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Abstract
An increasing number of local shops offer same-day delivery in order to compete
with the online giants. However, the distribution of parcels from individual shops
to customers reduces the rare consolidation opportunities in the last mile even fur-
ther. Thus, shops start collaborating on urban same-day delivery by using shared
vehicles and micro-depots for consolidated transportation of parcels. At this, many
stakeholders (storekeepers, drivers, and customers) need to be coordinated. Consistent
routes between micro-hubs simplify the distribution process and increase reliability
for all stakeholders involved. The shared vehicles thus conduct consistent daily routes
between micro-hubs in the city, serving as transshipment and consolidation centres.
This allows stores to bring orders to the next micro-hub, where the parcel is picked up
by a vehicle and delivered to the micro-hub closest to its destination—if it is feasible
with respect to the vehicle’s consistent daily schedule. Creating effective schedules
is therefore very important. The difficulty of finding an effective consistent route is
amplified by the daily uncertainty in order placements. We model the problem as a
two-stage stochastic program. While the first stage determines the vehicle schedules,
the second stage optimises the flow of realised orders. The goal is to satisfy as many
orders per day as possible with the shared vehicles. We propose a time-expanded
network formulation of the problem which is solved to optimality using commer-
cial MIP-software. We assess our model against a non-consistent upper bound and a
practically-inspired heuristic to evaluate the cost of consistency and the consolidation
of goods. We analyse the performance of our method for a variety of instance settings.
We observe that collaborative delivery via micro-hubs is worthwhile for delivery time
promises of two hours or more. Noticeably, for these service promises, the costs of
consistency are surprisingly low.
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1 Introduction

Urban areas are facing an increasing amount of parcel transportations. This is rein-
forced by various factors, first and foremost the expanding e-commerce. In 2020, about
4.05 billion courier, express, and parcel deliveries were made in Germany according
to the German Federal Association of Parcel and Express Logistics (Bundesverband
Paket und Expresslogistik e.V. (BIEK) 2021). These numbers indicate that customer
behaviour is shifting more and more towards online shopping. Purchasing online from
the comfort of one’s own home is more convenient and saves customers the inconve-
nience of a trip to the crowded and congested city centre as well as from queuing in
shops. At the same time, online shopping shows disadvantages. Conventional next-day
delivery requires waiting for the customers. According to the Ecommerce Delivery
Benchmark Report 2022, 37.5% of UK shoppers see the speed of delivery as the most
important incentive to purchase online (Metapack 2022). Seeking an instant gratifi-
cation of their orders, customers hence prefer a same-day or even instant delivery, if
available. However, same-day delivery is usually only offered for a small range of
products. Local shops can close the gap, offering a large variety of goods relatively
close to the customers. To participate in the e-commerce boom, many local businesses
thus start to offer fast same-day delivery. Often, they promise to deliver orders within
a few hours. Operating an own delivery fleet however, is very cost- and time-intensive
for local retailers as additional expenses for staff and vehicles are incurred. Especially
for small shops, owning a fleet is usually not worthwhile, as delivery volumes are
relatively small. To overcome these problems, local shops start collaborating for joint
delivery, allowing them to offer a fast delivery service to customers, while improving
low vehicle fill rates and driving down transportation costs (Datex 2021). In a local
collaborative distribution network, goods of local shops can be purchased via an online
platform and shipment is organised through the collaborative network.

Visiting the individual shops for every order is very time-consuming. Moreover,
shops are often located in clusters within the city. Therefore, local delivery models
make use of transshipment centres within the city to bundle orders of different stores
(Burns et al. 2022). A number of services working with a similar strategy can be found
in various places, e.g., in several Dutch, Scandinavian and German cities (Cameron
2022; velove 2022; Kiezbote 2021). Such transshipment centres—from now on called
micro-hubs—increase consolidation opportunities in the joint delivery process even
further. In the local collaborative distribution network, they are used as drop-off and
pickup points for online orders. Shops can bring their goods to the closest micro-hub
and customers can pick them up a short time later at a nearby micro-hub. Between the
micro-hubs, low-emission vehicles such as cargo-bikes perform tours to transport the
orders within the network. Organising delivery through micro-hubs offers benefits for
storekeepers, drivers, and customers. Storekeepers can participate easily by bringing
batches of orders to the nearby micro-hubs a few times per day. Drivers do not need
to visit individual stores and customers in unfamiliar and crowded streets anymore.
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Consistent routing for local same-day delivery via micro-hubs 377

Moreover, customers are no longer constrained to remain at home and wait for their
deliveries but have high flexibility concerning the pickup of their parcels.

In the local collaborative distribution network, many stakeholders are involved: dif-
ferent storekeepers, drivers, and customers all need to be coordinated. For this reason,
the collaborative systemmust be error-resistant, transparent, and reliable. Consistency
in the vehicle toursmeets these requirements. Consistent tours inwhich vehicles follow
a predefined daily schedule visitingmicro-hubs at predefined times and in a predefined
order help to simplify the distribution process and provide reliability to all stakehold-
ers. For storekeepers, consistent routes between micro-hubs offer a reliable structure
and planning stability because they can prepare and collect all orders and organise
delivery to the next micro-hub at fixed hours every day. Consistent tours are also
desirable for drivers. They do not only like to be familiar with facilities, but also with
their routes (Wang et al. 2021; Smilowitz et al. 2013; Lian 2017). Fixed consistent
routes provide operational stability for drivers which improves their satisfaction and
hence their productivity (Kovacs et al. 2014a). Besides this, a consistent schedule is
also less error-prone. Since consistent schedules offer reliable arrival times, they also
increase customers’ satisfaction and trust as well as their attitude towards the supplier
(Mancini et al. 2021; Wang et al. 2021; Zhen et al. 2020). This shows positive effects
on the overall business and hence can be a significant competitive advantage for the
supplier (Subramanyam and Gounaris 2018; Groër et al. 2009). Nahata (2022) argue
that the constant online availability of products has raised the expectation that pur-
chases are to be delivered fast and as accurately as promised. Consistent schedules
between micro-hubs allow to successfully satisfy these delivery promises without the
need of timely re-scheduling calculations.

In this paper, we aim to investigate how local collaborative delivery can be
performed in a consistent waywhile usingmicro-hubs as consolidation centres. Partic-
ularly, we are interested in how to design effective consistent routes.We aim to analyse
the cost to which consistent tours can be implemented if compared to a non-consistent
routing, and to detect the conditions under which consolidation at micro-hubs is bene-
ficial.While consistent routes bringmany advantages for shops, customers and drivers,
finding effective tours is very challenging given the differences in day-to-day orders.
Consistent tours need to ensure high service-availability every day, regardless the
realised demand. Customers that cannot be served have to be outsourced or served the
next day, which is expensive or may lead to dissatisfaction, respectively. Thus, the goal
is to find a consistent tour between micro-hubs that maximises the expected amount of
delivered parcels per day. In order to provide effective schedules, it is important that
they are robust to demand variations in time, respect the pickup and delivery sequence
of parcels, and capture the expected daily demand pattern.

We formulate the problem as a two-stage stochastic program. The first stage of
the model aims to find a consistent routing schedule for the delivery vehicle between
micro-hubs without the exact demand being known. Given this schedule, the second
stage determines the flow of realised parcel orders for a specific day. We model the
problem over a discrete time horizon using a time-expanded network formulation.
Our formulation allows solving realistically-sized instances with commercial MIP-
solvers. To determine a solution for the first stage of the problem, several potential
future demand scenarios are sampled, which are considered simultaneously in the
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378 C. Ackva, M. Ulmer

extended form of the two-stage stochastic model. The extended form is then solved
with Gurobi (Gurobi Optimization 2021). In a computational study, we assess the
exact solution against a number of benchmarks with respect to solution quality and
total runtime. To evaluate the cost of consistency,we use a solutionwithout consistency
constraints, i.e. a daily re-optimised solution, as an upper bound.We further implement
a scenario-decomposition approach as well as a practically-inspired heuristic solution
as benchmarks. In our computational study, we observe that optimisation is very valu-
able compared to the practically-inspired heuristic. Even the scenario-decomposition
approach leads to substantial improvements. We further show that the costs of consis-
tency for same-day delivery are rather negligible if compared to a daily re-optimised,
non-consistent routing policy. If delivery time promises get tighter however (e.g. 2h),
the costs of consistency become noticeable. Moreover, we find that consolidation of
parcels at micro-hubs may be worthwhile only for delivery promises of two hours
or more. We further evaluate the solutions determined by our model in a dynamic
simulation and find that they are quite effective for the large majority of instances.

The contributions of this paper are as follows. We are among the first to investigate
howmicro-hubs can be utilised for collaborative same-day delivery of local shops and
for what type of delivery promise they are effective. We further analyse at which cost
consistent routes can be implemented between micro-hubs in this delivery system.We
present a stochastic two-stage integer program that finds a consistent tour between
micro-hubs for pickup and delivery of parcels in a collaborative local delivery sys-
tem. We provide a formulation that allows us to solve realistically-sized instances to
optimality. We perform a targeted analysis and identify important managerial insights.

The remaining part of this paper is structured as follows. In Sect. 2, we present
related literature. In Sect. 3, we define the model for consistent pickup and delivery
routing. In Sect. 4, we present setup and results of the computational experiments. We
finish our paper with a conclusion and outlook in Sect. 5.

2 Literature review on consistent vehicle routing

Several aspects have to be considered when planning consistent schedules in local
delivery services: pickup and delivery needs to be organised through a two-echelon
transportation system with transshipment facilities, while consistency in vehicle’s
routes is to be maintained. This problem of picking up and delivering parcels during
one route is denoted as the vehicle routing problem (VRP) with simultaneous pickup
and delivery; a review on such problems can be found in Koç et al. (2020). Introducing
transshipment facilities to a pickup anddelivery problem leads to a two-echelon logistic
system which is usually operated by two fleets of vehicles. In general, this is denoted
as the two-echelon vehicle routing problem (2E-VRP). A literature review on such
problems is presented by Cuda et al. (2015) and more recently by Jiang and Li (2021)
and Sluijk et al. (2022). However, most papers focus on delivery only, assume demand
to be deterministic, and consequently route first and second fleet at the same time.
In contrast, our model aims to determine a routing schedule for the first fleet only in
order to provide consistent pickup and delivery service despite daily varying demand.
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Consistent routing for local same-day delivery via micro-hubs 379

We hence seek to find consistent tours for the fleet serving micro-hubs. We therefore
refer to different concepts of consistency in the following.

Kovacs et al. (2014a) provide a survey on consistency in VRPs. They distinguish
arrival time, person-oriented, and delivery quantity consistency, and provide mod-
elling concepts and solution methodology for each type. In our context, we require
the even stronger concept of routing consistency: vehicles should always conduct the
very same tour, i.e. visit the same micro-hubs at the same times each day. This cap-
tures the pickup and delivery dimension of our problem and allows storekeepers to
organise transportation of their orders to corresponding micro-hubs in time for further
shipment. Literature on this concept of routing consistency is very scarce. A close
concept is presented by Wang et al. (2021) who develop a VRP for simultaneous dis-
tribution and collection of packages over several days with generalised consistency
requirements. In their paper, schedules are called consistent if they satisfy consistency
in three dimensions: the arrival time at customer locations should not vary more than a
number of L time units (time consistency), customers should not be served with more
than a number E of different drivers (driver consistency), and vehicle routes should
not vary by more than F different arcs (route consistency). The authors propose an
exact solution method to deal with the generalised consistency constraints. Our under-
standing of route consistency corresponds to the special case of Wang et al. (2021)
with L = 0, E = 1, and F = 1/D, where D is the number of days in the planning
horizon. However, the problem studied by Wang et al. (2021) addresses deterministic
demand, whereas demand is considered to be stochastic in our problem setting.

Besides this, arrival time consistency is the closest concept to route consistency in
literature and common modelling approaches are imposing hard or soft constraints,
previously assigning time windows to customers or determining routes a-priori. We
emphasize here that arrival time consistency is not sufficient in our context. For a
parcel request to be fulfilled, pickup and delivery micro-hub need to visited after each
other, otherwise the order cannot be fulfilled. The sequence of stops thus plays a major
role for the success of the system, consequently consistency should be interpreted in
terms of entire routes. Exemplary publications and different approaches on arrival
time consistency can be found in Kovacs et al. (2014a) and more recently in Song
et al. (2020). Most relevant to our work are consistent VRPs including pickup and
delivery. Zhen et al. (2020) propose a consistent VRP for simultaneous distribution
and collection in reverse logistics. Emadikhiav et al. (2020) address the simultaneous
pickup and delivery of orders of an instrument-calibration company. The goal is to
minimise transportation costs while limiting late deliveries and enforcing consistent
arrival times. A prominent technique to maintain time consistency is bounding the
variation in arrival times at customer locations over the planning horizon, which usu-
ally consists of several days. Among others, this approach is applied by Groër et al.
(2009) who introduce the consistent VRP (ConVRP) for serving customers repeat-
edly over a given planning horizon. They present a mixed-integer formulation and a
solution approach based on a record-to-record travel algorithm. Tarantilis et al. (2012)
and Kovacs et al. (2014b) develop further solution approaches to the same problem.
Extending this problem, SubramanyamandGounaris (2018) suggest a TSPwith arrival
time consistency where waiting at customer locations is allowed. They further present
an exact branch-and-bound-search procedure. Some works combine arrival time and
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driver consistency. Lian (2017) for example, investigates the trade-off between travel
costs and service consistency through amulti-objective ConVRP.Mancini et al. (2021)
introduce a ConVRP with time and driver consistency, as well as workload balance
in collaborative logistics. They apply a matheuristic and an iterated local search algo-
rithm to solve their problem. All ConVRP-variants deal with serving known customers
over a number of periods and are therefore, in contrast to our work, deterministic. Still,
our solution method samples a set of scenarios to cope for the uncertainty in demand
and solves the corresponding deterministic problem. Thus, there are some similarities
to the ConVRP, but also significant differences, since we consider pickup and delivery
as well as repeated visits of the same micro-hub locations over the course of day.

Twoother prominent consistency concepts are assigning timewindows to customers
previously or determining tours a-priori which are possibly adapted later to the realised
demand through recourse actions. The latter can be applied for stochastic customers
as well as stochastic demand while the former is applicable only if customer locations
are known in advance and only demand volumes vary from day to day. Assigning
time windows is often modelled by a two-stage stochastic programming formulation.
Spliet and Gabor (2015) for example assign time windows to each customer at the first
stage. They formulate a MIP for this stage with the objective to minimise expected
travel costs. Once demand volumes are revealed, a VRP has to be solved meeting the
previously determined time windows. Dalmeijer and Spliet (2018) and Dalmeijer and
Desaulniers (2021) can improve the computational performance of this problem by
strengthening the problem formulation through valid inequalities and by developing
symmetry breaking strategies. A discrete variant of the above problem is presented
by Spliet and Desaulniers (2015). They also propose an exact branch-price-and-cut
algorithm. Spliet et al. (2018) extend the problem to time-dependent travel times
and develop a branch-price-and-cut algorithm to solve the problem to optimality. A
similar problemof previously assigning timewindows to customers onfirst and routing
vehicles on second stage is proposed by Subramanyam et al. (2018). They additionally
consider stochastic travel times and propose a scenario decomposition algorithm to
solve the problem.

Precedently assigning time windows is not enough for our pickup and delivery
routing problem as we look for a schedule with exact time synchronisation. We are
facing stochastic demandandneed todetermine routes before demandbecomesknown,
e.g. based on stochastic information. This concept of time consistency is called a
priori routing or finding master tours. When demand is revealed, these routes are
commonly updated using recourse actions, such as skipping customers or restocking
at the depot for example. Some common recourse strategies are explained in Kovacs
et al. (2014a). Often, such problems aremodelled as a two-stage stochastic program: at
the first stage, an a-priori routing is determined under uncertain demand. At the second
stage, uncertainty is revealed and corresponding recourse actions are selected. Reviews
on a-priori routing problems and corresponding solution methods can be found in
Bertsimas et al. (1990); Campbell and Thomas (2008) and Kovacs et al. (2014a). We
concentrate on the most relevant work for our context in the following. Hvattum et al.
(2006) use amultistage stochastic programming formulation tomodel aVRPwith both
deterministic and stochastic customers. Recourse strategies are applied repetitively
based on a sample scenarios heuristic approach. Sungur et al. (2010) describe a courier
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Consistent routing for local same-day delivery via micro-hubs 381

delivery problem with stochastic customers and uncertain service times. They offer a
multi-objective two-stage program for a variant of the ConVRP with time windows
to develop a-priori master tours using a scenario-based solution approach. Uncertain
travel times and stochastic customers are also considered in Sampaio et al. (2019),
who propose a VRPwith roaming delivery locations which they solve with a scenario-
based sample average approximation. Angelelli et al. (2017) solve a probabilistic
team orienteering problem through a two-stage stochastic program that maximises
the expected profit of visited customers. They solve their problem applying a branch-
and-cut approach as well as different heuristic methods. There is some recent work on
two-stage stochastic programs forVRPswith stochastic demands and recourse actions.
Lagos et al. (2019) suggest such a model minimising the expected travel costs. The
models proposed by Bernardo and Pannek (2018); Salavati-Khoshghalb et al. (2019)
and Florio et al. (2022) additionally aim to minimise the expected costs of recourse
actions. Similar to our problem, Crainic et al. (2016) suggest a two-stage stochastic
programming formulation for the 2E-VRP with stochastic demand. At the first stage,
an urban-vehicle service network design model routes the first fleet and determines the
general load of micro-hubs, using an approximation of the routing cost from micro-
hubs to customers. The second stage concerns the routing of second fleet vehicles and
possible recourse actions for the first fleet. The authors evaluate different recourse
strategies through repetitively applying the adjusted plan for each planning period.
Their work differs from ours as determining loads of hubs is not part of our problem,
further we do not apply recourse strategies since we seek a consistent routing between
micro-hubs. Consistent master routes are also determined in the work of Visser and
Savelsbergh (2019). They investigate a strategic time slot management problemwhere
master tours and timewindows at customer locations are determined simultaneously on
first stage, facing uncertain demand. In difference to our problem, assigning time slots
instead of precise arrival times is sufficient. Further, recourse actions may be applied
after demand realisation in the sense that customers may be skipped if they cannot
be served within their time window. A different approach for consistent vehicle tours
is used by Orenstein and Raviv (2022). The authors propose an urban parcel pickup
and delivery system including so called service points that can serve as consolidation,
transshipment, and pickup point for customers or drivers. Customers may be served
from several service points, what further increases flexibility in the delivery process.
They develop a myopic policy to route stochastically arriving parcels based on given
vehicle routes. Vehicle routes are determined a-priori using a math heuristic. The
mentioned papers suggest how to derive consistent tours with later recourse actions
for different problem settings. Here, skipping customer nodes or returning to the
depot preemptively are the most prominent recourse actions. In our context however,
skipping micro-hubs might prevent some parcels to be delivered, others to be picked
up, eventually leading to a lower total delivery volume. Because of the consolidation
of parcels at micro-hubs, it is highly unlikely that a micro-hub shows no demand.
Note that this is a significant difference to the traditional ConVRP literature, where
usually one node corresponds to a single customer, making the presence of demand
more volatile. To this end, we do not include recourse actions in our model.

We summarise related literature on two-stage stochastic routing problems inTable 1.
For each paper, we classify the type of route consistency, the source of uncertainty,
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the decisions taken on first and second stage, the objective, as well as the solution
method. By master tours (with recourse) we refer to those papers that address routing
consistency via findingmaster tours onfirst stage.However, recourse actions on second
stage lead to changes in these master tours. This is why we place brackets around the
check mark in columns “M” (Consistency/1st stage) if recourse actions are applied.
Brackets in the “routing” column of the 2nd stage indicate that re-routing decisions are
taken for recourse. No brackets here mean solving an entire routing problem. Finally,
some papers consider stochastic customers for pickup and/or delivery. If only one of
the two is addressed, this is also indicated by brackets in column “pickup/delivery”.

InTable 1,we see that all revised papers findingmaster tours onfirst stage later apply
recourse strategies. This is fundamentally different from our problem where routing
schedules between micro-hubs need to be fixed for any demand realisation. Vehicles
between micro-hubs stick to their routes regardless of the daily varying customer
orders. Different to any other publication, we determine the flow of realised parcel
orders on second stage. Further, none of the presented papers on two-stage stochastic
routing problems includes both pickup and delivery customers. We hence propose a
novel two-stage stochastic program for consistent pickup and delivery at micro-hubs
with stochastic customer demand, but without recourse actions. To the best of our
knowledge, this problem has not been studied in literature yet.

3 Model

In this section, we give a detailed description of the consistent pickup and delivery
problem with micro-hubs and stochastic customer demand. To that end, we first state
the problem in Sect. 3.1 and highlight the two stages with an illustrative example in
Sect. 3.2. In Sect. 3.3, we provide the mathematical framework for the model.

3.1 Problem statement

We propose a model to determine a consistent routing schedule for shared vehicles
in collaborative urban delivery. The use of shared vehicles increases consolidation
opportunities since parcels from different stores can be bundled for joint delivery to
the same region.

To pickup and deliver parcels, shared vehicles conduct service between micro-
hubs that are placed at fixed locations in the city. Micro-hubs may either be located
in selected stores, or close to customer’s locations or shopping areas. The schedule
at micro-hubs must be known previously so that stores can organise transport to the
micro-hub accordingly. In our system, we use a fixed number of vehicles with a
given, finite capacity each. While operating, vehicles are allowed to wait at micro-
hubs in order to include later parcels. Also, vehicles are allowed to perform pickup
and delivery on the same route and simultaneously during one stop. Moreover, we
consider a limited planning horizon within which service is operated. We call this
the service time horizon. At the beginning of the service time horizon, all vehicles
are located at a depot at the outskirts of the city. We consider a transfer time at each
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micro-hub a vehicle visits on its itinerary to load and unload parcels. For simplicity,
the transfer times are incorporated in the travel times.

We assume that each parcel order consists of a pickup location (store) with a release
time, a delivery location (customer), and a homogeneous parcel volume. We further
assume that storekeepers promise to complete deliveries within a certain time window
of fixed length. As soon as the order comes in, the corresponding store brings the parcel
to its closest micro-hub. Since the distance between the store and its closest micro-
hub is relatively short, for simplicity, we therefore assume that the time window only
concerns the transportation between micro-hubs. The release time of a parcel hence
indicates the earliest time it can be picked up at the close-by micro-hub. At the end
of the delivery time promise, customers pick up the parcels at the micro-hub next to
them. To represent this in our model, pickup and delivery locations are mapped to
their closest micro-hubs such that each parcel has a pickup micro-hub and a delivery
micro-hub. We do not have to serve all orders placed, but aim to pickup and deliver as
many parcels as possible. Each parcel that is picked up must also be delivered in time.

We model this problem as a two-stage program. The first stage develops the con-
sistent routing schedule for the vehicles, i.e. a sequence of stops at micro-hubs with
corresponding departure times. Once this routing is fixed, realised parcel orders are
routed according to the given schedule at the second stage. At this, parcels cannot
move independently in the network, but must be transported by a vehicle. The goal of
the model is to find a routing schedule that maximises the expected amount of daily
delivered parcels.

We note that our tactical model assumes the information of the second stage to
be revealed at once. In operations, demand reveals over time. Thus, the second stage
objective is an upper bound for the operational implementation. In Sect. 4.5, we show
that this upper bound is mostly very close to the actual objective value when the
second-stage orders are handled dynamically.

3.2 Example

We illustrate our problem setting in a short example. Assume there are one shared
vehicle, a depot and two micro-hubs in the city, as displayed in Fig. 1. Moreover,
suppose shops promise to deliver any orders within a four hour time window. We
further assume that the vehicle has the following first-stage schedule. It leaves the
depot at 12:30 and reaches micro-hub 1 at 13:00. After a transfer time of ten minutes
it continues to micro-hub 2 where it arrives at 13:50. Again, ten minutes are needed
for transfer such that the vehicle leaves micro-hub 2 at 14:00 and reaches the depot
at 14:35. This routing schedule is shown in Fig. 1. Now, suppose in scenario 1 there
are two parcels which both have to be transported from micro-hub 1 to micro-hub 2,
indicated by the plus for pickup, and the minus for delivery. The release times are
11:00 for parcel 1 and 13:00 for parcel 2. With the given schedule and assuming that
capacity constraints are satisfied, both parcels can be picked up and delivered in time
(Fig. 1).

However, in a different demand scenario, this schedule might be inefficient. For
instance, suppose that in a second scenario 2 again two orders are placed, differing
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Fig. 1 Scenario 1: all parcels
can be transported

Fig. 2 Scenario 2: no parcel can
be transported

Fig. 3 Combined routing
schedule

in release time, pickup and delivery location: parcels 1 and 2 have to be picked up
at micro-hub 2, and brought to micro-hub 1, having release times 11:00 and 10:00,
respectively. Note that in this scenario no order can be fulfilled using the given routing
schedule (see Fig. 2). This small example shows that the performance of our proposed
pickup and delivery service highly depends on the shared vehicle’s routing schedule.
To transport as many orders as possible, it thus is very important to create effective
schedules that are flexible with respect to order uncertainty in time and space. For the
example at hand, a routing schedule allowing to meet the demand in both scenario is
presented in Fig. 3. The vehicle visits micro-hub 2 first, then continues to micro-hub
1. Instead of returning to the depot directly, it waits there for further parcels to be
picked up and then goes back to micro-hub 2. This way, parcels can be transported
from micro-hub 1 to micro-hub 2 and vice versa.
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3.3 Mathematical formulation

In this section, we first introduce the required notation in Sect. 3.3.1, and then present
the stochastic two-stagemodel in Sect. 3.3.2. The corresponding deterministic second-
stagemodel is stated in Sect. 3.3.3. Note that we focus on the single-vehicle case in our
computational study, while in this section we present the more general model allowing
for a fleet of vehicles.

3.3.1 Notation

In the following, we introduce the notation of our model, also summarised in Table 2.
Parcel orders are placed on a daily basis. We hence consider a set of several daily
scenarios denoted by S. We assign a certain probability of occurrence ps to each
scenario s ∈ S. The set of parcel orders placed on scenario s ∈ S is denoted by Ps .
We refer to an element p ∈ Ps as parcel or order equivalently. For our model, we
consider a set of physical nodes V = V0 ∪ VH , where V0 = {v0} denotes the depot
and VH represents the set of micro-hubs. The pickup hub (origin) of a parcel p ∈ Ps
is represented by node op ∈ VH , the delivery hub (destination) by node dp ∈ VH .
The parcel’s release time is denoted by rp for every p ∈ Ps and indicates the start of
a time window of length TP ∈ N, within which a parcel p ∈ Ps must be picked up
at micro-hub op and delivered to micro-hub dp in order to fulfil the order. Otherwise,
we say that the parcel is not served or that the order is not fulfilled by our system, but
must be outsourced. For simplicity we assume that each parcel has a homogeneous
volume of 1. Service is operated by a homogeneous fleet of vehicles K . Each vehicle
has the same velocity vK and maximum capacityCK . Also, micro-hubs have a limited
storage capacityCH . In this section, we present the general model for several vehicles.
In our computational study in Sect. 4, we focus on one vehicle only.

We model our problem over a discrete time horizon T = {0, 1, . . . , Tmax} repre-
senting one working day. Service time of the vehicle starts at time step 0 and ends
at Tmax ∈ N. Inspired by the work of Neumann-Saavedra et al. (2016), we make use
of a time extended network for the formulation of our problem. In such, nodes are
duplicated per time step and arcs are constructed correspondingly. For this, we first
define ti, j ∈ N, ti, j > 0, as the integer travel time between two nodes i , j ∈ V0 ∪ VH ,
i �= j . If a vehicle or a parcel stays at a location i ∈ V0 ∪ VH , we set the travel time to
ti,i := 1. This represents waiting at node i until the next discrete time step. Then, we
extend the set of physical nodes in the following way: For each node i ∈ V0 ∪ VH we
create one duplicate per time step t ∈ T and denote this node as (i, t), ∀i ∈ V0 ∪ VH ,
∀t ∈ T . This is illustrated in Fig. 4. The exemplary network consists of one depot
(node D) and two micro-hubs (nodes A and B). The left hand side of the figure shows
the physical network with travel times on the arcs. The right hand side depicts its
corresponding time expanded version on a time horizon of 40min, in discrete time
steps of 10min. The construction of arcs in the time expanded network has to be
adapted correspondingly. Grey arcs represent waiting at the respective nodes, while
the coloured arcs correspond to the ones of the physical network.

Since the number of decision variables and constraints affects whether the model
is solvable with commercial solvers, we exclude infeasible arcs from the definition.
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Table 2 Parameters and sets for the model

Notation Description

S Set of scenarios

ps Probability of occurrence of scenario s ∈ S

T = {0, 1, .., Tmax} Time horizon in equidistant time steps

V0 = {v0} Depot

VH Set of micro-hubs

Ps Set of parcels in scenario s ∈ S

K Set of vehicles

CK Maximum vehicle capacity

CH Maximum micro-hub capacity

TP Length of the time window for orders

rp Release time of parcel p ∈ Ps

op Pickup hub of parcel p ∈ Ps

dp Delivery hub of parcel p ∈ Ps

vK Vehicle velocity

ti, j Travel time between nodes i and j as an integer value,
i, j ∈ V0 ∪ VH

AK Set of arcs allowed for vehicles

Ap,s Set of arcs allowed for parcel p in scenario s ∈ S

AWp,s Set of waiting arcs between micro-hubs for parcel p in scenario
s ∈ S

AV0 Set of waiting arcs at depot

Pa,s Set of parcels allowed to travel along arc a ∈ ⋃
p∈Ps Ap,s in

scenario s ∈ S

Fig. 4 Construction of a time expanded network for an exemplary network

More precisely, any vehicle must start its tour in the depot. For this reason, vehicle
arcs starting at time step 0 in a location different from the depot are not feasible. They
are hence not included in the set of arcs. In Fig. 4, this affects all arcs leaving node
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(A, 0) or node (B, 0). We thus define the set of arcs on which any vehicle k ∈ K is
allowed to travel as:

AK := {
((i, t), ( j, u))

∣
∣ u = t + ti, j , (∀i, j ∈ V0 ∪ VH , ∀t, u ∈ T \ {0} : t < u)

∪ (∀i ∈ V0,∀ j ∈ V0 ∪ VH ,∀t = 0, u ∈ T : t < u) } .

This set contains all arcs connecting any two physical nodes with each other as
long as the itinerary starts later than t = 0 and ends until Tmax. At the beginning of
the time horizon, vehicles must start their tour at the depot. Thus, the set also contains
any arcs starting from the depot at time t = 0.

Besides the vehicle arc set, we define the set of arcs on which in a given scenario
s ∈ S a particular parcel p ∈ Ps is allowed to travel as:

Ap,s := {
((i, t), ( j, u)) ∈ AK

∣
∣ u = t + ti, j , ∀i, j ∈ VH , ∀t, u ∈ T : rp ≤ t < u ≤ rp + TP

}
.

This set reflects that parcel p ∈ Ps can be transported between any pair of micro-
hubs after it was released (i.e. from t = rp) and until its delivery time window ends
(i.e. until u = rp + TP ). Outside this time window, a parcel is not available in the
system, i.e. it cannot be moved. Since each parcel p ∈ Ps has its own release time,
we define Ap,s for any p ∈ Ps for any s ∈ S. Note here that parcels are not allowed
to enter the depot.

In the problem formulation below we will need to explicitly refer to those arcs link-
ing the same micro-hub between two following time steps, which represents waiting
at the respective micro-hub. We call this the set of waiting arcs for parcel p ∈ Ps in
scenario s ∈ S, defined as:

AWp,s := {
((i, t), (i, t + 1)) ∈ AK

∣
∣ ∀i ∈ VH , ∀t, t + 1 ∈ T : rp ≤ t < t + 1 ≤ rp + TP

}
.

We remark here that AWp,s ⊂ Ap,s ⊂ AK for any p ∈ Ps for any s ∈ S. Finally,
the set of waiting arcs at the depot is defined by:

AV0 := {((0, t), (0, t + 1)) | ∀t, t + 1 ∈ T } .

Again, AV0 ⊂ AK . Note that in any of the above definitions, arcs only go forward in
time by construction. Additional to the different sets of arcs we further define:

Pa,s := {
p ∈ Ps

∣
∣ a ∈ Ap,s

}
,

as the set of parcels that can feasibly move along arc a ∈ ⋃
p∈Ps Ap,s in scenario

s ∈ S. We will later need this for the capacity constraints in the model.
Decisions are made on two stages. The first stage concerns the long-term planning

of vehicle routes. Although demand varies from day to day, vehicles are to follow
a fixed, consistent schedule. For this, we introduce the first stage decision variables
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xk(i,t),( j,u) for each k ∈ K and for each (i, t), ( j, u) ∈ AK . It is defined as:

xk(i,t),( j,u) :=
{
1, if vehicle k travels directly from node (i, t) to node ( j, u),

0, otherwise.

The second stage concerns the operational daily planning of which parcels to serve.
Therefore, we use a binary second stage decision variable yp,s for all p ∈ Ps to decide
whether parcel p is served in scenario s ∈ S or not:

yp,s :=
{
1, parcel p is served in scenario s ∈ S,

0, otherwise.

We further consider binary second stage decision variables for parcels to decide
which arcs they use on their itineraries. For each scenario s ∈ S, each parcel p ∈ Ps ,
and each arc (i, t), ( j, u) ∈ Ap,s we hence define:

z p(i,t),( j,u),s :=
{
1, if parcel p ∈ Ps travels directly from node (i, t) to node ( j, u) in scenario s ∈ S,

0, otherwise.

The objective of the model is to maximise the expected number of delivered parcels.

3.3.2 The stochastic two-stage model

With the notation above we now state the two-stage stochastic integer program for
consistent routing in collaborative urban delivery as follows. Let x , ys , and zs be the
vectors with entries defined as above. Then we are looking for a solution of the form(
x, (ys, zs)s∈S

)
to the two-stage stochastic program:

max
∑

s∈S
ps

∑

p∈Ps

yp,s (2-SP)

s.t. (x, ys, zs) ∈ Cs ∀s ∈ S,

whereCs represents the feasible set corresponding to scenario s defined byConstraints
(1) to (15) following below.The objective of (2-SP)maximises the expected amount of
parcels that can be served, according to the probability of occurrence of each scenario.
Note that the first-stage decision variable x is invariant with regard to the resulting
scenario. Thus, the following constraints ensure a feasible routing for the vehicles for
any demand realisation. Constraints (1) and (2) ensure that each vehicle starts and
ends its tour at the depot. Through Constraints (3) each vehicle leaves the depot at
most once, i.e. vehicles do not return to the depot during their route. Together with
the flow conservation constraints in Constraints (4), this prohibits vehicles to visit the
depot during service.
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∑

((0,0),( j,u))∈AK

xk(0,0),( j,u) = 1 ∀k ∈ K , (1)

∑

((i,t),(0,Tmax))∈AK

xk(i,t),(0,Tmax)
= 1 ∀k ∈ K , (2)

∑

((0,t),( j,u))∈AK \AV0

xk(0,t),( j,u) ≤ 1 ∀k ∈ K , (3)

∑

((i,t),( j,u))∈AK

xk(i,t),( j,u) =
∑

(( j,u),(i,t))∈AK

xk( j,u),(i,t) ∀ j ∈ VH ∪ V0,∀k ∈ K ,

∀u ∈ T \{0, Tmax}. (4)

The following Constraints (5) to (8) are concerned with the routing of parcels, that
does depend on the resulting scenario. For this reason, all following constraints must
be kept for any demand realisation s ∈ S. Constraints (5) ensure that each parcel
p ∈ Ps has to start its itinerary at its pickup micro-hub op at its release time rp. In
the case where pickup and delivery customer are mapped to the same micro-hub, no
transportation by vehicle is needed. This is captured by Constraints (6). Constraints
(7) and (8) state that each parcel that is served must leave its pickup hub and enter its
delivery hub. Note that with this formulation parcels must leave their pickup hub at
time t = rp and enter their delivery hub at time t = rp + TP . However, this may be
satisfied via waiting arcs such that physical leaving and entering may happen later and
earlier, respectively. Parcels hence are present in the system between their release time
rp and the end of their delivery promise rp + TP , which is when the customer picks
up the order. Within this time, flow conservation of parcels at micro-hubs is required,
guaranteed by Constraints (9).

∑

((i,rp),( j,u))∈Ap,s ,i �=op

z p(i,rp),( j,u),s = 0 ∀p ∈ Ps,∀s ∈ S, (5)

z p(i,t),( j,u),s = 0 ∀(i, t), ( j, u) ∈ Ap,s\AWp,s ,

∀p ∈ Ps : op = dp,∀s ∈ S, (6)
∑

((op,rp),( j,u))∈Ap,s

z p(op,rp),( j,u),s = yp,s ∀p ∈ Ps,∀s ∈ S, (7)

∑

((i,t),(dp,rp+TP ))∈Ap,s

z p(i,t),(dp,rp+TP ),s = yp,s ∀p ∈ Ps,∀s ∈ S, (8)

∑

((i,t),( j,u))∈Ap,s

z p(i,t),( j,u),s =
∑

(( j,u),(i,t))∈Ap,s

z p( j,u),(i,t),s ∀ j ∈ VH ,

∀t ∈ T : rp < t < rp + TP .

∀p ∈ Ps,∀s ∈ S. (9)

Parcels cannot move independently in the network but have to be transported by
vehicles. To this end, Constraints (10) link the routes of parcels to those of vehicles.
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More precisely, Constraints (10) make sure a parcel can move along an arc only if
transported by a vehicle on that arc.With this formulation, parcelsmay change vehicles
(at micro-hubs) on their route.

z p(i,t),( j,u),s ≤
∑

k∈K
xk(i,t),( j,u) ∀ ((i, t), ( j, u)) ∈ Ap,s\AWp,s ,

∀p ∈ Ps,∀s ∈ S. (10)

To not exceed vehicle capacity constraints, we have to control the maximum load
capacity on vehicle arcs, which is done with Constraints (11). Note here that the
homogeneous parcel volumeof 1 is important so thatConstraints (11) aremeaningfully
defined. Otherwise, if the parcel volume is not an integer divisor of the vehicle capacity
CK , this formulationmight cause split deliveries, which is not allowed. Limitedmicro-
hub capacity is controlled via restricting the load on waiting arcs through Constraints
(12).

∑

p∈P((i,t),( j,u),s)

z p(i,t),( j,u),s ≤ CK ·
∑

k∈K
xk(i,t),( j,u) ∀ ((i, t), ( j, u)) ∈

⋃

p∈Ps

Ap,s\AWp,s ,∀s ∈ S,

(11)
∑

p∈P((i,t),( j,u),s)

z p(i,t),( j,u),s ≤ CH ∀ ((i, t), ( j, u)) ∈
⋃

p∈Ps

AWp,s ,∀s ∈ S. (12)

Finally, Constraints (13) to (15) state the domain of the decision variables.

xk(i,t),( j,u) ∈ {0, 1} ∀((i, t), ( j, u)) ∈ AK ,

∀k ∈ K , (13)

z p(i,t),( j,u),s ∈ {0, 1} ∀((i, t), ( j, u)) ∈ Ap,s,

∀p ∈ Ps,∀s ∈ S, (14)

yp,s ∈ {0, 1} ∀p ∈ Ps,∀s ∈ S. (15)

Note that for our computational study the decision variables yp,s , p ∈ Ps , s ∈ S, are
relaxed to be continuous, i.e. yp,s ∈ [0, 1] ∀p ∈ Ps ∀s ∈ S. This is computationally
advantageous (see Appendix A.2 for details), and integrality is implied by Constraints
(7), (8), and (14).

3.3.3 The deterministic second-stage and single-stage model

Although demand is not known at the first stage, the two-stage program allows us to
find a vehicle routing schedule that maximises the expected number of fulfilled orders.
Based on this schedule x̂, the actual flow of parcels can be planned at the second stage
once demand is revealed. For this, we define the deterministic second-stage model for
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a given vehicle routing x̂ and a realised demand scenario s as follows:

max
∑

p∈Ps

yp,s (2nd-SP)

s.t.
(
x̂, ys, zs

) ∈ Cs .

The feasible set Cs is defined as above, Constraints (1) to (15), with the only
difference that x̂ is treated like a given value instead of a decision variable. The
objective of model (2nd-SP) is to serve as many parcel requests as possible.

In our computational studywe use a scenario decomposition heuristic (see Sect. 4.2)
which requires solving the routing of vehicles and the flow of parcels simultaneously
for a given realised demand scenario. To that end, we define the deterministic single-
stage problem for a specific scenario s ∈ S similar to Model (2nd-SP) as:

max
∑

p∈Ps

yp,s (1-SP)

s.t. (xs, ys, zs) ∈ Cs,

where now xs constitutes a scenario-dependent decision variable.

4 Computational study

In this section we present the experimental setup and results of our computational
study. In Sect. 4.1, we explain how instances are generated. In Sect. 4.2, we introduce
benchmark policies to assess the solutions obtained by our approach. In Sect. 4.4,
present our computational results.

4.1 Instance generation

The following explains how we generate different possible demand scenarios. We
assume demand to be distributed over a square city area with a radius of r = 10 (km).
Wemotivate our instances by the city structure of Braunschweig, Germany, see Ulmer
and Streng (2019). Braunschweig shows the classical European city structure with a
city centre and several ring roads. Several parcel locker stations of the German post
service DHL are placed on the main ring road in Braunschweig. Inspired by this, we
place 5 micro-hubs equidistantly on a circle with a radius of 5 (km), which is half
of the city radius. Moreover, with such a circular structure the micro-hubs are evenly
spread over the city area. The depot is located at the middle of the upper edge of town.
Figure5 gives an illustration of the circular location of fivemicro-hubs and the depot in
a square city. We assume that each micro-hub has a maximum capacity of 20 parcels.
One delivery vehicle conducts service between micro-hubs. In our computational
study, we assume the vehicle to be a large cargo bike with a speed of 25 (km/h) and
maximum capacity of 20 parcels.
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Fig. 5 Example of demand structure uniform (left) and clustered (right)

For our experiments, we test different delivery promises and service time horizons.
We investigate three service designs: “instant”—instant delivery (60 min) in a short
horizon (240 min.); “fast”—fast delivery (120 min) in a medium horizon (360 min);
and “same-day”—delivery on the same day (480 min) in a large horizon (480 min).
The latter is equivalent to not imposing customer time windows.We use a discrete step
size of δ := 10 minutes in the time expanded network. The travel time ti, j between
two locations i, j ∈ VH ∩ V0 is computed via the Euclidean distance between i and
j divided by the vehicle’s velocity and is then rounded up to the next multiple of δ.
For each service design, we run our experiments with a varying number of parcels,

|P| ∈ {40, 80, 120}. For each parcel request we sample a release time, a pickup store
and a delivery customer location within the city area. All parcels have a homogeneous
volume of one. The release time of a parcel is drawn uniformly over the time horizon
T = {0, 10, . . . , Tmax − 120}.

Pickup micro-hub (origin) and delivery micro-hub (destination) of a parcel are the
micro-hub closest to the corresponding pickup store and delivery customer, respec-
tively. For spatial distribution of stores and customers we consider two different
demand patterns:

• uniform: Stores and customers are uniformly distributed over the entire city area.
An example of this customer distribution is shown on the left-hand side of Fig. 5.
This is inspired by the city structure of Göttingen, Germany, where stores can be
found over the entire city area and inhabitants live both inside and outside the city
centre.

• clustered: Stores and customers are clustered within the city. Inspired by the city
structure of Braunschweig, we designate the inner part of the city as city centre,
the south-western part as industrial area, and northern as well as eastern part as
residential area. The exact layout is shown on the right-hand side of Fig. 5. Stores
are located in the city centre and industrial area; customers mostly in residential,
but also in the industrial area. More details are presented in Appendix A.1.

In Table 3 we summarise the parameter values used for scenario generation in the
computational experiments.
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Table 3 Parameter values used in computational experiments

Description Notation Instant Fast Same-Day

Service time horizon Tmax 240 360 480
Delivery promise TP 60 120 480

Nr. parcels |P | 40, 80, 120
Demand pattern – uniform, clustered
Nr. micro-hubs |VH | 5
Nr. vehicles |K| 1
Max. capacity micro-hub CH 20
Max. capacity vehicle CK 20
Vehicle velocity vK 25
Parcel volume up 1
Length of discrete time step δ 10

4.2 Benchmarks

In our computational study, we solve the extended form of the two-stagemodel (2-SP)
for a sampled set of scenarios, which are generated as described in Sect. 4.1. We refer
to this approach as the EXACT method or policy. In our computational analysis, we
compare this policy to several benchmark policies, which we introduce below.

• DAILY: First, we use a policy inwhich routing consistency constraints are relaxed.
To this end, we solve the deterministic single-stage model (1-SP) separately for
each scenario. As this is done scenario-dependent, we can determine vehicle rout-
ing and parcel flow simultaneously on one stage. Given the optimal solution for
this deterministic “daily” problem, this constitutes a non-consistent upper bound
to the stochastic two-stage problem. Since this policy requires re-planning on a
daily basis, we refer to this as the DAILY policy.

• DECOMPOSITION: Next, we present a scenario decomposition method. For a
given set of sampled scenarios and their solutions, we choose the scenario solution
with best expected performance. For this, each scenario-dependent solution is
evaluated on a number of new scenarios using the deterministic second-stagemodel
(2nd-SP) and its corresponding objective value is computed. Finally, the scenario
solution with best average objective value is selected, as this one is expected to
perform best regardless of the true future demand scenario.

• FIXED: Last, we implement a practically-inspired FIXED policy that aims on a
high flexibility and reachability among micro-hubs. The policy should allow to
reach all micro-hubs from any micro-hub and further should not loose too much
time between any two visits. Therefore, we suggest a circular route. The vehicle
leaves the depot and visits each micro-hub, in ascending order. When the last
micro-hub is reached, the vehicle continues to micro-hub 1 to close the circle.
Instead of traversing the same circle again, the vehicle turns and takes the same
route back to the depot, visiting all micro-hubs again, but in descending order. This
guarantees that not too much time is needed for delivery between two micro-hubs.
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Fig. 6 FIXED policy for Tmax = 360, in minutes after the start of the service horizon

If the service time horizon is longer than the total tour length, the vehicle starts its
tour such that the tour finishes at Tmax. This is motivated by the idea to increase
consolidation opportunities: visiting micro-hubs at a later point in time may allow
to transport more parcels, as more demand will arise during the course of the day.
In Fig. 6, we provide an illustration of the FIXED policy for Tmax = 360.

4.3 Implementation

In this section, we comment on the implementation of the models (1-SP) and (2-SP)
and describe how the different benchmarks are evaluated. Both models (1-SP) and
(2-SP) are implemented in Gurobi 9.1. (Gurobi Optimization 2021). For optimisation
inGurobi, we set a time limit of 24h per instance.We further provide a feasible starting
solution in which the vehicle stays in the depot and hence no parcels are transported. If
the problem cannot be solved to optimality within this time, the current best solution
and relative MIP optimality gap are recorded. Based on preliminary experiments, we
set the number of scenarios to 15 (in-sample). This number is used for the EXACT
and the DECOMPOSITION policies. The FIXED policy is rule-based and does not
require any scenarios, while the DAILY policy is calculated independently for every
scenario. For final evaluation of the different benchmarks, the solutions obtained by
each policy are evaluated on a set of 100 new generated scenarios (out-of-sample),
using the deterministic second-stage model (2nd-SP), and average objective values
are computed for final comparison.

4.4 Computational results

We present our computational results in the following. In Sect. 4.4.1, we conduct a
method analysis investigating the runtime and the performance of the extended two-
stage model and benchmark policies. In Sect. 4.4.2, we then analyse the effect of
different service designs and demand patterns and assess the value of consolidation
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at micro-hubs as well as the cost of consistent routing, In Sect. 4.4.3, we examine the
structure of the consistent routes in more detail.

4.4.1 Method analysis

In this section, we first analyse the runtime needed for the different policies and then
investigate the resulting objective values and their gap to the DAILY policy.

Runtime Analysis. In this section, we analyse the different consistent policies with
respect to their total runtime. Table 4 shows the total runtime of the EXACT and the
DECOMPOSITION policy on each instance in seconds. As the route of the FIXED
policy is given beforehand, only arrival times of the predefined sequence of stops have
to be computed. This requires less than 0.0001s per instance, thus it is not included
in the table.

Recall that the time limit for the EXACT policy was set to 24h, i.e. 86400s. If the
optimal solution is not found within this time limit, this is indicated by “>86400” in
the table. In this case, the current best solution x and objective upper bound UB are
recorded. With this, we compute the relative MIP optimality gap as (UB−x)/UB. As the
problem at hand is an maximisation problem, this gives an estimate about the quality
of the solution found so far. The table displays the gap of each solution determined
via the EXACT method in brackets behind its runtime.

From the table, we deduce the following main observations. First, the total runtime
of the extended two-stagemodel increases as the number of parcels increases and as the
service time horizon gets larger. Both factors raise the complexity of the combinatorial
optimisation problem, thus making it harder to solve. Instances with 120 parcels can
only be solved to optimality on the instant service design. On the fast and same-day
service design, the time limit is hit without finding the optimal solution. However,
in case of the fast service design, the solutions found within the time limit have a
relatively small optimality gap of 1.34% and 5.31% for uniform and clustered demand,
respectively. On the same-day service design in contrast, the optimality gap for 120
parcels is above 40% on both demand patterns. We also see that an increase in the
number of parcels has a greater effect on the increase in runtime than an increase in
the service time horizon.

The second observation we make is that the solutions for the DECOMPOSI-
TION policy are computed in much shorter time than the EXACT solution. While
the DECOMPOSITION policy requires about the same runtime on instances with the
instant service design, on the fast service design it requires only 0.84–6.47%of the run-
time that is needed to determine the EXACT solution. On the same-day service design,
it requires at most 2.93% of the runtime of the EXACT method (on those instances
that were solved to optimality). Computation time of the DECOMPOSITION policy
is thus significantly lower than for the EXACT method. While the EXACT method
cannot solve instances with 120 parcels on the fast and same-day service design to
optimality, the DECOMPOSITION policy can treat those instances within less than
5h.
Objective Values. After analysing the runtime of the different policies, we investigate
their average performance in this section. Figure7 and Fig. 8 show the average ser-

123



Consistent routing for local same-day delivery via micro-hubs 397

Ta
bl
e
4

To
ta
lr
un
tim

e
in

se
co
nd
s
fo
r
th
e
E
X
A
C
T
an
d
th
e
D
E
C
O
M
PO

SI
T
IO

N
po
lic
y
on

al
li
ns
ta
nc
es
,w

ith
re
la
tiv

e
M
IP

op
tim

al
ity

ga
p
fo
r
th
e
E
X
A
C
T
po
lic
y

D
es
ig
n

Po
lic
y

40
Pa
rc
el
s

80
Pa
rc
el
s

12
0
Pa
rc
el
s

In
st
an
t

U
ni
fo
rm

E
X
A
C
T

38
.4
4
(0
%
)

97
.1
3
(0
%
)

96
.2
0
(0
%
)

D
E
C
O
M
PO

SI
T
IO

N
38

.2
3

81
.0
0

13
0.
98

C
lu
st
er
ed

E
X
A
C
T

39
.1
8
(0
%
)

82
.5
2
(0
%
)

30
1.
64

(0
%
)

D
E
C
O
M
PO

SI
T
IO

N
36

.8
7

80
.1
9

13
2.
68

Fa
st

U
ni
fo
rm

E
X
A
C
T

40
00

.4
1
(0
%
)

38
47

7.
79

(0
%
)

>
86

40
0
(1
.3
4%

)

D
E
C
O
M
PO

SI
T
IO

N
13

1.
25

32
4.
57

14
70

.4
6

C
lu
st
er
ed

E
X
A
C
T

21
74

.1
1
(0
%
)

15
79

3.
85

(0
%
)

>
86

40
0
(5
.3
1%

)

D
E
C
O
M
PO

SI
T
IO

N
14

0.
68

43
8.
76

62
81

.7
6

Sa
m
e-
da
y

U
ni
fo
rm

E
X
A
C
T

58
03

2.
19

(0
%
)

84
22

7.
65

(0
%
)

>
86

40
0
(4
1.
50

%
)

D
E
C
O
M
PO

SI
T
IO

N
54

8.
03

24
64

.9
9

10
75

5.
90

C
lu
st
er
ed

E
X
A
C
T

54
52

8.
15

(0
%
)

>
86

40
0
(4
.2
2%

)
>
86

40
0
(4
5.
96

%
)

D
E
C
O
M
PO

SI
T
IO

N
52

0.
36

34
11

.9
3

17
78

9.
62

123



398 C. Ackva, M. Ulmer

Fig. 7 Average service rates on uniform demand

vice rates that are obtained by the different policies for each combination of parcel
requests (columns) and service designs (rows). As explained in Sect. 4.3, each policy
is evaluated on a set of 100 out-of-sample scenarios. On instances where the extended
two-stage model is not solved to optimality within the time limit, this is highlighted
by dashes on the corresponding bar.

We see that the EXACT method outperforms the remaining consistent benchmarks
on all instances where it is solved to optimality (except the DAILY policy, which rep-
resents an upper bound). Even when not solved to optimality, it exceeds the remaining
policies slightly except on instances with the same-day service design and 120 parcels
(where the MIP optimality gap is above 45%). In particular, the EXACT method
reaches average service rates that are very close to the DAILY upper-bound policy on
the same-day service design. With clustered demand and 40 parcels for example, it
allows to fulfil 39.77 parcel requests on average which is only little behind the upper
bound of 39.99 parcel requests.

We further observe that the FIXED benchmark performs worst on almost all
instances. Since this policy does not incorporate any knowledge about potential
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Fig. 8 Average service rates on clustered demand

demand scenarios, it is not capable to adapt to the corresponding demand setting.
It behaves particularly bad on the fast service design. Here, delivery time promises are
set to two hours, making the delivery options more restrictive than on the same-day
design, where requests have to be fulfilled in eight hours. The latter thus has more
flexibility in when to deliver parcels which compensates for the inflexibility of the
FIXED policy. In constrast, the methods considering potential demand scenarios are
superior. The DECOMPOSITION policy yields better results than the FIXED, but
worse results than the EXACT method.

We conclude this section by shedding a light on the performance of the different
policies depending on the service design. For this,we also assess the cost of consistency
as the relative gap of the consistent policies (DECOMPOSITION, FIXED, EXACT)
to the non-consistent DAILY policy. Let zDAILY and z p denote the objective value
of the DAILY policy and the policy p ∈ {DECOMPOSITION, FIXED, EXACT},
respectively. Then the relative gap of policy p to the DAILY policy is given by
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zDAILY − z p
zDAILY

. (16)

In Fig. 9 we display the relative gaps of the non-consistent policies for uniform (left)
and clustered demand (right), averaged over all instances. As before, bars are dashed
if the EXACT policy is not solved to optimality on all instances.

On the instant service design, all policies but the fixed one show a worse perfor-
mance than with larger delivery time promises. Even the DAILY upper bound policy
permits to serve only 47.33% (on uniform demand) and 53.57% (on clustered demand)
of all parcel orders on average, respectively. The relative gap to the DAILY policy is
clearly above 20% for all consistent policies.

In the service design of fast delivery, more time is available, resulting in approx-
imately 89.96% parcels being served with the DAILY method on uniform demand
and 90.47% parcels on clustered demand. Although not all instances are solved opti-
mally with the EXACT method, it has the lowest gap to the DAILY policy on the fast
service design, see Fig. 9. On both demand patterns it is about 10% worse than the
non-consistent policy. The DECOMPOSITION policy follows with a gap of 14–18%.
With a gap of more than 40%, the fixed policy leads to a very high loss in service
quality on the fast service design.

While we see the greatest differences of the different policies on the fast service
design, all policies perform particularly well on the same-day service design due to the
high flexibility in time. If the EXACT method is solved to optimality, we reach nearly
day-optimal solutions with this policy: it deviates by 1.52% from the DAILY policy on
uniform demand and by 0.57% on clustered demand on the corresponding instances.
The average service rates for these instances are also very high: For 40 and 80 parcels,
the EXACT method yields average service rates between 96.85% and 99.43% for the
same-day service design. Even if not solved to optimality, the EXACT policy yields
an average service rate of 97.33% for 80 parcels, clustered demand and the same-day
design. On the remaining instances that are not solved to optimality, we can still obtain
high service rates with the heuristic approaches. Here, the DECOMPOSITION policy
yields average service rates that are close to the non-consistent DAILY upper bound.
While it differs by 6.11% (uniform) to 10.45% (clustered) on the fast service design
and 120 parcels, it deviates by less than 0.6% from the upper bound on the same-day
service design and 120 parcels.

4.4.2 Analysis

In this section, we analyse the results from Sect. 4.4.1 with respect to the effect of
different service designs and demand patterns on the cost of consistency and the value
of consolidation at micro-hubs.

First,weobserve that the integration of demanddistributionswhendetermining con-
sistent tours is valuable, especially, if demand is heterogeneously distributed.While the
FIXED policy, which is invariant with respect to the demand structure, performs rela-
tively well for the uniform distribution, it behaves more poorly on clustered demand.
This does not hold true for the remaining policies, see Figs. 7 and8. They incorpo-

123



Consistent routing for local same-day delivery via micro-hubs 401

Fig. 9 Average gap to DAILY policy on uniform (left) and clustered demand (right)

rate knowledge about the underlying demand pattern and hence can adapt their routes
accordingly.

While including demand distributions in the calculation of consistent routes is ben-
eficial, we observe that the values of consolidation and consistency themselves do not
depend on the demand structure. For both investigated demand patterns, consolidation
at micro-hubs and consistent tours work similarly well under the same conditions, as
we can see in Fig. 7 and Fig. 8.

Next, we find that consolidation at micro-hubs is not worthwhile for an instant
delivery model. The low service rates in the instant service design (see Figs. 7 and8)
indicate that it is difficult to use micro-hubs for serving a high number of parcels
within a short delivery time promise, even without consistent routes. For such instant
delivery business models, the gain in consolidation is limited due to narrow delivery
deadlines and direct transportation may be the more suitable choice. Consolidation
at micro-hubs becomes more valuable the more delivery time promises are extended.
Figures7 and8 show that service rates are significantly higher for fast and same-day
delivery than on the instant service design. Because of the increased flexibility in time,
there is more time available to consolidate orders at micro-hubs.

Regarding consistency, we see that it comes at a certain cost in the fast service
design, as indicated by the larger gaps in Fig. 9. For such types of fast same-day
delivery, providers therefore must carefully weight the benefits of consistency with
its costs. Our results further show that with a same-day delivery promise, consis-
tency can be implemented at a very small loss in service quality. Due to the temporal
flexibility of this service design, high amounts of parcels can be delivered with both
consistent and non-consistent tours. With the right strategy, it is therefore possible to
achieve consistency without compromising service quality when offering same-day
delivery.
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Fig. 10 Routes obtained by the EXACT policy for instances with 40 parcels on the instant (top), fast
(middle) and same-day (bottom) service design, for uniform and clustered demand

4.4.3 Routing structure

To conclude our computational analysis, we examine the structure of the consistent
routes in more detail. We investigate the structural differences between the routes
obtained by the EXACT policy for the instant, the fast, and the same-day service
design, 40 parcels, and both demand distributions. The resulting routes are displayed
in Fig. 10.Micro-hubs are represented by two half circles. The left-hand side illustrates
the relative amount of pickup requests that originates from that specific micro-hub on
average over 200 instances. Analogously, the right-hand side illustrates the relative
average amount of delivery requests destined to this micro-hub. The upper part of the
figure shows the routes for the two demand patterns on the instant service design, the
middle part for the fast service design and the lower part for the same-day service
design.

First, we analyse the differences between the demand patterns. In the tours of
uniform demand, we see that—as demand is uniformly distributed—all micro-hubs
have approximately the same amount of parcels that have to be picked up there and
delivered to this destination. We further observe that on uniform demand, the vehicle
conducts an almost circular route: starting in a certain node, it travels a clockwise or
anti-clockwise circle several times, with a few exceptions only, before going back to
the depot. Since pickup and delivery locations are uniformly spread, such a circular
structure provides a time-efficient route visiting many micro-hubs and thus allowing
to deliver many of the unknown parcel requests.
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On clustered demand, we clearly see the structured demand pattern: Most parcels
originate frommicro-hub 3, some frommicro-hub 2 and even fewer frommicro-hub 1.
Thosemicro-hubs are located in the city centre or industrial zone and hence are mainly
used as pickup locations, see Fig. 5. Micro-hubs 4 and 5 are located within or close to
residential areas and consequently barely have pickup requests (4.40% and 2.39% of
all parcel requests, respectively). Parcels’ destinations are spread more evenly among
micro-hubs.Most parcels are destined tomicro-hubs 2, 3, or 5 respectively, serving the
industrial zone, the north-western and eastern residential areas. Each of those micro-
hubs has a share of 22.21–24.07% of all delivery requests. The route obtained by the
EXACT policy captures this demand pattern: in any service design, the vehicle visits
micro-hubs with most pickup demand (micro-hubs 3 and 2) in the beginning of the
time horizon and then delivers the collected parcels to their destinations. After that, it
comes back to micro-hubs 3 and 2, to collect more parcels, which are again delivered.
This process of collection and delivery of parcels is repeated until the service time
horizon ends.

Concerning the different service designs, we observe the following differences. As
the service time horizon gets larger, more time is available, thus vehicles repeat the
routing scheme (circles on uniform and “first collect, then deliver” on clustered) more
often. Also, in some settings it is beneficial for the vehicle to wait at a certain micro-
hub for more orders to arrive before continuing its tour. This happens more often when
delivery time promises are longer since they allow a higher temporal flexibility. With
the instant service design, we have to collect as much as possible at the beginning
of the time horizon and then deliver it promptly because of the short delivery time
promise. This is particularly noticeable in the clustered demand pattern. With a fast
and same-day service design, on the other hand, we can pick up a lot later in the day
and still make a successful delivery.

4.5 Dynamic evaluation of the second stage

The two-stage stochastic program developed in this work assumes the total demand
to be revealed at once before taking decisions at the second stage. As mentioned in
Sect. 3.1, in operations we do not have perfect information, but parcel requests are
placed dynamically over time. Thus, the static second stage objective constitutes an
upper bound to a dynamic evaluation of the problem. In this section we shed a light on
the tightness of this upper bound. To this end, we evaluate the solutions obtained from
the first stage of (2-SP) in a dynamic rolling horizon framework. Each time a new
order arrives, we re-solve the second stage (2nd-SP) to check if the new request can
feasibly be served given the vehicle’s route and available capacities. This is a myopic
policy, adding all orders that can be feasibly served in every state. The exact procedure
of the dynamic evaluation is described in Appendix A.3.

We compare the objective values obtained with the static second stage to the
dynamic evaluation of it. In our numerical experiments, we focus on instances with 80
parcel requests only. For 40 parcels, capacity constraints are usually not a problem. For
120 parcels, the exact solution of the two-stage model can not always be determined
within the given time limit and the optimality gap is quite large for the same-day
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service design (see Table 4 for details). For these reasons, we limit our study on the
80 parcels instances. For each service design, we sample 100 instances and solve the
static and the dynamic second stage for each of them.

We find that solutions and objective values are exactly the same for the instant and
the fast service design. Due to the narrow time windows, parcels stay in the vehicle
rather shortly (or are not served), and time constraints are the limiting factor. Capacity
constraints play a minor role only such that exactly the same parcels can be served in
the static as well as in the dynamic approach. This changes for the same-day design,
where time constraints are not an issue anymore. Now, capacity restrictions come into
play. For instances with uniform demand, the gap between the static and the dynamic
second stage is 5.39% on average. On clustered demand, the average gap is 27.01%.
Recall here that on clustered demand and same-day delivery the first stage is not
solved to optimality but has an optimality gap of 4.55%. Moreover, requests are het-
erogeneously distributed on the clustered demand pattern. Figure10 shows that some
micro-hubs have clearly more pickup requests than others. This might cause capacity
problems in the micro-hubs with high demand. As another consequence, the length
of parcels’ itineraries varies much more on the clustered than on the uniform demand
pattern. While the static model under perfect information rather selects those requests
with short itineraries, the dynamic implementation accepts requests in a myopic man-
ner. With this, capacities are blocked by parcels with long itineraries, preventing the
fulfillment of additional requests in the future. In essence, while the static approxi-
mation of the dynamic process in our two-stage stochastic program works well for
the majority of cases, there is room for improvement for the case where static and
dynamic solutions differ. Here, anticipatory dynamic policies might be developed to
increase the performance.

5 Conclusion

In this paper, we have analysed the value and functionality of consistent collaborative
delivery with micro-hubs for a local market. We have proposed a novel model formu-
lation, a two-stage stochastic integer program where on the first stage vehicle tours
are determined and on the second stage parcels flows are optimised. We have solved
the extended form of the two-stage stochastic program using a set of sampled scenar-
ios. The performance of the exact method, and three benchmark policies have been
evaluated in a computational study. Our results show when and how consistent tours
for local same-day delivery can be beneficial. They further demonstrate that our two-
stage stochastic model allows to derive a consistent tour performing not much worse
than a daily re-optimised one, and additionally shows the advantage of computing the
master tour only once. We also show that employing a static second stage proves to be
a good approximation to the dynamic evaluation of the problem. However, there are
situations where dynamic decision-making can offer significant value and benefits.
As we delve into future research, we aim to explore the advantages of incorporating a
dynamic second fleet organising the transportation from stores tomicro-hubs and from
micro-hubs to customer locations as well as delivering orders that cannot be served
within the micro-hub framework. This would lead to a third decision dimension about
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the routing of the courier bikes. Delivery time promises are then to be implemented in
a door-to-door policy to ensure that the local collaborative system is prompt, reliable,
and tailored to meet customers’ needs.

There are several avenues for future research. We have seen that micro-hubs can be
very valuable for deliverieswithin two hours. Futureworkmay further investigatewhat
deliveries are suitable for consolidated shipping and which should be shipped directly.
In our research, we have focused on the single-vehicle case for moderately sized cities
to analyse the functionality of the two-stage model and the impact of consistent routes.
Future work may extend the computational study to larger cities and fleets. While the
proposed model is already designed to capture multiple vehicles, it is very likely
that the second stage problems cannot be solved with standard methodology. Instead,
metaheuristics might be developed. Our model further is restricted to one micro-
hub per shop and per customer. To increase the flexibility of stores and customers,
several close-by micro-hubs may be used for drop-off and pickup, respectively. This
would require a reformulation of the model, explicitly deciding about the origin and
destination of each parcel. Furthermore, recourse actions such as skipping hubs may
become useful in this case. Further, in this research we have assumed that all parcels
become known at once during the day. As suggested above, future work may model
the arrival of parcels dynamically every day. This would replace the second stage of
our model with a stochastic dynamic process, for which anticipatory dynamic policies
for the parcel flow decisions may be developed. Determining the consistent tour from
a dynamic routing policy of the vehicles would be another, currently unexplored,
research opportunity.
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A Appendix

In this appendix we provide background information on some parts of our work. In
Appendix A.1, we explain the distribution of shops and customers in the clustered
demand pattern. In Appendix A.2, we present a brief runtime comparison of the single
stage model (1-SP) when decision variables yp, p ∈ Ps , s ∈ S are defined to be
binary or continuous, respectively. In Appendix A.3, we state the pseudo-code for the
dynamic evaluation of the second stage.
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Table 5 Average runtime (in seconds) for the model with binary or continuous decision variables yp,s ,
p ∈ Ps , s ∈ S

Uniform Clustered

Service design Binary Continuous Binary Continuous

Instant 11.18 11.18 24.30 24.81

Fast 61.99 60.24 320.56 317.91

Same-day 37.41 38.27 68.01 66.60

A.1 Clustered demand pattern

In this section we explain in more detail the clustered demand pattern. As shown in
Fig. 5, the city is divided into city centre, industrial area, and residential areas. Pickup
and delivery customer locations are sampled as follows. Half of the pickup customer
locations are generated uniformly over the city centre, the other half is generated
uniformly over the industrial zone. This is motivated by shops and companies being
located in these areas usually. As companies also might order goods or people might
order parcels to theirwork place instead of their home, a fourth of the delivery customer
locations is sampled uniformly within the industrial zone. Still, the majority of parcels
is ordered to private households. Therefore the remaining four quarters of delivery
customer locations are distributed uniformly in the residential areas.

A.2 Runtime comparison for relaxed decision variables yp,s

In this section we make a runtime comparison to evaluate the model (1-SP) with the
decision variables yp,s ∈ {0, 1} ∀p ∈ Ps ∀s ∈ S against the model with yp,s ∈ [0, 1]
∀p ∈ Ps ∀s ∈ S. We create instances with uniform or clustered demand and 100
parcels. For each service design (instant, fast and same-day), we run the model on 100
different instances. Table 5 shows the average runtimes of both versions in seconds.

From Table 5 we see that on uniform demand with instant service, both models run
equally long on average. On uniform demand with same-day service and on clustered
demand with fast service the model with binary decision variables yp,s is slightly
faster. On the remaining instances, the model with continuous decision variables yp,s
is solved within a shorter time. It is remarkable that instances with fast service require
significant more time to be solved than the rest of the instances. Also, the runtime
reduction on these instances is larger than the runtime growth on other instances. We
hence conclude that relaxing the decision variables yp,s to be continuous is generally
beneficial, although this should be checked for different instances.

A.3 Implementation of the dynamic second stage evaluation

Algorithm 1 states the pseudo code for the dynamic evaluation of the second stage.
In short, the algorithm re-solves the second stage each time a new order arrives. For
this, the algorithm requires a first stage solution x and a set of parcel requests P as
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an input. To each parcel request, a corresponding release time, pickup, and delivery
location is given. To initialise the algorithm, the parcel requests are sorted by their
release time in ascending order. Moreover, an empty set of available parcels and of
already checked parcels are created. Within the algorithm, they will help to keep track
of which parcels are to be investigated and for which parcels a solution has already
been determined.

Every time a new parcel request p is placed, the algorithm adds this parcel to
the list of available parcels. Then, the deterministic second stage model (2nd-SP) is
solved where only the set of available parcels is considered. In (2nd-SP), the first
stage decision variables x , i.e. the consistent tour of the vehicle, are fixed. Further,
the decision variables of all parcels whose solution has already been determined in a
previous iteration are fixed as well. This way, the solution of one more parcel is fixed
in each iteration. In other words, only the decision variables concerning parcel p are
to be determined by the model. Given the vehicle tour and the parcel flow of earlier
orders, the model hence determines whether the new parcel can be transported with
the given schedule and availabe capacities, or not. After a solution has been found,
parcel p is added to the list of checked parcels and a new iteration starts.

In each iteration k, the current objective value
∑

p∈Pk y
k
p specifies the number of

parcels that can be transported by the shared vehicle so far. After the last iteration, this
is the total number of delivered parcels.

Algorithm 1: Dynamic Evaluation of the Second Stage
Input: x – consistent tour (first stage decision variables)

P – set of parcels, each associated with a release time, pickup, and delivery location
Initialisation:
Psorted ←− list of all parcels p ∈ P sorted by their release time
P0 ←− ∅ (list of available parcels)
D0 ←− ∅ (list of checked parcels)
k ←− 1
for p ∈ Psorted do

add p to list of available parcels: Pk ←− Pk−1 ∪ {p}
solve (2nd-SP) for the set of available parcels Pk where vehicle tour and all checked parcels
Dk−1 are fixed:

yk , zk ←− argmax
{∑

p∈Pk
ykp |

(
x, yk , zk

)
∈ Cs , ykp = yk−1

p , zkp = zk−1
p ∀p ∈ Dk−1

}

add p to list of checked parcels: Dk ←− Dk−1 ∪ {p}
k ←− k + 1

end
Output:

∑
p∈Pk

ykp is the total number of delivered parcels.
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