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Abstract
In August 2020 we published “Comprehensive Internal Model Data for Three Port-
folios” as an outcome of our work for the committee “Actuarial Data Science” of 
the German Actuarial Association. The data sets include realistic cash-flow mod-
els outputs used for proxy modelling of life and health insurers. Using these data, 
we implement the hitherto most promising model in proxy modeling consisting of 
ensembles of feed-forward neural networks and compare the results with the least 
squares Monte Carlo (LSMC) polynomial regression. To date, the latter repre-
sents—to our best knowledge—the most accurate proxy function productively in use 
by insurance companies. An additional goal of this publication is a more precise 
description of “Comprehensive Internal Model Data for Three Portfolios” for other 
researchers, practitioners and regulators interested in developing solvency capital 
requirement (SCR) proxy models.
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1 Introduction

For years the expectations from the introduction of machine learning methods in 
insurance companies have been running high in both, academia and industry. This 
holds even more for the technical areas like actuarial, asset-liability management 
and risk management.

The progress of machine learning methods in these areas has nevertheless been 
rather slow, although these methods are readily available and rather easy to imple-
ment. A wide variety of open source tools are well-documented and can be easily 
adapted to insurance applications.1 A crucial obstacle seems to be the notorious lack 
of realistic data with which the interested researchers and practitioners may be able 
to experiment.

Faced with a lack of real-life data, academic research sometimes reverts back to 
generic data produced by an algorithm. However, generic data are likely to miss the 
intricacies of real data. Too often this difference between synthetic and realistic data 
hinders a successful transfer of methods developed among academic researchers into 
the industry. For complex topics such as the Monte Carlo valuation of insurance 
companies, realistic data qualitatively differ from synthetically generated data. For 
instance, realistic data may contain unusual insurance contracts, e.g. with large sums 
insured or unusual deferment periods. Or they may have a concentration of certain 
features which are not captured in the synthetic data.

It is not that insurance companies do not possess troves of data. On the contrary, 
it is sometimes said that actuaries were the pioneers of data science. For decades 
they have been dealing with huge amounts of data extracting insights from them, see 
e.g. [4].

The problem seems to be the lack of incentives for actuaries in the industry to 
anonymize real data in such a way that there are no references to specific policy 
holders and no information about the company can be extracted from the data. For 
sure, such changes can be performed for any data set, but they involve effort which is 
usually not compensated in any way.

When implementing machine learning methods we heavily benefit from open 
source tools. For instance, Python is a free and open-source programming language; 
powerful packages such as Tensorflow and Keras are available for everyone to use. 
We believe that the actuaries should give something back to the larger data science 
community by providing their problem descriptions, realistic data and best models, 
such that the community is able to work with and improve them. Our data publica-
tion [15] along with this paper is one concrete step into this direction.

1.1  Our data

We have undertaken the task of providing realistic data for the area of proxy 
modeling in risk management within the Solvency II context. To the best of our 

1 Among numerous internet sources offering tutorials for implementations of machine learning models, 
we refer the readers to Towards Data Science Inc. [24].
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knowledge, so far no data based on a model actually implemented in the industry 
has been published. For our use case developed for the Actuarial Data Science Com-
mittee of the German Actuarial Association we have produced realistic data stem-
ming from life and health cash flow projection models (CFPMs) and containing 
all the complexities of real-life productive models. Data are only scaled and fully 
anonymized. In the GitHub repository [15] we have uploaded data for two life and 
one health insurance portfolios, projected 60  years into the future in an actuarial 
CFPM.

For each of the insurance portfolios our data contain four comprehensive sets of 
samples with different accuracy. The samples represent the movements of portfolio’s 
Own Funds (OF) conditional on the changes of risk factors the company is exposed 
to. The original purpose of the data concerns the Solvency II regulation, but the 
same data can also be utilized for various questions with respect to asset-liability 
management or—more generally—the economic valuation of insurance companies.

The amount of samples we provide as well as the accuracy of actuarial valuations 
for our samples is higher than what we have seen in most internal models in the 
industry. We have done this intentionally in order to allow meaningful statistical and 
convergence analyses.

1.2  Regression models

For years the authors have worked in the area of life and health insurance proxy 
function modeling. Since 2015 we have been developing and testing various 
machine learning methods for the risk capital approximation. For a comprehen-
sive description of the framework of risk capital proxy modeling as well as various 
machine learning approaches that can be used for it, we refer the readers to [18–20].

The regression task refers to the value of a portfolio of insurance policies, which 
must be evaluated in a Monte Carlo manner using stochastic simulations. An appro-
priate way of measuring errors for our framework is given in Sect. 3.

Our analyses so far are in line with Krah et al. [19] and indicate that neural net-
works combined with the hyperparameter tuning and an ensemble approach yield 
very accurate approximation results. This demonstrates anew the versatility of neu-
ral networks and their virtually universal application possibilities.

In the original publication of our data we have presented a rudimentary Jupyter 
notebook [15] showcasing a simple least squares regression for a given set of poly-
nomial terms as well as a neural network training with a pre-defined architecture 
of the neural network in terms of e. g. the number of layers, nodes and activation 
functions used. In this paper we explain these two methods in more detail. Besides 
that, we disclose our best regression results as an invitation for the actuarial data 
science community to try to improve them. Besides describing the approach that 
has resulted in the high approximation quality, we focus on an efficient implementa-
tion of neural networks. By doing this, we recognize the fact that the computational 
resources in companies are limited, even in the times when many companies move 
such calculations to the cloud.
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1.3  Related literature

The least squares Monte Carlo (LSMC) framework, which relies on data as ours, is 
described and formally introduced in Krah et al. [18]. Our polynomial proxy func-
tion fitting follows the approach described in this article, that is the adaptive Akaike 
information criterion (AIC)-based algorithm. Our implementation of neural net-
works follows Krah et al. [19]. The analysis of an efficient approach using less data 
in the last part of this article is specifically produced for this article.

An overview of several proxy methods can be found in Kopczyk [16]. Neural 
networks and random forests outperform the linear methods for the data analyzed in 
this article. The result for neural networks is in line with our results.

The seminal paper for the introduction of the LSMC method is Longstaff and 
Schwartz [21], where it was proposed for pricing of American options. The transfer 
to the insurance industry happened some 10 years later; one of the first descriptions 
of the new application was in Koursaris [17].

Recently, in Castellani et al. [5] several methods were compared and again deep 
neural networks have demonstrated the best performance.

An application of neural networks for an valuation of variable annuities with 
guaranteed minimum income benefit with three risk factors is included in Cheridito 
et al. [6], the example follows the previous work with a classical LSMC solution in 
Bauer and Ha [2].

1.4  Structure of the article

The remainder of this article is structured as follows: in Sect. 2, we briefly motivate 
the data analysis problem associated to the solvency capital requirement (SCR) cal-
culation, which is the starting point for our use case. The underlying data set of the 
use case is then described in detail in Sect. 3. This not only serves to better under-
stand the results presented in the following, but should also facilitate application 
and interpretation by inclined users. Finally, the data set is analyzed using different 
models, which are briefly introduced in Sect. 4. The numerical results of this analy-
sis and its interpretation are discussed in detail in Sect. 5, and in Sect. 6 we conclude 
our use case.

2  Solvency II framework

Let us practically motivate our use case by giving a brief introduction to the risk 
capital calculation according to Solvency II in Sect.  2.1 and describing the func-
tionality of an internal model in Sect. 2.2; in particular, we focus our attention on 
regression-based Monte Carlo methods in Sect. 2.3.
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2.1  Risk capital calculation

It is well known that Solvency II aims at implementing a set of robust solvency rules 
for insurance companies, which takes the most material risks into account in an ade-
quate way. One of the key concepts is hereby the calculation of the SCR.

According to Article 101 (3) of Solvency II Directive 2009/138/EC (see Euro-
pean Parliament and European Council [8])

“the SCR shall be calibrated so as to ensure that all quantifiable risks to which 
an insurance or reinsurance undertaking is exposed are taken into account. It 
shall cover existing business, as well as the new business expected to be written 
over the following 12 months. With respect to existing business, it shall cover only 
unexpected losses. It shall correspond to the Value-at-Risk of the basic OF of an 
insurance or reinsurance undertaking subject to a confidence level of 99.5 % over a 
1-year period.”

In principle, the Solvency II framework requires the derivation of the full loss 
distribution of the available OF, in order to derive its correct Value-at-Risk. This 
particularly does not only involve a market consistent calculation of the economic 
balance sheet items at the valuation date (so-called base case in the following) but 
also its re-evaluation for each possible scenario at the risk horizon (1 year within 
Solvency II). Most insurance companies avoid this enormous effort by applying the 
standard formula approach to calculate the SCR. But the largest life insurers usually 
stick to the original Solvency II requirement and develop a full-scale internal model 
which allows them to calculate the economic balance sheet for thousands of 1-year 
scenarios. It is important to note that a company-specific internal model needs to be 
approved by the regulator. Due to its complexity the management needs to decide 
whether the effort for running an internal model is justified considering costs and 
benefits. A clear advantage hereby comes from the fact that an internal model is 
able to take specific risks of the company into account as it is built upon an adequate 
methodology and a well-chosen calibration process.

In the following we focus our attention on internal models.

2.2  Functionality of an internal model

To start with, let us consider the functionality of an internal model for calculating 
the SCR. As motivated above, the SCR derivation relies on the re-evaluation of the 
economic balance sheet in multiple risk scenarios as displayed in Fig. 1.

As introduced in Bauer and Ha [2] technically these risk scenarios can be thought 
of as the realization of a multi-dimensional state process under the physical measure 
(aka real-world measure). This state process represents the uncertain development 
of influencing factors (risk factors) of the company’s assets and liabilities. These 
risks are typically split into classes such as market, credit or underwriting risks; 
operational risk might be a further risk class. The market consistent re-evaluation 
of balance sheet items is then formally associated with the derivation of the condi-
tional expectation of future cash flows under the risk-neutral measure. The liability 
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items of the economic balance sheet of life and health insurers are driven by options, 
asymmetries and complex dependencies which do not allow for a simple closed-
form solution. Therefore, the valuation is typically carried out by involving Monte 
Carlo methods based on an actuarial CFPM, which determines the distribution of 
future cash flows along risk-neutral valuation paths between all stakeholders, like 
policy holders, company’s employees and shareholders.

As illustrated in Fig. 2 a logical approach is to use a simulation within simula-
tion technique; this nested simulation approach is also often applied in the field of 
financial mathematics, see e.g. Glasserman [11] or Andersen and Broadie [1]. This 
requires the generation of a large number of risk scenarios (also called outer sce-
narios) under the real-world measure; in doing so, the dependencies between the 
various risk factors have to be reflected in an appropriate way. In each of those outer 
scenarios the re-evaluation of the balance sheet is then carried out by another simu-
lation based on risk-neutral valuation scenarios (also called inner scenarios) that are 
fed into the CFPM. Statistically, the more simulations are generated the more accu-
rate the approximation of the OF distribution is. This approach is attractive due to its 
simplicity, but leads to exponentially growing computational efforts and is therefore 
expensive; moreover, high storage capacities are necessary. Thus, we move on with 
more efficient methods which are preferred in industry.

2.3  Regression‑based approaches

The state-of-the-art answer to avoid the time-consuming nested simulations 
approach are regression-based methods; these methods need significantly lower stor-
age and computational time. There has already been a few publications which have 
dealt with this problem, see for instance Bettels et al. [3], Hejazi and Jackson [14], 

Fig. 1  Determination of OF distribution at risk horizon by simulating several scenarios
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Nikolić et al. [22], Fernandez-Arjona [9], Krah et al. [19, 20].2 The key idea is to 
define an appropriate fitting space, denoted by I1 ×⋯ × ID in the following, which 
is given by the intervals Id ∋ RFd for the corresponding D risk factors RF1,… ,RFD . 
Then, only a low number of inner scenarios are generated for each outer scenario 
from the cube I1 ×⋯ × ID . The inaccurate mean of the low number of inner scenar-
ios leads to an inaccurate but unbiased fitting point for each outer scenario, which 
is interpreted as a rough estimation of a balance sheet position. In the following we 
focus on the balance sheet item OF.3

Based on this approach we receive a point cloud of OF estimations, such that the 
ultimate task is to find a sound functional relationship between the risk factors and 
OF. Let us call f this functional relationship which represents the approximation ÔF 
of the true OF. Then, for n = 1,… ,N , denoting the estimated OF samples and the 
simulated risk factor samples (outer scenarios) by OFn and RF1n,… ,RFDn , respec-
tively, we are able to determine the function f via least squares, i.e. minimizing

An exemplary visualisation of an OF surface for two risk factors is shown in Fig. 3.

(1)
N
∑

n=1

(OFn − f (RF1n,… ,RFDn))
2.

Fig. 2  Launching simulations within simulations to approximate balance sheet items for several scenar-
ios at risk horizon

2 In the context of pricing American-style options a well-working regression-based Monte Carlo method 
has been proposed by Longstaff and Schwartz [21].
3 In this use case we directly focus on approximating the OF, but the OF might also be implicitly calcu-
lated by approximating the assets and the Best Estimate of Liabilities (BEL).
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The focus of this use case is on the application of neural networks for regression. 
By doing so, we want to challenge the ordinary least squares approach—working 
with polynomials—and, based on our comprehensive data set, an adequate compara-
tive analysis is guaranteed. In the sense of open data science our data set can be used 
by the interested readers for performing own meaningful studies.

3  Data set

As indicated above, our central contribution consists in providing comprehen-
sive samples of risk model data for three insurance portfolios. In the following we 
exactly describe what data sets are included in our publication [15].

The data sets are based on the logic of the regression approach outlined above. 
They provide combinations of risk scenarios and the matching OF values for three 
different insurance portfolios, two life and one health insurance portfolio. These 
portfolios are purely fictitious, albeit realistically compiled. The OF values have 
been derived as Monte Carlo estimates based on risk neutral projections of CFPMs. 
These take into account the development of assets and liabilities, their mutual inter-
action via defined management rules and regulatory requirements of the German 
insurance market along the capital market paths of a sophisticated economic sce-
nario generator.

Fig. 3  OF polynomial function plotted for two risk factors, derived by ordinary least squares and the 
basis functions {1, {RF

d
}D
d=1

, {RF2

d
}D
d=1

} ; black points denote the first 5k fitting scenarios for Portfolio 1 
of the data set [15], explained in Sect. 3
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Each of the Monte Carlo values corresponds to a specific risk scenario which 
is represented by the realizations of relevant risk factors RF1,… ,RFD,D = 13 for 
Portfolios 1 and 2, D = 12 for Portfolio 3 (e.g. interest rate level, equity, underwrit-
ing stresses, and so on). The choices of the number N and distribution of (outer) 
risk scenarios and the number M of (inner) risk neutral projections based on which 
the Monte Carlo estimates are derived, vary with the different types of data sets 
explained in the following.

For the training of the proxy function f, the fitting data set (also named training 
data set) provides rather imprecise Monte Carlo evaluations of the balance sheet 
items, based on the average of only two inner (risk-neutral) projections of a CFPM, 
but from a large number ( N = 215 ) of risk scenarios. An evenly filled space, as illus-
trated in Fig. 4, is considered to be advantageous for the task of proxy function train-
ing. This regular distribution of scenarios is ensured by deriving them from a Sobol 
sequence on the hypercube I1 ×⋯ × ID . The intervals Ij,… , ID are chosen such that 
they cover a large part, for instance more than 99.95% , of each risk factor distribu-
tion. In particular, the scenario selection of the training set does not contain any 
further information about the distribution characteristics. This choice is motivated 
by the need of a uniform quality of the predictions over a wide range of possible risk 
factor representations in order to allow for an as much as possible unbiased evalua-
tion of all risk scenarios.

The out-of-sample (OOS) validation set consisting of 256 scenarios can be used 
to check the quality of the selected proxy function f. The values shown are based on 
a risk-neutral evaluation of the model described above over a thousand simulations. 
Thus, these represent significantly more precise estimates of the balance sheet item, 
matching the respective external scenario, than in the case of the fitting scenarios. A 
high quality proxy function should be able to predict the precisely simulated values. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Risk Factor 1
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-0.8
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R
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Fig. 4  Evenly filled fitting space I1 ×⋯ × I
D
 ; here as an example with D = 2 for the first 4k realisations 

of the risk factors 1 and 2 from the training data set of Portfolio 1, see Sect. 3 and Jonen et al. [15]
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Statistics such as the mean of the relative (absolute) deviations between the pre-
dicted values (calculated by the proxy function) and the values determined accord-
ing to the Monte Carlo estimations are suitable for checking the quality; this quality 
check is the so called OOS validation. It should be noted that the observed discrep-
ancy is on the one hand due to the inaccuracy of the selected proxy function, and on 
the other to the inaccuracy of the Monte Carlo simulation. In order to better clas-
sify the latter, the data set for the OOS validation additionally contains the standard 
error for each scenario as a statistical measure of the inaccuracy of the underlying 
estimator for the mean value, e.g. by allowing the derivation of suitable confidence 
intervals.

While the OOS validation points here are evenly distributed in the risk factor 
space, our third data set called SCR region data set represents an alternative OOS 
validation package that specifically focuses on a certain subset of the risk fac-
tor space. The repository again contains output variables, risk factors and stand-
ard errors per scenario. The SCR region represents the subset of the risk scenarios 
whose losses are close to the 99.5th percentile of the loss distribution relevant for 
the SCR. For Portfolios 1 and 2 we provide 129 SCR region scenarios, for Portfo-
lio 3 there are 50. However, for Portfolio 3 we have identified one outlier which is 
excluded from further analyses in this use case.4

Hence, the selection of scenarios in the SCR region depends on the results of 
a previously performed regression and proxy function analysis, as this is the only 
way to determine the overall distribution of own funds and the relevant loss region. 
In this respect, the SCR region set primarily represents a validation for the initially 
selected proxy function approach. For the SCR region derivation we have used a 
standard LSMC polynomial proxy function. Since the quality of this proxy is good, 
the SCR region should be largely stable with regards to other proxy functions of 
sufficiently high quality, see Krah et al. [18], Figs. 2 and 3. Due to the importance 
of the SCR region, the requirements for the accuracy of any proxy functions in the 
SCR region are particularly high. In order to reduce a distortion due to Monte Carlo 
errors as much as possible, the OF for scenarios of the SCR region have been evalu-
ated with four thousand simulations each. They have therefore a significantly lower 
standard error than in the usual OOS validation points.

To simplify the interpretation of the results, the fitting space as well as the output 
variable have been standardized in the provided data set in such a way that the OF 
of the baseline scenario are for all portfolios equal to 1. The term baseline scenario 
refers to the unstressed scenario in which all risk factors take the value 0. The ref-
erence value, that has been used for the scaling, has been derived on 16 thousand 
simulations. Corresponding to its high relevance—the SCR corresponds to the 1 in 
200 years loss which is measured as the difference of the corresponding adverse sce-
nario (SCR region) with respect to the baseline—the statistical precision again has 
been increased with respect to all other evaluations mentioned above.

Summarizing, we have produced four sets of data by running the following num-
bers of simulations:

4 Scenario no. 14 in the SCR region data set.
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– 32,768 ⋅ 2 = 65,536 simulations for the fitting set,
– 256 ⋅ 1,000 = 256,000 simulations for the OOS validation data,
– 129 ⋅ 4,000 = 516,000 for Portfolios 1 and 2 and 50 ⋅ 4,000 = 200,000 for Portfo-

lio 3 simulations for the SCR region data set,
– 16, 000 simulations for the base.

As it can be seen, the resulting number of 853,536 simulations (537,536 for Portfo-
lio 3) is enormous and beyond calculation capabilities of most insurance companies. 
Indeed, companies would arguably consider running a light version of nested sto-
chastics if they were able to cope with this amount of simulations. This makes our 
data sets convenient objects for testing and convergence analyses.

4  Models

In our use case [15] we focus the attention on two methods for deriving adequate 
functions and apply these methods on the underlying data set.

A milestone in statistics was reached by Gauss at the end of the eighteenth cen-
tury when he invented the least squares method. In research and practice several 
applications are based on this regression type, both, for linear regression but also for 
more complex tasks.

The ordinary least squares method for proxy derivation has been implemented for 
regulatory reporting purposes in a number of life and health insurers in Europe. In 
our opinion it represents the most mathematically sound regression approach of all 
the methods found today in the industry.

Nowadays, artificial intelligence is on everybody’s lips and researchers, prac-
titioners but also politicians are talking about a field with significant potential. 
Machine learning can help to better understand and solve complex problems. Thus, 
in our study we concentrate on investigating neural networks as regression func-
tions or rather an ensemble of neural networks. The LSMC framework from Krah 
et al. [18] is mostly preserved in this approach and the main difference between both 
approaches is the substitution of polynomial functions by neural networks, as out-
lined in the following.

4.1  Ordinary least squares

Coming back to the regression problem (1) a simple, yet powerful model func-
tion f for approximating the OF is given by a linear combination of basis functions 
{�m(⋅)}

M
m=1

 with coefficients am ∈ ℝ:

f (RF1,… ,RFD) =

M
∑

m=1

am�m(RF1,… ,RFD).
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For what concerns the basis functions, we are free in the selection but polynomi-
als or radial functions have shown well-working approximation quality; using e.g. 
monomials as basis functions allows for a direct interpretation of the functional 
shape with respect to several risk factors, whereas the constant term is the base case 
value and the residual term shows the stress behavior for any evaluated scenario. 
Then, in order to determine the function f the corresponding optimization prob-
lem can be solved by numerically stable methods such as the QR or singular value 
decomposition, see Golub and van Loan [12]. The advantage of this approach is 
clearly its simplicity, good results interpretation and an easy implementation as a 
number of standard software packages provide solvers for deriving the coefficients 
of the assumed proxy model. This approach goes under the name LSMC, called 
LSMC-Pol in the following, where Pol stands for polynomial functions.

4.2  Neural networks

Lately the neural networks have become ubiquitous in the scientific and practical 
publications. The attempts to describe neural networks in mathematical terms have 
proved to be somehow tedious. This comes primarily from the notational complex-
ity, not from a conceptual difficulty in explaining neural networks as mathematical 
functions.

Often the natural model, that is the brain, is used as a motivation for an introduc-
tion of neural networks. Although there are some striking analogies between “natu-
ral” learning and its “machine” counterpart,5 this perspective is not really useful for 
a mathematical understanding of the underlying functions and algorithms.

We do not intend to fully introduce the concept of neural networks. Instead, we 
clarify the terminology, which we employ, and focus our attention on the features, 
which are relevant for our application of neural networks.

Let N0,… ,NL+1 ∈ ℕ . Following Definition 1 and Definition 2 in Krah et al. [19], 
a fully connected feed forward neural network with L ∈ ℕ hidden layers is a func-
tion f ∶ ℝ

N0 → ℝ
NL+1 defined as

where ◦ denotes the concatenation, and

are affine mappings represented by matrices Wl of dimension Nl−1 × Nl and vectors 
bl ∈ ℝ

Nl . N0 is the input dimension, NL+1 the output dimension and Nl the number of 
neurons or nodes in the hidden layer l. For each l ∈ {1,… , L + 1} , the functions Φl 
are defined as

f = (ΦL+1◦aL+1)◦(ΦL◦aL)◦⋯◦(Φ1◦a1),

al ∶ ℝ
Nl−1

→ ℝ
Nl , l ∈ {1,… , L + 1},

Φl ∶ ℝ
Nl
→ ℝ

Nl ,

Φl(z1,… , zNl
) = (�l(z1),… ,�l(zNl

)),

5 E.g.: The wisdom of crowds, “slow” and “quick” learners, learning by heart etc.
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with real-valued functions �l ∶ ℝ → ℝ , which are called activation functions of the 
neural network and for which it is required to be monotone and Lipschitz continuous 
(see Definition 1 in Krah et al. [19]6). In our use case all �l, l ∈ {1,… , L} , are equal 
and denoted by � . Only the function �L+1 , which is called output activation function, 
may differ from � . Moreover, in our application we also set N1 = ⋯ = NL , that is 
the number of neurons in each hidden layer is the same.

In the numerical results in Sect. 5 we use the following activation functions:

– Sigmoid: �(z) = 1∕(1 + exp(−z)),
– Rectified linear unit (ReLU): �(z) = max(0, z),
– Leaky ReLU: �(z) = max(� ⋅ z, z) with 0 < 𝜆 < 1,
– Linear: �(z) = z.

The functions al with l ∈ {1,… , L + 1} are affine transformations between the layers 
of the neural network and the parameters of the affine transformations are weights 
between the nodes of the layers. The change of these weights by an algorithm con-
stitutes the actual training for given input and output data.

For instance, for Portfolio 1 with 13 risk factors RF1,… ,RF13 (denoted by x), the 
input dimension is N0 = 13 and the first affine transformation is

with a 13 × N1 matrix W1 and a vector b1 ∈ ℝ
N1 . Hence, a1 maps the 13-dimensional 

space of risk factors to the first layer consisting of N1 neurons.
As already noted above, in our applications N1 = ⋯ = NL and NL+1 = 1 as we 

work with the same number of nodes for all hidden layers and our data have only 
one output variable.

The last affine transformation takes the form aL+1 ∶ ℝ
NL → ℝ , so it maps the out-

puts of the nodes in the last hidden layer to a real number. After a transformation 
with the output activation function �L+1 we obtain an estimate for the Own Funds 
ÔF(x) = f (x) ∈ ℝ , where the input x represents the input vector of the risk factors 
RF1,… ,RFD.

Notify that the vector x is 13-dimensional for Portfolios 1 and 2, and 12-dimensional 
for Portfolio 3. For a more thorough description of the risk factors which may repre-
sent the input data, we refer to Table 1 in Krah et al. [18]. We do not disclose the exact 
meaning of the input data, i.e. what each risk factor represents, as we do not want to 
reveal details about exact implementations in the industry. Our application with neural 
networks is illustrated in Fig. 5.

For a more comprehensive introduction to neural networks, also including many 
other possible architectures, we refer the readers to Goodfellow et al. [13] or Efron and 
Hastie [7]. In this paper we only refer to fully connected feed forward neural networks.

a1 ∶ ℝ
13

→ ℝ
N1 ,

a1(x) = W1x + b1,

6 Recently, the notion of activation functions has been extended to non-monotone Lipschitz continuous 
functions, e.g. by Google, see Prajit Ramachandran [23]. However, this has no relevance for our use case 
as we only use monotone activation functions.
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4.2.1  Hyperparameters

Our application of neural networks is based on varying the hyperparameters of neural 
networks and utilizing the ensemble method.

What are hyperparameters? A neural network is parameterized by the weights of the 
connections between its nodes. The word parameters when speaking about neural net-
works refers to these weights. The hyperparameters define the architecture and settings 
which are not changed during the training of a neural network with the backpropaga-
tion method. Hence, the task of the chosen optimization algorithm is to determine the 
weights for a given set of hyperparameters. Note that the underlying problem is non-
linear and thus iterative solvers have to be applied to find the optimal weights.

In the next section we list the hyperparameters which we have varied in our 
experiments.

5  Numerical results

We now move on to the quantitative part of our use case in which we want to chal-
lenge the current industry standard least-squares approach based on polynomials 
(LSMC-Pol) by neural networks (called LSMC-NN) for approximating the OF at the 
risk horizon. As we are interested in receiving high accuracy on the one hand and 
having in mind the practical limitations given by complexity and computational time 
on the other hand, we implement a step-wise approach. Hereby, for LSMC-NN we 
go from a very complex modeling approach to a smart way of implementation in 
order to tackle the trade-off between accuracy and complexity as well as provide the 
reader a guideline for a practical application of neural networks.

Fig. 5  Neural network for the underlying use case, where the input layer is given by D risk factors 
RF1,… ,RF

D
 and the output layer presents the approximation ÔF of true OF



413

1 3

Neural networks meet least squares Monte Carlo at internal…

5.1  Hyperparameter tuning (first attempt)

In the course of the preparation and publication of our data we have developed vari-
ous machine learning models. The most promising models have been developed 
by neural networks. After testing various options we have defined a rich set of 300 
quasi-randomly selected combinations of hyperparameters7: 

 (i) Architecture of the neural network:

– Number of hidden layers: 2–10,
– Number of nodes in each layer: 16–128 (constant across all layers),
– Activation functions (hidden layers): Sigmoid, ReLU, Leaky ReLU with 

� ∈ (0, 0.1),
– Output activation functions: Linear, Sigmoid.

 (ii) Optimization algorithm:

– Solver: Adam, Adamax, Nadam,
– Batch size: discrete values {100, 200, 400, 800, 1,600},
– Drop out rate in the range of (0, 0.4),
– Learning rate in the range of (0.0005, 0.005),
– Initializer: Random Normal, Random Uniform, Glorot Uniform.

In total we have performed more than 800 different pre-training tests with neural 
networks. Even after keeping all but one hyperparameters fixed, the variation of the 
results when varying the remaining hyperparameter was considerably high. Most 
results did not show a completely clear dependency of the approximation quality 
(measured in sum of errors and sum of squared errors for OOS validation and SCR 
region data) from the changes in a hyperparameter. For instance, we did not observe 
that increasing the drop out rate always leads to a better result or vice versa. There 
were some tendencies, which we explain below when we define the efficient set of 
hyperparameters.

For each of the hyperparameters listed above we have derived the sets from which 
to choose the hyperparameter values (e.g. from 2 to 10 for the number of hidden 
layers) by performing these pre-training tests in which we have allowed much larger 
ranges for all hyperparameters. To give an example, in this pre-training stage we 
have trained neural networks with the number of hidden layers from 1 until 11. After 
completing the training we have plotted the out-of-sample results depending only on 
one hyperparameter, i.e. here depending only on the number of hidden layers. The 
results have shown that 1 hidden layer leads to notably lower accuracy and the same 
holds for 11 hidden layers. As a consequence we have selected [2, 10] as the range 
for the number of hidden layers. Furthermore, in each training we have allowed a 
new random seed. Since the training of neural networks converges towards a local 
minimum we should always keep in mind that another set of initial weights for the 

7 For a more detailed description of these hyperparameters, we refer the readers to Towards Data Sci-
ence Inc. [24] and Geron [10].
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optimization method might lead to another model. We take this into account by 
working with randomly selected values for the initial weights.

5.2  The benchmark approach—ordinary least squares

Working with LSMC-Pol the toolbox is much simpler. Instead of varying several 
hyperparameters we employ the forward adaptive step-wise algorithm which grad-
ually builds up a polynomial adding terms of monomial basis functions. For the 
model selection as well as the stopping criterion we use the AIC where we restrict 
the number of admissible terms to the number of 150 and the maximum polynomial 
degree to eight for both, the single and cross-terms, albeit the highest degree chosen 
by the algorithm was six. For a detailed explanation of the procedure, we refer the 
readers to Krah et al. [20]. We refer to the results derived by this benchmark tech-
nique as LSMC-Pol2 in the following. For the sake of comparability, we additionally 
report results from an even simpler model, namely a simple model consisting only 
of linear terms RFd , denoted by LSMC-Pol1.

With reference to the approach outlined above it is worth noting that one might 
try deriving LSMC proxy functions with higher quality, but we think that the good-
ness of the selected polynomials is satisfactory. In particular, we do not want to 

OOS Validation Pf 1 SCR Region Pf 1 OOS Validation Pf 2 SCR Region Pf 2 OOS Validation Pf 3 SCR Region Pf 3
-1

-0.5

0

0.5

M
E

Fig. 6  Box plots for the mean error resulting from 300 calculated nets for all validation points and Port-
folios 1, 2 and 3 (denoted by Pf1, Pf2 and Pf3, respectively)



415

1 3

Neural networks meet least squares Monte Carlo at internal…

explore the limits of the LSMC approach. Rather, we investigate whether an alter-
native technique can reliably beat the goodness of an easy-to-implement existing 
approach, such as the LSMC-Pol approach.

5.3  Comparison LSMC‑Pol vs. LSMC‑NN

Let us focus on the results of our first trial, in which we run a number of neural net-
works based on the previously mentioned comprehensive set of hyperparameters.

For all three portfolios, Fig. 6 shows box plots of the mean errors (ME) calcu-
lated for the OOS validation and SCR region points.8 We clearly see a huge vari-
ety of accuracy: driven by the choice of hyperparameters we yield results with high 
approximation quality, but also models with a poor goodness of fit; some outliers 
can be observed for each validation set. This observation is in line with our expecta-
tion as the hyperparameter choice might be more art than science.

Taking the mean of the models with the lowest mean squared error (MSE) for 
the OOS validaton set might be applied to get a higher approximation quality and to 
solve the curse of hyperparameters choice. By doing so, Fig. 7 shows the box plots 

OOS Validation Pf 1 SCR Region Pf 1 OOS Validation Pf 2 SCR Region Pf 2 OOS Validation Pf 3 SCR Region Pf 3
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-0.01

-0.005
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0.005

0.01

0.015
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E

Fig. 7  Box plots for the mean error resulting from the “Top 10” of 300 nets for all validation points and 
portfolios

8 Note that for Portfolio 3 we have excluded the outlier scenario no. 14 in the SCR region points.
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for the ten best neural networks, measured regarding the MSE of the OOS validation 
set, out of the 300 calculated models. We observe tighter box plots without outliers. 
While the tighter box plots on the OOS validation sets are a logical result of taking 
out nets with low accuracy (measured as MSE on the very same set), the results also 
show that by doing this we are able to reduce the bias of the SCR estimate and in 
particular reduce the prediction error on unseen data.

Following, for our final comparison with the LSMC-Pol approach we take the 
average of these best 10 nets, which is based on the idea of the ensemble technique 
for weak learners. As can be seen in Table  1 we get a high approximation qual-
ity for our NN ensemble; this is true for all Portfolios. In particular, we see that 
LSMC-NN is superior to LSMC-Pol, both in terms of ME and mean absolute errors 
(MAE). While the MAE gives evidence for a lowered variability of errors, also the 
ME can be of particular interest, especially for the SCR region set. After all, in the 
sense of the original task—the SCR calculation—we are able to receive a lower bias 
using LSMC-NN. Fairly enough, we should also take the computational effort into 
account as the calculation of the comprehensive set of 300 different combinations of 
hyperparameters is much more expensive than deriving a well-working polynomial 
with a good approximation quality. Therefore, we go on by considering some further 
techniques to make the LSMC-NN approach more efficient, which is, in particular, 
important for applications in practice.

5.4  Optimizations of the procedure and feasibility concerns

By acknowledging that the amount of data we provide, as outlined in Sect.  3, 
exceeds the computational resources of most insurance companies reporting under 

Table 1  ME and MAE for Portfolios 1, 2 and 3 calculated by LSMC-Pol and LSMC-NN

Approach

LSMC-Pol1 LSMC-Pol2 NN Ensemble

Portfolio 1  ME   OOS validation − 0.0059 − 0.0010 − 0.0004
  SCR region − 0.0717 − 0.0427 − 0.0139

 MAE   OOS validation 0.1064 0.0182 0.0112
  SCR region 0.0748 0.0431 0.0176

Portfolio 2  ME   OOS validation 0.0046 0.0054 0.0005
  SCR region − 0.0077 0.0077 0.0004

 MAE   OOS validation 0.0241 0.0113 0.0072
  SCR region 0.0186 0.0124 0.0053

Portfolio 3  ME   OOS validation 0.0021 0.0004 0.0001
  SCR region 0.0233 0.0117 0.0105

  MAE   OOS validation 0.0382 0.0208 0.0181
  SCR region 0.0258 0.0217 0.0187
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Solvency II we intend to show in this chapter how good proxy functions can be 
developed using just a fraction of the available data.

In order to facilitate an approach which may actually be feasible for most insur-
ance companies, we have trained neural networks in the following seven settings. 
The ultimate target is that we arrive at Step VI and Step VII to settings which are 
actually computationally feasible for most companies. These seven steps can be 
found in Table 2.

The columns in Table 2 denote different settings we have varied in our numerical 
experiments: HypCho is the possible set for hyperparameters. With Wide we allow 
a broad range of hyperparameters, e.g. number of layers from 2 to 10 as outlined 
above. The Efficient choice means that prior to the final run we have analyzed which 
configurations lead on average to lower errors and allow only them in the hyperpa-
rameter search space; here we go into detail below. NoHypComb is the number of 
calculated hyperparameter combinations. Early denotes the data set that is used for 
the early stopping within the neural network training. If Vali is chosen, the MSE on 
the OOS validation data is monitored during training, and, if it does not decrease in 
the last 200 epochs, the training of the neural network stops; we have chosen 200 
epochs as the maximum number, whereas one is free to adapt this threshold. Fit-
ting means that the fitting data set is used to monitor the MSE and stop the training. 
EnsCho shows which data set is used when deciding which 10 neural networks are 
the best and should be used in the ensemble. Finally, NoFit refers to the number of 
fitting points used for the neural network training.

Summing up all seven steps, we can represent the settings in the following list, in 
which we describe the full setting for Step I and mention for each subsequent step 
the feature that has changed: 

 I Use 300 widely chosen hyperparameter combinations, ensemble of 10 best 
neural networks, validation data for early stopping, validation data for ensem-
ble building,

 II Choose efficiently hyperparameter combinations,
 III Choose only 90 (a) and 30 (b) efficient hyperparameter combinations,
 IV Use fitting data for early stopping,
 V Use fitting data for ensemble building,
 VI Use only 16,384 fitting points,

Table 2  Overview of the 
settings tested with the aim of 
reducing the computational 
burden in the practical 
applications

Step HypCho NoHypComb Early EnsCho NoFit

I Wide 300 Vali Vali 32,768
II Efficient 300 Vali Vali 32,768
III Efficient 90 (a), 30 (b) Vali Vali 32,768
IV Efficient 90 (a), 30 (b) Fitting Vali 32,768
V Efficient 90 (a), 30 (b) Fitting Fitting 32,768
VI Efficient 90 (a), 30 (b) Fitting Fitting 16,384
VII Efficient 90 (a), 30 (b) Fitting Fitting 8192
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 VII Use only 8192.

In the following we focus our attention on measuring the quality of results by reduc-
ing complexity as previously outlined.

5.5  Comparison of neural networks

In order to investigate the potential loss of accuracy by moving from Step I to Step 
VII in the following we concentrate on Portfolio 1 and both error metrics, ME and 
MAE, for the OOS validation and SCR region data sets. In order to ensure a fair 
comparison between LSMC-Pol and LSMC-NN for Step VII, we have also derived 
LSMC-Pol1 and LSMC-Pol2 based on 8192 fitting points, denoted by LSMC-Pol1 
8k and LSMC-Pol2 8k.

As mentioned above, to execute Step II we have to decide which values for hyper-
parameters can be seen as efficient. For that we have analyzed the MSE with respect 
to changes in several hyperparameters with the goal of identifying whether some 
hyperparameter values are favorable in terms of good approximations. In Fig. 8 we 
clearly see there is a significant impact of the number of layers on the magnitude of 
errors. Neural networks with a low number of layers tend to produce smaller errors 
and with an increasing number of layers the errors systematically become larger; a 
small error cannot be guaranteed for four or more layers. The reason for this may lie 
in the vanishing gradient effect. To underline this, let us consider the mean of the 
MSE for an increasing number of hidden layers and the chosen activation functions 

Fig. 8  MSE for different numbers of layers and nodes (the size of a bubble corresponds to the error)
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(in the inner nodes) in Fig. 9. We observe that the Sigmoid function systematically 
leads to higher errors for more layers.9

The activation functions ReLU and Leaky ReLU also produce higher errors with 
an increasing number of layers, albeit their errors are much lower. By performing 
this analysis for all hyperparameters it has turned out that some hyperparameter val-
ues have systematically led to strong approximation results (in the sense of small 
MSE values measured for the OOS validation set). On the other hand, different 

9 This is a known effect for Sigmoid function, see https:// towar dsdat ascie nce. com/ the- vanis hing- gradi 
ent- probl em- 69bf0 8b154 84.

Fig. 9  Mean of MSE for different numbers of layers separately for each activation function
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Fig. 10  MSE for several dropout rates

https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
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values of some hyperparameters such as the optimization method, learning rate or 
dropout rate have not given any insight regarding the approximation quality, see e.g. 
Fig. 10.

Following, to determine an efficient set of hyperparameters we have focused on 
the most promising values. For Portfolio 1, this procedure has led to the following 
search space: 

 (i) Architecture of the neural network:

– Number of hidden layers: 2–3,
– Number of nodes in each layer: 16–128 (constant across all layers),
– Activation functions (inner nodes): Leaky ReLU with � ∈ (0, 0.1),
– Activation functions (output): Sigmoid.

 (ii) Optimization algorithm:

• Solver: Adam,
• Batch size: discrete values {100, 400},
• Dropout rate in the range of (0, 0.025),
• Learning rate in the range of (0.0005, 0.001),
• Initializer: Random Uniform.

It seems to be natural to automatize such an efficient hyperparameter search. Fig-
ures  11 and 12 plot the ME and MAE, respectively, for polynomials—with good 
statistical properties—and neural networks resulting from all steps.

At first glance it can be highlighted that the neural networks have outperformed 
the LSMC-Pol approach for all steps regarding the MAE for the OOS validation data 
set, apart from Step VII, where the MAE is lower for the polynomial Pol2; further-
more, the polynomial Pol2 shows good results for OOS validation data if the ME is 
the error metric. Considering the approximation quality for the SCR region data set 
we have observed a significant improvement by applying neural networks; this is 
true for both error metrics, MAE and ME. Using an efficient hyperparameter search 
approach could further reduce the ME from −1.39 × 10−2 to −0.83 × 10−2 for the 
SCR region points, whereas the quality for the OOS validation data set has slightly 
declined. Even if we reduce the number of hyperparameter sets from 90 resp. to 30 
we have still achieved strong results. In many machine learning applications the ini-
tial data set is split into a training data set and a test data set. As mentioned above we 
are in the quite comfortable situation to have a rich set of validation points. A more 
realistic case in line with practice is thus to use also the fitting set for early stopping 
and the ensemble building. Moving from Step III to Step IV does not give any rise 
of concerns with respect to approximation quality as the errors have still been on a 
moderately low level. This has also held for the ensemble where a choice of the best 
10 nets based on the fitting data rather than OOS validation data has still given very 
good results. As a last step we have reduced the number of fitting points and we also 
see here that the neural networks have clearly outperformed the LSMC-Pol approach 
for the SCR region data set. Let us finally note that the LSMC-Pol proxies largely 
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maintain the goodness of fit by reducing the number of fitting points from 32k to 8k, 
i.e. Pol1 32k results are comparable to Pol1 8k results; the same holds for Pol2.

Following the described procedure from Step I to Step VII we expect that similar 
results may be achieved for Portfolios 2 and 3. We invite the interested reader to per-
form the procedure with her or his best choice of hyperparameters.

To sum up, we can conclude that even if we reduce the number of training data 
points in our use case, we still get good results, outperforming the LSMC-Pol 
approach. Implementing an efficient hyperparameter search algorithm leads to less 
computational time and strong approximation quality, which is an important insight 
for practice.

Fig. 11  ME (in 10−2 ) calculated for LSMC-Pol and LSMC-NN with several steps
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5.6  Further practical considerations

In addition to a purely quantitative evaluation of the different machine learning tech-
niques as carried out above, selected qualitative aspects can also be taken into account 
when assessing the practical suitability of the various methods. These aspects include 
the smoothness of risk profiles and the ability to provide a meaningful extrapolation, 
i.e. a reasonable behavior of the derived proxy functions beyond the training area.

In the present case, the former aspect arises as a requirement from the economic 
interpretation of the risk factors and their effect on the selected insurance portfolios. 
The latter aspect arises as a general problem in the context of the risk evaluation 

Fig. 12  MAE (in 10−2 ) calculated for LSMC-Pol and LSMC-NN with several steps
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on the basis of proxy functions, that are necessarily derived on a bounded training 
space that does not cover the entire domain of the potentially unbounded underlying 
statistical distribution of the risk factors.

In the LSMC-Pol approach, depending on the choice of the basis functions, some 
conclusions on these two aspects can already be drawn on the basis of analytical 
considerations. In the case of generalized proxy functions that are derived via alter-
native machine learning techniques, at least a visual or rather empirical inspection of 
selected risk profiles is possible. In the context of the investigations presented here, 
no obvious undesired behaviors related to the above mentioned aspects have been 
detected. The extent to which the extrapolation delivers meaningful results would 
have to be checked in each individual case on the basis of an extended OOS vali-
dation carried out on a further enlarged data set. In principle, however, the results 
found in this investigation allow the conclusion that neural networks are able to 
depict a reasonable behavior beyond the training space. This can also be seen as 
an advantage over other alternative machine learning techniques such as tree-based 
methods, which cannot provide any meaningful extrapolation by construction due to 
the way how the risk factor space is partitioned.

6  Conclusion

In this paper we close the void and report the best proxy function results which we 
have obtained in the work with our data. We do not provide the entire code, as por-
tions of this code are being used by some companies. But we have provided enough 
ingredients for a complete comprehension and replication of our approach.

We are convinced to have shown that there is a clear improvement in the quality 
of proxy functions when using neural networks compared to the current state of the 
art in the industry, namely the polynomial proxy functions. The implementation may 
for many appear surprisingly easy, as most of the complex training algorithms are 
already efficiently implemented in the freely available libraries.

The flexibility and accuracy of neural network models open the door to a variety 
of further applications, ranging from asset-liability management to product manage-
ment as well as to IFRS sensitivities and forecasts.

We look forward to seeing the results of interested researchers and practitioners. 
It is for sure conceivable if not even likely that tree-based methods like random for-
ests or boosted trees may show a comparable degree of accuracy as the ensembles 
of neural networks we have constructed and presented in this paper. An advantage 
of the tree-based models is their somewhat better explainability. In our analyses 
we have made first attempts to fit various tree-based models, using a grid search 
approach for a series of hyperparameters. The results have, however, never matched 
those obtained with neural networks and presented in this paper.
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