlation, the correla-

tion matrix P can be replaced by the identity matrix in this stage estimation. The log-likelihood

2See Wintenberger (2013) and Martinet and McAleer (2018) for further discussion in the univariate context
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function at time t is then

ln f(εt|θ1) = −k

2
ln(2π)− 1

2
ln |Dt| −

1

2
e′tet. (9)

In the second stage, the dynamic correlation matrix Pt can be estimated using êt, where êt =

εt⊙ ĥ
−1/2
t and ĥt is the estimated conditional variance evaluated at θ1 = θ̂1, which is obtained

from the first stage estimation.

This is a standard log-likelihood estimation approach, which can also be applied to multi-

variate GARCH and LGARCH models. The consistency and asymptotic normality of the QML

estimator θ̂ for GARCH and LGARCH models are derived from a more general maximum like-

lihood theory, as found in Nakatani and Teräsvirta (2009) and Francq et al. (2013). Detailed

asymptotic properties are provided in the appendix of this paper.

However, the consistency and asymptotic properties of the QML estimator θ̂ for the multi-

variate EGARCH model are not available under general conditions. A limitation in the devel-

opment of asymptotic properties lies in the lack of an invertibility condition, which would allow

expressing lnht as a well-defined function of past observables. Wintenberger (2013) and Kyr-

iakopoulou (2015) demonstrates the invertibility conditions for the univariate EGARCH(1,1),

while Hafner and Linton (2017) and Martinet and McAleer (2018) present the invertibility

conditions for the univariate EGARCH(p, q). These conditions are complex and require strong

assumptions, which are often non-verifiable analytically. Xu (2014b), through Monte Carlo sim-

ulations, shows that the QML estimator of the exponential HEAVY model exhibits good finite

sample properties when the sample size is sufficiently large. Given these challenges, instead

of relying solely on asymptotic theory, we conduct Monte Carlo simulations to investigate the

finite sample properties of the QML estimator.

4 Monte Carlo Simulation

As the asymptotic properties of the QML estimator of the multivariate LGARCH model

are well established (Sucarrat et al. 2016, Francq and Sucarrat 2017, and Taylor and Xu 2017),

we will estimate both the multivariate EGARCH and LGARCH models and compare their

finite sample properties in a Monte Carlo simulation. We adopt the bivariate EGARCH and
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LGARCH models given by (4) and (6), respectively. We use sample sizes of 1000, 2500, 5000,

and 10,000 for each data-generating process (DGP), and the disturbance term is generated

under a multivariate Gaussian distribution. We conduct a Monte Carlo simulation experiment

with 1000 repetitions.

The simulations are carried out for three different multivariate DGPs, corresponding to three

levels of persistence. The intercept vector ω =[0.1, 0.1]′ , the correlation parameter ρ = 0.5, and

asymmetric parameter matrix Γ =

−0.02 0

0 −0.02

 for the EGARCH model and −Γ for the

LGARCH model. The remaining parameter values in the DGPs are detailed in Table 1. The

multivariate EGARCH DGPs exhibit the following dynamic properties: DGP 1 has moderate

volatility persistence, DGP 2 has very high persistence, and DGP 3 has low persistence. In DGPs

1 and 2, one of the off-diagonal coefficients has a negative value (β21 = −0.02). In DGP 3, this

off-diagonal coefficient has a large negative value (β21 = −0.2). For the multivariate LGARCH

model, the parameter values in each DGP are the same as the corresponding EGARCH DGP,

except for the diagonal elements in matrix B, which are selected to ensure that the persistence

level of the LGARCH model is similar to that of the EGARCH model in each DGP. Notably,

these parameter values satisfy the stationary condition and are consistent with Nakatani and

Teräsvirta (2009)’s experiments.

After generating the return data, we estimate the model parameters using the QML method

proposed in the previous section. Table 2, 3, and 4 present the Monte Carlo simulation results.

We observe that the QML estimates of the parameters in the LGARCH model are generally

unbiased, even when the sample size is small (T = 1000). As the sample size increases, the biases

tend to approach zero, and the standard deviation decreases. However, the QML estimates of

the parameters in the EGARCH model exhibit some degree of bias when the sample size is small

(T = 1000). In particular, the persistent parameters (β11 and β22) are underestimated, and the

bias can be significant, as observed in GDP 2 and GDP 3. Additionally, the estimates of a11 and

a22 are downward biased. As the sample size increases (T ⪰2500), most of the biases disappear.

It is also worth noting that the standard deviation of the estimated EGARCH parameters is

much larger than that of LGARCH.

We then construct histograms for two persistence parameters (a11 and β11) and two volatility
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spillover parameters (a21 and β21) derived from DGP 1 for various sample sizes3, as displayed in

Figure 1 to 4. The p-values of the Jarque-Bera (JB) normality test are reported alongside each

histogram. For smaller sample sizes (i.e., T = 1000), the LGARCH model estimates exhibit

closer approximation to normality than their EGARCH counterparts. As demonstrated by the

JB test, the estimated a11 and a21 from the LGARCH model are normally distributed, while

they are not in the case of the EGARCH model. As the sample size increases (T ≥ 2500),

histograms reveal that both EGARCH and LGARCH parameter estimates approach normality,

which is further supported by the results of the Jarque-Bera (JB) test. The sole exception is

the estimated β11 from the EGARCH model. The histogram of β11 estimates derived from

the EGARCH model deviates significantly from normality, particularly when the sample size

is 1000; the histogram exhibits left-skewedness and resembles an exponential distribution. In

numerous instances, the estimated β11 reaches the upper bound (0.9999). The JB test rejects

the normality of β11 for all sample sizes.

In summary, the simulation results reveal that: 1) LGARCH model estimates are consistent

and approximate normality even for small samples; 2) the LGARCH model exhibits a smaller

standard deviation than the EGARCH model; 3) EGARCH model estimates display bias in

small samples but become unbiased for relatively large samples; 4) EGARCH model estimates

approach normality only for sample sizes of 2500 or greater. Overall, the LGARCH model

proves more tractable than the EGARCH model (as also corroborated by Francq et al., 2013)

in small samples. For sufficiently large sample sizes, both LGARCH and EGARCH models’

estimates are consistent and asymptotically normal.

We also generated disturbance terms from a multivariate t distribution with varying degrees

of freedom and conducted the Monte Carlo simulation again. The outcomes were generally in

line with our previous findings, with the sole distinction being an increased standard deviation

for all cases, as anticipated.

5 Empirical Analysis

In this section, we present two empirical examples.

3Histograms of parameters from other DGPs, which are similar in nature, can be provided upon request.
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5.1 Example 1: Conditional covariance matrix of returns of three stocks

from DJ30

In our first example, we estimate a three-dimensional EGARCH model with a DCC for the

conditional correlation. We analyze daily stock returns of three stocks from the DJ30 index

(AXP, GE, IBM) within the timeframe of 02/01/2001 to 16/04/2018, comprising 4092 trading

days. For comparison purposes, we also estimate four additional multivariate volatility models.

Model 1 and Model 2 are extended multivariate GARCH models. We adopt the GJR-GARCH

type for asymmetry, resulting in multivariate GJR-GARCH models. Model 1 is a GJR-GARCH

model with all parameters restricted to be nonnegative, following the constraints imposed by

Bollerslev. This model is denoted as GJR-GARCH1. Model 2 is a multivariate GJR-GARCH

model with constraints imposed by Karanasos et al.(2023), allowing at most two parameters in

matrix B to be negative. We denote this model as GJR-GARCH2. Model 3 is the multivariate

asymmetric power GARCH (APGARCH) model, with the same constraints as Model 2. Model

4 is the multivariate LGARCH model, and Model 5 is the multivariate EGARCH model. For

Models 4 and 5, no restrictions are imposed on the parameter set. After estimating the variance

process for the multivariate GARCH models, we estimate the correlation process using the DCC

model. Subsequently, we use these models to forecast volatility, correlation, and covariance,

comparing their forecasting performance.

In estimation, we follow Francq et al. (2013) and impose a lower bound (1e-5) for the rt

so that ln(rt) can be calculated in the multivariate LGARCH model. The estimation results

are reported in Table 5 and 6. Based on the log-likelihood comparison, the EGARCH model

exhibits the best fit with the volatility data, as it possesses the smallest Bayesian Information

Criterion (BIC). From the LGARCH and EGARCH model estimates, we identify negative

elements in matrix B, suggesting negative interactions between the volatilities of the three

assets. The second-stage estimate are remarkably close between the four models. Once again,

the EGARCH model demonstrates a superior fit to the correlation data compared to the other

models, having the smallest BIC values in the dynamic conditional correlation estimation. It is

worth noting that the LGARCH and EGARCH models have the same number of parameters;

thus, any model selection criterion (e.g., BIC) comparison is equivalent to the log-likelihood

comparison.
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A comprehensive comparison among non-nested models can be conducted by evaluating

the one-step ahead in-sample and out-of-sample forecasting performance of the models, using

the Model Confidence Set (MCS) of Hansen et al. (2003) with the aim of detecting a set of

models exhibiting the best forecasting performance. For this purpose, we adopt two statistical

loss functions: the first loss function is the root-mean-squared error (RMSE) based on the

Frobenius norm (see Chiriac and Voev, 2011, Golosnoy et al., 2012, and Bauwens and Xu 2023)

of the forecast error, while the second is a quasi-likelihood (QLIK) loss function (see Noureldin

et al., 2012). Since conditional covariance is unobservable, our analysis relies on the realized

covariance matrix as a proxy. This approach provides a consistent ranking of volatility models

in the sense of Patton (2011) and Laurent et al. (2013). The realized covariance is calculated

using 5-minute intraday returns, such that:

RCt =

m∑
j=1

rj,tr
′
j,t. (10)

where rj,t is the corresponding j-th intra-daily return vector at time j on day t, where j =

1, 2, ...,m. Assuming, for instance, six and a half hours of trading per day and five-minute

returns, m = 78 4. It is important to note that with the log-linear specification, one would need

to account for distributional aspects of log volatility to produce an unbiased forecast of volatility.

However, this should not pose a significant challenge since the log-linear Gaussian specification

appears to work well with the data. To compute out-of-sample forecasts, each model is re-

estimated every 5th observation based on rolling sample windows of 3,000 observations, resulting

in a total of 1092 out-of-sample forecasts.

The loss values and MCS test results are reported in Tables 7 and 8. For the in-sample

forecasting of conditional covariance, only the EGARCH model is included in the MCS. The

LGARCH and APGARCH models rank second, while GJR-GARCH2 performs better than

GJR-GARCH1. Similar results are observed when forecasting conditional variance. The in-

sample forecast comparisons indicate that the EGARCH model outperforms the other models,

a finding consistent with the in-sample likelihood statistics.

For out-of-sample forecasting of conditional covariance, the EGARCH, LGARCH, and AP-

4We use the same data as Bauwens and Xu (2023) and the data description can be found in appendix 1 of
Bauwens and Xu (2023)
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GARCHmodels are included in the MCS when using the RMSE or QLIK loss functions. The two

GJR-GARCH models are not included in the MCS. Similar results are observed when forecast-

ing conditional variance. The out-of-sample forecast comparisons indicate that the EGARCH

model still performs best, but LGARCH and APGARCH perform equally well.

In summary, the forecasting comparison reveals that the exponential specification of multi-

variate volatility models performs better than the linear specification when forecasting condi-

tional variance and conditional covariance. The multivariate EGARCH model, proposed in this

study, is among the best-performing models for both in-sample and out-of-sample forecasting.

5.2 Example 2: Volatility spillover effects between stock, bond, crude oil

and Gold market

In this empirical analysis, we apply a CCC-EGARCH model to study the volatility spillover

effects among four financial markets: Bond, Stock, Crude Oil, and Gold. These markets/assets

form a straightforward portfolio for risk hedging. Considering that negative volatility spillover

might be present in both ARCH and GARCH terms (Baur and Lucey, 2010; Arouri, et al., 2011),

we use a multivariate EGARCH model to account for potential negative news and volatility

spillover effects. The multivariate LGARCH model is not employed due to the presence of

numerous zero return observations in the sample (see Table 9).

The data, priced in USD, is obtained from DataStream. We use the S&P 500 composite

index to represent the US stock market and the US 10-year Treasury bond yield for bonds.

Crude oil and gold prices correspond to the spot prices of Brent Crude Oil and the London

bullion market, respectively. The sample period ranges from January 3, 2001, to October 20,

2021, comprising 5,689 trading days.

Table 9 reports the statistics of the four return series, while Figure 5 displays their time

series plots. Bonds exhibit the lowest average return at 0.72%, while Gold presents the highest

at 3.18%. Crude oil demonstrates the most substantial negative and positive returns (-44.16%

during the Covid-19 crisis) and greater volatility compared to the other markets. The skewness

and kurtosis statistics reveal that all return series are negatively skewed and highly leptokurtic.

The Ljung Box (LB) statistics for squared return series up to 15 lags indicate significant serial

autocorrelations. There are 261, 204, 171, and 293 zero return series observations in the sample
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for bond, stock, crude oil, and gold markets, respectively, suggesting that the LGARCH model

is not suitable for studying volatility spillover effects.

The estimation results, reported in Table 10, show several individually significant effects,

including the link from Bond to Stock markets and vice versa. Bidirectional spillovers appear

in both ARCH and GARCH terms. We also detect some negative and significant effects. For

instance, the Bond market has a negative and significant (a12 = −0.027) news spillover effect

on the Stock market. The Gold market exerts a negative and significant (β34 = −0.007)

volatility spillover effect on the Crude Oil market, while the Crude Oil market has a negative

and significant (β43 = −0.011) volatility spillover effect on the Gold market. Additionally, Bond

and Gold display significant news spillover effects on all three markets. The negative spillovers

from bonds and gold to other markets align with the stabilizing role of bonds and gold in

financial markets. For example, increased volatility in bonds could potentially be associated

with reduced volatility in the stock market. This aligns with the safe-haven feature of bonds

(Bredin et al., 2015). Investors seeking safety in bonds may interpret stock market crashes as

buying signals in the bond market. Asymmetric effects are observed in the Stock, Crude Oil,

and Gold markets but not in the Bond market. The last row reports the largest eigenvalues of

the companion matrix (B), equal to 0.9958, suggesting that the estimated models are stationary.

A total of 7 estimated elements in matrices A and B are negative, and 3 of these are signif-

icant. This finding implies that employing a multivariate GARCH model with non-negativity

constraints may lead to the omission of crucial information related to negative spillover effects.

The multivariate LGARCH model requires positivity for all observations, which is not fulfilled

in this example. Consequently, the multivariate EGARCH model emerges as a superior alter-

native, as it accommodates both negative spillover effects and the occurrence of zero returns.

6 Conclusion

In conclusion, this paper presents an extended multivariate EGARCH model, which offers

considerable advantages in empirical finance research. This model accommodates negative news

and volatility spillover effects while handling zero-valued observations, giving it a clear edge over

multivariate GARCH and Log-GARCH models. Despite the model’s promising features, one

must acknowledge its limitations, particularly regarding the asymptotic properties of the QML
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estimator and the model’s invertibility. Our Monte Carlo simulations reveal that the standard

quasi-maximum likelihood estimator performs well when sample sizes are large (i.e., T ≥ 2500).

However, it can exhibit significant bias in smaller samples (i.e.,T ≤ 1000).

Our empirical examples showcase the multivariate EGARCH model’s potential in practical

applications, highlighting its superior performance compared to other models. Nevertheless,

further research is necessary to address its limitations in small-sample contexts. One potential

avenue for future work involves developing a mixture GARCH model that combines LGARCH

and GARCH specifications, utilizing GARCH when zero observations are present and LGARCH

in other cases. This mixture model is still a work in progress (Karanasos, Xu, and Yfanti, 2024).

It is also notable that the multivariate GARCH, EGARCH, and LGARCH models would be

special cases of this mixture model.

Overall, the extended multivariate EGARCH model presented in this paper contributes to

the empirical finance literature by providing a more comprehensive and flexible framework for

analysing multivariate volatility and spillover effects.
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Table 1 – Simulation - Data generating process

Penal A. EGARCH model Data generating process
DGP 1 DGP 2 DGP 3

A

(
0.10 0.01
0.03 0.20

) (
0.03 0.01
0.03 0.05

) (
0.10 0.01
0.03 0.20

)

B

(
0.90 0.04
−0.02 0.90

) (
0.98 0.04
−0.02 0.95

) (
0.55 0.04
−0.20 0.60

)
Penal B. LGARCH model Data generating process

DGP 1 DGP 2 DGP 3

A

(
0.10 0.01
0.03 0.20

) (
0.03 0.01
0.03 0.05

) (
0.10 0.01
0.03 0.20

)

B

(
0.80 0.04
−0.02 0.70

) (
0.95 0.04
−0.02 0.90

) (
0.45 0.04
−0.20 0.60

)

Table 2 – Simulation results: DGP1

EGARCH Simulation results
T=1000 T=2500 T=5000 T=10000

True Mean Std. Mean Std. Mean Std. Mean Std.
a11 0.100 0.086 0.071 0.097 0.033 0.099 0.022 0.099 0.015
a12 0.010 0.005 0.076 0.009 0.035 0.009 0.023 0.010 0.016
a21 0.030 0.029 0.071 0.029 0.034 0.030 0.024 0.030 0.016
a22 0.200 0.183 0.071 0.195 0.034 0.199 0.023 0.200 0.017
β11 0.900 0.874 0.155 0.886 0.070 0.894 0.033 0.897 0.021
β12 0.040 0.053 0.091 0.046 0.043 0.043 0.023 0.041 0.015
β21 -0.020 -0.014 0.197 -0.023 0.076 -0.023 0.039 -0.022 0.024
β22 0.900 0.887 0.099 0.896 0.045 0.898 0.024 0.899 0.017
γ1 -0.020 -0.020 0.062 -0.021 0.016 -0.020 0.010 -0.020 0.008
γ2 -0.020 -0.020 0.049 -0.021 0.017 -0.021 0.012 -0.020 0.008

LGARCH Simulation results
T=1000 T=2500 T=5000 T=10000

True Mean Std. Mean Std. Mean Std. Mean Std.
a11 0.100 0.100 0.017 0.099 0.010 0.100 0.007 0.100 0.005
a12 0.010 0.009 0.014 0.010 0.009 0.009 0.006 0.010 0.004
a21 0.030 0.030 0.016 0.030 0.010 0.030 0.007 0.030 0.005
a22 0.200 0.199 0.019 0.200 0.012 0.200 0.008 0.200 0.006
β11 0.800 0.798 0.030 0.800 0.017 0.799 0.012 0.800 0.009
β12 0.040 0.043 0.023 0.041 0.015 0.041 0.010 0.040 0.007
β21 -0.020 -0.024 0.035 -0.022 0.022 -0.021 0.015 -0.021 0.010
β22 0.700 0.701 0.027 0.700 0.017 0.700 0.012 0.700 0.008
γ1 0.020 0.020 0.018 0.020 0.010 0.020 0.007 0.020 0.005
γ2 0.020 0.020 0.021 0.019 0.013 0.021 0.009 0.020 0.007

19



Table 3 – Simulation results: DGP2

EGARCH Simulation results
T=1000 T=2500 T=5000 T=10000

True Mean Std. Mean Std. Mean Std. Mean Std.
a11 0.030 0.142 0.182 0.074 0.023 0.049 0.011 0.037 0.007
a12 0.010 -0.042 0.153 -0.004 0.075 0.006 0.012 0.009 0.008
a21 0.030 0.040 0.156 0.038 0.080 0.033 0.015 0.031 0.010
a22 0.050 0.085 0.105 0.066 0.029 0.057 0.016 0.053 0.011
β11 0.980 0.883 0.315 0.962 0.110 0.975 0.033 0.979 0.009
β12 0.004 0.081 0.243 0.023 0.092 0.012 0.036 0.005 0.011
β21 -0.020 -0.033 0.211 -0.038 0.100 -0.029 0.063 -0.024 0.015
β22 0.950 0.914 0.174 0.929 0.111 0.940 0.069 0.946 0.018
γ1 -0.020 0.021 0.027 0.020 0.010 0.020 0.006 0.020 0.004
γ1 -0.020 0.021 0.030 0.020 0.013 0.020 0.008 0.020 0.005

LGARCH Simulation results
T=1000 T=2500 T=5000 T=10000

True Mean Std. Mean Std. Mean Std. Mean Std.
a11 0.030 0.052 0.008 0.040 0.004 0.035 0.003 0.032 0.002
a12 0.010 0.009 0.008 0.010 0.005 0.010 0.003 0.010 0.002
a21 0.030 0.031 0.010 0.029 0.005 0.030 0.004 0.030 0.003
a22 0.050 0.057 0.012 0.053 0.007 0.052 0.005 0.051 0.003
β11 0.950 0.925 0.014 0.939 0.006 0.944 0.005 0.947 0.003
β12 0.004 -0.002 0.021 0.000 0.010 0.002 0.006 0.004 0.004
β21 -0.020 -0.007 0.018 -0.014 0.010 -0.017 0.006 -0.019 0.004
β22 0.900 0.888 0.024 0.895 0.012 0.897 0.008 0.898 0.006
γ1 0.020 0.020 0.006 0.020 0.003 0.020 0.002 0.020 0.001
γ2 0.020 0.020 0.011 0.020 0.006 0.020 0.004 0.020 0.003
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Table 4 – Simulation results: DGP3

EGARCH Simulation results
T=1000 T=2500 T=5000 T=10000

True Mean Std. Mean Std. Mean Std. Mean Std.
a11 0.100 0.087 0.073 0.091 0.044 0.096 0.033 0.098 0.022
a12 0.010 0.014 0.079 0.012 0.042 0.010 0.030 0.010 0.020
a21 0.030 0.031 0.068 0.029 0.046 0.032 0.030 0.029 0.020
a22 0.200 0.179 0.072 0.194 0.039 0.198 0.027 0.199 0.018
β11 0.550 0.457 0.462 0.506 0.349 0.508 0.268 0.536 0.177
β12 0.040 0.046 0.220 0.044 0.112 0.047 0.079 0.039 0.050
β21 -0.200 -0.242 0.521 -0.261 0.389 -0.230 0.276 -0.217 0.158
β22 0.800 0.788 0.185 0.787 0.106 0.792 0.070 0.798 0.040
γ2 -0.020 0.020 0.038 0.019 0.024 0.019 0.017 0.020 0.011
γ2 -0.020 0.021 0.035 0.021 0.020 0.020 0.013 0.020 0.009

LGARCH Simulation results

T=1000 T=2500 T=5000 T=10000

True Mean Std. Mean Std. Mean Std. Mean Std.
a11 0.100 0.101 0.024 0.101 0.014 0.100 0.010 0.100 0.007
a12 0.010 0.010 0.017 0.010 0.011 0.010 0.008 0.010 0.005
a21 0.030 0.030 0.019 0.030 0.012 0.030 0.008 0.030 0.006
a22 0.200 0.200 0.019 0.200 0.012 0.200 0.008 0.200 0.006
β11 0.450 0.427 0.134 0.442 0.081 0.449 0.055 0.448 0.040
β12 0.040 0.042 0.045 0.041 0.028 0.040 0.019 0.040 0.013
β21 -0.200 -0.217 0.137 -0.203 0.081 -0.203 0.056 -0.199 0.040
β22 0.600 0.594 0.044 0.598 0.026 0.599 0.018 0.600 0.013
γ1 0.020 0.021 0.029 0.020 0.017 0.020 0.012 0.020 0.008
γ2 0.020 0.020 0.019 0.020 0.011 0.020 0.008 0.020 0.006
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Table 5 – Multivariate Asymmetric GARCH Models Estimation Results

GJR-GARCH1 GJR-GARCH2 APGARCH

A 0.003 0.008 0.010 0.005 0.000 0.036 0.008 0.000 0.034

(0.26) (1.07) (0.98) (0.89) ( .) (3.02) (1.78) ( .) (5.14)

0.000 0.050 0.036 0.000 0.046 0.040 0.000 0.137 0.024

( .) ( 1.22) (2.20) ( .) (2.20) (3.01) ( .) (12.48) (3.09)

0.000 0.000 0.049 0.003 0.000 0.079 0.028 0.000 0.075

( .) ( .) (-2.56) (0.58) ( .) (3.58) (1.06) ( .) (10.02)

B 0.921 0.000 0.000 0.865 0.146 -0.100 0.885 0.155 -0.104

(36.37) ( .) ( .) (25.12) (2.36) (2.60) (51.50) (3.86) (4.51)

0.057 0.769 0.000 0.238 0.469 0.043 0.247 0.434 0.092

(1.36) (8.16) ( .) (3.47) (4.11) (0.69) (4.85) (6.31) (1.62)

0.000 0.114 0.628 -0.103 0.216 0.718 -0.147 0.276 0.762

( .) (1.62) (4.83) (2.46) (3.15) (15.92) (4.49) (4.57) (29.49)

Γ 0.119 0.134 0.154 0.081 0.182 0.062 0.074 0.081 0.051

(4.23) (3.71) (2.77) (4.87) (6.75) (1.76) (12.45) (5.84) (6.20)

δ 0.95 0.964 1.312

(13.34) (13.02) (17.10)

BIC 44650 44622 44570

Conditional Correlation Conditional Correlation Conditional Correlation

αc βc αc βc αc βc

0.060 0.762 0.0553 0.7683 0.0511 0.7830

(4.18) (11.57) (4.38) (12.12) (4.28) (9.88)

BIC 32031 32006 31965
Notes: Bollerslev-Wooldridge robust t-statistics in parentheses. Variables significant at the 5 percent confidence
level formatted in bold. δ denotes the power transform parameter in the AP-GARCH model. BIC notes the
Bayesian Information Criterion.
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Table 6 – Multivariate LGARCH and EGARCH Model Estimation Results

LGARCH EGARCH
A 0.028 0.011 0.046 0.096 0.048 0.089

(9.07) (3.52) (14.75) (10.88) (6.75) (8.69)
0.003 0.020 0.012 0.015 0.068 0.101
(1.09) (8.13) (4.84) (1.13) (9.70) (13.61)
0.031 0.012 0.043 0.024 0.113 0.139
(1.62) (4.17) (15.18) (1.63) (12.89) (18.01)

B 0.939 0.063 -0.133 0.984 0.035 -0.052
(89.88) (2.01) (3.88) (228.66) (8.36) (7.95)
0.021 0.959 -0.047 0.009 1.012 -0.053
(1.27) (121.31) (2.14) (1.38) (503.58) (11.06)
-0.061 0.065 0.872 0.006 0.026 0.922
(1.84) (2.12) (79.19) (0.58) (9.20) (181.99)

Γ 0.009 0.024 0.003 -0.089 -0.038 -0.020
(1.98) (6.53) (1.53) (8.98) (4.49) (8.69)

BIC 44724 44565

Conditional Correlation Conditional Correlation

αc βc αc βc
0.0511 0.783 0.0631 0.7594
(4.28) (9.87) (5.08) (12.29)

BIC 31945 31941
Notes: Bollerslev-Wooldridge robust t-statistics in parentheses. Variables significant at the 5 percent confidence
level formatted in bold. BIC notes the Bayesian Information Criterion.
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Table 7 – In sample forecast comparison

Conditional Covariance Conditional Variance
RMSE MCS QLIK MCS RMSE MCS QLIK MCS

GRJ-GARCH1 5.196 0.048 3.392 0.000 4.805 0.025 0.380 0.002
GRJ-GARCH2 5.129 0.063 3.398 0.000 4.679 0.028 0.382 0.002
APGARCH 5.078 0.063 3.392 0.000 4.739 0.049 0.377 0.000
LGARCH 5.095 0.063 3.404 0.000 4.740 0.049 0.384 0.002
EGARCH 4.828 1.000 3.368 1.000 4.214 1.000 0.372 1.000
Values of loss functions in bold identify the models in the 90% level MCS. The loss values for variance are the
average of foretasted variance cross the three assess.

Table 8 – Out-of-sample forecast comparison

Conditional Covariance Conditional Variance
RMSE MCS QLIK MCS RMSE MCS QLIK MCS

GRJ-GARCH1 2.984 0.005 2.019 0.002 2.013 0.017 0.522 0.000
GRJ-GARCH2 2.905 0.005 2.042 0.002 1.855 0.017 0.531 0.000
APGARCH 2.435 0.450 1.878 0.906 1.542 0.061 0.474 0.106
LGARCH 2.328 1.000 1.864 1.000 1.281 1.000 0.475 0.106
EGARCH 2.513 0.446 1.878 0.906 1.493 0.061 0.475 1.000
Values of loss functions in bold identify the models in the 90% level MCS. The loss values for variance are the
average of foretasted variance cross the three assess.
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Table 9 – Data descriptive statistics

Bond Stock Crude Oil Gold

Min -2.87 -12.77 -44.16 -10.16
Max 4.05 10.96 21.51 6.87
Mean 0.72 1.99 2.09 3.18
Std 0.46 1.22 2.28 1.06
Skewness -0.07 -0.4 -1.2 -0.4
Kurtosis 6.12 14.57 33.93 9.11
LB2(15) 1132 6998 835.9 837.7
No. Zero 261 204 171 293
This table provides descriptive statistics for the 4 assets. Std denotes standard deviations.
LB2(15) denotes the Ljung-Box test statistic based on 15 lags for the squared returns. The
95% critical value associated with the LB test statistic equals 25.00. No. Zero denotes the
number of zero observations in the sample. Total observation in the sample is 5689.

Table 10 – Multivariate EGARCH estimates

Bond Stock Crude Oil Gold

A 0.056 0.029 -0.008 0.022
(5.71) (3.56) (0.94) (2.71)
-0.027 0.134 0.018 0.036
(2.09) (10.48) (1.18) (2.79)
0.035 -0.001 0.105 0.023
(3.52) (0.13) (10.32) (2.32)
0.037 -0.001 0.019 0.098
(3.69) (0.10) (1.68) (10.37)

B 0.987 0.005 -0.001 0.000
(279.37) (2.13) (0.27) (0.18)
0.043 0.948 0.004 -0.004
(3.74) (144.79) (0.75) (0.63)
-0.004 0.010 0.986 -0.007
(0.77) (2.85) (373.78) (2.35)
-0.006 0.011 -0.011 0.988
(1.25) (3.16) (4.10) (337.84)

Γ 0.008 -0.173 -0.047 0.019
(1.86) (15.71) (8.18) (3.80)

Eigen(B) 0.9427 0.9781 0.992 0.9958
LB2(15) 29.21 16.85 15.59 43.04

Robust standard t-statistics reported in bracket. Parameters Significance at the 5% level is
indicated by Boldcase. Eigen(B) denotes the eigenvalue values of B matrix. LB2(15) denotes
the Ljung-Box test statistic based on 15 lags for the squared standardized returns.The 95%
critical value associated with the LB(15) test statistic equals 25.00.
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Appendix

According to Ling and McAleer (2003) and Nakatani and Teräsvirta (2009), the QML esti-

mator θ̂ of the CCC-GARCH model is asymptotically consistent and normality if the following

conditions are met:

� The correlation matrix (P ) is symmetric and semi-positive definite.

� The model satisfies the stationarity and invertibility conditions.

� The identification condition is satisfied.

� The existence of fourth moments, E(e4i,t) ≺ ∞ for i = 1, 2, ..., N .

Additional condition required by the CCC-LGARCH model is 5

� E((ln e2i,t)
2) ≺ ∞, for i = 1, 2, ..., N

Then, the asymptotic normality of θ̂ is given by

√
T (θ̂ − θ0) −→ N(0, J−1(θ0)I(θ0)J

−1(θ0)),

where the population information matrix is given by the expectation of the outer product of

the score vector evaluated at the true parameter vector θ0, that is,

I(θ0) =
1

T
E(S(θ0)S(θ0)

′) = E(St(θ0)St(θ0)
′),

and the negative of the expected Hessian of the log likelihood function at θ0 is given by

J(θ0) = − 1

T
E(H(θ0)) = −E(Ht(θ0)).

The I(θ0) vector and J(θ0)matrix can be consistently estimated by their sample counterparts.

For the extended multivariate EGARCH model, no similar results, establishing the consis-

tency and the asymptotic normality, exist. The difficulty with the EGARCH is to invert the

volatility, that is to write lnht as a well-defined function of the past observables.

5See Sucarrat et al. (2016) and Francq and Sucarrat (2017)
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