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Abstract
Hammerstein–Wiener models constitute a significant class of block-structured dynamic
models, as they approximate process nonlinearities on the basis of input–output data with-
out requiring identification of a full nonlinear process model. Optimization problems with
Hammerstein–Wienermodels embedded are nonconvex, and thus local optimizationmethods
may obtain suboptimal solutions. In thiswork,we develop a deterministic global optimization
strategy that exploits the specific structure of Hammerstein–Wienermodels to extend existing
theory on global optimization of systems with linear dynamics. At first, we discuss alterna-
tive formulations of the dynamic optimization problem with Hammerstein–Wiener models
embedded, demonstrating that careful selection of the optimization variables of the problem
can offer significant numerical advantages to the solution approach. Then, we develop con-
vex relaxations for the proposed optimization problem and discuss implementation aspects
to obtain the global solution focusing on a control parametrization technique. Finally, we
apply our optimization strategy to case studies comprising both offline and online dynamic
optimization problems. The results confirm an improved computational performance of the
proposed solution approach over alternative options not exploiting the linear dynamics for
all considered examples. They also underline the tractability of deterministic global dynamic
optimization when using few control intervals in online applications like nonlinear model
predictive control.
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1 Introduction

Dynamic optimization problems arise in various domains, examples within the field of chem-
ical engineering being process design, operation and control [3]. Among these problems, only
a few—relative simple and small ones—allow for an analytical solution. In most cases, the
solution requires numerical methods [7].

Deriving local solutions for dynamic optimization problems has been studied extensively
in the literature, and mature and efficient technologies are available, which are able to handle
even large-scale and complex systems [37]. The two main solution approaches for dynamic
optimization problems are variational (indirect) and discretization (direct) methods. A further
classification of discretization methods occurs based on whether or not the discretization
refers only to the controls or also to the states; resulting in sequential and simultaneous
methods, respectively [3].

In practice,most chemical and biochemical engineering problems are nonconvex, andmay
therefore exhibit multiple local minima [9]. Although the application of local optimization
methods to solve these problems is reasonable in terms of computational effort, they do not
guarantee global optimality of the final solution. However, in many of these problems global
solutions are desired, or even required, e.g., in cases where we are interested in the best fit for
model evaluation such as the kinetic mechanism in chemical reactions (cf., e.g., [29,42]). In
general, finding the global solution of a problem can have direct economical, environmental
and safety impacts [9].

Deterministic approaches to globally solve problems with ordinary differential equations
(ODEs) embedded are an evolving field of study, with significant accomplishments over the
past years [12]. Deterministic global optimization guarantees convergence to an ε-optimal
solution within a finite number of steps. A popular approach to tackle these problems is to
combine discretization methods with a spatial branch-and-bound (B&B) algorithm. Such an
approach typically provides solutions to finite dimensional optimization problems. Infinite
dimensional problems like optimal control problems, where the optimization variables are
continuous functions, can be transformed into finite dimensional NLPs by control vector
parametrization [17]. Recently, Houska and Chachuat [13] proposed a global optimization
algorithm for optimal control problems that includes an adaptive refinement of the control
parametrization to guarantee convergence to the solution of the infinite dimensional problem.

The solution of the parametrized problem relies on extensions of sequential and simul-
taneous methods for local dynamic optimization. The methods based on extensions of
the simultaneous approach, similar to their original simultaneous approach as in full dis-
cretization for local dynamic optimization, result in large scale NLPs. As the worst-case
computational effort of B&B scales exponentially with the number of variables, the applica-
bility of these methods is limited to small problems. Hence, most research efforts on global
dynamic optimization have been focused on extensions of sequential approaches. However,
for the latter cases, the construction of the lower bounding problem for a convergent B&B
algorithm is a challenging topic [37].

Recent attempts on deterministic global dynamic optimization with main focus on exten-
sions of sequential NLP approaches have been reviewed in [9,13]. One approach is based on
extensions of the αBB method [1] to NLPs containing ODEs. These methods are computa-
tionally expensive, as they typically require the calculation of second-order sensitivities to
determine a shift parameter that is not known apriori, cf., e.g., [11,28]. A different approach
based onMcCormick relaxations [23] is presented by Singer andBarton [40,41]. Thesemeth-
ods are reported to have better performance than αBB-based approaches and can in general
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handle a wider class of ODEs [9]. Both above mentioned approaches follow a relax-then-
discretize fashion, meaning that they first construct relaxations to the infinite dimensional
ODE system and then discretize these to get the numerical solution. In contrast, a discretize-
then-relax approach that first discretizes the dynamics and then treats the resulting NLP in a
reduced space is proposed byMitsos et al. [25] based on automatic propagation ofMcCormick
relaxations and their subgradients. Sahlodin and Chachuat [31] provide a rigorous discretize-
then-relax approach to account for the truncation error arising during the discretization step.
Recently, Scott and Barton [33,34] presented a novel method for constructing relaxations for
semi-explicit index-one differential algebraic equations (DAEs) providing the first algorithm
for solving problems with DAEs embedded to global optimality [37]. Optimization problems
with DAEs embedded are in general very hard to solve globally. This is mainly because the
solutions of these systems are typically not factorable, and thus developing relaxation theory
for the lower bounding problem is nontrivial [37]. The reader is referred to [33,36,37] for
more information on the challenges. Overall, progress in this field is still at an early stage,
and active research on this topic is necessary to improve computational performance and to
make larger problems tractable.

One way of improving computational performance is to exploit special structure of certain
important model classes, rather than rely on general-purpose methods. Hammerstein–Wiener
(HW) models constitute a significant example of such a class. They are data-driven dynamic
models bringing the advantage of capturing nonlinear effects and simultaneously being com-
putationally less complex than fully nonlinear dynamic models. HW models cover a wide
range of applications, such as modeling of physical, chemical and biological systems [19].
Extensive research on system identification of those models has been performed in the lit-
erature, cf., e.g., [2,46,49], and they are often used for model predictive control, cf., e.g.,
[19,47]. Upon optimization with HW models embedded, we still get a nonlinear problem.
To avoid suboptimal solutions of the resulting optimization problem and high computational
effort, tailored deterministic global optimization methods and formulations are required.

In this work, we discuss theoretical aspects and propose a computational approach for
global dynamic optimization with HWmodels. First, we utilize the specific structure of HW
models by exploiting the properties of linear dynamics occurring in these models. More pre-
cisely, we extend existing theory on deterministic global dynamic optimization with linear
systems presented by Singer and Barton [39,40] to account for the input and output nonlin-
earities of HW models. Furthermore, we apply the proposed approach to numerically solve
several illustrative examples using our open-source optimization software MAiNGO1 [6]
following the method presented by Mitsos et al. [25].

The remainder of this manuscript is structured as follows. In Sect. 2, we present the
structure of HW models, we describe the optimization problem and discuss alternative for-
mulations with their impact on the solution approach. In Sect. 3, we derive the required theory
for the solution of the presented problem to global optimality and report on the practical
implementation aspects. Computational results for three examined case studies are presented
in Sect. 4. The model implementations for these case studies are being made available as
Supplementary Information. Section 5 concludes this work.

1 The open-source version of MAiNGO is available at https://git.rwth-aachen.de/avt-svt/public/MAiNGO.
git.
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Fig. 1 Structure of a Hammerstein–Wiener model

2 Problem description

2.1 General form of Hammerstein–Wiener models

In HWmodels, two static nonlinear blocks precede and follow, respectively, a linear dynamic
system (see Fig. 1). The input nonlinearity fH : R

nu → R
nw is called Hammerstein function

and the output nonlinearity fW : R
nz → R

ny is the Wiener function:

w(t) = fH (u (t)) , ∀t ∈ [t0, t f ]
ẋ(t) = Ax(t) + Bw(t), ∀t ∈ [t0, t f ]
z(t) = Cx(t) + Dw(t), ∀t ∈ [t0, t f ]
y(t) = fW (z (t)) , ∀t ∈ [t0, t f ]
x(t0) = x0,

(1)

where u : [t0, t f ] → R
nu are the inputs of the system, w : [t0, t f ] → R

nw are the inputs to
the linear time-invariant (LTI) system, x : [t0, t f ] → R

nx are the states, z : [t0, t f ] → R
nz

are the outputs of the LTI system, y : [t0, t f ] → R
ny the outputs of the system, A ∈ R

nx×nx ,
B ∈ R

nx×nw , C ∈ R
nz×nx , D ∈ R

nz×nw are system matrices of the LTI , and x0 ∈ R
nx are

the initial states. Note that due to the physical meaning of real-world applications, the input
variables are bounded, i.e., u(t) ∈ U , U � R

nu , U compact.

2.2 Optimization problem formulation

The formulation of an optimization problem with embedded HW models can be written as

min
u(·) Φ

(
y

(
t f

)
, t f

) +
∫ t f

t0
l (y (t) ,u (t) , t) dt, (2)

where y(·) derives from the solution of the DAE system (1). Problem (2) has a general objec-
tive function of Bolza form. Note that all Mayer, Lagrange and Bolza problem formulations
are equivalent from a theoretical perspective and can be used interchangeably in practice
[3,7].

In Problem (2), a few simplifications were made for notational convenience. Nevertheless,
more general problems can be handled without requiring changes to the developed theory.
Since HW models are usually built on an input–output relationship, we consider only a
dependence on the final time t f and the outputs on the final time point y(t f ) for the terminal
term, as well as a dependence on model outputs y(·), on the inputs u(·) and explicitly on time
t for the integrand l. However, these terms may in general also depend on other variables,
e.g., the states x and their derivatives ẋ. Moreover, the first term of the objective is only
dependent on the final time point, yet any additional dependence on the outputs at any finite
number of fixed time points can be added. In addition, we could, without any significant
changes to the theory, generalize the Wiener block to include any relationship of the form
y(t) = fW (x (t) ,w (t)) for all t ∈ [t0, t f ], or even y(t) = fW(x(t),u(t)) for all t ∈ [t0, t f ].
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Note that the latter case does no longer satisfy the HWmodel structure, but can be interesting
to consider in general.

Problem (2) contains a DAE system with linear dynamic equations. In the following, we
discuss different options for expressing the problem formulation.

2.2.1 Analytical solution of the LTI

Probably the most intuitive solution approach is to incorporate the analytical solution of the
linear dynamic system,

x(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)Bw(τ ) dτ,

into Problem (2), and thus eliminate the ODE. By substituting both the input to the LTI
system w(·) and the system output y(·), with the functions of the Hammerstein and Wiener
blocks, respectively, we derive

min
u(·) Φ

(
fW

(
CeA(t f −t0)x0 + C

∫ t f

t0
eA(t f −τ)BfH (u (τ )) dτ + DfH

(
u

(
t f

))
)

, t f

)

+
∫ t f

t0
l
(
fW

(
CeA(t−t0)x0 +C

∫ t

t0
eA(t−τ)BfH (u (τ )) dτ +DfH (u (t))

)
,u (t) , t

)
dt .

(3)

This problem formulation is complicated to solve, since for the inner integral of Equa-
tion (3) there may not exist an analytical solution in dependence of t for arbitrary fH.

2.2.2 Substitution approach

Alternatively, we can only exploit the fact that w and y are explicit functions of u and z,
respectively, and obtain

min
u(·) Φ

(
fW

(
z
(
t f

))
, t f

) +
∫ t f

t0
l (fW (z (t)) ,u (t) , t) dt, (4)

where z(·) is given by the solution of the ODE system

ẋ(t) = Ax(t) + BfH (u (t)) , ∀t ∈ [t0, t f ]
z(t) = Cx(t) + DfH (u (t)) , ∀t ∈ [t0, t f ]
x(t0) = x0.

(5)

However, unlike the original Problem (2), Problem (4) has nonlinear dynamics given by
the ODE system (5). Therefore, the advantage of the linear dynamics will be lost. This is
particularly important since relaxations of nonlinear dynamics are typically weak.

2.2.3 Inversion approach

To retain a problem with linear dynamics, one alternative is to treat the Wiener model (LTI
system plus Wiener function) separately, using existing theory on linear dynamics by Singer
and Barton [39,40] and optimize for w(·). To treat the dependence on u(·) in the objective,
in case of invertibility of the Hammerstein function fH or similar condition, we derive

min
w(·) Φ

(
fW

(
z
(
t f

))
, t f

) +
∫ t f

t0
l
(
fW (z (t)) , f−1

H (w (t)) , t
)
dt, (6)
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where z(·) is obtained by the solution of the LTI system

ẋ(t) = Ax(t) + Bw(t), ∀t ∈ [t0, t f ]
z(t) = Cx(t) + Dw(t), ∀t ∈ [t0, t f ]
x(t0) = x0.

(7)

Even in the case where the objective does not depend on u(·), once the optimal solution
w∗(·) is given, the above approach would still require specific assumptions on existence and
uniqueness of the optimal control u∗(·). With the assumption of an invertible Hammerstein
function fH, once we have the optimal w∗(t) for all t ∈ [t0, t f ], we can solve u∗(t) =
f−1
H (w∗ (t)) to obtain u∗(t) for all t ∈ [t0, t f ].
The assumption on invertibility of the nonlinear static functions fH and fW is often

made for identifiability of HW models [49]. However, static nonlinearities are not neces-
sarily invertible, with a typical example being saturations, which frequently describe process
characteristics [19]. Thus, this assumption significantly limits the choice of the considered
functions, and consequently the applicability of the inversion approach. Furthermore, this
approach necessitates exact bounds on w(t) for all t ∈ [t0, t f ], to ensure a feasible u(t) for
all t ∈ [t0, t f ]. If that is not the case, an optimal w∗(·) may be found that does not map to a
feasible u∗(·) once inverted. This is because potential bounds or constraints on u(·) are not
in the optimization problem anymore. The fact that we actually need to find the exact range
of fH on the domain of u, rather than an overestimated box, can be as complex as solving
the final optimization problem. It should however be noted that if the function is invertible
and exact bounds are known, then the inversion approach is promising. The first numerical
example discusses the performance of the inversion approach with and without exact bounds.

2.2.4 Additional optimization variables approach

The idea behind this approach is to introduce additional optimization variables to Problem (4)
to re-gain the linearity of the dynamic system. To this end, we optimize with respect to both
u(·) andw(·). More precisely, by treating u(·) andw(·) as independent optimization variables
and imposing their dependence in an additional constraint, we can retain the linear dynamic
behavior of the system with respect to w(·) and use existing theory on global optimization
of systems with linear dynamics [39,40]. The optimization problem is then formulated as

min
u(·),w(·) Φ

(
fW

(
z
(
t f

))
, t f

) +
∫ t f

t0
l (fW (z (t)) ,u (t) , t) dt

s.t. w(t) = fH (u (t)) , ∀t ∈ [t0, t f ],
where z(·) derives from solving the LTI system (7).

The additional optimization variables w(·) are used in a similar way to the additional
module and tear variables presented by Bongartz et al. [5] for decoupling themodel equations
that would require iterative solution in process flowsheet optimization.

By eliminating the intermediate variables z(·) and introducing functions Φ̃ defined as
Φ̃

(
x

(
t f

)
,w

(
t f

)
, t f

) := Φ
(
fW

(
Cx

(
t f

) + Dw
(
t f

))
, t f

)
in the terminal term and l̃ defined

as l̃ (t, x (t) ,w (t) ,u (t)) := l (fW (Cx (t) + Dw (t)) ,u (t) , t) in the integral, we obtain

min
u(·),w(·) Φ̃

(
x

(
t f

)
,w

(
t f

)
, t f

) +
∫ t f

t0
l̃ (t, x (t) ,w (t) ,u (t)) dt

s.t. w(t) = fH (u (t)) , ∀t ∈ [t0, t f ],
(8)
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where x(·) is the solution of

ẋ(t) = Ax(t) + Bw(t), ∀t ∈ [t0, t f ]
x(t0) = x0.

In Sect. 3, we show how Problem (8) can be used to derive a solution strategy for deter-
ministic global dynamic optimization with HW models embedded. In more detail, we are
concerned with the derivation of an algorithm that is guaranteed to terminate finitely with an
ε-optimal u∗(·), w∗(·) to Problem (8).

Note that, in contrast to the inversion approach resulting in Problem (6), the additional
optimization approach solves the ODE and the equation of the Hammerstein part simultane-
ously.

3 Solution strategy

In this section, we present theory and implementation of the additional optimization variables
approach solving Problem (8).

As the decision variables associated with this problem refer to continuous control inputs
u(·), we first apply control parametrization to Problem (8) and then derive an algorithm to
solve the parametrized problem to global optimality. Therefore, we need to parametrize the
control functions u, w. An obvious choice is to use piecewise constant discretization for
both and impose their nonlinear relationship at the discretization points. Other choices are
conceivable as well, e.g., using a piecewise linear approximation. However, these choices
may yield additional complications and are out of the scope of this article. Note that the
solution of the parametrized problem instead of infinite dimensional Problem (8) introduces
an additional parametrization error.Amethod for overcoming this limitation has been recently
proposed by Houska and Chachuat [13]. Nevertheless, the implementation and application
of a rigorous method for control parametrization is beyond the scope of the present study.

3.1 Deriving a convex relaxation for the optimization problem

Herein, we present the theory for systems with one input (nu = 1, nw = 1) and one output
y, for notational simplicity. However, the methodology presented here can be extended for
systems with multiple input/output signals with no significant changes.

The discretized input vectors are

u(t) = ûi , if t ∈ [ti−1, ti ), i = 1, ..., n,

w(t) = ŵi , if t ∈ [ti−1, ti ), i = 1, ..., n,

with n discretization points, tn = t f and parameter vectors

û =
⎛

⎜
⎝

û1
...

ûn

⎞

⎟
⎠ ∈ R

n, ŵ =
⎛

⎜
⎝

ŵ1
...

ŵn

⎞

⎟
⎠ ∈ R

n .
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Hence, we obtain an optimization problem with a finite number of variables and an ODE
embedded

min
û,ŵ

Φ̃
(
x

(
t f

)
, ŵn, t f

) +
n∑

i=1

∫ ti

ti−1

l̃
(
t, x (t) , ŵi , ûi

)
dt

s.t. ŵ = fH(û),

(9)

where x(·) is the solution of

ẋ(t) = Ax(t) + B
n∑

i=1

ŵi · 1[ti−1,ti )(t), ∀t ∈ [t0, t f ]

x(t0) = x0,

(10)

and 1[ti−1,ti )(·), i = 1, ..., n, is the indicator or characteristic function defined as

1[ti−1,ti )(t) =
{
1, if t ∈ [ti−1, ti )

0, if t /∈ [ti−1, ti ).

Note that the same discretization is applied to both w(t) and u(t), such that the constraint
ŵ = fH(û) can be understood as component-wise equality. In particular, this constraint is
only enforced at a finite number of points.

Since Problem (9) contains a finite number of optimization variables, a standard spatial
B&B algorithm can be employed. Any feasible point or local solution of Problem (9) con-
stitutes an upper bound. A lower bound can be obtained by solving a convex relaxation of
Problem (9). A convex relaxation of Problem (9) is derived in Theorem 1, which is built on
the theory presented by Singer and Barton [39,40]. Note that Theorem 1 follows the nota-
tion presented in [39,40], and thus an explicit dependence of the states x also on the control
parameters ŵ is included.

Theorem 1 Let û ∈ U, where U is a convex subset of R
nu , ŵ ∈ W, where W is a convex

subset of R
nw , x(t, ŵ) ∈ X, where X is a convex subset of R

nx , such that x(t, ŵ) ∈
X ∀ (t, ŵ) ∈ (t0, t f ] × W; A ∈ R

nx×nx , B ∈ R
nx×nw constant matrices; Φ̃cv(·, ·, t f ) a

convex relaxation of Φ̃(·, ·, t f ), both Φ̃, Φ̃cv : X × R × R → R continuous mappings;
l̃cv(t, ·, ·, ·) a convex relaxation of l̃(t, ·, ·, ·) for fixed t; l̃cv, l̃ : (t0, t f ] × X ×U × W → R

Lebesgue integrable, where function l̃ is only permitted a finite number of discontinuities; fcvH
a convex relaxation of fH; fccH a concave relaxation of fH; fcvH , fccH , fH : U → W continuous
mappings with only finite number of discontinuities; and1[ti−1,ti ) the indicator function. Then
a convex relaxation of optimization Problem (9) is given by

min
û,ŵ

Φ̃cv (
x

(
t f , ŵ

)
, ŵn, t f

) +
∑

i

∫ ti

ti−1

l̃cv
(
t, x

(
t, ŵ

)
, ûi , ŵi

)
dt

s.t. fcvH (û) ≤ ŵ ≤ fccH (û),

(11)

where x(·, ŵ) is the solution of

ẋ(t, ŵ) = Ax(t, ŵ) + B
∑

i

ŵi · 1[ti−1,ti )(t), ∀t ∈ [t0, t f ]

x(t0, ŵ) = x0(ŵ).
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Proof A relaxation of the optimization Problem (9) can be derived by relaxing the objective
function and the constraints.

Due to our specific problem formulation, which adds additional optimization variables
besides u(·), we can apply the relaxation theory described in [39,40] for systems with embed-
ded linear dynamics, and therefore obtain a valid relaxation for the objective function. For
the point term in the objective, the relaxation can be derived via standard techniques. For
each of the integral terms in the objective, integral relaxation (Corollary 3.1 in [40]) follows
directly from integral monotonicity (Lemma 3.2 in [40]) and integral convexity (Theorem
3.1 in [40]). More precisely, we relax the objective with respect to ŵ, imposing convexity of
l̃cv on both ŵ and û.

Up to now, we have a methodology for deriving a relaxation for the objective function
including the linear system dynamics. In our problem formulation, there is an additional
constraint that relates ŵ and û. Relaxations of this constraint can be also obtained via standard
techniques. With this, Problem (11) provides a valid relaxation of Problem (9). ��

By following our proposed auxiliary variables approach, we expect that we inherit the
tightness and convergence properties of Singer and Barton [39,40]. However, no detailed
analysis and mathematical proofs are included here, as this would require a substantial scope,
cf., e.g., [4,26,32].

In Theorem 1, standard techniques for relaxations of the point term in the objective as well
as the additional constraint refer to any valid relaxation methods for nonconvex functions,
e.g., αBB [1] or McCormick [23] relaxations.

Note that integral relaxation following from Corollary 3.1 in [40] requires convexity of
the relaxation of the integrand function on the controls. Assuming convexity of the relaxation
on both û and ŵ, the relaxation of the objective function accounting for the linear dynamics
with respect to ŵ follows directly from the theory presented in [39,40].

3.2 Obtaining the numerical solution of the optimization problem

In the following,wediscuss implementation aspects for the numerical solution of Problem (8).
As discussed, Problem (8) is infinite dimensional, and thus the first step to apply the solution
strategy presented above, is to parametrize the controls by piecewise constant functions. To
numerically solve the resulting Problem (9), we utilize our open-source optimization software
MAiNGO [6], based on (multivariate) McCormick relaxations [23,44] and their subgradient
propagation [25] implemented inMC++ [8]. MAiNGO is a deterministic global optimization
software for solving mixed-integer nonlinear programs (MINLPs). Hence, to deal with the
dynamic nature of our system, we first apply full discretization to the dynamics and then
solve the resulting large scale NLP in a reduced space, using a spatial B&B algorithm, as
shown in [25]. The reduced-space formulation treats only the values of the controls at all
control discretization points as optimization variables. This solution approach could also be
understood as a single shooting method with a simple integration scheme, where the states
are thus hidden from the optimizer.

The proposed solution approach offers numerical advantages compared to solving a full-
space formulation of the NLP resulting from full discretization, i.e., treating also the values
of the states at all discretization points as optimization variables and the integration scheme
as constraints. Therefore, using MAiNGO that treats the optimization problem in a reduced
space is particularly important in this work. More precisely, this is because the reduced-space
formulation dramatically reduces the number of considered optimization variables, while this
would not be easily possible in other state-of-the-art global optimization solvers, e.g., [24,43]
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that solve the full-space formulation. However, sincewe only relax the parametrized problem,
we actually optimize an approximate problem, and therefore we introduce an additional
inherent error to the solution. This is different from the solution approach presented in [39,40],
where the authors discretize the relaxed problem. Therefore, by using tight discretization
tolerances they can guarantee convergence to the ε-optimal solution of the original problem.
A rigorous approach to account for truncation error following a discretize-then-relax fashion
has been developed by the authors in [31].

For the numerical solution of the ODE, we implement the explicit Runge Kutta schemes
up to 4th order. As commonly done in the literature, e.g., [41], the objective can be treated
as an ODE by rewriting it to

Φ̃
(
x

(
t f

)
, ŵn, t f

) + h
(
t f

)
,

where

ḣ(t) = l̃
(
t, x (t) , ŵi , ûi

)
, ∀t ∈ [ti−1, ti ], i = 1, ..., n

h(t0) = 0.
(12)

Note that in this case the sum over i is not needed, because function h is defined piecewise
over the time intervals. Upon numerical integration of the ODE with its initial condition over
t ∈ [t0, t f ], the original objective function is obtained. Thus, Problem (9) becomes

min
û,ŵ

Φ̃
(
x

(
t f

)
, ŵn, t f

) + h
(
t f

)

s.t. ŵ = fH(û),

where x(·) is the solution of the ODE system (10) and h(·) the solution of System (12) for
t ∈ [t0, t f ]. To achieve an accurate evaluation of the objective function and avoid excessive
computational effort due to a large number of control parameters, a denser time discretization
for the state grid and a coarser for the control grid might be required in practice. For this,
we calculate the (piecewise constant) controls for the ODE and intermediate values for the
states within the intervals of the control grid. This enables different time discretization for
the states and the controls.

MAiNGO solves the above problem without the introduction of auxiliary variables, thus
only operating in the variable space û, ŵ. To solve the optimization problem in MAiNGO,
we require bounds for the controls û, ŵ and initial conditions at t = t0 for the states. Yet,
the optimizer does not directly see the state variables. Hence, bounds for the states are not
required, since they are propagated along with the relaxations. Note that depending on the
number of steps used in the integration scheme as well as the nonlinearities of the underlying
model, the interval bounds of the intermediate variables computed during the propagation of
relaxations may become extremely large similar to the work presented in [39,40]. We come
back to this issue in Sect. 4.2.1.

4 Case studies

We demonstrate the feasibility of the presented approach by examining the solution of some
numerical case studies. For all case studies presented below, the explicit Runge Kutta scheme
of 4th order (ERK4) is applied as integration scheme, and equidistant grids are used. All
computations are performed on a desktop computer with an Intel(R) Core(TM) i3-4150
CPU @ 3.50 GHz with 8GB RAM. We use MAiNGO 0.2.0 [6] with default settings unless
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otherwise stated. CPLEX 12.8.0 is used to solve the lower bounding problems, SLSQP [18]
through the NLOPT 2.5.0 toolbox [14] for the upper bounding problems, and IPOPT 3.12.12
[45] is used for preprocessing. Model implementations for these cases studies are provided
as Supplementary Information.

The examples presented in this section are similar or somewhat larger than what has
been presented in the literature. In general, most studies reporting on global optimization of
problemswith nonlinear dynamics apply their theory to solve parameter estimation problems,
cf., e.g., [10,11,20,25,29,42]. The vast majority of these problems are solved for relatively
small time horizons (t f below ten), one to three states and less or equal to five time invariant
control parameters. Wilhelm et al. [48] present a global optimization method for initial
value problems of stiff parametric ODE systems, and the examples include up to ten states
(and consequently ten initial value parameters). Only a few studies on nonlinear global
dynamic optimization for optimal control problems are reported in the literature, cf., e.g.,
[21,28,41,50]. The optimal control examples presented in these studies include only one
time variant control with up to eight intervals, one to five states and time horizons almost
exclusively bellow 20. As no open implementation of existing approaches exists, we do not
compare them on our computer. Also, we do not attempt any comparison of the CPU times
reported for these problems in the original works, since computational power has improved
drastically over the past 15 years.

4.1 Case study 1: simple numerical example

As a first case study, we consider an extension of Problem 5.4 presented in [39]. The opti-
mization of the original problem is

min
w(t)∈[−4,4]

∫ 1

0
−x2(t) dt, (13)

where x(·) derives from the solution of

ẋ(t) = −2x(t) + w(t), ∀t ∈ [0, 1]
x(0) = 1.

(14)

In Fig. 2, we depict the objective value as a definite integral in dependence of the parameter
w for a completely constant discretization, i.e.,w is constant. From Fig. 2, we can distinguish
the existence of two local minima, a suboptimal local one at w = −4 and the global one at
w = 4. The value of the objective for the global solution of Problem (13) is around –2.516.
Depending on the starting point, a local optimizer may converge to the suboptimal local
solution.

This problem is a special case of a HW model. More precisely, it can be formulated as a
Wiener model with LTI system matrices A = −2, B = 1, C = 1, D = 0, initial condition
x0 = 1 and static output nonlinearity fW(z(t)) = −z2(t). Note that in Wiener models
the input nonlinearity deriving from the Hammerstein function fH is omitted, and thus the
inputs directly enter the LTI system. In the extension we consider here, we introduce an input
nonlinearity by adding a nonlinear static function fH that maps u(·) to w(·) (i.e. adding a
Hammerstein block). In fact, we define function fH(u(t)) = −u2(t) + 5, u(t) ∈ [1, 3].
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Fig. 2 Objective function for case study 1 (Figure adjusted from [39])

The resulting HW model can be described by the following system of equations

w(t) = −u2(t) + 5, ∀t ∈ [0, 1]
ẋ(t) = −2x(t) + w(t), ∀t ∈ [0, 1]
z(t) = x(t), ∀t ∈ [0, 1]
y(t) = −z2(t), ∀t ∈ [0, 1]
x(0) = 1.

Following the additional optimization variables approach presented in Sect. 2.2.4, we can
now formulate our HW optimization problem as

min
u(·),w(·)

∫ 1

0
−x2(t) dt

s.t. w(t) = −u2(t) + 5, ∀t ∈ [0, 1],
(15)

where x(·) is the solution of (14) and u(t) ∈ [1, 3], w(t) ∈ [−4, 4] for any t ∈ [0, 1].
Problem (15) is equivalent to Problem (13) with respect to w. Therefore, since the global
solution to Problem (13) isw ≡ 4, the global solution to Problem (15) will be u ≡ 1, w ≡ 4.

To numerically solve Problem (15), we apply the solution strategy presented in Sect. 3.
Figure 3 illustrates the solution times when solving Problem (15) with MAiNGO, using
different numbers of discretization points n for the controls. For comparison purposes, Fig. 3
also includes the results with the substitution approach (see Sect. 2.2.2, Problem (4)) and the
inversion approach (see Sect. 2.2.3, Problem (6)).

Solving Problem (15) following the substitution approach (i.e., as in Problem (4)) trans-
lates into solving a nonlinear dynamic system in MAiNGO with only u(·) as a control.
Consequently, the mapping from u(·) to w(·) through the Hammerstein function is now
directly included in the dynamics, as shown in Equation System (5).

Solving Problem (15) following the inversion approach (i.e., as in Problem (6)) translates
into solving a problem with linear dynamics with only w(·) as a control. As previously
discussed, an extra assumption on invertibility of the Hammerstein function and exact bounds
on w(·) are necessary in this case. In cases where these assumptions are indeed satisfied, the
inversion approach takes advantage of the linear dynamics, similarly with the additional
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Fig. 3 Optimization results for case study 1; Computational performance of the substitution, the additional
optimization variables and the inversion approach as a function of the number of control discretization points
n

optimization variables approach, yet, it does not need to introduce further control variables.
However, making these assumptions in a first place is often limiting, and it can be avoided
by using the additional optimization variables approach instead. To illustrate this point we
consider the followingminormodification in the case study.We expand the feasible domain of
u, such that u(t) ∈ [−3, 3], and introduce the constraint |u| ≥ 1 in order to maintain the exact
bounds on w(·). Then, fH(·) becomes noninvertible, and thus the inversion approach can be
no longer applied. Note that both the additional optimization variables and the substitution
approaches are not affected by the aforementioned modification.

All results indeed give an objective value of ≈ –2.516 and return as optimal controls
(û, ŵ) = (1, 4), where û and ŵ are n-dimensional vectors with all entries 1 and 4, respec-
tively. In the substitution approach, the solution time scales unfavorably with refining control
parametrization (with n=27, CPU time reached our imposed time limit of 12 h). For this
simple case study (with u(t) ∈ [1, 3], thus fH(·) invertible) the CPU times for the inversion
approach are lower than the additional optimization variables approach, as shown in Fig. 3.
This is expected, since both approaches consider linear dynamics, yet the additional opti-
mization variables approach has double the amount of control variables than the inversion
one. However, by only undertaking a small modification on this problem, namely expanding
the domain of u, it becomes clear that the assumption on inveribility is quite limiting and it
can lead to a failure of the inversion approach once violated. Therefore, in the following the
inversion approach is not further examined. The computational time in the examined case
study is observed to scale linearlywith the state discretization for all the examined approaches
(see “Appendix A”).

At this point we need to point out that the exact bounds onw(·)were used in the additional
optimization approach. Yet, as opposed to the inversion approach, this is not required. By
loosening these bounds by 10%, 50% and 100%, respectively, and performing the optimiza-
tions again we did not observe any systematic effect on the computational performance for
this specific example. More precisely, the differences in the CPU time in all cases were less
than 1s, and we did not notice any consistent trend by incrementally relaxing the bounds
w. The effect from having tight bounds on w(·) might not be visible due to the relative
small solution times of this example, or it can be negligible due to the fact that the input
nonlinearities in this example are not so strong.
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Note again that for the numerical solution presented in [39], Problem (13) is first relaxed
and then discretized. In contrast, for our customized Problem (15), we first discretize and then
relax the dynamics, as in [25]. Although theoretically our implemented method introduces
an additional optimization error (see relative discussion in Sect. 3.2), by imposing a fine state
grid, we obtain the same objective value as in [39].

4.2 Case study 2: tracking problem

As a second case study, we consider a tracking problem presented by Ławryńczuk [19]. In
particular, our aim is to find the optimal u(·) to minimize the summed squared error between
the output y(·) and an arbitrary chosen set-point trajectory ysp(·). The examined system was
first presented by Zhu [51] and then used by Ławryńczuk [19] for nonlinear model predictive
control (NMPC). Herein, we aim at solving the problem to global optimality for the first
time. We consider the following problem formulation

min
u(·),w(·)

nt∑

j=1

(y(t j ) − ysp(t j ))
2

s.t. w(t) = u(t)
√

(0.1 + 0.9u(t))2
, ∀t ∈ [t0, t f ],

(16)

where u(t) ∈ [−2.5, 2.5], w(t) ∈ [−1.045, 1.045] for any t ∈ [t0, t f ], t j = j for j =
1, ..., nt , y(t) = z(t) + 0.2z3(t) for all t ∈ [t0, t f ] and x(·), z(·) deriving from the solution
of the LTI:

ẋ1(t) = 0.75x1(t) + 0.87x2(t) + 0.58w(t), ∀t ∈ [t0, t f ]
ẋ2(t) = 1.24x1(t) + 1.11x2(t) − 0.66w(t), ∀t ∈ [t0, t f ]
z(t) = 0.5x1(t) + 0.25x2(t), ∀t ∈ [t0, t f ]
x1(t0) = x1,t0 , x2(t0) = x2,t0 .

The bounds on w(·) follow naturally from plotting w as a function of u. The transfor-
mation of the discrete transfer function describing the LTI in [51] to continuous state space
formulation in Problem (16)was derived inMATLAB [22]. It is worth noticing that the objec-
tive function for this example only contains fixed time points. Although herein we preserve
the formulation presented in the literature [19], we could easily generalize it to an integral
objective.

For all the results presented below, the relative and absolute optimality tolerances are set
to 10−2. In order to improve tightness of the relaxations and ultimately the convergence of
the B&B algorithm, we implemented the convex and concave envelopes of the univariate
Hammerstein function fH : R → R, fH(u) = u√

(a+bu)2
for a fixed a, b. For the calculation

of the envelopeswe use themethod presented in Section 4 of [23]. Furthermore, setting higher
branching priorities, i.e., branch on specific variables more often than on others during the
B&B procedure, can have a significant effect on computational performance. Particularly for
this problem, we used higher branching priorities on w (BPw = 5), as we observed that this
leads to reduced CPU times.
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Fig. 4 Case study 2 offline optimization; Comparison of CPU times with the additional optimization variables
approach for different numbers of control discretization points n

4.2.1 Offline optimization

We first solve Problem (16) offline for t0 = 0, t f = nt = 120 and x1,t0 = 0, x2,t0 = 0.
Note that since the objective in Problem (16) requires function evaluations at 120 points, the
state grid should be at least that fine. The number of intervals in the state grid is set to 480.
The grid resolution is decided in such a way that for all examined cases after doubling the
discretization of the state grid the obtained relative difference in the objective is less than the
optimization tolerance.

We perform the optimizations for different control parameterizations using the additional
optimization variables approach. From Fig. 4, we observe that the CPU time scales expo-
nentially with the number of control discretization points n. Already for a control grid with
ten intervals, the problem requires more than 12 h CPU time to converge to the optimal solu-
tion. An alternative approach to deal with this limitation is discussed in the next subsection.
We observed a linear scaling of computational time with respect to state discretization, see
“Appendix A”, Fig. 9.

Here, having tight bounds on w(·) appeared to have a noticeable effect on the numerical
performance. More precisely, having exact bounds on w could reduce CPU time up to 50%
in this case. The computational benefits from using the exact bounds showed an increasing
trend as a higher number of control discretization points was considered. Interestingly, no
direct correlation in CPU times with respect to the distance of the considered bounds from
the exact ones was observed.

Note that the time of set-point changes in the output trajectory (except the first one occur-
ring shortly after t = 0), see Fig. 6b, coincides with the control steps for the case of an
equidistant control grid with four parameters. Therefore, the choice of four control param-
eters or its multiples, leads to better objective values compared to other numbers of control
parameters, as illustrated in Fig. 5. Nevertheless, spotting physically superior solutions for
Problem (16) is not the primary focus of this study, so this effect is not further discussed.

In addition,we again tried to compare the performance of the proposed additional approach
with the one from the substitution approach. Already for number of control discretization
points equals two, the optimization problem with the substitution approach did not converge
to the optimal solution within our imposed CPU time limit of 12 h.
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Fig. 5 Case study 2 offline optimization; Comparison of optimization results in terms of objective value with
the additional optimization variables approach for different numbers of control discretization points n

4.2.2 Nonlinear model predictive control

As a next step, we extend our optimization algorithm to solve the tracking problem with an
NMPC strategy. Problem (16) is solved repeatedly for each sampling instant i ∈ [1, 120], for
a prediction horizon N and a control horizon Nu in time, with t0,i = i − 1, t f ,i = t0,i + N ,
nt,i = N and initial states given by Equation (17). From the Nu elements, indicating the
number of control parameters that are determined in each iteration, only the first one is
implemented as action to the NMPC scheme. Then, the prediction is shifted one step forward
and the process is repeated. At each time instant, from the time between the end of the control
horizon until the end of the prediction horizon zero incremental change in the control signal
is considered.

xt0,i =
{
0, if i = 1

xt f ,i−1, otherwise .
(17)

For each iteration i, a state grid with four times the number of intervals used for the
prediction horizon N is required, in order to obtain the same final discretization as with the
offline approach (i.e., n = 480). Unlike what is presented in [19], we do not consider an
additional term in the objective function to penalize excessive control incremental changes.
This is done to maintain the same objective with the offline approach and be able to compare
the results. Therefore, a relative aggressive control scheme is obtained, see Fig. 6a.

By solving this case study with the online strategy, we observe that during the propagation
of state values through time the constructed relaxations may become extremely loose. We
believe that this is due to the shorter time intervals, wherein the controls are considered to
be constant. More precisely, allowing a significantly higher number of control intervals for
a fixed time horizon enables the control profile to fluctuate more, which leads to a higher
flexibility on the potential state values. In other words, the finer control grid gives the oppor-
tunity for a much more aggressive realization of the underlying system dynamics. As the
derived relaxations need to encompass the whole admissible range of the control profile,
relaxations get weaker. There are different methods to provide tight bounds for the states in
parametric ODEs, cf., e.g., [30,31,35,38] presented in the literature. However, when the state
explosion derives from the enlargement of the admissible set of the state values, rather than
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the problem dynamics themselves, the improvements obtained from the tighter relaxations
might be secondary. In other words, the main problem is not that the relaxations are not tight
enough, but rather that the permissible state bounds increase drastically, which unavoidably
leads to very loose relaxations. We anticipate this behavior to be in general present in cases
where global optimization for control of systems with stiff dynamics is exhibited.

To the authors’ best knowledge, a general solution strategy to account for this limitation
is not available in the literature. Herein, we utilize our system knowledge and the fact that
we are dealing with a tracking problem to overcome this limitation. More precisely, to avoid
the explosion of state values in our specific example we consider additional bounds for the
states x(t) ∈ [−10, 10] × [−10, 10], the output of the LTI system z(t) ∈ [−5, 5], as well
as for the system output y(t) ∈ [−30, 30] for all t ∈ [t0, t f ]. The values on the domain of
y are obtained by doubling the range of the desired output trajectory, on z by the functional
dependence fW between z and y, and on x by observing the systems behavior for the given
control bounds. The considered bounds are imposed through inequality constraints. The
ranges of the corresponding functions are restricted to their new bounds using the min and
max functions before passing them as arguments to further computations. Although these
specific actions are tailored to our problem, the use of system knowledge to constrain the
permissible bounds of the problem’s variables can be generalized to any problem. Note that
for solution approaches that by default require state bounds to solve the dynamic problem,
methods for propagation of these bounds are already in use, and could be beneficial to consider
here. It is worth noting, however, that in our case none of these bounds needs to be exact.

Results for different control and prediction horizons, as well as both apriori known and
unknown set-point changes are presented in Table 1. From Table 1, we observe that the
consideration of the prediction for the set-point change has a drastic effect on the objec-
tive function. However, as the prediction horizon increases, the effect of the first control
parameter, which is the one we actually implement after each iteration, decreases. Thus,
the derived control policy becomes less effective. As the number of control parameters per
iteration increases, the prediction generally improves. Yet, in this approach this does not
have such a profound influence on the final objective value, as we only apply the first control
element each time. Still, by increasing the number of control parameters for each iteration,
the computational time increases significantly. In general, obtaining good values for control
and prediction horizons is part of tuning in an NMPC problem and is considered out of the
scope of the present study.

Note that the worst CPU times presented in Table 1 occur to iterations close to the set-
point changes. For the other iterations the CPU times are considerably lower. Note also that in
Table 1 the objective values derive from evaluation of the objective function in Problem (16)
for the 120 instances that the controls were implemented. This enables the direct comparison
of the objective values with the ones obtained from the offline optimization, as discussed in
Sect. 4.2.3.

For completeness, we have compared our global solution of the online case with N = 5
and Nu = 3 (depicted in Fig. 6) with a local solution, and these coincide. We now analyze
the problem for multimodality. Out of the 120 iterations of the global NMPC, the three local
searches (by default the number of local searches conducted byMAiNGO as a preprocessing
step is set to three) often result in same solutions, within tolerances. However, there do exists
iterations where there are differences. The effect on the objective value for a single interval
may be quite big (e.g., difference 0.01 to 0.15), whereas the effect on the overall sum is relative
small, in the order of up to few percent. Note, however, that we have no way to check if the
solutions of the local solvers are indeed locally optimal. Yet, in this particular comparison
the first point that the local search converges, which is the one the local optimization finds,
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Table 1 Numerical results for
case study 2 online optimization
with the additional optimization
variables approach, with
prediction horizon N , control
horizon Nu considering either
apriori known or unknown
set-point changes in the output
trajectory

N Nu Set-point Objective Worst Total
Changes CPU time CPU time

5 3 Unknown 1874.27 1.7 74.5

5 3 Known 151.23 1.4 70.4

5 4 Known 150.57 2.8 96.2

5 5 Known 150.40 6.8 136.2

10 3 Unknown 1881.83 3.6 194.1

10 3 Known 208.23 5.4 231.6

10 4 Known 176.76 69.1 469.8

10 5 Known 155.23 847.0 2760.3

15 3 Unknown 1889.43 5.3 332.0

15 3 Known 390.79 9.4 385.3

15 4 Known 360.90 51.3 706.3

15 5 Known 211.63 841.7 3588.1

Worst time refers to the iteration of the NMPC problem that required the
longest time to converge. Total time refers to the sum of the computa-
tional time of all iterations. All CPU times are in s

happens to be the global one. Hence, we obtain the same objective value for the global
and the local solution. This can be due to a good starting point of the local approach, or
a large area of attraction for the global solution. Obtaining the global solution was around
three times slower compared to the time of the local solution for this example. This can be
considered as a very good performance for global optimization. Although local solutions are
in general computationally more tractable, our method has the significant advantage that it
guarantees that the obtained solution is globally optimal. Unfortunately, in [19,51] the time
step is nondimensional, so that we cannot compare time in the considered system to CPU time
for our solution approach, and thus we are not able to draw any conclusion about whether
our approach is real-time capable for this example.

4.2.3 Comparison of offline and online optimization

Overall, we observe that the NMPC scheme can obtain much better results in terms of both
CPU time and objective value than the offline optimization. More precisely, the objective
values for the NMPC with known set-point change are around one order of magnitude lower
than the ones attained with offline optimization. Figure 6 illustrates two exemplary control
and output trajectories obtained one from the offline and the other from the online approach.
With the online approach, we are able to solve the tracking problem with 120 discretization
points for each control u and w in a few minutes, and with each subproblem solved globally.
In contrast to this, for the offline approach, we were limited to maximum nine points in the
control grid, which took almost ten hours for the global optimization. The computational
burden of the presented methodology scales in general unfavorably with increasing number
of control parameters. However, by following an online approach to solve the dynamic
optimization problem globally, we avoid this limitation.More precisely, the repeated solution
of small problems, with few control intervals each, in the online approach is much faster than
the solution of one large problem in the offline approach. Since this observation is linked
to the scaling of B&B algorithms with the number of variables, it likely extends to other
global optimization approaches as well. As HW models are used in many applications in
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(a)

(b)

Fig. 6 Optimization results for case study 2 with the additional optimization variables approach; Comparison
of online (Ni = 5, Nu,i = 3, i = 1 . . . 120) and offline (n = 8) optimization in terms of (a) control profile
and (b) output trajectory

control, these results indicate great potential for applications in this field and can contribute
substantial benefits in cases where the global solutions are necessitated.

4.3 Case study 3: monoclonal antibody production

As a last case study, we consider an example motivated from antibody production [15,16].
The HW model has two inputs, one output and six states. The LTI system is given by

ẋ(t) = Ax(t) + Bw(t), t ∈ [0, 144]
z(t) = Cx(t) + Dw(t), t ∈ [0, 144]
x(0) = 0,

(18)
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Table 2 Numerical results for
case study 3 with the additional
optimization variables approach
with n number of control
discretization points

n Objective Control inputs û CPU time

1 –14401.7 (1.389),(0.0) 32.7

2 –18728.9 (2.684, 0.093),(0.0, 0.0) 52.0

3 –18764.5 (2.681, 0.050, 0.597), 345.0

(0.0, 0.0, 0.839)

4 –18852.7 (2.686, 2.683, 0.187, 0.0), 3577.3

(0.0, 0.0, 0.0, 0.0)

All CPU times are in s

where information about the system’smatricesA,B,C,D is given in “AppendixB”. The input
and output nonlinearities are wavelet functions with one or two units and are also provided
in “Appendix B”, see Eqs. (20)–(22).

The optimization problem with x(·), z(·) deriving from (18) can be formulated as

min
u(·),w(·)

∫ 144

0
− fW(z(t)) dt

s.t. w(t) = fH(u(t)), ∀t ∈ [0, 144]
∑

i

(
(û1,i + û2,i ) · 10−4 · 144

n

)
− 0.02 ≤ 0, i = 1, ..., n,

(19)

whereu(t) ∈ [0.0, 3.3]2,w(t) ∈ [0.6, 2.3]×[0.35, 1.5] for any t ∈ [0, 144] and n the number
of control discretization points. The bounds on w follow from plotting w as a function of
u. The inequality constraint in Problem (19) provides an upper bound on the permissible
control inputs u.

We assume this problem to be multimodal, as different solutions are obtained when a
multistart is performed. Thus, global optimization is particularly important. The optimization
problem is solved for different numbers of control grid discretization and for a relative and
absolute optimality tolerance of 10−2 and 20 local searches during preprocessing.

The results for n = 1, 2, 3, 4 with a state grid with 288 intervals for the additional
optimization variables approach are presented in Table 2. Although both u(·) and w(·) are
optimization variables, in Table 2, we only present (for compactness) the values of u(·),
which are the relevant ones for practical implementations. Interestingly, the objective value
does not seem to be significantly affected by the discretization of the controls, taking also into
account the imposed optimality tolerance. This can be due to different combinations within
the imposed control bounds that can lead to same objective values. Note that due to the high
nonlinearity of the static functions and the increased number of states, no convergence to
global optimality was attained within 12 h CPU times for a control discretization greater
than four. However, we should point out that already a control grid with four elements
refers to eight controls for the problem, considering the two control inputs u1, u2. In our
solution approach, we consider both u and w as control variables, which translates to a total
number of 16 optimization variables in Problem (19). Also in this case study, the results
presented above were obtained by considering bounds on w(·) that are very close to the
exact bounds. The effect of relaxing the considered bounds on w is here mostly detected in
the preprocessing, where different local solutions for the different bounds were observed,
due to the strong multimodality of this case study. These local solutions affected the total
solution time, correspondingly. We also tested the substitution approach for this case study.
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However, optimization with the substitution approach for this case study did not converge to
the optimal solution within the time limit of 12 h, even when considering only one control
discretization point. Linear scaling with state grid refinement is again observed, see Fig. 10
in the “Appendix A”.

5 Conclusions

Hammerstein–Wiener models are a commonly used class of block-structured models with a
wide range of applications in process operations and control. As these models are nonlinear,
they can lead to suboptimal local minima when embedding them in process optimization or
control problems.

Herein, we propose a novel algorithm for deterministic global optimization with
Hammerstein–Wiener models. We extend the theory presented in [39,40] on global opti-
mization of systems with linear dynamics to HW models. The theory pertains to combining
direct methodswith a spatial B&B algorithm to tackle dynamic problems based on extensions
of sequential methods for local dynamic optimization. We show that different optimization
problem formulations can lead to different solution strategieswith different levels of difficulty.
More precisely, by carefully selecting the optimization variables in the problem formulation,
we are able to maintain advantageous properties of linear systems. In a next step, we suc-
cessfully apply our method to numerical examples from offline and online optimization. For
this we follow a discretize-then-relax fashion. The parametrized optimization problems are
solved in a reduced space using our open-source global optimization software MAiNGO [6]
based on McCormick relaxations [23]. For the case of an invertible Hammerstein function
and exact bounds, we argue that an inversion approach can be used.

The results demonstrate the potential benefits of the presented approach and enable future
utilization to real-world case studies, with special focus on model predictive control. Our
method seems to scale favorably with refining the states grid, but is more sensitive to the
control grid. This is a typical problem for similar algorithms proposed in the literature as
pointed out in [9]. To address this problem, future emphasis should be placed on methods
for obtaining tighter relaxations for the lower bounding problem, cf., e.g., [27]. Furthermore,
consideration of sophisticated methods to construct tight state relaxations, cf., e.g., [30,31,
35,38] can yield considerable improvements to this work.

In general, due to the exponential worst-case runtime, it makes a profound difference for
global optimizationwhetherwe solve one problemwith a large number of control parameters,
ormultiple problemswith fewer control parameters, although both problemsmay result in the
same total number of control intervals. This work particularly emphasizes the applicability of
our approach to NMPC problems, and potentially also of other global dynamic optimization
approaches, since they can all benefit from short time intervals and few control parameters
at each control iteration.
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Appendix A: Effect of state grid refinement on the solution approach

Herein we present the computational performance of the presented solution approach by
refining the state discretization for the examined case studies. Linear scaling is observed in
all cases.

Figure 7 illustrates the results for case study 1 for the substitution, additional optimization
variables and inversion approach, for an exemplary control grid with n = 9 intervals and
piecewise constant control functions. Similar results are obtained also for the other values
of n. As already indicated in Sect. 4, for all cases the results indicate a linear scaling with
refining the state grid.

Similar results are obtained for case study 2, as shown in Fig. 8 for the offline approach for
three exemplary control grids. The results for the other values of n are analogous. In Fig. 9,
we additionally reproduce the results of Sect. 4.2.1 referring to the scaling of CPU time with
number of control intervals for three different state grids (here the linear scaling corresponds
to equidistant spacing between the different lines). Fine discretization refers to 480 intervals,

Fig. 7 Case study 1; Scaling of computational performance with refinement of state grid for a control grid
with n = 9 intervals
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and corresponds to the results presented in Fig. 4. Medium discretization corresponds to a
state grid with 240 intervals and coarse to 120 intervals, respectively. The results for the
objective function are not presented here, since by changing grid refinement the change in
the objective value for constant number of control discretization is always less than 10 %.

For case study 3, also linear scaling with the number of state discretization points is
observed. However, since this problem is strongly multimodal (multiple different objectives
values are obtained from different local searches), solution times may also depend on how
good is the initial upper-bound-guess that derives from the local solution of the examined
optimization problem. The results for different state discretizations and numbers of control
discretization points are illustrated in Fig. 10. Fine discretization corresponds to a state grid
with 288 intervals (results presented in Table 2), medium discretization to 144 intervals and
coarse to 72 intervals. The state grid refinement for each of the different numbers of control
intervals led to differences in the objective always within the optimization tolerance, and

Fig. 8 Case study 2 offline optimization with the additional optimization variables approach; Scaling of
computational performance with refinement of state grid for different control grids

Fig. 9 Case study 2 offline optimization with the additional optimization variables approach; Scaling of
computational performance with refinement of state grid for different numbers of control discretization points
n
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thus not presented here. As it can be seen in Fig. 10, the CPU time scales unfavorably with
increasing the number of control discretization points.

Appendix B: Additional model information for case study 3

The matrices of the LTI system as described in Equation (18) are given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.418 −0.512 0.094 0 0 0
0.215 −0.091 −0.124 0 0 0

−0.284 0.886 −0.603 0 0 0
0 0 0 0.365 −0.414 0.099
0 0 0 0.261 −0.176 −0.171
0 0 0 −0.226 0.598 −0.745

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.134 0
−0.082 0
0.202 0
0 0.151
0 −0.110
0 0.171

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [−0.933 1 0 −0.929 1 0
]
, D = [

0 0
]
.

The input nonlinearity fH1 is given by

fH1 (u1 (t)) = (u1 (t) − 1.521) · 0.034 · 10−4 + 0.852 · 10−4 · (
1 − s21 (t)

) · exp (−0.5s21 (t)
)

− 0.629 · 10−4 · (1 − s22 (t)
) · exp (−0.5s22 (t)

) + 1.339 · 10−4,

(20)

with t ∈ [0, 144], u1(t) ∈ [0.0, 3.3] and
s1(t) = 8 · (

(u1 (t) − 1.521) · 1072 · 10−4 − 1.250
)

s2(t) = 2 · (
(u1 (t) − 1.521) · 1072 · 10−4 + 1.001

)
.

The input nonlinearity fH2 is given by

fH2 (u2 (t)) = (u2 (t) − 1.624) · 0.039 · 10−4 − 0.871 · 10−4 · exp (−0.5 · s2 (t)
)

+ 1.302 · 10−4,

(21)

Fig. 10 Case study 3 with the additional optimization variables approach; Scaling of computational perfor-
mance with refinement of state grid for different numbers of control discretization points, n
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with t ∈ [0, 144], u2(t) ∈ [0.0, 3.3] and
s(t) = 16 · (

(u2 (t) − 1.624) · 9689 · 10−4 + 0.750
)
.

The output nonlinearity fW is given by

fW (z (t)) = (z (t) − 0.001) · 38898 + 78.733 · (
1 − s23 (t)

) · exp (−0.5s23 (t)
)

+ 15.692 · (
1 − s24 (t)

) · exp (−0.5s24 (t)
) + 89.140,

(22)

with t ∈ [0, 144] and
s3(t) = 1 · ((z (t) − 0.001) · 516.573 − 2.000)

s4(t) = 4 · ((z (t) − 0.001) · 516.573 + 1.250) .
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