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Abstract

We propose a dynamic factor state-space model for the prediction of high-dimensional
realized covariance matrices of asset returns. Using a block LDL decomposition of
the joint covariance matrix of assets and factors, we express the realized covariance
matrix of the individual assets similar to an approximate factor model. We model
the individual parts, i.e., the factor and residual covariances as well as the factor
loadings, independently via a tractable state-space approach. This results in closed-
form Matrix-F predictive densities for the distinct covariance elements and Student’s
t predictive densities for the factor loadings. In an out-of-sample forecasting and
portfolio selection exercise we compare the performance of the proposed factor model
under different specifications of the residual dynamics. These includes block diagonal
residuals based on the GICS sector classifications and strict diagonality assumptions as
well as combinations of both using linear shrinkage. We find that the proposed model
performs very well in an empirical application to realized covariance matrices for 225
NYSE-traded stocks using the well-known Fama—French factors and sector-specific
factors represented by exchange traded funds.

Keywords Factor model - Realized covariance - State-space model - Composite
prediction

JEL Classification C32 - C38 - C51 - C58 - G17

1 Introduction

Modeling and forecasting covariance matrices of financial assets are essential in var-
ious fields like option pricing, risk management and portfolio allocation. Numerous
approaches have been studied in the past decades, mostly based on daily asset return
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data. Due to the increasing availability of intraday asset return data it is nowadays possi-
ble to compute accurate nonparametric ex-post estimates of daily integrated covariance
matrices of asset returns, called realized covariance, which are known to incorporate
much more information about daily conditional covariances than daily return series,
and come with the advantage that time-series models can directly be applied.!

However, this involves two key challenges. Firstly, the need to assure positive def-
initeness of the covariance matrix forecasts, and secondly, to cope with the parameter
proliferation arising through the fact that the number of objects to be modeled is pro-
portional to the square of the number of assets. These aspects become even more
pronounced in vast-dimensional applications that are considered in this paper.

Nevertheless, the direct time-series modeling of realized covariance matrices has
arisen as an important new strand of literature, pioneered by the studies of Gourieroux
etal. (2009), Noureldin et al. (2012), Golosnoy et al. (2012), and Jin and Maheu (2013),
who focused on capturing the time-series behavior of realized covariance matrices
through matrix-variate distributions like the Wishart and inverse-Wishart. In addition
Bauer and Vorkink (2011) and Chiriac and Voev (2011) focused on decompositions
of realized covariances to apply standard time-series models for the prediction of
future realizations. More recent contributions examine additional aspects in modeling
realized covariances by using more complex distributions like mixtures of inverse-
Wisharts or the Matrix-F distribution that allow for fat tails in the covariance (Jin and
Maheu 2016; Opschoor et al. 2017; Opschoor and Lucas 2019; Vasallo et al. 2021,
Zhou et al. 2019). As further example, the Riesz distribution allows for incorporating
liquidity differences in the intraday returns and reflecting tail heterogeneity (Gribisch
and Hartkopf 2022; Blasques et al. 2021). The benefits of LASSO (least absolute
shrinkage and selection operator) techniques on the predictive accuracy are examined
in Callot et al. (2017), the incorporation of (multiplicative) long-term components is
studied by, e.g., Bauwens et al. (2017). However, most of the proposed models are
limited to low-dimensional applications, say with 30 assets or less.

In this paper we contribute to another branch in realized covariance modeling, i.e.,
the application of factor structures for the assets’ covariance matrices to deal with
empirically more realistic scenarios in increasing dimensions. Prominent examples of
the factor approach are the models proposed by Tao et al. (2011), Asai and McAleer
(2015), Jin et al. (2019), Sheppard and Xu (2019), Gribisch et al. (2020) and Brito
et al. (2018). While the first three approaches extract implicit factors from realized
covariance data via an eigenanalysis and therefore build dynamic time-series models,
the remaining three rely on economically motivated observed risk factors, like in the
Fama and French (1993) three-factor model.

The use of observed risk factors is particularly appealing as it allows for time-
variation in both the factor loadings and the residual components which yields
flexibility gains when modeling the complex structures driving the evolution of real-
ized covariances. We follow this route and propose a flexible factor state-space model
for the prediction of realized covariance matrices of asset returns based on observed

I Fora description of the concept of realized covariance matrices see, for example, Andersen et al. (2003),
Barndorff-Nielsen and Shephard (2004), Park and Linton (2012), and Lunde et al. (2016).
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risk factors which is capable of handling dynamic systems of vast dimensions (say
200 and more).

Our method relies on a factor decomposition of the realized asset covariance matrix
from a joint construction of the realized measure for the factors and assets. After
observing the covariances of both the assets and factors, we construct realized fac-
tor loadings and realized residual components from standard matrix decompositions
resulting in a time-series for each of the individual parts. We then propose independent
state-space models applied to the time-series of the factors, factor loadings and residual
components akin to an approximate factor model taking the ‘true’ integrated factor
and residual covariance matrices and integrated loadings as a latent state variables
which are observed through their noisy realized counterparts.

For the factor and residual covariance matrices we combine independent Wishart
measurement densities with parsimoniously parameterized matrix-variate Beta tran-
sitions in the vein of Windle and Carvalho (2014). Besides yielding positive definite
covariance forecasts by construction, this specification has the advantage of being
tractable in a sense that the predictive distribution of the data, and hence, the likelihood
function is available in closed form. As a further contribution, we derive additional
useful properties of the covariance model at hand. For the factor loadings we rely
on well-established models from the TVP-VAR literature with stochastic volatility
estimated by maximum likelihood (ML) techniques based on Kalman-like filtering.

Although a separate modeling approach has certain drawbacks as it ignores data-
imposed dependencies in the measurements, it comes with the huge advantage of
reducing model complexity allowing to efficiently handle vast-dimensional portfolios.
In contrast to other state-space approaches that require high computational effort, our
approach enables parameter estimation and prediction on a minute time scale. Based
on the individual models, predictions for each component are readily made completely
in parallel and are combined afterward to obtain a composite forecast of the full asset
covariance matrix. This makes the model particularly appealing for practitioners.

In order to investigate whether the loss of information arising from the compos-
ite nature of our proposed model has any influence on its predictive accuracy we
later include the Factor HEAVY (high-frequency-based volatility) model of Shep-
pard and Xu (2019) in the set of competing models. The Factor HEAVY relies on a
GARCH-type modeling of the observed factors’ and assets’ covariances based on a
joint Wishart distribution combined with a strict factor structure (i.e., a sparse diagonal
residual component). The diagonal residual assumption is crucial for their model as it
enables a neat factorization into (conditionally) independent low-dimensional compo-
nents allowing for straightforward estimation by quasi-maximum likelihood (QML.).
However, it imposes severe restrictions on the residual component which can be unre-
alistic in vast-dimensional applications. Our modeling approach allows to relax this
assumption without effort.

The proposed composite factor state-space (CESS)? model relies on the same factor
decomposition as used in Brito et al. (2018). They combine the LASSO approach of
Callot et al. (2017) for the factor and residual covariances with linear heterogeneous

2 The name composite factor state-space model arises from the composite nature of how the predictions
for the full asset covariance matrix are obtained.
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396 J. P. Hartkopf

autoregressive (HAR, Corsi 2009) processes for the factor loadings. Their approach
has two major drawbacks in comparison with the CFSS model. First, since their model
specification is prone to over-parameterization, they have to restrict the dynamics of
the residual component to be driven by past residual variances only, neglecting possi-
bly important information when forecasting the assets’ covariance matrices. Second,
and maybe more important, they operate with transformed time-series for the covari-
ance parts based on the matrix-logarithm and make use of the matrix exponential
function to ensure positive definiteness of the predictions which induces a bias to the
forecasts. This bias might be neglectable in short-term forecasts; however, it gets more
pronounced over longer horizons.

In the empirical part, we apply the CFSS model to daily covariance matrices for
the returns of 225 NYSE traded stocks. In an extensive out-of-sample analysis we
compare several model specifications based on varying sets of observed risk factors and
different residual structures, as well as different restrictions imposed to the dynamics
of the realized covariance components. We illustrate the predictive performance of our
approach relative to several competing models. As performance measures we consider
the accuracy of the (co)variance predictions and the ability to produce predictions for
the global-minimum variance portfolio under different side restrictions as well as
the ability to produce predictions for the mean-variance portfolio using momentum
signals. Our out-of-sample results show that the CFSS model performs favorable in
almost all dimensions relative to its competitors.

The remainder of the paper is organized as follows: Sect. 2 introduces the proposed
CFSS model. The maximum likelihood estimation and parameter restrictions and the
construction of composite forecasts are discussed in Sect. 3. Section 4 describes the
data set. Section 5 discusses implementation details and presents the out-of-sample
results. Finally, Sect. 6 concludes. Additional derivations for the model (parts) at hand
are provided in Appendix, additional in- and out-of-sample results are deferred to
Supplementary Appendix.

2 The model
2.1 Factor decomposition of realized covariances
Consider a positive definite, symmetric consistent estimate C; of the joint latent inte-

grated covariance matrix X, observed for a panel of p logarithmic asset prices and g
observed factor prices at the trading dayst = 1, ..., T. Let C; be partitioned as

forf

C; Cy
C — t t , 1
t (thr Ct,‘> ()

where C lf constitutes the g x g realized covariance matrix for the factors, C] denotes

the p x p realized covariance matrix for the assets and th = (C,rf ) denotes the
p x q matrix of the realized covariances between the factors and assets.
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In the present paper our particular interest is to predict the realized covariance
matrix of the asset returns C; . To this end, we exploit a factor decomposition relating
the assets’ realized covariance to the risk factors via

C’ = B,C/ B+ C, )

where the matrices B; (p x g) and C; (p x p) are uniquely found from a block LDL
factorization of the block matrix representation in Eq. (1) as the regression coefficient
matrix and the resulting Schur complement of C,f in Cy, i.e.,

B, =c/"«cH™, cc=cr-cl'«cH'c). 3)

The matrices B; and Cf can be interpreted as realized factor loadings and as real-
ized residual covariance matrix approximating the integrated loadings B; and residual
components ¢, respectively.

Since we observe the complete covariance C; at each point in time, we can use
Eq. (3) to determine distinct time-series for le , Cf and B, such that these can be
modeled and predicted separately. Afterward, they can be recomposed to obtain a
forecast for the major quantity of interest, the full covariance of the assets C; . Specifi-

cations for the dynamics of the individual parts are presented in the following section.

2.2 Model equations

We take the integrated components X, , X7 and 3; as latent state variables observed
through their noisy realized counterparts and model them by a state-space approach
with independent measurement densities f(th | Etf), (€127, f(B: | Br), and
corresponding transition equations.

Before specifying the respective measurements for the individual parts, we make
two additional assumptions on B; and C;. First, we assume row-wise independence
of the betas, i.e., Cov(b;;, bj;) =0Vi # j,andi, j =1, ..., p, where b;, is a vector
containing the ith row’s entries of B;. This assumption is comparably mild as, e.g.,
Brito et al. (2018) assume element-wise independence for the entries in B;. Second,
we impose the following block structure for the residual covariance

Cy, * =*
=1« x| “)
* x Cg
where the S diagonal blocks are of size p; X p;,i = 1, ..., S. The asterisk ‘x’ indicates

residual covariances which are economically insignificant and thus are ignored.® The
structure in Eq. (4) is supported by empirical evidence in many studies when the
number of factors is chosen large enough, see, e.g., Fan et al. (2016), Ait-Sahalia
and Xiu (2017), Brito et al. (2018), Gribisch et al. (2020). Expecting the significant

3 Economic significance is explained in more detail in Sect. 4.
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398 J. P. Hartkopf

entries to cluster in blocks around the diagonal might appear arbitrary. However, by
rearranging the rows and columns in C; such a block structure can almost always be
achieved (at least approximately). As it is now common in the literature to model X7
as a sparse matrix (e.g., Sheppard and Xu 2019 assume X{ to be strict diagonal and
only use residual variance information in a one-factor setting), we impose a block-
diagonal structure and assume that the integrated residual covariance X7 is sufficiently
measured by the marginals f(CY{, | 7)), ..., f(C§, | 5).

Next, we spemfy the measurement dlstrlbutlons for the different components C; f
{cy }l 1» and {bzt}l 1» Which read as follows

/Il ~w,ml 2 ), C IS ~ Wy 6 mE), bir | Bies S5~ Ny (Bir, B2,
4)

where W), (d, s) denotes a m-dimensional Wishart distribution withd > m — 1 degrees
of freedom and scale matrix s, and N,,(a, b) denotes a m-dimensional Normal dis-
tribution with mean a and covariance b. The latter choice is motivated by the fact
that similar (marginal) distributions result from the assumption of a joint conditional
Wishart distribution for C; in (1), which can be seen as a natural candidate for the
measurement (c.f. Gribisch et al. 2020, and see Philipov and Glickman 2006; Golos-
noy et al. 2012; Noureldin et al. 2012; Bauwens et al. 2016, for applications of the
Wishart to realized covariances).

In order to complete the composite factor state space (CFSS) model, we spec-
ify the transmon densities for the latent time-varying integrated factor and residual
covariances, E and {X{ }, as well as the integrated factor loadings {8;; } and their time-

varying covariance matrices {E }. For C} /" and the distinct blocks {C?,} we adopt the
model of Windle and Carvalho (2014) which combines the measurements in Eq. (5)
with a generalized Matrix-Beta type-/ transition for the integrated precision, i.e., the
inverse of the integrated covariances Ef and {X}, respectively, implying a shifted

Matrix-F transition for E,f and {X,} themselves (see “Appendix A.2” for a deriva-
tion). In the vein of Windle and Carvalho (2014) we refer to this model as Uhlig
Extension (UE) as it depicts a generalization of the process originally proposed in
Uhlig (1994, 1997).

The UE model comes with three major advantages. First, irrespective of the dimen-
sion of the underlying covariance parts, it is parameterized parsimoniously with only
three parameters. Parsimony has proven to be particularly advantageous in predict-
ing high-dimensional covariance matrices (see, e.g., Bauwens et al. 2016). Second, it
yields positive definite (p.d.) forecasts for th and C; by construction. Hence, there is
no need to resort to any transformation like the Cholesky decomposition that depends
on the ordering of assets in C¢, or the matrix logarithmic transformatlon (Bauer and
Vorkink 2011), which may induce severe biases of the predictions Cr +41 through the
exponential re-transformation. Third, and most important, for the UE model we can
exploit the conjugacy between the Wishart and the Matrix-Beta distribution to obtain
closed-form filtering formulas for tracking the latent states of the system and allowing
the model parameters to be estimated by maximum likelihood in one step. (Details are
given in the following section.)

@ Springer



Composite forecasting of vast-dimensional realized... 399

In the UE model for the factor covariance matrix, the g x ¢ symmetric, p.d. integrated
precision Qf (% f )~ ! evolves through
k' nt
o =u@! yvlus! 1)/Af v/ ~ B! (7%) ©)
with conditional expectation given by E[Q,f|§2*tf_l] = Q'tf_lkf/[)\f(kf + nf)] and
initial condition Q{ ~ W, k!, (nf S({ )1 /A5 U(-) denotes the upper Cholesky fac-

tor, \Ilf are qxq symmetric p.d. iid Matrix-Beta type-/ shocks to Qf 4 Besides the

symmetric scale matrix So of the initial distribution, the UE model has three param-

eters, the degrees of freedom (d.o.f.) n/, k/ > g — 1 and the smoothing parameter

A7 > 0, controlling the dynamics of the Q,j process.”

Similarly to the integrated factor precision, we define Qf, = (X7,)~ ! for the i =
1,..., S distinct p; x p; symmetric, p.d. blocks of X¢, and assume
k¢ n¢
= U, ) WU, 1)/)* i, ~ By, (31 El) ’ )

with initial conditions 2§, ~ W), (k?, (nfS5))~ 1/)Lf), where nf, kf > p;i — 1,1 > 0
and S is the p.d. p; x p; initial scale matrix.

For the factor loadings {b;;} we use alocal-level version of the time-varying parame-
ter VAR with stochastic volatility proposed in Moura and Noriller (2019). This model
assumes the latent Ss to follow heteroscedastic random walks and uses a Wishart
process for modeling the volatility of the system. The latent g x 1 vectors of factor
loadings bj;,i = 1, ..., p, evolve as driftless random walk processes of the form

Bit = Bir—1 + Mir, i~ N, 2} /o), 3)
where the transition is allowed to be affected by multivariate stochastic volatility

shocksvia X f’[ ,scaled by 1/0;. Similar to the UE model, the evolution of Qf.’t =(Z f’t -
is specified by the following multiplicative transition

kKe+1 1
_M(Qll 1 U(Q” 1)/)‘ \I}ﬁ ~ B; ( l _> ’ (9)

2 2

with fixed initial condition. Here, ‘llibt are g x ¢ iid singular Beta type-/ shocks to Qf’t,
with single d.o.f. parameter kf governing the time-variation in the precision, given a
predetermined value of 0 < kf? < 1. Again, exploiting the conjugacy between the

Normal, Wishart and Matrix-Beta distributions, analytical expressions for the filtering

4 See, e.g., Gupta and Nagar (2000) for useful theorems about the matrix-variate Beta distribution.

5 In the literature the smoothing parameter A s typically not estimated, but tied to the d.o.f. n/ and &/
through different restrictions which are directly imposed during estimation of the latter. We discuss these
restrictions in Sect. 3.2.
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400 J. P. Hartkopf

distribution of the loadings and the likelihood function can be found, enabling fast
and straightforward estimation of the unknown model parameters. It is worth noting
that for klb — oo the nonlinear state-space model in Egs. (5), (8) and (9) collapses
to a homoscedastic version (Kim 2014; Moura and Noriller 2019). For 1/0; — 0 the
latent factor loadings are time-invariant.

3 Estimation and forecasting
3.1 Predictive distributions and likelihood estimation

This section describes the ML estimation of the CFSS model. The unknown model
parameters are estimated by independently maximizing the distinct elements in the
conditional log-likelihood

S p
log L" = log LY (071 C{.1) + D log LE(6f: Clip) + > log L0V bj17), (10)
i=1 j=1

where L/, Lf and L? denote the likelihood contributions of the factors, residual
blocks and factor loadings, with parameters 0/ = (n/,k/, 1/, 6¢ = (n¢, k¢, 1¢)
and 05.’ = (kI? , )J;, o j)’ s mspectively.6 The notation Aj.; is used to denote the collection
{As, ..., A}

The measurement distributions in Eq. (5) combined with the corresponding transi-
tion equations for Q,f {2, ), {Bir} and {Q;’t} in Egs. (6) to (9) constitute independent
nonlinear state-space models for the realized quantities th , {C%} and {b;;}. By
exploiting the conjugacy between Normal, Wishart and Matrix-Beta distributions,
Windle and Carvalho (2014) and Moura and Noriller (2019) derived several useful
propositions for the UE model and the TVP-VAR, including the forward filtering
distributions for the latent precision matrices and factor loadings, which turn out to
be Wishart and multivariate-¢, respectively. In addition, Windle and Carvalho (2014)
propose a backward sampling scheme to efficiently draw the latent sequences {Q‘tf }
({f,},i =1,..., S) in asingle sweep within a Bayesian MCMC sampler. In the fol-
lowing we focus on their results enabling fast and easy to implement ML estimation
of the model parameters, and the prediction of future realizations of C; in Eq. (2).

Let Clj:t capture the information on the realized factor covariance matrices from
period 1 up to #. With the transition in Eq. (6) and the corresponding initial condition,

the predictive distribution for th 41 given past information is of Matrix-F" type, i.e.,

6 The likelihood maximization is carried out using the MATLAB built-in numerical optimization routine
fmincon under several restrictions. Code for the implementation of the estimation procedure is made
accessible in the supplementary material.
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th_H ICfit ~Fy (nf k1, AfS,f), with density given by

Fq(nf-_é_k/-) |C,‘Z_1 |("f_‘1_1)/2|)fo,f|kf/2

f f ' kS
Pl 18]+ ¢l ok

fclycly = . an

with d.o.f. n/, k/ and scale )\fS,f, where S,f = )»fSlf_1 + th (see Proposition 3 in
Windle and Carvalho 2014). The d.o.f. k/ are known as fat-tail parameters with low
(high) values indicating fatter (thinner) tails. For k' — oo the predictive distribution
degenerates to the Wishart with n/ d.o.f. (see Opschoor et al. 2017). The conditional

T given by’

first moment that is used to generate one-step forecasts for C;

Int
f el rMnT of
E[C, [ Gl = mst , 12)
where solving the recursion for S,f yields
-1
st =>ahicl, + ol sy, (13)

i=0

implying that the forecast of th 41 Will be a scaled, geometrically weighted sum of
the previous observations. From Eq. (13) one can see that A/ controls the degree of
smoothing of the observations. This is crucial when forming estimates and one-step
ahead predictions (cf. Windle and Carvalho 2014).8

Based on Eq. (11) the likelihood function for the factor part obtains as L/ =
f(C f ; Sg ) Hszz f(C ,f |C 1f:t_1).9 Analogous results hold for the predictive distribu-
tions f(Cf, ., | Cf,.,) and likelihoods L{ of the distinct residual covariance blocks,

it+ il
and left out here for space saving reasons.

7 A derivation for the conditional second moment, i.e., Cov[vec(CTf Tl )], is given in “Appendix A.1”.

8 In Sect. 3.2 we propose several restrictions on the smoothing parameter, directly relating it to the shape
of the predictive distribution.

f

9 The likelihood function is based on iy » which could already be challenging to estimate in small to
medium dimensional applications. To circumvent this problem, we apply the approach proposed by Windle
) with 87, =

and Carvalho (2014), i.e., we set aside the first 7/ observations and use the set {ST,, C;/'

! .
ZiT:O (kf ) C s i_; to estimate the remaining model parameters.
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402 J. P. Hartkopf

Now, let b;1.; capture the information on the realized factor loadings from period 1
uptot,fori = 1,..., p. The predictive density of b;;1 is that of a scaled multivariate
¢ distribution (see Moura and Noriller 2019, Corollary 1)!°

kb1
L b
F( z ) 2 / 2 7ki+l
2 £

WW”—O—HI/Z [1 + (bit—H - .BiH—l) PiH—l(biH—l - ﬁiH—l)]
2 i
w4/2T <’f>

FGir+1 1 biry) =

(14)
with kb —¢g + 1d.o.f.,, mean ﬂlt+1, and scale (kb —qg+ 1" 1Pt+1, where
Bt =~ (B + bu; ) (15)
it+1 = (Ni+ 1 it it s
Nit —1
P. , 16
ir+1 = kb(N” + 1)( ) ( )
2PNy, _ _
sb bSb it bir — Bi)(bir — Bir), 17
ir+1 = z n (k,b + 1)(Nit + 1)( it ﬂzt)( it ,311) ( )
oAl (Ni + 1
Nigr = 220t D (18)
Oi +)\l (Nit + 1)
The initial conditions are fixed parameters.!!
The predictive expectation of the factor loadings is given by
Elbirt1 | biti] = Birt1. (19)

Again, the likelihood function Lf is obtained as the product of the predictive densities
in Eq. (14).

3.2 Parameter restrictions

Our proposed CFSS model as defined by Egs. (5) to (9) includes 3 x (1 + S + p)
parameters, whereof the majority relates to the covariance dynamics of the factor
loadings. In order to further increase the parsimony of our approach we utilize com-
monly imposed restrictions to the d.o.f. parameters of the loading processes and the
smoothing parameters.

Ininitial investigations of the realized factor loadings in scenarios with different risk
factors, we found the estimates for k;’ to be similar throughout the asset dimension p.
Moreover, we found that minor changes in the d.o.f. parameters do not have noteworthy
effect on the predictive ability regarding mean forecasts for b;;1. Hence, we preset kf

a4

10 Note a typo in Moura and Noriller (2019), where they define the scale of the multivariate ¢ as k" i b

S:
g1
by mistake. The error has been fixed here.

T We set N;j; =1 and Sf’l =l.
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in the ongoing of this paper. Similar restrictions are indeed imposed by Uhlig (1997)
and Kim (2014) in the context of constant coefficient VARs (see also Moura and
Noriller 2019). Kim (2014) suggests to choose values kf’ € [10, 25] which mirrors
our findings for 125’ . Consequently, we adopt this in the empirical analysis.!? For given
kf’ the process Qf-’t is asymptotically degenerated if Af’ is too large, and explosive if Af’
is too small. Hence, it seems reasonable to further tie the smoothing parameter to the
d.o.f. via A = k2 /(k? + 1), implying 0.90 < 2> < 0.97, for k¥ € [10, 25].

In addition we consider three different restrictions on the smoothing parameters
7, {A{}). They are all considered as distinct model variants and their predictive
performance is analyzed in the empirical application below. Each of them has been
found to be valuable on its own. Note that all restrictions imply A/, A} € (0, 1)
and that they can straightforwardly be imposed during the estimation of the degree of
freedom parameters. Here they are exemplified for the factor part. Similar restrictions
are later imposed for the residual blocks as well.

The first restriction has been originally proposed by Windle and Carvalho (2014)
and is given by

f —1
=1y (R1)
kf —q—1 ’

It implies that the one-step-ahead forecast for the realized factor (residual) covariance
based on (12) is obtained as the exponentially weighted moving average (EWMA)

BIC/,, | ¢l = —2ahe! +alBic) 1 cf,_y.
which is known to deliver decent (short-term) predictive performance.!? Notably, this
restriction also results in a martingale for the evolution of latent integrated factor
(residual) covariance matrices, i.e., E[Z/ |2/ 1= £/ | (B[2¢|5¢_1=3%¢ ). A
derivation for this result is given in “Appendix A.2”.

The second restriction is chosen to induce a random walk behavior for the latent
integrated precision matrices in Eq. (6), say E[Qtf|§2£1] = Q{ll, ie.,
Kk

PR —
kf 4+ nf

(R2)

A similar restriction has been imposed by Uhlig (1997) in the context of singular
Matrix-Beta transitions for the latent precision. In the context of stochastic covariance
modeling for daily return series, Moura et al. (2020) found (R2) to be performing well
in out-of-sample portfolio allocations.

12 The exact restrictions for kl.b are postponed to Sect. 5.

13 Note that under restriction (R1) the prediction for C rf T is similar to the one implied by the RiskMetrics
methodology (Morgan 1996). However, in the latter the smoothing parameter is set arbitrarily to 0.96, whilst
in the former X is determined by the distributional shape mirrored in the degree of freedom parameters nl
and k7.
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The third restriction traces back to the work of Shephard (1994), where in an uni-
variate modeling framework akin to Uhlig (1997) the smoothing parameter is chosen
as the geometric mean of the latent beta shocks in the precisions’ transition equations.
Shephard (1994) argues that this restriction rules out the case of the precision collaps-
ing to zero if t+ — oco. Here, we propose a multivariate extension of this restriction
which takes the form

Al = exp(Ellog [ ¥/ [1/q}. (R3)

In “Appendix A.3” we show that E[log |¥/|] = Wrk!/2) — Wr((n! + k7)/2),
where \L';(a) denotes the d-variate digamma function (see, e.g., Abramowitz and
Stegun 1972; Gupta and Nagar 2000) and that (R3) results in a random walk for the
log determinant process of the integrated precision matrices.

Figure 1 visualizes the restrictions on the smoothing parameter for an exemplary
scenario of 25 assets, which corresponds to the average sector-size in the empirical
application. Panels (a)—(c) show contour plots of (R1), (R2) and (R3) on the grid
[26, 300] x [26, 300] for the d.o.f. parameters. The plots indicate that A — 1 (A — 0)
for n fix at its lower bound and k£ — oo (k fix at its lower bound and n — ©0). Hence,
the less fat tailed and noisier the observations are, the more the model smooths, and
vice versa.

Panels (d)—(f) show contour plots of the differences between the ML estimate for
A (when fixing n and k) and the respective restrictions (R1), (R2) and (R3). The black
circles mark the corresponding unrestricted ML estimates of the d.o.f. parameters, i.e.,
A ~ 89, k ~ 175. The unrestricted MLE for the smoothing parameter is A = 0.63 with
a standard deviation of 0.017. We can see that (R1) and (R3) tend to be smaller than the
MLE, whereas (R2) exceeds the MLE slightly, though all differences lie within one
standard deviation. The performance of (R1) and (R3) deteriorates if both d.o.f. tend
to their lower bound. However, it is common in practice to impose these restrictions
when estimating the d.o.f. in order to reduce estimation uncertainty.

Imposing the restrictions stated above reduces the number of parameters to be
estimated to 2 x (1 + §) + p. This further increases the parsimony but preserves the
flexibility of the model at hand and allows for very fast estimation of the unknown
model parameters based on numerical optimization routines.'*

3.3 Composite forecasting

Exploiting the decomposition of the realized asset covariance in Eq. (2), we write the
forecasting equation for the realized asset covariance C/__; by combining the distinct

t+1
forecasts for le+1, {CfH_l} and {b;;41}, i.e.,

6zr+1 = Z"\t+1/C\szrlz"\z/jul + 6f+1’ (20)

14 1n the empirical application in Sect. 5 we, e.g., consider a model for 225 assets with block-diagonal
residual assumption based on nine industry sectors resulting in 245 (705) parameters for the restricted
(unrestricted) model. Parallel estimation of all parameters takes < 5 minutes on a standard PC with a 2.3
GHz Intel Core i7 processor in MATLAB.
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Fig.1 Smoothing parameter restrictions. a—¢ Smoothing parameter of the UE model under restrictions (R1),
(R2) and (R3). d—f Differences of the ML estimate for A (when fixing n and k) and the values obtained
under the respective restrictions. The black circles ‘o’ mark the respective unrestricted ML estimates of the
d.o.f. parameters

where weuse C/, | = E[C/, | | C/,1.C¢,, =EICS,, | C& Jand birsy = Elbjry1 |
bi1.¢] as obtained from the respective predictive moments in (12) and (19). Since the
predictions of the factor and residual covariance are p.d., the forecast for the assets

covariance will be p.d. by construction as well.
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The composite forecasting procedure in Eq. (20) relies on a simple plug-in approach

and hence ignores nonlinearities in the term B, Ci}:rl B/, when predicting C] ;. As
pointed out by an anonymous referee a more general predictor could be obtained by
combining the separate forecasts through the optimization of some, possibly strictly
consistent, loss function for the assessment of forecasting performance. For example,
the two components on the RHS of Eq. (20) could be rescaled by means of scalar
coefficients estimated by minimizing the Frobenius norm of the in-sample forecast

errors. However, we do not consider such a calibrated predictor in the present paper. !>

4 Data

The given data set includes and expands the 60 dimensional data of Gribisch et al.
(2020). It consists of 1510 daily observations for 225 stocks traded at the New York
Stock Exchange and 12 risk factors, observed between January 3, 2007, and December
31,2012, comprising a total of 28,203 time series of realized variances and covariances.
The stocks are selected by liquidity from the S&P 500 index and are sorted by their
sector and industry classification according to the Global Industrial Classification
Standard (GICS). For the observed factors we use the market, the high-minus-low
price-earnings ratio (HML) and small-minus-big market capitalization (SMB) factors
as in the Fama and French (1993) three-factor model. Additionally we consider the
sector-specific Spyder Exchange-Traded Funds (SPDR ETFs) for the nine sectors
covered by the 225 stocks (Fan et al. 2016; Ait-Sahalia and Xiu 2017; Gribisch et al.
2020). A brief summary of the sector sizes along with the sector-specific ETF tickers
and some descriptive statistics are given in Table 1.

The daily realized covariance matrices C; are computed by using the compos-
ite realized kernel method of Lunde et al. (2016) based on 5-minute returns for the
Fama—French factors and 1-minute returns for the assets as well as the SPDR ETFs
(see Barndorff-Nielsen et al. 2011; Lunde et al. 2016, for further details). Given the
joint realized covariance matrices for the assets and factors, we compute according to
Eq. (3) the realized residual covariance matrices C; and the realized factor loadings
B; which represent estimates for integrated residual covariance matrices and loadings,
for various sets of factors. Figure 2 shows time-series plots of the realized variances
for the three Fama—French factors, as well as sector-wise averages of realized asset
variances, realized factor loadings and realized residual variances for the industrial,
health care and financial sector.

In Fig. 3 we analyze the sparsity pattern for the realized residual covariance matri-
ces. Following Ait-Sahalia and Xiu (2017) and Brito et al. (2018) we determine the
economically significant entries of the residual correlation, i.e., we flag each entry
with a minimum absolute correlation of 0.15 for at least 1/3 of the sample period.
Panel (a) displays the results for the realized asset covariance matrices. Panels (b)—(d)
display the results for the realized residual components after removing the common

15 Tnitial investigations showed no significant improvements over the composite forecasting procedure.
Furthermore, a simulation study has shown that the nonlinearities have only minor effects on the diagonals
(which play a minor role compared to the off-diagonal covariance elements) and are therefore negligible.
(The results are provided in Supplementary Appendix.)
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Table 1 Descriptive statistics for the data set

Sector ETF Members 10% Mean Median 90%

Energy (E) XLE 16 (-) 1.27 6.03 3.20 11.64
Materials (M) XLB 9(-) 0.90 4.80 2.51 9.97
Industrials (I) XLI 26 (8) 0.75 3.95 2.10 8.16
Consumer Discretionary (D) XLY 3509 0.98 5.87 2.88 13.33
Consumer Staples (S) XLP 20 (7) 0.39 2.07 1.04 4.06
Health Care (H) XLV 25(7) 0.55 2.98 1.50 6.18
Financials (F) XLF 34(7) 0.82 9.45 2.95 19.85
Information Technologies (T) XLK 44 (22) 1.10 4.74 2.85 9.71
Utilities (U) XLU 16 (-) 0.45 2.71 1.27 5.05

The table lists the sectors covered by the data set. In column ETF the symbols of the respective sector ETF are
stated. Members denote the number of stocks per sector as classified through their GICS code. The number
of assets in the 60D data set of Gribisch et al. (2020) is given in parentheses. The descriptive statistics are
average mean and median asset volatility, as well as average lower and upper 10% asset volatility

a) Market b) HML c) SMB
oo @ o () (c)
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2008 2010 2012 2008 2010 2012 2008 2010 2012
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Fig.2 Time-series plots of selected realized factor and aggregated (residual) asset variances. a—c¢ Time series
plots of the realized Fama—French factor variances; Columns d—f Time series plots of average realized asset
variances (top), factor loadings on the market (middle) and residual variances (bottom) for the industrials,
health care and financial sector
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2011-1

Fig. 3 Sparsity pattern of residual correlations. The figure displays the significant entries of the residual
covariance matrices, relative to (a) zero, (b) one (Market), (c¢) three (Market + FF), and (d) 12 (Market +
FF + ETFs) observed factors. e displays the the residual sparsity for 12 factors at different points in time.

The sector labels are listed in Table 1
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covariation driven by the market factor only, the three Fama—French factors and the
Fama-French factors plus nine sector- specific factors based on the ETFs, respectively.

The analysis shows that using only one or three factors still yields very dense resid-
ual correlation patterns, indicating not only a strong rejection of the strict diagonality
assumption, but also of the block-diagonality based on industry sectors (highlighted
as black rectangles). However, by inclusion of the sector ETFs almost all of the signif-
icant inter-sectoral and most of the intra-sectoral correlations vanish, leaving behind
a somewhat mixed pattern. This could indicate that a block-diagonal specification
might model irrelevant correlations whereas a strict diagonal specification still ignores
important information.

Both the diagonal and block-diagonal sparsity restrictions are imposed ex ante and
are not changed during the analysis. In order to investigate whether the sparsity pattern
is time-varying we plot the residual pattern for the 12 factor case at different points in
time in panel (e). The results indicate that the pattern is rather constant over time.

5 Out-of-sample forecasting analysis

This section reports the out-of-sample forecasting results. Selected in-sample parame-
ter estimation results for the proposed CFSS model and robustness checks are presented
in Supplementary Appendix.

5.1 Implementation

We analyze the out-of-sample performance of three different factor structures: a
1-factor model with the market factor only (1F), a 3-factor model based on the Fama—
French factors (3F), and a 12-factor model including the Fama—French factors plus
the nine sector-specific ETFs (12F). For both the realized factor and residual covari-
ance matrices we fit the unrestricted UE model (R0O) and compare its performance
to the restricted models (R1), (R2) and (R3) within the CFSS framework. The d.o.f.
parameters kf’ for the stochastic volatility process of the (latent) betas are fixed to
their cross-sectional median values based on the in-sample estimates. For complete-
ness, we consider diagonal (D) and block-diagonal residual assumptions based on the
GICS classification (S) for each of the factor structures, although this is only (approx-
imately) supported under the 12-factor specification. The diagonal specification sets
S = p and p; = 1Vi, the block-diagonal specification sets § = 9 with sector sizes
given in Table 1. Motivated by the findings of Fig. 3, we also consider post-prediction
shrinkage of the sector-blocks toward their diagonal. We use a linear shrinkage (LS)
approach akin to Ledoit and Wolf (2003), Ledoit and Wolf (2004). The LS prediction
reads as

——

6‘\iez+1 =q; {afzﬂ O Iy} + _ai)aiet—H’ 2n
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where © denotes the Hadamard product (see Liitkepohl 1996, p. 3). The optimal shrink-
age intensity o is found by minimizing the expected Frobenius distance between the
in-sample LS prediction and the realized residual blocks.'®

The first three years of the data set are used as in-sample and the remainder as
out-of-sample periods. We employ a rolling-window size of three years to obtain one-
day (h = 1), 1-week (h = 5), 2-weeks (h = 10) and one-month (7 = 22) ahead
predictions. The daily forecasts are obtained by re-estimating each model on a daily
basis and forming predictions via Eq. (20). For the multi-step ahead forecasts we rely on
a direct forecasting approach, i.e., we use a horizon-specific estimated model where
the dependent variable is the multi-period ahead value being predicted (Marcellino
etal. 2006).!7 Consequently, we predict the cumulative 4-day ahead covariance matrix

n = ZLI C7,; by applying the CFSS models to the aggregated series Ctj;h =

Z?:l thﬂ., Cip = Z?:l Cf ;and Bryp = %Zf;l B, +; and again using Eq. (20).
Following Chiriac and Voev (2011) we aggregate the realized components of C; using
non-overlapping /-day windows.

The sample period includes the financial crisis of 2008 as well as flash crashes
in 2010 and 2011. These events lead to the presence of outliers in the (co)variance
time-series which could distort parameter estimation results and affect out-of-sample
predictions. In order to mitigate the effect of this comparably extreme events it is
nowadays a conventional approach to perform a slight ex-post cleaning on the realized
covariance matrices (Callot et al. 2017; Brito et al. 2018). As a means for cleaning
the estimation sample we rely on the method proposed in Callot et al. (2017). Each
day for which at least 25% of the unique elements of the realized covariance matrix
exceed their sample mean up to then by more than four standard errors are flagged
for censoring. The flagged matrices are then replaced by the sample average of their
ten nearest non-flagged neighbors. In total 22 covariance matrices are flagged, which
corresponds to only 1.46% of the whole sample.

It is worth to note that the fraction of flagged matrices can vary depending on the
particular realized covariance estimator used. More sophisticated and noise robust
realized covariance estimators could mitigate the need for ex-post data cleaning (see,
e.g., Fan and Kim 2018). However, a thorough investigation of this problem is going
beyond the scope of the paper.

5.2 Competing models

In order to compare the out-of-sample forecasting performance of the proposed com-
posite factor state-space model we consider five alternative state-of-the-art forecasting
approaches as benchmarks:

(1) The Factor LASSO approach of Brito et al. (2018),

16 That is o = arg min E[llei{C{, © I} + (1 — ) CY, — CE 131,

17 The direct forecasting approach is known to be more robust than the iterated approach as it is less prone
to error propagation, which is especially relevant if there exists a model misspecification problem (Andersen
et al. 2003; Chiriac and Voev 2011; Bollerslev et al. 2018; Luo and Chen 2020).
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(2) the Factor HEAVY (FHEAVY) model of Sheppard and Xu (2019),'8

(3) the Realized consistent DCC (Re-cDCC) model of Bauwens et al. (2016),
(4) the Exponentially Weighted Moving Average (EWMA; Morgan 1996),
(5) and the random walk (RW) model.

While the Factor LASSO and HEAVY models can be seen as natural competitors,
the (non-factor) Re-cDCC is known to be a hard-to-beat benchmark when predicting
realized asset covariance matrices. The EWMA and RW models can be seen as standard
industry practice. Models (1) and (2) use the decomposition in Eq. (20) to predict C/, |,
models (3) to (5) are directly applied to the series of realized asset covariance matrices.

The LASSO (and also the EWMA and RW) approach can be implemented as
described in Brito et al. (2018). To implement the HEAVY and Re-cDCC model,
however, minor restrictions are required for the high-dimensional asset (and factor)
setting as considered here. For the factor part in the multi-factor HEAVY model we
implement a scalar version of the CAW model (see Golosnoy et al. 2012) and apply a
covariance targeting approach (see, e.g., Noureldin et al. 2012) to get rid of the constant
part. For the Re-cDCC model we consider the scalar specification for the underlying
correlation dynamics. Potential unreliability in the parameter estimation arising from
numerically calculating determinants and inverting huge dimensional matrices is cir-
cumvented by further restricting the correlation part using the dynamic equicorrelation
(DECO) approach. In the DECO model both the determinant and inverse of the corre-
lation matrix are given by closed-form expressions (see also Engle and Kelly 2012).
The resulting model (sRe-cDECO hereafter) is advocated by Bauwens et al. (2016)
as valuable competitor when handling vast dimensional systems.

Following, e.g., Callot et al. (2017), Opschoor et al. (2017) and Gribisch et al.
(2020), we set the EWMA smoothing parameter to 0.96.

5.3 Statistical forecast evaluation

We assess the accuracy of the direct h-step-ahead point forecast with two types of
statistical loss functions. First, the root mean squared error (RMSE) based on the
Frobenius norm of the forecasting error that is calculated by comparing a’ 4, and the
ex-post observed value Cl’ h is considered (cf. Ledoit et al. 2003). This RMSE is
given by

1 A 2 A 2
RMSE = —— 3 | 3 (i = &) + 2D (e = ) | - 2D
t i

i<j

where ¢;; 4, and ¢;j;4;, denote the realized variance of asset i and the realized covari-
ance between asset i and j, respectively. The corresponding forecasts are denoted
by Cir4n and ¢; jt+h» and T* denotes the number of forecasting periods. In order to
see whether a model performs different w.r.t. the different elements in the covariance

18 Since our focus lies on forecasting the realized measures, we ignore the HEAV'Y-P equations which link
the realized covariance forecast to the conditional (latent) return covariance (see Sheppard and Xu 2019).
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matrix we follow Gribisch et al. (2020) and disentangle the RMSE from above into
the following two loss functions

1 1
2 2

1 A 2 1 A 2
RMSE' = T [Z(C,*Hh — &) } RMSE® = Y > |:Z(C;jz+h — i)
t i !

i<j

(23)

where RMSE" uses the variances only and RMSES considers the covariances. In
addition to the RMSE loss we consider the commonly used QLIKE loss function, i.e.,

1 A .
QLIKE = — > log| €. | +tr [(C,qh) lc;+h] . 24)
t

While the RMSE losses are symmetric, the QLIKE loss function is an asymmetric
loss, penalizing under-predictions more heavily (cf. Luo and Chen 2020). Both loss
functions are known to be robust to noisy (co)variance proxies (Patton 2011; Laurent
et al. 2013; Sheppard and Xu 2019).

In order to evaluate the statistical significance of differences in the RMSE, RMSEY,
RMSES and QLIKE losses across models, we employ the Model Confidence Set
(MCS) approach of Hansen et al. (2011). The MCS is computed for the 75% confi-
dence level using a block bootstrap with block length [ (7*)!/3 | and 10,000 bootstrap
replications.

Table 2 reports the RMSE and QLIKE results for the short-, mid- and long-
term out-of-sample forecasts. We first compare the performances of the different
CFSS model specifications. For one-step and five-step ahead forecasts the 12-factor
CFSS model clearly outperforms the single and three-factor settings across all loss
functions, regardless of the residual specification considered (though the losses sug-
gest that block-diagonal specifications S and LS do increase the forecast precision).
The biweekly and monthly results reveal that the three-factor models with diagonal
and linear-shrinkage-based residuals perform best in predicting long-term covariance
matrices, especially for the covariance elements as indicated by RMSEC. In terms of
QLIKE loss, however, including sector ETF-based factors still yields gains in forecast
precision. Furthermore, we see that imposing restrictions on the smoothing parameter
helps to increase predictive accuracy—while restriction (R2) solely convinces for the
QLIKE measure, restriction (R1) performs overall well. Now, we turn to a compari-
son with the nine competing models. Most striking is that for the ‘full’ RMSE loss all
competitors are significantly outperformed by the CFSS model specifications. In par-
ticular, for daily and weekly horizons solely the UE-R1-LS specification belongs to the
75% MCS.'® Similar results can be found for the QLIKE loss, where the UE-R2-LS
specification significantly outperforms all competitors for daily forecasts. For multi-
step ahead forecasts the sRe-cDECO model and further CFSS specifications, however,
perform equally well. The EWMA and RW models are significantly outperformed in
any case.

19 The 75% and 90% MCS are congruent in this case; however, the 90% MCS results are not reported here.
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Further results, including additional loss functions and investigations of the model
behavior under different market conditions (i.e., calm and volatile periods), are
provided in Supplementary Appendix. These robustness checks confirm the above
findings.

5.4 Portfolio construction

In this section we turn to an economic application in out-of-sample portfolio construc-
tion. We analyze the forecasting performance for the CFSS model and its competitors
based on several variations of the global minimum variance (GMV) and mean-
variance-optimal (MV) portfolios in the vein of Lunde et al. (2016) and Moura et al.
(2020), imposing short-selling and boundary constraints on the weights to ensure
stable and well-diversified portfolios.

For a given asset covariance forecast C 4, computed in period 7, the GMV portfolio
is the solution to the minimization problem

~ _ . / ~r / — c
Wy = arg J}m Wy CrapWehs st wpe=1 Jlwepplly <142, flwignlloo < u,

(25)

where w;yj, is the p x 1 vector of portfolio weights and ¢ is a p x 1 vector of ones.
lweenllt = Y0 [wirgnl, and [wignlloe = maxi<i<p |wis4n| denote the L; and
L~ norm of the weight vector, respectively. Here, s € [0, 1] denotes the percentage
that is allowed to be held short, and u > 0 denotes the boundary for every distinct
position (see Fan et al. 2012; Lunde et al. 2016, for more detailed discussions). Since
the constraint minimization problem in Eq. (25) has no closed-form solution we rely
on the CVX package in MATLAB of Grant and Boyd (2014) to solve for @t+h-20

To find the MV portfolio Eq. (25) is augmented by the additional constraint
w;+hm = [lrarget>» Where m is a signal variable and [4;q,ger 1S the target return. The
signal is constructed using the momentum factor of Jegadeesh and Titman (1993), i.e.,
for each of the p stocks the individual momentum m; is computed as the geometric
average of the previous 252 returns, but excluding the 22 most recent returns. Collect-
ing all the momentum in a vector yields the signal m. The target return is computed as
the arithmetic average of the momentum of those stocks that belong to the top-quintile
stocks ranked according to momentum (see also Engle et al. 2019; Moura et al. 2020).

For assessing the relative capabilities of the competing models for optimal portfolio
allocation, we calculate their out-of-sample portfolio returns r/” = w;r; and report five
measures, i.e., the portfolio standard deviation

20 However by dropping the norm constraints the minimization problem has the unique solution W4, =

' Jrh)* t / « (Cr ) given Cz T is positive definite. In large-scale applications as considered here,
it might occur that the covariance prediction is not well conditioned, possibly resulting in unrealistically
volatile weights due to the inversion of C r’ ;- For the factor model predictions based on Eq. (20) this problem
is mitigated. Due to the (block)diagonality of the residual covariance prediction, the p dimensional inverse
problem collapses to max{q, pi, ..., ps} dimensions by making use of the Woodbury matrix inversion
lemma, i.e. (C1)~1 = (€)1 = ()~ B1(C] )1 + B/(CH) "1 B,17' B/(C#)~! (see Liitkepohl 1996,
pp. 29-30).
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1 .
o= |7 Dol —pup)? withp, =3,/ (26)
t

the Sharpe ratio
SR = p1, /0, @7)

the average portfolio concentration

| p 1/2
Co=— > <Z @%) , (28)

the average total short positions

l P
SP=— ; le Wit [Ty, <05 (29)
1=

and the average turnover rates

1 ~
TO = T= ; Wi — Wir—1

1+ rir—1 30)
1+ rtp_1
The reported portfolio standard deviations and Sharpe ratios are annualized by mul-
tiplication with /[252/h]. Statistical significance of the differences in portfolio
standard deviations is assessed by the MCS approach using the squared demeaned
portfolio returns as loss series. For a more detailed discussion of the measures in
Eqgs. (28)—(30) the reader is referred to Hautsch et al. (2011), Bauwens et al. (2016),
Bollerslev et al. (2018).

In the present paper we follow Brito et al. (2018) and Lunde et al. (2016) and
consider three restricted portfolio construction problems, i.e., a 150/50 portfolio (s =
0.50), a 130/30 portfolio (s = 0.30) and a long-only portfolio (s = 0.00). The latter
portfolios are constructed using a boundary value of u = 0.10 for each weight, such
that at least ten assets are included. In addition, unrestricted (G)MV portfolios are
considered. We focus on daily allocations and consider weekly horizons as robustness
check.

The daily GMV portfolio allocation results are collected in Table 3. For the unre-
stricted portfolio the EWMA has the lowest standard deviation. However, the 1F-S
and 3F-S CFSS models cannot be outperformed significantly while yielding higher
Sharpe ratios and more diversified portfolios with less extreme short positions. By
imposing 50% short-selling constraints the performance of the 12F- and LS-based
residual models improves with comparably lower turnover for the CFSS models. By
imposing stronger (30% and 0%) short-selling constraints the portfolio standard devi-
ations get hardly distinguishable. Though comparing the CFSS model specifications
to the LASSO and HEAVY competitors, we find better performance regarding the

@ Springer
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SR and TO results for the CFSS. Overall, the lowest turnover is obtained with the
EWMA. The highest turnover is obtained for the random walk, followed by the Factor
LASSO specifications. The weekly portfolio results are summarized in Table 4. They
indicate similar allocations. The lowest standard deviations are now obtained by the
sRe-cDECO and EWMA. However, the CFSS with block residual belongs to the MCS
in every scenario, whereas the factor HEAVYY is only included for long-only portfolios.

The daily MV portfolio allocation results are collected in Table 5. The results
are qualitatively similar to those obtained in the GMV exercise. For the unrestricted
allocations the EWMA shows the lowest standard deviation. The second best models
included in the MCS are the CFSS 1F-R1-S, 1F-R2-S and 3F-R2-S specifications,
respectively. Compared to the EWMA all three have higher SR as well as lower CO
and SP. Imposing short-selling constraints ameliorates the performance of the 12F
CFSS model specifications in terms of lower standard deviations and lower turnover
values than the 1F and 3F specifications. As robustness check, Table 6 shows weekly
allocation results. The results do not differ substantially in comparison with the daily
allocations.

6 Conclusion

In this paper we propose a composite factor state-space (CFSS) model for the pre-
diction of vast-dimensional realized covariance matrices of asset returns. The model
exploits an observed factor structure of the realized covariances of asset returns. Its
components are found by a block LDL decomposition of the joint realized covariance
matrix of the observed risk factors and assets. This yields individual time-series for
the realized factor covariances, the realized residual covariances and the matrices of
realized factor loadings. An assumption of independence is made, which admits a
straightforward factorization of the likelihood function, reducing model complexity
and allowing for fast parameter estimation and prediction of asset covariance matrices
in scalable dimensions.

We apply the factor model to a data set of daily realized covariance matrices for
225 NYSE-traded stocks. The observed risk factors we consider are the CAPM market
factor, the Fama and French (1993) HML and SMB factors as well as sector-specific
ETFs. It turns out that for justifying an approximate factor structure based on sector-
blocks for the residual components it is critical to include all those factors.

In an extensive out-of-sample application including point forecasts and predictions
of the global minimum variance and mean variance optimal portfolios the CFSS model
shows superior forecasting performance and outperforms several competing models
in almost all forecast horizons. We conclude that the CFSS approach is a valuable
tool for modeling and forecasting time-series of vast-dimensional realized covariance
matrices.
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A Further derivations for the UE model

In the following we derive several results for the model at hand, which were not
considered in the original work of Windle and Carvalho (2014). First, we derive a
closed-form formula for the second-order predictive moment, which, e.g., enables the
calculation of confidence intervals for the point prediction of the covariance elements.
Second, to improve the interpretability of the UE we derive the underlying dynamic
process for the latent integrated covariance matrix, as implied by the Matrix-Beta
transition for the integrated precision. Third, we derive the autoregressive dynamics
of the logarithmic determinant of the latent precision process. For example, Philipov
and Glickman (2006) use these dynamics to deduce stationarity conditions for their
matrix process.

For notational convenience reconsider the UE model without any superscript indi-
cating correspondence to the factor or residual part. For any realized covariance C; of
dimension d x d the UE model is written as

Ci | X ~ Wa(n, % /n), €1y

, k n
Q = U)Wl (1) /A, v, ~ B (5’ 5) ; (32)

where Q;, = X ! with initial condition Q; ~ Wk, (nSp)~'/1). In general the
updating and filtering distributions for €2; are given by ,;|C1.; ~ Wy(n+k, (n S,)’l)
and Q;41|C1:r ~ Wy(k, (nS,)’l/)L), respectively, where S; = AS;—1+C; (see Windle
and Carvalho 2014, Prop. 1).
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A.1 Second-order predictive moments

The first-order predictive moment of C,4; given the information set Cj. is readily
obtained by the law of iterated expectations (Konno 1991; Windle and Carvalho 2014)

An

S
k—d—1"

E[Ci+1 | Cral = E[EICi11 | Bl | Cra] =E [ Q72 | Cui]

It exists for k > d + 1. The second-order predictive moment, i.e., the covariance of
vec(Cr41) given C1., can be found using the law of total variance and the results in
Muirhead (2005) and von Rosen (1988) for the moments of (inverted) Wishart matrices

Cov[vec(Cry1) | Ciyl
= E[COV [Vec(Cz-H) \ Er-H] \ Cl:t] + Cov [E [vec(C,.H) | E"H] ! C]:t]
=E [ﬂ’l U2 + Kaa) (11 ® 211) | Clif} + Cov [vee(@e41) | Cui]
1
= (U2 + KaE [R041 ® Qg1 | Cra] + B [vee( @ )vee( 1) | Ci]

—E[vec(Q41) | Ciy] E [vec(@i41) | Cr]

_ k+n—-d-1) 22
‘n@—dxk—d—n@—d_3>D"(Q2+KW“&®S”
22252

/
mvec(S[)vec(S,) :|

B Mnk+n—d—1)
T k—d)k—d—1)(k—d-3)

[(Idz + Kaa)(St ® Sp) + VEC(St)VeC(Sz)/]

oz
k—d—1)

where K ;4 denotes the d? x d?* commutation matrix with Kyavec(A) = vec(A)
(see Liitkepohl 1996, Chapter 9). The second-order moment exists if k > d + 3.

A.2 Underlying latent dynamic process for the integrated covariance

The Matrix-Beta type-/ transition equation in Eq. (32) implies a shifted Matrix-F
transition for the underlying latent integrated covariance matrix ¥, itself. Defining
Q,‘l = 3;, we have

Q7 =) T U QD)) !
= AUQ—)) T W = I+ LU
= AU Q=))W = L) US-)) T AU U
= UQ—)) T U-)) T+ 20!

—1

where Y; = (¥, - 1;) follows a d-dimensional Matrix-Beta type-I1 distribution
(also known as Matrix- F distribution), say Y; ~ Bél (%, %), with expectation E[Y;] =
k—Z——lld (Gupta and Nagar 2000, Theorems 5.3.5 and 5.3.20), and /; denotes the d-

dimensional identity matrix. It follows that the conditional distribution of Qfl =3
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given 2;_1 is of Matrix-F type shifted by the factor XQI__II, and the conditional

expectation is given by

-1 _ n —1
E[Qt | Qtf]] =A <1 + m) Ql*]‘

By restricting the parameter A through (R1) the 2, ! process becomes a martingale
with conditional expectation E[€2;” l|£2,_ 11= Q[__ll.

A.3 Log determinant process for the latent precision
From Eq. (32) the evolution of the logarithmic determinant of €2, follows as
log |$2;| = log [U($2—1) W, U (2 —1) /1|
= log | (- USR] - 1] -7
= log |2;_1| + log |\W;| — d log A.

Setting A = exp{E[log |\¥;|]/d} according to restriction (R3) results in a random walk
process for the log determinant as

log |€2/| = log |1 + (log |¥;| — Eflog |W;[1) = log |1 + ¥

with J, = log |¥;| — E[log |\¥;|] being a white noise increment. Hence, the log |€2/|

process is a martingale with conditional expectation E[log |2;| | ;1] = log |€2;_1].

The unconditional expectation for the logarithmic determinant of W; follows from
Ik n

\I’[ ~ Bd(z, 7) as

—1
Lyq
E[log [¥;[] =

} f (log |We )9, | 4=V 1y — @y =402y,
0<Wr<ly

-1

_ _Fd(%)rd(%) f 0 k=d=1))2y ;. ((i—d—1)/2
_2_ Fd(#) 4 o<w<ly akl%‘ e d‘l’t
[Ta(5)Ta (%)__1 2
=2l ———" | w / e T e 7
L Fd<#) i ako<\1:,<1,,
(ra@ra(8)] 5 [ra@ra(d)
N I A A I e S
Lora(8) 1%L ra()
—Zlog{rd(g)rd(g)}
rd(m
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with W7 (a) = dlogl'y(a)/da being the d-variate digamma function (see, e.g.,
Abramowitz and Stegun 1972; Gupta and Nagar 2000).
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