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Abstract
Textual entailment classification is one of the hardest tasks for the Natural Language 
Processing community. In particular, working on entailment with legal statutes 
comes with an increased difficulty, for example in terms of different abstraction lev-
els, terminology and required domain knowledge to solve this task. In course of the 
COLIEE competition, we develop three approaches to classify entailment. The first 
approach combines Sentence-BERT embeddings with a graph neural network, while 
the second approach uses the domain-specific model LEGAL-BERT, further trained 
on the competition’s retrieval task and fine-tuned for entailment classification. The 
third approach involves embedding syntactic parse trees with the KERMIT encoder 
and using them with a BERT model. In this work, we discuss the potential of the 
latter technique and why of all our submissions, the LEGAL-BERT runs may have 
outperformed the graph-based approach.

Keywords  Contextual embeddings · Graph embeddings · Transformers · Textual 
entailment

1  Introduction

In this work, we develop three approaches for legal textual entailment classification 
on the English version of the Japanese Civil Code. This research is part of task 4 of 
the Competition on Legal Information Extraction/Entailment (COLIEE). The task 
consists of two texts which are compared to decide on a binary entailment relation-
ship. In this case we have a query and one or multiple associated articles from the 
English version of the Japanese Civil Code.
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In general, textual entailment classification requires capabilities which are nor-
mally attributed to humans who can acquire a deep knowledge of the legal domain 
to understand and interpret legal texts to reason about their relationship and lawful-
ness. Such reasoning capabilities are yet to be developed on a machine, for example 
as a decision support in specific legal cases. International activities make it hard—
even for legal professionals—to oversee all legislations which may be relevant for a 
specific case and to determine compliance with the law via entailment. Therefore, 
we perform research on this topic towards the goal of pushing the limits of cur-
rent Legal AI approaches. With the advent of deep learning, there are many mod-
els which are tested on natural language inference tasks, and the same development 
exists in the COLIEE competition. Although their decision making is hard to under-
stand for a human, deep learning approaches have consistently achieved good results 
in the past years on this task. They are often outperforming more explainable meth-
ods and because they are not trusted in the legal domain, the research and detailed 
analysis of their strengths and weaknesses is important to understand future research 
directions.

In particular, the BERT model (Bidirectional Encoder Representations from 
Transformers) has achieved good scores in the past COLIEE editions. Aside from 
ongoing state-of-the-art performance of BERT variants on many tasks in natural lan-
guage processing, BERT offers contextual word embeddings which are an advance-
ment of distributional semantic approaches. Previous approaches often failed to 
correctly encode the contextual meaning of a word. Therefore, using BERT in the 
COLIEE competition to overcome challenges, such as term mismatch and different 
abstraction levels of the two documents to be compared can be helpful. Hence, we 
rely in our three approaches on some variant of the BERT model. Nowadays, it is 
almost a standard procedure to choose a domain-specific pre-trained BERT model 
and then to fine-tune it on a downstream task.

Using only a BERT model though will not solve this task and has been done 
before. One part of our work is motivated by the recent advancements in Graph Neu-
ral Networks (GNNs), which can also be combined with the BERT model. Since the 
relationship between the query and article is a relevance relationship, the data can be 
transformed into a graph format to encode structural information about the relation-
ships between nodes and their individual features. Another major challenge in the 
COLIEE competition is the size of the dataset, with 806 instances to train a model. 
A commonly mentioned drawback of deep neural networks is the data size which is 
required to learn meaningful feature representations. In our work, we study also data 
augmentation and enrichment to work with our graph-based and BERT-based deep 
learning approaches despite the small dataset size.

In addition, the required language modeling capabilities to solve the entailment 
task may go beyond the contextual representations we obtain from language mod-
els such as BERT, which are based on distributional semantics. Injecting linguistic 
knowledge in such a model may be a worthwhile consideration, given that some 
instances contain paraphrases of verbs or nouns which may be easier identified if 
the parse trees provide syntactic features, potentially easing the alignment of query 
and article. Therefore, we also employ KERMIT (Kernel-inspired Encoder with 
Recursive Mechanism for Interpretable Trees) [30] which can make use of symbolic 
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syntactic parse trees as additional features to the contextual embeddings of a BERT 
model.

Based on our experiments, we offer insights in our result analysis, discuss some 
challenges we faced in this competition and draw conclusions for future research.

With this paper, we make the following contributions:

–	 We employ an ensemble of Graph Neural Networks together with features from 
Sentence-BERT and metadata of the Civil Code for the task.

–	 We perform pre-training on the statute law retrieval task and data decomposition 
to improve the learning of a domain-specific model called LEGAL-BERT.

–	 We test the KERMIT+BERT architecture for encoding syntactic parse trees 
combined with a BERT model to inject further linguistic knowledge.

After the introduction, the remainder of this work is structured as follows: In Sect. 2, 
we collect approaches of contextual embeddings from language models and graph 
embeddings for entailment classification. In Sect. 3, we describe the concepts of our 
approaches for the ensemble of Graph Neural Networks (GNNs) in our submitted 
run 1 and LEGAL-BERT in run 2 and 3 of the competition, as well as newer experi-
ments with the KERMIT+BERT architecture. Section 4 contains our evaluation set-
ting, results and their analysis within a discussion. We conclude this work and indi-
cate future research in Sect. 5.

2 � Related Work

2.1 � Contextual Embeddings from Language Models

With the growth in applications for Natural Language Processing (NLP), various 
fields of software technology such as machine translation, text recognition and text 
generation have seen a large development in the area of deep learning models adapt-
ing to these tasks [8]. Substantial progress in the area of learning embeddings for 
dense representations of the textual data has been made. Some of them are CoVe 
[16] (Contextual Word Vectors), ELMo [19] (Embeddings from Language Model), 
Cross-View Training [3] (CVT), ULMFiT [10] (Universal Language Model Fine-
tuning for Text Classification), GPT [22] (Generative Pre-training Transformer), 
BERT [4], ALBERT [14] (A Lite BERT) and RoBERTa [15] (Robustly optimized 
BERT approach). These dense representations are usually learned by training on 
auxiliary tasks, such as masked language modeling (MLM), next sentence prediction 
(NSP), machine translation, and transcription. Contextual word embeddings—once 
learned—can be further fine-tuned for downstream tasks, such as classification, with 
relatively less effort. The language model BERT [4] and its variants [14, 15] have 
emerged as the most convenient choice for a model concerning these downstream 
tasks since they condition a word’s embedding on the surrounding context. This 
makes them and similar approaches perform significantly better than other models 
which learn static embeddings as a dense representation of the textual data.
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One noticeable characteristic of BERT is that it performs better on domain-spe-
cific tasks when pre-trained with data of that specific domain. Various examples 
include BioBERT-cased, PubMedBERT-uncased which both perform better for bio-
medical data than the original BERT model as discussed by Gu et al. [6]. Similarly, 
LEGAL-BERT and its variants on legal sub-domains can perform better than the 
standard BERT on domain-specific tasks as summarized by Chalkidis et al. [2]. For 
LEGAL-BERT pre-training is carried out on a collection of several fields of English 
legal text like contracts, court cases, and legislation. The legal-bert-base-uncased 
model [2] is similar to the standard English bert-base-uncased model [4] in its neu-
ral network architecture. It has 12 layers, 768 hidden units, 12 attention heads, and 
110M parameters. The pre-training is carried out with 1 million training steps on 
batch sizes of 256 with a maximum sequence length of 512 starting with a learning 
rate of 1e-4. It also has a similar training procedure to bert-base-uncased.

Supplying further syntactic knowledge to a BERT model is a recent field of study 
and has given promising results on other tasks [12, 30]. Although there are indi-
cations that the BERT model itself already encodes syntactic information implic-
itly, the KERMITviz architecture enables visualizing which part of the sentence is 
used during inference, and using the KERMIT encoder in addition to a transformer 
has outperformed the standalone models BERT and XLNet on several tasks [30]. 
Therefore, KERMIT may have the potential to enhance both model performance and 
interpretability of the predictions on the COLIEE dataset.

In the previous year of the COLIEE competition, several teams used pre-trained 
BERT-based models with variations to address this entailment task [20]. The team 
CU submitted two such models. For the first run, they selected the bert-multilingual-
cased model for sequence classification and then fine-tuned it on training data pro-
vided by COLIEE organizers. The other model was additionally trained on articles 
obtained from a term frequency - inverse document frequency (TF-IDF) model for 
the retrieval task 3. A closely related approach is the submission of Team CYBER. 
They use a pre-trained RoBERTa instead of bert-base-uncased and fine-tune it on 
the SNLI dataset followed by the COLIEE dataset to entail relevant articles. The 
team JNLP [18] also focused on the BERT-based approach to submit three runs, 
one of them gained the winning accuracy in COLIEE 2020 for task 4. We use their 
winning run as a motivation for our runs 2 and 3. They use domain-specific pre-
training of BERT with American case law data with a corpus of 8.2M sentences. 
This model was then fine-tuned for addressing the lawfulness classification problem 
using additional augmented data of the English version of the Japanese Civil Code 
and COLIEE training data. To summarize this part, the choice of a suitable pre-
trained model with subsequent fine-tuning or additional encoding of syntactic fea-
tures can have a big impact on the success of a BERT-based approach for entailment 
classification.

2.2 � Graph Embeddings

Graph Neural Networks (GNNs) are popular for data which can be represented by rela-
tions in a graph format. GNNs are used in many fields, such as computer vision, natural 
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language processing and combinatorial optimization. In the field of NLP, GNNs solve 
tasks such as text classification, question answering and entity retrieval. Yao et al. [27] 
have used a Graph Convolutional Network for text classification by forming a graph 
from word co-occurrences and document-word relations. They achieve scores which 
beat state-of-the-art methods on standard text classification benchmark datasets. De 
Cao et  al. [1] use GNNs for question answering with named entities as nodes and 
edges as relations between the nodes. Xu and Yang [26] build a coreference resolver by 
encoding text with a BERT model and forwarding it to a fully connected layer, which 
is later concatenated with another feature representation obtained from a GNN. In 
particular, they receive the other GNN-based representation by combining the BERT 
encoding also as a feature with a syntactic dependency graph. This is then the input to a 
relational Graph Convolutional Network. Since we also combine a GNN with a BERT 
model, this approach is the most related to our first run. To the best of our knowledge, 
we are the first team using a GNN approach in the COLIEE competition task 4.

In particular, we consider a GNN architecture which is called Message Passing 
Neural Network (MPNN). Those networks operate with differentiable functions in two 
phases: the former being a message passing phase with defined message functions at 
each timestep, as well as a node update function, whereas the latter is a readout phase, 
having a readout function that computes the feature vector of the whole graph [5]. The 
advantages of this technique are a possibly higher adaptation and generalization capa-
bility of those networks due to their use of aggregated local neighborhood information 
[17]. In our case, we will not make use of the readout phase because instead of the 
whole graph’s embedding, we feed the hidden states of the updated nodes individually 
into a classification model, which we describe in Sect. 3.1.

BERT-based approaches prove to be an effective solution for the past COLIEE edi-
tion. Moreover, domain-specific models may achieve better results than their standard 
variants. Graph Neural Networks have not been widely explored in the COLIEE com-
petition. Hence, we focused on the use of LEGAL-BERT and GNNs for the COLIEE 
2021 challenge on the statute law entailment task. Furthermore, we perform prelimi-
nary test of a KERMIT+BERT architecture on the COLIEE 2021 dataset.

3 � Statute Entailment Task

For the competition, we develop two different approaches with three different runs, as 
described in Table 1. The first technique is an ensemble of GNNs, while the second and 
the third runs use LEGAL-BERT with different training approaches. In addition, we 
test the KERMIT architecture in a BERT model on the same dataset.

3.1 � Ensemble of Graph Networks

Our graph consists of a set of nodes and edges, where each node represents either a 
query or an article. Edges are the connections between nodes. In the context of clas-
sification tasks, such a graph is often encoded by a neural network. This results in a 
graph embedding, which is then used as a feature, for example of a linear classification 
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layer. Standard graph embedding approaches focus on the structure of the graph only. 
However, encoding external knowledge into such a graph as node features and using 
them while creating a graph embedding can be helpful, especially in cases of a rather 
small graph. This is particularly interesting for the statute entailment task with limited 
training data, and where the contextual meaning of queries and articles can be found in 
their content, but also within the relation between them. Graph approaches can model 
abstract relations which cannot be easily characterized, such as the entailment rela-
tionship. So we decide to use graphs in connection to contextual word embeddings to 
encode relationships between a query and positively or negatively entailed articles.

In our implementation, we form a bipartite directed graph between the article and 
query nodes and try to learn the relation between them. Bipartite graphs can be divided 
into two sub-graphs with each sub-graph having no connections within itself but con-
nections with the nodes of the other sub-graph. We choose this type of graph because 
we cannot directly model a relationship between the queries, however, the training data 
indicates a positive or negative entailment relationship between a query and its relevant 
articles. Since graphs can encode multiple relations to one node, we assume this is a 
good approach with the COLIEE dataset, where queries have multiple relevant articles 
and learning semantic relations within each of these query-article pairs can be benefi-
cial for entailment classification.

Our Graph Neural Networks employ a message passing technique M and two dif-
ferent node update functions V1 and V2 . V1 represents the query node update function 
and V2 represents the article node update function. Regarding the concept of message 
passing, the so-called message from one node is passed to another node, embedding the 
neighborhood information of the node with an aggregation function. Here, we use the 
average aggregation function [11] for message passing. Equation 1 shows our message 
passing function M where W represents parameter weights, ew stands for edge weight 
and x is the article/query node feature/embedding. Equation 2 shows the query node 
update function V1 where W stands for parameter weights, xq denotes the query node 
feature/embedding and ma represents the article aggregation value. Equation 3 shows 
the article node update function V2 where xa represents article feature and mq represents 
the query aggregation.

(1)M(ew, x) = ew ∗ W ∗ x

(2)V1(xq,ma) = concatenate(W ∗ xq,ma)

Table 1   Methods for each run 
for task 4

Run Method

OvGU_run1 Ensemble of 
Graph Neural 
Networks

OvGU_run2 LEGAL-BERT
OvGU_run3 LEGAL-BERT
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In the implementation by He et al. [7], they have used a large scale bipartite graph to 
get an efficient representation with intra- and inter-message aggregation. We use the 
inter-message aggregation method to just pass article information to the queries and 
not to other article nodes.

We propose two graph structures differing in their message passing modality to 
learn the entailment relationship, as discussed below: 

1.	 Unidirectional message passing: In this structure, we pass a message from the 
articles to their corresponding query and learn the embeddings. Equation 4 shows 
how we calculate embeddings for a query node which is in line with the work by 
Morris et al. [17], except for the difference that we concatenate the neighbour 
information instead of adding them, which has been done in the original imple-
mentation. The connection between the nodes is indicated in Fig. 1, however in 
this message passing variant the article node has a uni-directional connection to 
a query node and not the other way around. Let 

where xq represents query features as the node embedding, xa represents relevant 
article features, N is the number of articles associated with a query by a positive 
or negative entailment relationship, and eq,a represents the edge weight between 
query and article.

	   For � , we selected the rectified linear unit as an activation function.
2.	 Bidirectional message passing: In this structure, we make use of queries in the 

training dataset which hold an entailment relationship with the articles to update 
the article embeddings (both positive and negative) motivated by the approach of 
Wehnert et al. [25]. Initially, we update the articles with the related queries and 
then update the queries with the related articles. We suppose this could further 
enrich the article embeddings, since the entailed queries can add more unique 

(3)V2(xa,mq) = xa + mq

(4)xq = �(V1(xq,
1

|N|

N∑

j=1

M(eq,aj , xaj )),

Fig. 1   Workflow for the Ensemble of Graph Methods
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information about the articles. This is depicted in Fig. 1, where the article node 
is connected to a query node and also, the other way around. Equation 4 holds for 
this graph structure as well, with the modification of the article embedding xa as 
below, 

where Nq refers to the number of queries associated with the article and � is 
a hyper-parameter which indicates the degree of influence of the query to the 
article. We have considered 0.1 as the � value, so that query should not influence 
the articles much to avoid an overflow of information from one query to another.

Figure 1 shows the workflow1 of how the entailment is done with the Graph Neural 
Network. Each article and query node in the graph is represented by features. We 
use extracted metadata from the section titles for each article to enrich its content 
before further processing with the language model. Table 2 gives an example of the 
metadata we used. With Sentence-BERT2 [23], we generate sentence embeddings 
from the content of the queries and of the enriched articles and consider them as 
a feature for the corresponding node in the graph. We used the pre-trained para-
phrase-distilroberta-base-v1 model to create the sentence embeddings because it is 
claimed to work well on natural language inference tasks and was trained on mil-
lions of paraphrase pairs3.

The starting point for the node embeddings are the sentence embeddings. In the 
unidirectional message passing scenario, we update those embeddings with the 
above function 4 for the query nodes only, based on the implementation by Morris 
et al. [17]. The resulting query node embedding also encodes information consid-
ering relevant articles as direct neighbor nodes. In the bidirectional case, we use 

(5)xa = V2(xa,
1

|Nq|

Nq∑

j=1

� ∗ M(ea,qj , xqj )),

Table 2   Example of metadata 
for Article 567 of the Civil Code Training data

 Article 567: (1) If the seller delivers the subject matter .. ground of 
the loss or damage.

In such a case, the buyer may not refuse to pay the price.
(2) The preceding paragraph also applies if the seller tenders .. 

tender of the performance
due to any grounds not attributable to either party.
Metadata
 Part: III Claims    Chapter: II Contracts    Section: 3 Sale
 Sub-section: (Transfer of Risk for Loss of Subject Matter)

1  Note that we use either a unidirectional or a bidirectional graph structure for our experiments, however, 
we have depicted this with a single line in Fig. 1 for brevity.
2  https://​github.​com/​UKPLab/​sente​nce-​trans​forme​rs.
3  https://​www.​sbert.​net/​docs/​pre-​train​ed_​models.​html#​parap​hrase-​ident​ifica​tion.

https://github.com/UKPLab/sentence-transformers
https://www.sbert.net/docs/pre-trained_models.html#paraphrase-identification
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message passing to update both the query and article node sentence embedding fea-
tures with functions 4 and 5, respectively. We then use the node embeddings for the 
downstream task of query node classification for entailment.

For our run 1, we submitted the unidirectional message passing model in an 
ensemble setup as follows: We train two different models with different parts of the 
dataset and ensemble their results to get the final entailment relationship. We train 
one model with the training dataset except for instances starting with the pair ID 
“R01-*” and another model with the full training dataset. In the time of inference, 
we take the average of the softmax values from the two models and hence determine 
the final prediction.

To summarize, we used a novel approach by employing sentence embeddings 
and node embeddings together to solve the entailment task. Also, we enriched the 
data with structural information of the Civil Code. In the following, we present the 
approach of using LEGAL-BERT for the two other runs.

3.2 � LEGAL‑BERT

For our runs 2 and 3, we consider a pre-trained model called legal-bert-base-
uncased4 [2] as our default choice for this task. More details about how that pre-
trained model is obtained have been shared in Sect.  2.1. We also participated in 
task 3 of COLIEE, the statute law retrieval task, and fine-tuned the aforementioned 
BERT model for that purpose. In that work [25], LEGAL-BERT outperformed 
the regular BERT model (bert-base-uncased) and another domain-specific variant 
called legal-RoBERTa, so we did not employ the other models on task 4 anymore. 
The query-article pairs in the training data are the same for both tasks, but for task 
4, we have additional entailment labels which are not required in task 3. However, 
since we performed task 3 also as a classification task, we used a different set of 
labels that described the relevance of an article to a query rather than the entailment 
labels. For task 3, except for the classification head, the encoder part of legal-bert-
base-uncased is trained on the query-article pairs. In short, we transformed the orig-
inally imbalanced dataset in task 3 by decomposing all relevant articles into separate 
instances, in addition to keeping the original instance with potentially multiple rel-
evant articles also in the training data. This increases the count of examples which 
contain relevant articles. Although this method does not necessarily result in correct 
entailment relationships among the decomposed instances, it helps in training the 
model in presence of only few samples. Then, per query, we add the top 50 most 
similar, but not relevant articles to reduce the overall amount of irrelevant articles 
and thus include not obvious cases in the training phase for each query. We lever-
aged this trained encoder for task 4 and re-initialize the classification head with new 
trainable parameters.

In detail, the following steps were done to preprocess the training data: 

4  https://​huggi​ngface.​co/​nlpau​eb/​legal-​bert-​base-​uncas​ed.

https://huggingface.co/nlpaueb/legal-bert-base-uncased
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1.	 Data decomposition: The training data consists of query-article(s) pairs, where 
each query has one or more relevant articles. To extend the dataset for training, we 
split the training instances such that every instance has just one relevant article to 
which the given query is entailed. This increases the number of training instances 
and aids the model during training.

2.	 Data augmentation with non-relevant articles: Further, for each instance in 
the new decomposed training dataset, we checked the cosine similarity of the 
relevant article in that instance with all the articles in the Civil Code, except for 
the ones which were already marked relevant by another instance of the same 
query. We used TF-IDF vectorization to compute the similarity and picked the top 
50 articles. These are the potential non-relevant articles for the query but closely 
related to its relevant articles. This extension is motivated by the implementation 
by Nguyen et al. [18], however, they considered query-article similarity instead 
of the article-article similarity that we propose. We proposed the article-article 
similarity because we believe that articles are more closely associated with each 
other than they are with the queries, such that model can benefit from non-relevant 
examples that can have a similar terminology to the relevant ones.

3.	 Augmenting the dataset: On top of this decomposed and augmented dataset, 
we also consider the training instances in the training dataset in their original 
form. This also introduces duplicate instances but ensures that the original query-
article(s) pair could still influence the model.

Note that both steps 2 and 3 for augmenting data are performed only for task 3, the 
statute retrieval task, from which we adopt the encoder model, and for task 4 we 
only perform that data decomposition step. Anyway, we describe all three steps as 
we adopted the task 3 encoder for task 4.

An example of our query-article instance in the training dataset is given in 
Table 3 for the query of pair id H27-22-1:

Query Q: “In the case of a contract for sale of a specified thing, if the perfor-
mance of the delivery has become impossible due to reason attributable to the seller, 
the effect of the contract of sale shall be lost by operation of law, then the buyer shall 
be relieved of liability for payment of the purchase money.”

We adopt two different training techniques to generate the run 2 and run 3 of 
our submission as depicted in Fig. 2. The reason for this approach is that in previ-
ous experiments, we observed differences in model performance depending on the 
training and test split. This is due to a shift in the distribution of the problem cat-
egories, as we compile the statistics for the years 2018-2020 from the official sum-
mary papers [20, 21, 28] in Table  4. Some models may fit to a particular year’s 
problem type distribution better than in the year after, however the performance over 
the years is not really comparable, as the dataset is extended in every new COLIEE 
edition. The official problem category assignments are not released, however we find 
descriptions of each category in the work by Hoshino et al. [9], which helps us to 
analyze our contributions in Sect. 4 based on those descriptions.

We also experiment with different hyper-parameters, the results of this are dis-
cussed in the evaluation section. For both runs, we create a training and valida-
tion split (all queries starting with the ID “R01-*” for the validation set). For run 
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Table 3   Data Decomposition to create additional instances using multiple relevant articles for each query

Queries Articles Label

Before preprocessing
Query Q Article 415 (1) If an obligor fails to perform ... (2) ... obligor’s

failure to perform the obligation Y
Article 542 (1) In the following cases, the obligee may ... (2) .
perform the part of the obligation
Article 543 If non-performance of an obligation is ... contract under
the preceding two Articles.

After preprocessing
Query Q Article 415 (1) If an obligor fails to perform ... (2) ... obligor’s failure

to perform the obligation Y
Query Q Article 542 (1) In the following cases, the obligee may ... (2) .

perform the part of the obligation Y
Query Q Article 543 If non-performance of an obligation is ... contract under

the preceding two Articles. Y

Table 4   Top 5 Ranking problem categories in the 2018–2020 test data with the number of instances

Year Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Total

2018 Conditions Person role Person relationship Morpheme Anaphora
31 27 26 25 20 69

2019 Conditions Person role Person relationship Negation Entailment
83 66 66 44 33 98

2020 Conditions Predicate argument Negation Legal fact Person role
74 73 69 55 48 112

Fig. 2   Fine-tuning workflow of 
the LEGAL-BERT encoder for 
run 2 and 3
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2, we fine-tune the above model on the training split and evaluate its performance 
on the validation set. Having achieved satisfying results, we further train the 
fine-tuned model on the validation split. However, for our run 3, we completely 
train the reinitialized classification head with the encoder base from task 3 on the 
entire training split including the validation split. Each run is trained using the 
same set of hyper-parameters that resulted in the best performance for the valida-
tion split.

To sum up, we re-used the LEGAL-BERT encoder we already had trained on 
the COLIEE statute law retrieval task [25] and reinitialized its classification head. 
To make learning easier, we decomposed the instances with multiple articles for 
a query, forming additional instances. Run 2 was trained in 2 steps. The first step 
was to fine-tune it on our training split and then in the second step, we performed 
further fine-tuning on the validation split. Run 3 was fine-tuned on the full train-
ing data in one step. In the next section, we evaluate all three runs.

3.3 � KERMIT+BERT

In this section, we explain the architecture we used to classify textual entailment 
using the KERMIT encoder [30] combined with a BERT model. The idea of the 
KERMIT encoder is based on Recursive Neural Networks (RecNN), which pro-
cess binary tree structures in the manner of a Recurrent Neural Network [24], as 
well as Distributed Tree Kernels [29], which encode high-dimensional tree frag-
ments into a lower-dimensional vector representation. In particular, the tree node 
labels are initially one-hot encoded using a multivariate Gaussian distribution 
� ∼ N

�
0,

1√
d

�

�
 . With the shuffled circular convolution �⊗ � the embeddings are 

composed, which ensures the interpretability of the resulting vector space [29]. In 
combination with a BERT model, we obtain the architecture shown in Fig. 3. In 
our entailment scenario we generate parse trees from query and article(s) as input 
sequences separately, resulting in two concatenated embedding vectors in KER-
MIT. For the BERT model, we generate one sequence from query and article, 
delimited by the separation token [SEP]. Per default, BERT’s [CLS] token 
embedding is used as a representation of the input sentence. The generated 
embeddings from BERT and KERMIT are then forwarded to a fully connected 
decoder layer with softmax activation to generate the prediction of the entailment 
label.

4 � Evaluation

We start this section with details about the experimental setup, followed by results 
from the competition, previous experiments and a final discussion. For hyper-param-
eter optimization we evaluated our runs on the validation split of queries starting 
with “R01-*”.
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4.1 � Experimental Setup

4.1.1 � Graph Neural Networks

We modeled Graph Neural Networks with different structures—words as nodes and 
sentences as nodes; different message passing modalities—unidirectional (from 
articles to query) and bidirectional (from articles to queries and vice versa). These 
experiments are detailed below.

Words as nodes: Initially, we constructed graphs by considering each word as a 
node and making connections between nodes (words) which are neighbors to that 
word in the sentence. We trained Word2Vec [13] vectors from the article descrip-
tions in the Civil Code and the queries in the training dataset, using the gensim5 
library and used these as the features for each node. This way we tried creating 
graphs for both queries and articles and create a graph embedding for each graph, 
to combine their embeddings and use it for the entailment downstream task. But this 
approach did not seem to perform well on the validation split, with an accuracy of 
56%.

Sentences as nodes: To improve the results, we embed the sentences of the arti-
cle and the query, respectively, using Sentence-BERT and use it as a node feature. 
We encode this information to get query node embeddings, as described in Sect. 3. 
These are then passed to the linear layer. The results have been found to outperform 
the above-mentioned approach of considering the Word2Vec representation for the 
article and query token nodes.

Data enrichment with article metadata: From experimenting with different 
data enrichment strategies, we found that the model tends to give better results 

Fig. 3   KERMIT+BERT architecture, adapted from Zanzotto et al. [30]

5  https://​radim​rehur​ek.​com/​gensim/​models/​word2​vec.​html.

https://radimrehurek.com/gensim/models/word2vec.html
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(an improvement of over 6 percentage points in the validation data) when we add 
the metadata of the article while embedding it. This is shown in Table 5.

Choice of using batch normalization: Table 6 shows how the parameters affect 
the model performance when the message is passed from articles to query. Plug-
ging in a batch normalization (BN) layer after each graph layer is results in bet-
ter entailment classification performance. Accuracy increased significantly for all 
our data splits (roughly 6 percentage points), except for the COLIEE Test data 
where it dipped to 44% from 53%.

Choice of sequence length: While experimenting with the maximum sequence 
length to obtain the Sentence-BERT embeddings, it was surprising to note that 
even the model with a default sequence length of 128 performed reasonably well, 
compared to the model with a maximum sequence length of 512. This is shown 
in Table 6.

Choice of edge weights: We experimented with an edge weight of 1 to give 
equal importance to each article and also experimented with the cosine similarity 
between query and article as the edge weight. It is evident from Table 7 that using 
cosine similarity between the nodes (articles and queries) offers better perfor-
mance in our setting than using a constant edge weight of 1. With both the valida-
tion and COLIEE test splits, we see this trend with an improvement of roughly 4 
percentage points.

Choice of message passing modality: Though we assumed that the bidirectional 
message passing would fetch better results than its unidirectional counterpart, we 

Table 5   Influence of data 
enrichment on COLIEE 
validation set

Correct answers Accuracy

Without metadata 66/111 0.5946
With metadata 73/111 0.6577

Table 6   Experiments with Graph Neural Networks (with message passing from articles to query—BN 
and Sequence Length

Description Validation data COLIEE data

Train acc Test acc Train acc Test acc

Without BN, seq=128, ew=1 0.614 0.527 0.587 0.531
With BN, seq=128, ew=1 0.666 0.657 0.649 0.444
With BN, seq=512, ew=1 0.652 0.500 0.643 0.531

Table 7   Experiments with 
Graph Neural Networks (with 
message passing from articles to 
query)—Edge Weights with BN

Edge weight Validation data COLIEE data

Train acc Test acc Train acc Test acc

1 0.652 0.500 0.643 0.531
cosine similarity 0.652 0.545 0.631 0.580
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were taken by surprise to see the former performing worse in the test splits. This is 
evident from Table 8.

To sum up, for the COLIEE competition, we submitted the unidirectional Graph 
Neural Network with sentence embeddings of sequence length 128 and an edge 
weight of 1 (refer to Table 6, second row). The Graph Neural Network has 2 graph 
layers with a batch normalization layer after each graph layer. We then add a linear 
layer with a rectified linear unit activation and a final linear layer with a softmax 
activation to perform the downstream task of entailment using PyTorch6.

We evaluate our model on the validation split (all queries starting with the ID 
“R01-*”). After hyper-parameter optimization on the validation data, we train our 
model for 3 epochs as it was observed that the model was overfitting on the training 
set when the number of epochs was increased. We train our model with the Adam 
optimizer and with a batch size of 4 on the training split. We train the second model 
with the full training dataset including the validation split with the same hyper-
parameters, so that the model makes use of all the data we have. To get the label 
predictions on the COLIEE 2021 test set, we take average softmax values from both 
models and choose the label with the higher confidence value.

In previous experiments, we also employed LEGAL-BERT [2] in the Sentence-
BERT architecture (accuracy on the validation set: 49.55%), but the performance 
was not comparable to the paraphrase-distilroberta-base-v1 model, since LEGAL-
BERT was not trained with the Siamese architecture of Sentence-BERT on a natural 
language inference task. If there were larger legal corpora for pre-training models 
with the Siamese architecture, a domain-specific model may have the potential to 
boost the GNN performance.

4.1.2 � LEGAL‑BERT

For both run 2 and 3, we use the same experimental setting of hyper-parameters, 
albeit using different training techniques. We validate by decaying the learning rate 
using a decay rate of (0.1(1+epoch) ), varying the warmup steps from 5 to 20 % of the 
total training steps, and testing with other hyperparameters as shown in Table  9. 
However, warmup steps and decay rate did not have a significant impact on the 
performance of the LEGAL-BERT for task 4. Plausible reasons could be the small 
amount of training data and the fewer number of epochs used during training, result-
ing in a very small number of warmup steps, thereby, not providing the network 

Table 8   Experiments with 
Graph Neural Networks (with 
message passing from query 
to articles and then articles to 
query) with BN, seq=512 and 
� = 0.1

Edge weight Validation data COLIEE data

Train acc Test acc Train acc Test acc

1 0.633 0.518 0.648 0.556
Cosine similarity 0.653 0.509 0.659 0.481

6  https://​pytor​ch.​org/.

https://pytorch.org/
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enough time to adapt gradually. Also, the decay rate shrinks abruptly causing no sig-
nificant effect on the learning process. For this reason, we left out the warmup steps 
and the decay rate for training our models.

Finally, with hyper-parameter tuning, we observed that the learning rate of 5e−05 
with a batch size of 8 trained for 4 epochs was the most suitable of all regarded 
options of our scenario.

4.1.3 � KERMIT+BERT

For most part, we follow the default parameters set for the KERMIT+BERT archi-
tecture by Zanzotto et  al. [30]. The dimensionality of the embedded constituency 
parse tree is 4000 for the tree of query and article, respectively. We obtained both 
trees using the same parser from Stanford Core NLP as the original authors. Then 
we used the Transformer model bert-base-uncased with 768 dimensions and a maxi-
mum sequence length of 512. The architecture is trained with the AdamW optimizer 
with a learning rate of 3e−5 . We train the KERMIT+BERT model with a batch size 
of 64 for 4 epochs, more epochs led to overfitting due to the limited dataset size in 
COLIEE. Being aware of the effect of weight initialization in BERT models, we set 
multiple random seeds and train several models on the architecture.

4.2 � Results

Among our submissions, OvGU_run3 achieved the fifth-highest accuracy, fol-
lowed by OvGU_run2 with the sixth-highest accuracy obtaining 48 and 45 correct 
answers, respectively, given 81 test queries. Since both these runs are BERT-based 

Table 9   Optimizing hyper-parameters on the validation set for task 4 COLIEE 2021

Correct Epochs Batch-size Learning_rate Warm_up Decay Accuracy

57 4 16 1e−05 300 0.1(1+epoch) 0.5135
61 5 16 1e−05 400 0.1(1+epoch) 0.5495
63 5 8 1e−05 600 0.1(1+epoch) 0.5676
68 5 8 1e−05 – – 0.6126
71 4 8 1e−05 – – 0.6396
73 4 8 5e−05 – – 0.6577

Table 10   Task 4 Results for 
COLIEE 2021

Correct Run Accuracy

36 OvGU_run1 0.4444
45 OvGU_run2 0.5556
48 OvGU_run3 0.5926
47 KERMIT+BERT 0.5802
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approaches, we witness comparable results. Although none of our runs could 
achieve the highest performance, OvGU_run1 is a novel graph-based approach, 
which obtained 36 correct answers. The results are populated in Table  10. Aside 
from the official competition results, the best performance of the KERMIT+BERT 
architecture on the COLIEE 2021 data is also included in the table with an accu-
racy of 58%. Considering the average performance of KERMIT+BERT across all 
7 seeds, we obtain an average accuracy of 51.03%, with a standard deviation of 5 
percentage points.

4.3 � Discussion

In this section, we briefly discuss the overall results of our approaches on the 
COLIEE 2021 competition and point out a few discrepancies in the dataset.

4.3.1 � Discussion on Task Results

We can see that our method performs well when we consider the validation data 
( based on queries starting with the ID “R01-*” ) in Table  11. Compared to this 
year’s test set, we could observe that LEGAL-BERT was able to generalize much 
better than the GNN and was able to give 48 correct answers while the GNN per-
formed worse. Graphs are usually used to represent large amounts of data, and since 
the dataset is limited, it may be assumed that the GNN was not able to generalize 
much with the dataset and the current hyperparameter settings and was not able to 
correctly predict the entailment relationship with the query node embeddings. We 
assume that graph-based techniques can achieve better scores in the future, since 
our approach for run 1 does not rely on much external knowledge, which could be 
encoded after performing more document enrichment. We also include the valida-
tion accuracy of the best-performing KERMIT+BERT model on the test data. Here, 
the average performance on the validation set is an accuracy of 52.4% with a stand-
ard deviation of 2.9 percentage points. Given the overall performance of the GNN 
and the rather low explainability of the generated embeddings, we compare it with 
the other approaches to find some interesting trends.

We examine all three submitted runs with the ground truth provided by the 
COLIEE organizers. Results confirm that our run 3 predicts more correct answers 
than our other two runs. Out of 81 queries, run 1 correctly predicted a total of 36 
queries of which 11 queries were not correctly predicted by any of the other runs 
we submitted. Similarly, for run 3 out of our 48 correct predictions, 11 queries were 
not correctly predicted by the other runs we made. When it comes to run 2, we had 

Table 11   Evaluation result on 
validation data

Method Correct answers Accuracy

GNN 73/111 0.6577
LEGAL-BERT 73/111 0.6577
KERMIT+BERT 58/111 0.5225
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a total of 45 correct predictions where 5 queries were not correctly predicted by our 
other runs. For run 2 and 3, most of their predictions would have an agreement with 
each other, precisely 56 such queries, the reason might be since both of the runs are 
BERT-based approaches and even share the same initial encoder. Additionally, we 
observed that we could not predict 11 queries correctly in any of our runs while 16 
were correctly predicted across all three. Considering only the 38 positive entail-
ment instances from the ground truth, we characterize the model behavior based 
on the problem type the respective model can overcome to find a positive entail-
ment. Since there is no official ground truth regarding the problem category assign-
ment, we provide several examples of our approach to categorize the instances. Run 
1 sometimes exclusively detected the entailment in instances with a Condition and 
Person Role. Example instances of this are R02-4-I and R02-9-O, which both con-
tain mentions of persons with alphabetical letters (A, B,...) whose roles need to be 
matched to the conditions mentioned in the articles, such as being an agent conclud-
ing a sales contract. We identified Conditions by using signal words, such as “if” 
and “unless”. Among the 28 instances with a positive entailment label that we attrib-
uted to the Condition category, run 1 identified 15 thereof, run 2 found 27, run 3 
detected 16 and the KERMIT+BERT model found 10. Interestingly, run 3 detected 
less conditions than run 2, because run 2 overall predicted the positive entailment 
54 times, whereas run 3 only 39 times, which was closer to the actual distribution 
in the ground truth. The same applies to the problem categories Person Role and 
Person Relationship, where run 2 detected 17 out of 24 instances in both catego-
ries, while all other models identified less than 10 positive entailment instances with 
this attribute. Run 3 was usually performing consistently well with instances with a 
high overlap, which not all models did effectively. Interestingly, KERMIT+BERT 
slightly outperformed the other models with 5 out of 8 Paraphrases and 6 out of 
11 Verb Paraphrases. We assume that this architecture enables a model to align the 
paraphrased components and identify the entailment relationship better than other 
models.

We further notice that the LEGAL-BERT-based approach performs considerably 
better than the graph-based approach for the test queries associated with multiple 
articles, such as for pair IDs “R02-16-O”, “R02-24-E” with an overall of 16 such 
queries. Our run 1, the graph-based model, is able to correctly predict 6 such queries 
while both BERT-based models of run 2 and 3 predicted 10 and 11 queries cor-
rectly. We believe that this is due to our input data decomposition for runs 2 and 
3, recognizing each relevant article as a separate training instance. Furthermore, 
Sentence-BERT has a default token limit of 128, which means that all inputs with 
more tokens than that will be truncated. This has possibly affected the performance 
of run 1 for longer articles with the relevant entailment content at the end of the 
article part. For instance the encoding of Article 567 with 212 tokens did not change 
after we added the metadata, hence for articles with this length, that measure had no 
effect. This drawback of using the default settings shall be considered in future work 
with Sentence-BERT.

Apart from our submitted runs, we evaluate another run that we did not submit in 
the competition. This model predicts 54 correct entailment labels for 81 test queries. 
This submission could have been the third-highest score. Its LEGAL-BERT model 
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is only fine-tuned on the training split we had during validation, so that we do not 
use the queries starting with the ID “R01-*”, as mentioned earlier. The model pre-
dicts 73 correct labels on the validation set, listed as the last entry in Table 9. We 
attribute this effect to the unstable training / test results on the COLIEE competition 
over time, such that the problem type distribution of queries starting with “R01-*” 
could be probably skewed. The opposite effect occurred for the KERMIT+BERT 
model, which has a lower validation accuracy than on the test data. Considering 
the relatively higher standard deviation on the test data, there seems to be a prob-
lem type distribution shift from the “R01-*” validation set and the “R02-*” test set, 
which may explain the large differences between the model performances.

4.3.2 � Discussion on Dataset

In general, while reviewing the training and test dataset provided for COLIEE 2021 
task 4, we find a few discrepancies. 

1.	 Incomplete article description: For multiple queries including H22-23-E, H27-
23-E, H27-23-O, R01-25-U and R01-25-O where Article 617 was marked one 
among the relevant articles, the description in the query-article pair was incom-
plete in the training dataset when compared with the article description in the 
Civil Code.

2.	 Mentioning only selected paragraphs of the article: In the training dataset, 
Article 718 was marked as relevant for the query H30-29-E. Though the article 
had 2 different paragraphs in the Civil Code, only the 1st paragraph was provided 
in the query-article pair in the training dataset.

	   This can be neglected owing to the count of 1 on a total of 806 train instances, 
however, when we consider the test dataset, there are 35 such instances on a total 
of 81.

	   This is particularly interesting when different paragraphs of the same arti-
cle were mentioned for different queries. For query R02-27-A, only the second 
paragraph of Article 676 is mentioned while for query R02-27-O, the third para-
graph is mentioned. This brings us to the question if the selected mentioning was 
intentional. In this case, task 4 could extend its scope to not just checking for an 
entailment label, given relevant articles and a query, but also to find the most 
relevant paragraph(s) in the given article and then check for an entailment label 
with the query.

3.	 Mismatch in article number and article description: For the test query R02-
2-E, the description of the relevant article seems to be incorrect. When compar-
ing with the Civil Code, the article description of Article 36 was used in the test 
query-article pair, but the article number mentioned was Article 35. It is also 
interesting to note the original article description for Article 35 in the Civil Code 
has Japanese characters.

4.	 Article description in Japanese: The article description for the test query (in 
the English test dataset) R02-5-I is given in Japanese. This puts the competitors 
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using the English dataset at a disadvantage of potentially losing one test instance 
and thereby decreasing the number of correct predictions.

From the discussions and findings above, our main takeaways from COLIEE’21 task 
4 are: 

1.	 Data decomposition of queries associated with multiple articles into multiple 
instances can help the neural networks to model the query-article relation better.

2.	 Developing an understanding of the data distribution or the skewness in indi-
vidual training dataset subsets (“H28-*”, “H29-*”, “R01-*”, and more) can help 
to address the queries better. It would be interesting to have an official multi-label 
assignment of problem categories released for the training data.

5 � Conclusion and Future Work

To conclude, we test graph and contextual word embeddings for task 4 of textual 
entailment classification in the COLIEE competition. In particular, we use Graph 
Neural Networks with sentence embeddings in run 1 and LEGAL-BERT variations 
in training, with two stages in run 2 and one stage for run 3. We find that increas-
ing the number of instances with article decomposition can help to boost the per-
formance of our approaches. From all submitted runs, the LEGAL-BERT run 3 
which was fine-tuned on all available data in one stage performed best. However, we 
found that the training / test split can substantially impact the model performance, 
which is shown by run 2, 3 and an auxiliary run which outperformed all submit-
ted runs. In addition to the submitted competition runs we experimented with the 
KERMIT+BERT architecture to encode syntactic parse trees and use them jointly 
with contextual embeddings. Initial results for the bert-base-uncased model are 
promising and may improve with domain-specific pre-trained transformers in fol-
low-up experiments. For future work, we will test KERMIT’s visualization compo-
nent for the heat parse trees and intend to focus more on the generation of sentence 
embeddings and their appropriate aggregation for longer articles. Furthermore, we 
suggest to incorporate external knowledge via more extensive document enrichment 
with knowledge from the web into all three approaches as an addition to the decom-
position and augmentation strategies we employed this time.
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