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Abstract
There is a plurality of formal constraints for aggregating probabilities of a group of
individuals. Different constraints characterise different families of aggregation rules.
In this paper, we focus on the families of linear and geometric opinion pooling rules
which consist in linear, respectively, geometric weighted averaging of the individuals’
probabilities. For these families, it is debated which weights exactly are to be chosen.
By applying the results of the theory of meta-induction, we want to provide a general
rationale, namely, optimality, for choosing the weights in a success-based way by
scoring rules. Amajor argument put forward againstweighting by scoring is that these
weights heavily depend on the chosen scoring rule. However, as we will show, the
main condition for the optimality of meta-inductive weights is so general that it holds
under most standard scoring rules, more precisely under all scoring rules that are based
on a convex loss function. Therefore, whereas the exact choice of a scoring rule for
weighted probability aggregation might depend on the respective purpose of such an
aggregation, the epistemic rationale behind such a choice is generally valid.

Keywords Probability aggregation · Meta-induction · Scoring rules · Optimality ·
Linear weighting · Geometric weighting

1 Introduction

Probability aggregation is the theory of how to adequately aggregate a set of probabil-
ity distributions into a single probability distribution. For more than two decades now
disciplines concerned with probabilistic reasoning and its rationale are undergoing
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664 C. J. Feldbacher-Escamilla, G. Schurz

a social turn, at least so it seems. This makes the problem of probability aggrega-
tion a highly relevant topic. Therefore, e.g., in philosophy of science recent research
focusses a lot on the relation of scientific groups having gathered a different set of
evidence, holding different theories, and providing alternative explanations (cf. Dou-
ven & Riegler 2010; Hartmann, Martini, & Sprenger 2009; Zollman 2007). Similarly,
in epistemology core topics of social epistemology—namely, the problems of how
to incorporate testimony, to resolve peer disagreement, to aggregate judgements—are
very often framed in a probabilistic setting (cf., e.g., for testimony Goldman 1999; for
peer disagreement Elga 2007; and for probabilistic judgement aggregation Dietrich
& List 2016). It is clear that also there, the question of how to adequately aggregate
probabilities pops up.

Probability aggregation is highly relevant for different domains. One of the reasons
for this is that it has a multitude of interpretations. Wagner (2009, pp.336f) lists five
usual roles of such an aggregation. It might serve as

1. a rough summary of a set of individual probability distributions; or
2. a compromise adopted by individuals; or
3. a consensus to which all individuals have revised their initial probability distribu-

tions; or
4. the probability distribution of a decision maker that is external to the group; or
5. a revision of a particular individual probability distribution after the individual has

learned about other “reasonable” probability distributions.

This list is, of course, not comprehensive and there are also further possibilities of
dealing with other and more fine-grained group setups (cf., e.g., Dietrich 2019). Our
suggestion for meta-inductive probability aggregation applies to all five domains of
application; it is particularly intended for case 4, i.e., for generating a probability
distribution of a decision maker that is in some sense external to a group; it might
be that the decision maker is strictly external in the sense that she has the authority
to make a decision and just has to think about how to best incorporate a group’s
possibly diverse set of probability distributions (a case in point would be a policy-
making agency that has to work on the bases of a diverse set of expert opinions).
However, the decision maker might be also external in the weaker sense of simply
having the advantage of receiving information from the group beforehand, while still
competing with it (a case in point might be, e.g., weather forecasting competitions or
any other forecasting competition with different time ranges for the announcement of
the individual forecasts).

In a similar line as it is argued in social choice theory, also in the theory of probability
aggregation general rationality constraints for probability aggregation methods are
put forward; the aim then is to figure out which aggregation methods satisfy these
constraints. Often the constraints put forward are not compatible with each other. This
led to the famous impossibility results of social choice theory (cf. Arrow 1963) and
the theory of judgement aggregation (cf. List & Pettit 2002). However, as it turned
out, one can cluster these constraints in such a way that relevant subclasses are jointly
satisfiable and characterise different families of aggregation methods. As we will see
in the next section, broadly accepted constraints lead in particular to two common
aggregation rules, namely, linear weighting and geometric weighting. Therefore, if
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one can figure out which constraints for probability aggregation are relevant for which
domain of application, one seems to be able to give a partial solution to the problem of
probability aggregation. However, even if one subscribes to such a purpose-dependent
strategy (cf., e.g., List & Pettit 2011), the constraints put forward at most determine
a family of aggregation methods, but no exact aggregation method. In particular, the
choice of the weights—which is from the viewpoint of practical applications the most
important factor—is undetermined by these constraints.

In this paper, we are going to argue for a new approach to determine such weights.
We will do so by suggesting that—if available information permits it—to take in a
dynamic perspective and employ optimality results of the so-called theory of meta-
induction that show that a success-based determination of weights allows for proving
long run optimality of probabilistic predictions. On one hand, this results in a more
specific determination of the weights used for aggregating probabilities, and, on the
other hand, it also provides an epistemic rationale for doing so.

The structure of the paper is as follows: in Sect. 2, we summarise the characteri-
sation results of the theory of probability aggregation which lead to two families of
aggregation functions, namely, the linear and the geometric weighting rules. Since
the exact weights are not determined by these results, we briefly discuss solutions
for determining weights and their problems in Sect. 3. There, we also outline our
solution. The framework of prediction games, and the main results of the theory of
meta-induction are presented in Sect. 4. This prepares the ground for Sect. 5, where
we apply this framework to a probabilistic setting: We show how the meta-inductive
optimality results can be transformed to the probabilistic case and provide a general
epistemic rationale. We conclude in Sect. 6.

2 Underdetermined probability aggregation

Many investigations of probability aggregation were triggered by Leonard J. Savage’s
seminal work on the Foundations of Statistics, where he introduced a model of group
decision:

“Consider a group of people […] supposed to have the same utility function,
[…], but their personal probabilities are not necessarily the same. The group of
people is placed in a situation in which it must choose an act […] from a finite set
of available acts […]. The situation just described will be called a group decision
problem.” (cf. Savage 1972, chpt.10.2)

A paradigmatic example mentioned by Savage is the decision-making by a legal jury.
As it has to come to a conclusion as a jury, it needs to end up with a group opinion.
The scheme of the problem is as follows (Russell, Hawthorne, & Buchak 2015, call
this constraint ‘functionality’, cf. p.1290):

Pr{1,...,n} = f (Pr1, . . . , Prn).

Here, Pr1, . . . , Prn are the probabilities of the members of a group, also called graded
opinions, credences or graded predictions, f is an aggregation function, and Pr{1,...,n}
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666 C. J. Feldbacher-Escamilla, G. Schurz

is the respective group probability (graded group opinion, group credence or graded
group prediction). In what follows, we assume that all the Pri as well as Pr{1,...,n} are
probability functions over an algebra A of propositions, defined as the powerset of
a finite set S = {s1, . . . , sm} of possible worlds or states si (we use ‘si ’ and ‘S’ here
for possible worlds/states and a set encompassing them, because later on we will use
‘wi ’ for the weights); thus, propositions (p) are subsets of S, and conjunctions and
disjunctions of them are understood as set-theoretic intersection and union, respec-
tively. We assume the cardinality of S is at least 3 (this assumption is needed for the
characterisation of linear pooling). In later sections (beginning with Sect. 4), we will
assume that the possible world propositions {si } are expressed by finite conjunctions
of statements of the form X(i) = v, where X is a random variable over a domain of
discrete timepoints (i ∈ N, where N is the set of natural numbers), and v ∈ V is a
value in the value space V of the random variable X .

As we have seen, according to Savage the group decision problem consists of the
question of how to constrain the transmission from the individual to the group. A
plurality of constraints for approaching the problem has been discussed. Such investi-
gations are often performed in the line of the so-called axiomatic method, where one
formulates general constraints for a good aggregation function in the form of axioms,
and then asks which aggregation functions satisfy these if any at all (cf. Dietrich
and List 2016, sect.3). A vast amount of literature evolved in this area (cf. Genest &
Zidek 1986) and many impossibility results of constraints for aggregation have been
proven in the past. Seminal is, e.g., Arrow (1963), where it is shown that some very
basic constraints cannot be simultaneously satisfied in the comparative realm. List
and Pettit (2002) prove a similar result for the qualitative realm of opinions, namely,
belief and disbelief. However, many of the problems of the qualitative and compara-
tive realm disappear in the quantitative realm. What is more, three axioms that lead to
an impossibility result within the qualitative realm even characterise a plausible fam-
ily of transformations or aggregation rules of the quantitative realm. As is discussed
and shown in (Lehrer & Wagner 1981, chpt.6; and Genest & Zidek 1986, sect.3), the
mentioned three conditions characterise the family of linear opinion aggregation rules:

(U) Universal domain: The domain of the aggregation function f is the class of
all (uncountably many) profiles of n probability measures, (Pr1, . . . , Prn), i.e.,
this domain is {Pr : A → [0, 1]}n .

(CP) Certainty preservation: For all propositions p ∈ A, if everyone assigns a prob-
ability of 1 to it, so does the group, i.e.: if ∀i ∈ {1, . . . , n}Pri (p) = 1, then
Pr{1,...,n}(p) = 1.

(I) Propositionwise independece: the collective probability of any proposition
depends solely on the individual probabilities of this proposition, or formally,
for all propositions p ∈ A there exists a propositionwise aggregation function
f p : [0, 1]n → [0, 1], such that for all profiles (Pr1, . . . , Prn) in the domain,
Pr{1,...,n}(p) = f p(Pr1(p), . . . , Prn(p)).
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Linear opinion aggregation rules have the form of a weighted arithmetic mean:

Pr{1,...,n} =
∑

1≤i≤n

wi · Pri

(where wi ≥ 0 and w1 + · · · + wn = 1).

(AM)

It is interesting to note that comparative “versions” of the three constraints above
lead to the famous impossibility results of social choice theory (cf. Arrow 1963). In
the quantitative/probabilistic setup, however, these constraints turn out to determine
an important family of functions, namely, linear opinion aggregation rules. Since
many theorists consider (U), (CP), and (I) to be plausible constraints for probability
aggregation, this family has been also proposed as a general framework for probability
aggregation (cf. Lehrer & Wagner 1981).

Unfortunately, this characterisation has also some problems. One important draw-
back is that (U), (CP), and (I) are jointly incompatible with other further plausible
constraints for aggregating probabilities. Well-known is, e.g., their incompatibility
with the axiom of independence preservation (cf. Lehrer &Wagner 1983): This axiom
demands that if all members of a group consider two propositions to be probabilisti-
cally independent: Pri (p1|p2) = Pri (p1) (∀i ∈ {1, . . . , n}), then also the aggregation
should be this way: Pr{1,...,n}(p1|p2) = Pr{1,...,n}(p1). Connected with this is the
problem that the constraint of aggregating Bayesian (cf. Genest & Zidek 1986, p.119)
is not compatible with these conditions: Aggregating individual credences and then
performing a Bayesian update by new evidence might be different from all indi-
viduals’ first performing a Bayesian update of their credences and then aggregating
the updated credences (cf. Mongin 2001, p.320). In other words, linear probability
aggregation does not satisfy the condition of the commutativity of aggregation and
updating by Bayesian conditionalisation. The commutative update rule that holds for
linear weighting is called “imaging” and differs in important respects from Bayesian
updating (cf. Leitgeb 2016; the discussion of Leitgeb is based on the main result of
Gärdenfors 1982).

However, there is another family of aggregation functions that allows one to satisfy
the commutativity constraint while still upholding Bayesian orthodoxy: Genest (1984,
p.1101) andGenest,McConway,&Schervish (1986, p.499) show that weak unanimity
preservation (cf. Russell, Hawthorne,&Buchak 2015, p.1295,fn.8) and commutativity
of aggregation and conditionalisation togetherwith some further technical assumptions
characterise the family of the logarithmic or geometric graded opinion aggregation
rules. For lack of space, we will not discuss the technical assumptions here. The
constraints of weak unanimity preservation and commutativity of aggregation and
conditionalisation can be characterised as follows:

(P) Weak unanimity preservation: For all profiles (Pr1, . . . , Prn) in the domain: If
Pr1 = · · · = Prn , then Pr{1,...,n} = Pr1 = · · · = Prn .

Our formulation of the following condition (CAC) on the commutativity of aggregation
with learning is based onDietrich (2019).We say that a probability function Pr∗ arises
from Pr by conditionalisation on a piece of evidence e iff Pr(e) > 0 and for all p ∈ A,
Pr∗(p) = Pr(p|e) := Pr(p∩e)

Pr(e) :
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(CAC) Commutativity of agregation and conditionalisation: For all propositions p ∈
A and profiles (Pr1, . . . , Prn) and (Pr∗

1 , . . . , Pr∗
n ) in the domain, with cor-

responding aggregate functions Pr{1,...,n} and Pr∗{1,...,n}, if each Pr∗
i arises

from Pri by conditionalisation on e, then Pr{1,...,n} arises from Pr∗{1,...,n} by
conditionalisation on e.

These two constraints characterise the normalisedweighted geometricmean as defined
below. Although initially the concern was voiced that the additional technical assump-
tions needed for proving a characterisation result of geometric pooling are in need of
further justification, so that we “lack a fully compelling axiomatic characterisation of
geometric pooling” (cf. Dietrich & List 2016, sect.6), new developments in this field
resulted in further celebrated characterisation results for geometric averaging (cf. Rus-
sell, Hawthorne, & Buchak 2015) and could be even specified to different forms of
geometric averaging as being characteristic for different forms of Bayesian learning
situations (cf. Dietrich 2019).

The definition of the normalisedweighted geometricmean of a family of probability
functions is restricted to coherent profiles, where a profile (Pr1, . . . , Prn) is called
coherent iff there exists at least one world s ∈ S to which each Pri assigns a non-zero
probability (cf. Dietrich 2019). Here is the definition: For all s ∈ S and all profiles
(Pr1, . . . , Prn) that are coherent:

Pr{1,...,n}(s) =
∏

1≤i≤n
Pri (s)wi

∑
s∈S

∏
1≤i≤n

Pri (s)wi

(where wi ≥ 0 and w1 + · · · + wn = 1)

(GM)

This family of aggregation rules is technically quite demanding. By the coherence
requirement, the denominator in the equation must be nonzero and guarantees nor-
malisation: Pr{1,...,n}(s1 ∪ · · · ∪ sm) = Pr{1,...,n}(s1) + · · · + Pr{1,...,n}(sm) = 1
(where m is the cardinality of S). Since the set of worlds is supposed to be finite, the
equation above determines Pr{1,...,n} for arbitrary propositions, i.e., disjunctions of
possible worlds, via Pr(s ∪ s′) := Pr(s) + Pr(s′) (with s, s′ ∈ S). In Sect. 5.2, we
will require a constraint for predictive propositions that is stronger than coherence,
namely, ε-regularity. More details of the family of geometric aggregation rules are
discussed, e.g., in (Dietrich & List 2016, sect.6).

Regardless of the exact characterisation of arithmetic and geometric aggregation
rules and the assessments of their advantages and disadvantages, these two families are
amongst the most common pooling methods. And, although there is no general aggre-
gation method that allows one to satisfy the constraints for aggregating probabilities
as put forward here simultaneously, these two families allow one to satisfy reasonable
subsets of these constraints. If one follows the line of reasoning of List and Pettit
(2011) and makes the choice of the exact aggregation rule dependent on the context
and purposes in question, then (AM) and (GM) may seem to be good candidates for
solving the group decision problem (we think that particularly Dietrich 2019, is an
excellent example in this vein of a context-dependent choice of aggregation). Hence,
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it should one make not wonder too much that these two families are also the two most
prominent types of probability aggregation rules studied in the literature.

However, there is a problem underlying both (AM) and (GM): It is true that the
characterisation resultsmake clearwhich axioms determine the choice ofwhich family
of aggregation rules. Nevertheless, each family still allows for awide range of different
aggregations. In addition, as one can easily see when looking at the equations, this
variance is due to the underdetermination of theweights by the aggregation constraints.
Therefore, to provide an adequate answer to the group decision problem, one also has
to address the problem of choosing the right weights.

3 The problem of choosing the weights

As we have indicated above, the constraints (U), (CP), and (I) determine the fam-
ily of linear aggregation rules, (P), and (CAC) (and some technical assumptions not
described here further) determine the family of geometric aggregation rules, but no
set of the constraints allows one to determine a specific aggregation rule. Regarding
the weights used for aggregation, these constraints remain undetermined. Now, it is
sometimes suggested in the literature that there is no general objective account of
justifying a specific choice of the weights: “The determination of the weights is a sub-
jective matter, and numerous interpretations can be given to the weights” (Clemen &
Winkler 2007, p.157). In addition, Genest (1984, p.1104) mentions this problemwhen
stating his characterisation result of (GM): “The problem of choosing the weights wi

[…] remains and is not addressed here. This difficulty is common to most axiomatic
approaches”.

Genest and McConway (1990) provide an overview of approaches to determine
weights and briefly discuss their problems. We are going to mention just the most
prominent approaches here.

According to the interpretation of veridical probabilities (cf. Bunn 1981, p.213),
weights are considered to represent the probability of an individual probabilistic fore-
cast to be right: “wi represents the probability that Pri is the ‘true’ distribution” (cf.
Genest & McConway 1990, p.56, notation adjusted) and “wi would represent the
probability of predictor i being the ‘true’ descriptive model of the underlying stochas-
tic process” (cf. Bunn 1981, p.213, notation adjusted). Therefore, according to this
approach the weights wi represent the “decision maker’s” credence in Pri making an
accurate prediction: Pr{1,...,n}(Pri = ch), where ch is the true chance distribution (cf.
Bunn 1981, p.213). However, this approach faces the main problem that it is not clear
how one can determine the relative veracity of competing opinions when one is igno-
rant about the true distribution in the world. Moreover, at any stage of evidence this
account faces the problem of induction, i.e., of estimating the distribution over unob-
served individuals from the observed individuals; and different priors give entirely
different answers to this problem. Another objection against this account of weighting
individuals by the probability that they have the ’true’ probability distribution is that
we have to buy in a claim about the certainty that one of the individuals holds the ‘true’
probability distribution, because the weights sum up to one. In conclusion, the account
fails to tell us what should be considered as adequate priors of Pr{1,...,n} in estimating
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670 C. J. Feldbacher-Escamilla, G. Schurz

that Pri is an accurate distribution. For this reason, so it seems, this approach fails to
set foot on solid ground.

In a further approach, the weights are interpreted as outranking probabilities: “wi

should be interpreted as the probability that the next prediction made using opinion
Pri will outperform predictions made from all other individual opinions in the group”
(cf. Genest & McConway 1990, p.57, notation adjusted). An advantage of this inter-
pretation is that such weights are operationally easier to grasp. “However, the main
problem with this approach is that if the experts know in advance how their weights
will be derived, they may experience them as scores and choose to report dishonest
opinions to maximise their influence on the opinion pool”. This was the reason for
introducing another interpretation of the weights, namely, weights being interpreted
as scores: to avoid the problem of manipulation, proper scoring rules for weights were
put forward, i.e., scoring rules which guarantee “that the distribution reported by each
expert maximises his expected utility if he is honest and coherent”. However, also here
a problem seems to show up: there is a plurality of proper scoring rules (quadratic,
logarithmic, spherical etc.) and empirical investigations suggest that “weights [result-
ing from scores] are not quite satisfactory, because they seemed sensitive to the choice
of scoring rule” (cf. Genest & McConway 1990, pp.56ff).

This is the point, where we think that meta-induction should enter the picture,
because it allows for determining weights generally in a success-based way. Then,
optimality results of meta-induction can be cashed out for providing a general ratio-
nale for such a determination. The main line of our argumentation is that at least
for linear pooling the epistemological rationale provided by the optimality result of
meta-induction is general enough to capture all relevant scoring rules. Therefore, to
accommodate this rationale, no specific choice of a scoring rule is necessary. Rather,
many of them can be justified generally and the exact choice of a scoring rule might
be plausibly made dependent also on the context and purpose in question.

In the next section, we describe the optimality results for meta-inductive success-
based weighting for the prediction of single events. Afterwards, in Sect. 5, we are
going to generalise the approach to the probabilistic setting.

4 Meta-induction and determining weights

The theory of meta-induction generalises Hans Reichenbach’s best alternatives
approach (cf. Reichenbach 1938, pp.348ff; and Schurz 2008, sect.2). Reichenbach
proposed to consider the problem of induction not with respect to the strong require-
ment of proving that inductive methods are successful, but with respect to the much
weaker, but epistemically still highly relevant, requirement of proving that inductive
methods are the best methods accessible for making predictions. His solution to the
problem of induction is a very simple, but also narrow one: If the world is predictable
in the sense that for any distribution under investigation there is a limiting frequency,
then a method that is defined as approaching this frequency in the limit (as, e.g., is
guaranteed by the straight rule (cf. Howson 2003, p.72)), will “lead to the limit”. It
is clear that the whole argument is analytic. The specific interpretation of ‘a series is
predictable’ as ‘there exists a limit of the series’ some way or another smuggles the
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inductive uniformity of the series into the meaning of the ‘prediction of a series of
events’.

However, one can try to weaken the assumption made by Reichenbach and prove
that following an inductive method is still a necessary condition for predictive success,
in the sense that all other accessible methods that are most successful converge with
that inductive method. Exactly, this is done within the approach of meta-induction
(cf. Schurz 2008; 2019). Here, the prediction problem is understood as the problem
of providing a successful prediction of the outcome et+1 of the next event based
on information about the outcomes e1, e2, . . . , et of the preceding events, with t =
0, 1, . . . as a discrete time variable. (Speaking of ‘outcomes of events’ means that
we understand the events et as being generated by an event variable; see below.)
Similar to Reichenbach’s proposal, induction is not justified in the account of Schurz
(2008) in the sense of a ‘correct or true prediction’, but as ‘being optimal among all
accessible alternatives’. Contrary to Reichenbach’s proposal, there are no constraints
whatsoever on the series of events e1, e2, . . . ; there might be a limiting frequency of
the distribution of properties within such a series or not—it might be predictable in the
sense of Reichenbach or completely chaotic. In addition, different fromReichenbach’s
framing of the problem, within the approach of meta-induction it is argued for the
predictive optimality of induction on a meta-level instead of an object-level: whereas
inductive rules at the object-level are applied to the series of events e1, . . . , et to predict
the event et+1, the meta-inductive method is applied to the series of predictions made
by all available alternative methods and turns these predictions into a prediction of
its own—this is the reason why it is called a ‘meta-method’. The underlying idea of
the meta-inductive method is to select among predictions all those whose predicting
methodsweremost successful in past—and to aggregate these predictions in anoptimal
way. It can be proven that there exists a meta-inductive selection-and-aggregation
procedurewhich ismost successful in the long run, i.e., its predictive success converges
to that of the best predictionmethod, even if the bestmethod permanently changes in an
unforeseeableway, for example, because of unforeseeable changes of the environment.
In this way one can say that the meta-inductive method infers from past success future
success; it is successful induction over success rates.

Here are the details: The framework of meta-induction is formed by so-called
prediction games. Graded (or real-valued) prediction games have the following
ingredients (cf. Schurz 2008; 2019, sec. 5.5, notation adjusted):

• e1, e2, . . . is an infinite series of events at discrete times or ‘rounds’ t = 1, 2, . . . .
The events are the actual outcomes of an event variable or random experiment
E , taking for each time t a value in a fixed value space Val. More formally:
E : N → Val and E(t) := et . For graded (or real-valued) prediction games, Val
is an interval of real numbers; to keep the number of possible world propositions
finite (for any given time t) we assume that the real numbers representing events
are of finite accuracy.

• pr1,t , . . . , prn,t are the predictions of the event value E(t), delivered by the n
accessible prediction methods {M1, . . . Mn}, the so-called candidate methods,
which are typically but not necessarily object-level methods. Thus the predic-
tion pri,t stands more explicitly for the proposition “E(t) = pri,t” predicted by
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method Mi . The predictions pri,t have to be elements of the real-valued interval
[0, 1]. It is allowed to predict mixtures or weighted averages of event values; so
the space of prediction values may be a superset of Val.

• prmi,t is the prediction of et of the meta-inductive method Mmi .

As we have said above, a meta-inductive method “cooks up” a prediction from the
present predictions and past success rates of the candidate methods. The success rate
of a method Mi at any given time t is determined as follows: First, one measures the
loss of its predictions compared to the actual or ‘true’ event et for each time t—this
loss is denoted as l(pri,t , et ). Next, one defines the score of a prediction as 1 minus
its loss, and finally, one defines the success rate si,t of Mi at time t as the sums all of
its scores up to time t divided by t (cf. Schurz 2019, sect.6.6):

si,t =
∑

1≤u≤t
1 − l(pri,u, eu)

t

Themeasure si,t represents the success rate, or average per-round success, of candidate
method i up round t . The only assumption we make about the loss measure l is that it
lies within the interval [0, 1], and that it is convex in its first argument, i.e., the loss of a
weighted average of two predictions is lower than or equal to the weighted average of
the losses of these two predictions. Or formally: l(w ·x+(1−w) · y, z) ≤ w ·l(x, z)+
(1 − w) · l(y, z) holds for all x, y and w ∈ [0, 1]. Important examples of convex loss
functions are (i) the natural loss that identifies the loss with the absolute distance,
l(pri,u, eu) = |pri,u − eu |, and (ii) the quadratic loss, l(pri,u, eu) = (pri,u − eu)2,
which is important for probabilistic prediction games (see below).

The same success measure (smi,t ) applies to the predictions prmi,t of the meta-
inductive method. Now, based on this success measure one can define a so-called
attractivity measure. The idea of this measure is that the higher the past success of an
attractive method, the higher is also its attractivity. Moreover, the attractivity measure
cuts off those object-level methods that are not attractive, i.e., that have a lower average
per-round success rate than the meta-level method has. Thus the weight of an object-
levelmethodMi for themeta-levelmethodMmi regarding event et is defined as follows
(as usual the denominator is needed for the purpose of normalisation):

wi,t = max(0, si,t − smi,t )∑
1≤ j≤n

max(0, s j,t − smi,t )

provided t > 0 and the denumerator is non-zero; otherwise, we stipulate wi,t = 1/n.
Note that the denumerator becomes zero if Mmi outperforms all candidate methods,
in which case smi,t ≥ si,t holds for all i ∈ {1, . . . , n}.

Based on these weights, we can define a meta-inductive method which weights the
predictions of the attractive methods according to their attractivities. Such a method
generates predictions by the method of linear (arithmetic) aggregation as follows (cf.
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Schurz 2008, sect.7):

prmi,t+1 =
∑

1≤i≤n

wi,t · pri,t+1 (AMI)

According to (AMI) Mmi with its predictions prmi,t is a meta-inductive method inas-
much as it bases its prediction on the predictions andweights of all accessible candidate
methods, and it is a meta-inductivemethod inasmuch it is constructed out of candidate
methods whose weight increases monotonically with their observed success rates.
Note the recursive character of this definition: the meta-inductive prediction prmi,t+1
depends on the weights wi,t at earlier times which depend on the meta-inductive
predictions at earlier times.

From the viewpoint of the meta-inductivist, attractivities are also called regrets;
prediction methods based on regret-based weighting have been developed in a field
of machine learning known as “online learning under expert advice” (Cesa-Bianchi
& Lugosi 2006, chpt.1). A refined version of regret-based predictions uses weights
based on an exponential success dependence; the definition of theseweights ew ismore
complicated (cf. Cesa-Bianchi & Lugosi 2006, pp.14f; and Schurz 2019, p.144f.):

ewi,t = e
√
8·ln(n)·t ·(si,t−smi,t )

∑
1≤ j≤n

e
√
8·ln(n)·t ·(s j,t−smi,t )

The exponential success-dependent meta-inductive predictor is defined similarly
to the linear success-dependent meta-inductivist (AMI) by the method of weighted
arithmetic average; thus:

premi,t+1 =
∑

1≤i≤n

ewi,t · pri,t+1 (EAMI)

Both methods (AMI) and (EAMI) prove to be very powerful regarding the task of
justifying induction in a sense similar to that proposed by Reichenbach: There are
quite narrow bounds of Prmi and Premi ’s relative worst-case regret, i.e., the loss of
their success rates compared to the success rate of the actually best candidate method.
Based on theorems in the machine learning literature (cf. Cesa-Bianchi & Lugosi
2006, sect.2.1f; and Schurz 2019, sect. 6.6) the following lower bounds of the regret
hold:

For (AMI ), si,t − smi,t ≤ √
n/t (∀i ∈ {1, . . . , n}). (AMI Bounds)

For (E AMI ), si,t − semi,t ≤ √
3.125 · ln(n)/t (∀i ∈ {1, . . . , n}).

(EAMI Bounds)

As defined here, if n ≥ 6 the exponential success-dependent meta-level method
(EAMI) has a better guaranteed lower bound. It should be noted also that (EAMI)
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is the best known long run access optimal meta-inductive method inasmuch as it
approximates best the minimal lower bound that is achievable in principle, namely,√
ln(n)/2t (cf. Cesa-Bianchi & Lugosi 2006, p.62, thrm.3.7). On the other hand,

(AMI) converges faster than (EAMI) to the maximal success rate of a game with a
sustainably best method (cf. Schurz & Thorn 2022). However, what is most important
in our context is that the relative regret of the two meta-inductive methods converges
quickly to zero when t grows large. An important consequence of this fact is the
following result about the so-called long run acccess-optimality of meta-induction:

• Given l is convex (where l is used for determining s), then both meta-inductive
prediction methods (AMI) and (EAMI) are optimal in the long run:

lim
t→∞max(s1,t , . . . , sn,t ) − smi,t ≤ 0 (AMI Optimality)

lim
t→∞max(s1,t , . . . , sn,t ) − semi,t ≤ 0 (EAMI Optimality)

Therefore, the meta-inductivist’s success rate and that of the best performing meth-
ods converge in the limit or the meta-inductivist even performs better. In the machine
learning literature, such predictionmethods are known as online learnable or no-regret
algorithms (cf. Shalev-Shwartz&Ben-David 2014). This result expresses exactlywhat
Reichenbach has described as a necessary condition for predictive success, though at
the level of meta-induction. What is more, this result does not depend on any con-
straints of the event series under investigation and holds for all convex loss functions
(underlying the success rates s).

It should be noted that the convexity of the loss function is an important ingre-
dient of the meta-inductive optimality result explained in this section. We find the
assumption also to be key in the general literature on the wisdom of the crowd (cf.
Lyon forthcoming). At this venue, we cannot discuss in detail why we think that this
assumption is justified. However, we want to hint at least at two points. First, for
probabilistic predictions one standardly uses so-called proper scoring functions (for
reasons to be explained in the next section), and the loss functions underlying them are
always convex. Second, it is possible to transfer the meta-inductive optimality results
to prediction games with arbitrary (possibly discrete, i.e., non-graded) events and arbi-
trary (possibly non-convex) loss functions, namely, by randomizing predictions and
expressing optimality in terms of expected or average success; for details see (Schurz
2019, sec. 6.7).

In the next section, we are going to utilise the meta-inductive optimality result to
determine the weights of linear and geometric probability aggregation and provide an
epistemic rationale for such a determination.

5 Success-based probability aggregation

We now turn to probabilistic prediction games, which are an important subcase of
prediction games in general. In these games, each forecaster or candidate method
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identifies the predicted real value with her credence of the predicted event conditional
on her information about the past. First, let us ask: When is it reasonable to equate
one’s real-valued prediction with one’s probability of the predicted event? According
to a well-known result, this identification is not optimal if the loss function is natural
or linear, even if one’s probability is close to the true statistical probability. Rather,
under this assumption, the optimal prediction rule is the so-called maximum rule
which predicts that event value v whose conjectured probability (i.e., so-far observed
frequency f reqt ) is maximal (cf. Rumelhart & Greeno 1971; Reichenbach 1938,
pp.310f). For binary events, the maximum rule predicts 1 as long as f reqt (1) ≥ .5
and 0 otherwise.

The fact that with linear loss functions it is not optimal to predict the probabilities of
discrete events does not at all imply that good estimations of the objective probabilities
are unimportant for predictive purposes and all that one needs to know iswhich element
of the value space has the maximal chance. One can see this, e.g., by the fact that the
agreement of epistemic with objective probabilities is essential for objective Bayesian
decision makers: they need to know the objective probabilities in order to choose an
action with maximal average payoff. Moreover, knowledge of objective probabilities
is necessary when one asks whether what is predicted by an optimal method should
be believed as being true.

In many contexts one wants the predictor’s forecasts to reveal her epistemic prob-
abilities. An example of such a context is weather forecasting. For this purpose,
non-linear scoring rules have been devised having the property that the expected suc-
cess of real-valued predictions in independent and identically distributed sequences
(IID) is maximal exactly if the forecaster predicts her epistemic probability of the
predicted event. These scoring rules are called proper. The loss function underlying a
proper scoring rule for a binary event E with outcomes e ∈ {0, 1} has the following
property—where we abbreviate the prediction that the event e occurs with probability
r simply as r :

(PS) Proper scoring: A scoring rule for a binary event e ∈ {0, 1}is proper iff it is
based on a loss function l satisfying the following constraint:
The expected loss of the prediction r under probability Pr—defined as Pr(e =
1) · l(r , 1) + Pr(e = 0) · l(r , 0)—is minimal iff r = Pr(e = 1).

Thus, if the accepted probability function of a rational forecaster is Pr and she
is scored by a proper scoring rule. Then, she will predict her epistemic probabilities,
because this maximises her expected success. Moreover, she will try to approximate
the true statistical probabilities with her epistemic probabilities, because only this can
guarantee that her expected success approximates the true average success.

While a linear loss function does not satisfy requirement (PS), certain non-linear
but convex loss functions satisfy it. According to a famous result of Brier (1950), the
quadratic loss function, l(r , e) = (r − e)2, constitutes a proper scoring rule. This is
seen by differentiating ExpPr with respect to Pr(e = 1) and setting it to zero: Let p
abbreviate Pr(e = 1). Then, d[p · (r −1)2+ (1− p)r2]/dr = d[p−2pr +r2]/dr =
−2p + 2r ! = 0; hence p = Pr(e = 1) = r .
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In the following subsections, we are discussing implementations of meta-induction
into the framework of probability aggregation. We will start with an implementa-
tion which allows for proving general optimality for linear pooling. By this, e.g., the
quadratic loss function proposed by Brier (1950) is proven to be optimal. Then, we
will go on with proving a more restricted optimality result for the much more com-
plicated case of geometric pooling. Although scoring functions satisfying constraint
((PS)) seem to be themost adequate ones for probabilistic forecasts, the following con-
siderations will hold for all convex scoring functions and are not restricted to proper
ones.

5.1 Optimal arithmetic probability aggregation

To cash out the optimality result of meta-induction for probability aggregation we
have to change our framework. A probabilistic prediction game contains the following
ingredients:

• As before, a series of events e1, e2, . . . that are represented as the outcomes of a
random experiment or random variable E : N → Val, taking at each time t a value
E(t) in a finite value space Val = {v1, . . . , vk}, where this time the possible values
needed not to be graded but may also be discrete. In what follows, the constants
ei ∈ Val denote always the actual true outcome of a random experiment; i.e.,
E(t) = et .

• At each time or round, the candidatemethods provide a full probability distribution
over the possible outcomes of the next event in question. Thus, the predictions pri,t
of the methods Mi for time t are now probability distributions over the possible
values of the event variable E , representing the credences of the methods Mi for
the possible outcomes E(t) = vm (vm ∈ Val). Or, more formally, pri,t = Pri,t :
Val → [0, 1], where Pri,t satisfies the probability axioms.

• The predictions of the meta-inductive methods AMI (short for arithmetically resp.
linear weighted MI) and GMI (short for geometrically weighted MI) are also
represented by a probability distribution over Val. They are denoted as Prami,t and
, Prgmi,t , respectively, and defined as an arithmetically/geometrically weighted
average of the Pr1,t , . . . , Prn,t ; details are presented below.

It is important to highlight that the candidate methods can be constant methods,
learningmethods or any other kind ofmethodwhatsoever. Since themethodsmay con-
ditionalise their predictions to observations of past events, the distribution Pri,t maybe
understood as implicitly conditionalised to the observed past events (andmaybe to fur-
thermethod-specific information thatwe leave implicit). Therefore, “Pri,t (Et = v)” is
just a shorthand notation for “Pri,t (Et = v|e1, . . . , et−1)”. This implies formally that
Pri,t runs over an algebra of propositions that contains ℘(Val)t (the t-fold Cartesian
product of the powerset of Val).

If we expand the meta-inductive framework of prediction games to the probabilis-
tic setting we face a problem concerning the definition of the loss function: Now the
predictions are real numbers, i.e., probabilities, but the event values are non-numeric
values v1, . . . , vk . The problem of expanding meta-induction to the probabilistic set-
ting was studied on another occasion (cf. Feldbacher-Escamilla & Schurz 2020). The
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problem is a two-fold tension: On one hand, if one tries to keep up with optimality in
a too close-knit way, then one easily ends up with probabilistic inconsistency. There-
fore, e.g., if one expands the meta-inductive framework, such that for each possible
event value a single prediction game is launched, then the meta-inductive prediction
for each event value will be optimal with respect to that event value. However, it
will also be probabilistically incoherent, because the single predictions of the parallel
meta-inductive game will (most of the time) not sum up to 1 (cf. Feldbacher-Escamilla
& Schurz 2020, pp.723–726). On the other hand, if one tries to regain probabilistic
consistency by, e.g., normalising the single meta-inductive predictions for each possi-
ble event value, then this comes at the cost of being no longer universally optimal (cf.
Feldbacher-Escamilla & Schurz 2020, pp.726f). As we have also shown there, for the
case of employing the Brier score, there is a possible way to apply the meta-inductive
framework to the probabilistic setting: By defining an overall loss measure that aver-
ages the individual losses for all possible event values, one obtains meta-inductive
weights that lead to a probabilistically coherent and at the same time optimal proba-
bilistic prediction (the reason is that averaging the outcomes of a convex loss function
results in a loss function that is itself convex; for details cf. the proof in the appendix
of Feldbacher-Escamilla & Schurz 2020).

Here, we want to present another and even more general way of employing the
meta-inductive framework for probability aggregation that does not face the dilemma
of being either prone to inconsistency or suboptimality. The crucial idea is to define a
success measure for each method that is not relative to the values of E’s value space.
We do so by scoring a method for each time t by scoring its predicted probability for
that value which was the true value in that round. We score the predicted probability
Pri,t (et ) of the true event outcome et by measuring its loss in regard to the truth value
“1”, leading to the intended effect that the loss of Pri,t (et ) is 0/1 iff et was predicted
with probability 1/0. Let l(Pri,t ) denote the loss of a probabilistic prediction of the
event distribution for time t, and s(Pri,t ) := 1− l(Pri,t ) be the corresponding score.
Then, the loss and the score are defined as follows:

l(Pri,t ) = l(Pri,t (et ), 1) and s(Pri,t ) = 1 − l(Pri,t (et ), 1).

Recall that et is that vm , such that E(t) = vm .
In particular, if l is the natural loss, this implies:

l(Pri,t ) = 1 − Pri,t (et ) and s(Pri,t ) = Pri,t (et ).

The same method of defining the success of a probabilistic forecaster is applied in
sequential probability assignment (Cesa-Bianchi &Lugosi 2006, p.248), but restricted
to the logarithmic loss function. Here, in the context of strategies of probability aggre-
gation, we introduce this method in a more general way that applies to all convex loss
functions. The schema of this approach is depicted in Fig. 1.

We define the measure for the success rate based on the above loss and scoring
function by adding up the scores and dividing them through t . We write this success
rate of a candidate method Mi as si,t and the success rate of arithmetic (probabilistic)
meta-induction as sami,t :
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Fig. 1 Example of a prediction game about single events using weights calculated out of predictions of
those values which turned out to be true. The bars under ‘�’ indicate the sum of the meta-inductive’s
probabilistic forecasts that add up to 1 in each round. Bars under ‘score’ represent the natural score in the
given round (time) and indicate that the score for a probabilistic prediction is measured via its natural score
in regard to the actual event in the given round (time t). The bars under ‘regret’ indicate proven upper
bounds for the average per round regret. The probability forecast is optimal regarding the truth, as indicated
by the guaranteed vanishing regret. Hence, we have a probabilistically coherent and optimal meta-inductive
prediction method

si,t =
∑

1≤u≤t
s(Pri,u(eu), 1)

t

sami,t =
∑

1≤u≤t
s(Prami,u(eu), 1)

t

We can now define success-based weights, and, what is crucial, this is done without
reference to a specific value of the value space:

wi,t = max(0, si,t − sami,t )∑
1≤ j≤t

max(0, s j,t − sami,t )

with the same proviso as before, i.e., if t = 0 or the denominator is zero, wi,t := 1
n .

With the help of these weights we can define the meta-level probability aggrega-
tion function that aggregates the object-level probability functions by a success-based
weighted arithmetic mean:

Pr{1,...,n},t+1(vm) = Prami,t+1(vm) =
∑

1≤i≤n

wi,t · Pri,t+1(vm) (∀v ∈ Val)

(AMIp)
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This probability aggregation function is an instance of the meta-inductive method
(AMI). For this reason, the long run optimality result regarding Prmi of (AMI) can
be simply transferred to the probability aggregation rule Pr{1,...,n} = Prami :

Theorem 1 Given that l is convex (where l is used for determining s as defined above),
then the forecaster Prami (as defined in (AMIp)) is long run access optimal:

lim
t→∞max(s1,t , . . . , sn,t ) − sami,t ≤ 0,

with upper bounds for short run regrets: si,t − smi,t ≤ √
n/t (∀i ∈ {1, . . . , n}).

The same strategy can be straightforwardly applied for defining the exponential version
of probabilistic meta-induction based on arithmetic probability aggregation, resulting
in improved upper bounds for short run regrets in accordance with (EAMI); we omit
the details.

That the aggregated meta-inductive predictions are also probabilistically coherent
follows from the well-known fact that the weighted average of individual probability
functions is, again, a probability function. In conclusion, considering linear probability
aggregation in a dynamical setting allows one to measure the scores by observing
past success rates, then meta-inductive probability aggregation, as presented here,
provides an epistemic rationale for using such success-based weights: It is simply
because in doing so, one has a guarantee for approaching or even outperforming the
best predictive probabilities accessible in the setting. We should highlight that the
characterisation of weights as proposed above works only if the information base for
aggregating probabilities is strong enough to contain details about the past performance
of the different probabilistic methods in question. The results we presented here hinge
on the assumption that we know the full track record. However, the meta-inductive
account has been generalised also to prove optimality results for cases with a restricted
information base. Therefore, e.g., there is the possibility to conditionalise success rates
on those probabilistic prediction instances for which information about the individual
performance is accessible. In these cases, the aggregated prediction is optimal with
respect to conditional success (for details cf. the discussion of so-called “intermittent
prediction games” in Schurz 2019, chpt.7). If there is no performance data available
at all, then our account cannot be applied to specify the weights.

Up to now, we have achieved an epistemic rationale for choosing weights used in
linear probability aggregation in a success-based way. In the following, we want to
address the problem of providing an epistemic rationale for choosing weights used in
geometric probability aggregation.

5.2 Optimal geometric probability aggregation

We have seen in the preceding subsection that there is a way of aggregating probabil-
ities by arithmetic success-based weighting (AMIp), which allows for optimality. In
this subsection,wewant to expand this result also to geometric success-basedweighted
probability aggregation (GM) (see sect. 2). It is clear that there is no direct implemen-
tation of the meta-inductive optimality results of sect. 4 for geometrical probability
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aggregation, because these optimality results are formulated only for linear success-
basedweighted predictions.We have already succeeded in transforming the optimality
results from a set of predictions about single events to the probabilistic case. Now,
we want to show how this result can be used further to allow also for proving the
optimality of a geometrical rule that uses success-based weights. As a disclaimer, we
should add that the result of this subsection is way more restricted than the result of
the previous subsection. Whereas in the case of linear probability aggregation, we
were able to show how the weights can be determined in a success-oriented way based
on any convex loss function, in the case of geometric probability aggregation, we are
only able to show that such a success-oriented way of determining the weights is pos-
sible for a specific set of loss functions. Since the matter becomes quite quickly quite
technical, we present here the general scheme of our solution. The relevant technical
details are provided in the attached appendix.

First, let us state what such a geometrical meta-level rule has to look like. In anal-
ogy to the instantiation of (AM) by the meta-level method (AMIp), we aim at an
instantiation of (GM) by the meta-level method GMI p:

Pr{1,...,n},t+1(vm) = Prgmi,t+1(vm) = 1

ct
·

∏

1≤i≤n

Pri,t+1(vm)
gw
i,t (∀vm ∈ Val)

where gwi,t is the geometrical weight of method Miat timet defined below,

ct =
∑

1≤ j≤k

∏

1≤i≤n

Pri,t+1(v j )
gwi,t ,

1/ct is a (time-dependent) factor needed for normalisation,

and thePri s areε-regular, i.e. Pri (vm) ≥ ε > 0;
a detailed justification ofε-regularity is given in the appendix.

(GMIp)

Second, to transfer the optimality result from arithmetic probability aggregation to
geometric probability aggregation, we want to highlight that the geometrical rule
(GMIp) can be re-stated as a linear rule similar to (AMIp), by replacing probabilities
by their logarithms and aggregating these logarithmic values:

log(Prgmi,t+1(vm)) =
∑

1≤i≤n

gwi,t · log(Pri,t+1(vm)) − log(ct )

Third, the main idea of our implementation is to transform the geometric predic-
tion game into an arithmetic prediction game whose task is to predict the logarithms
of the probabilistic forecasts of the geometric game. With the expression “geo-
metric/arithmetic” game, we refer to a prediction game with geometric/arithmetic
aggregation rule. The weights of the arithmetic-logarithmic prediction game in which
we transform the geometric game will be success-based and they will allow for apply-
ing themeta-inductive optimality result as this was done for (AMIp). Finally, the result
is transferred back via the equation above to the geometrical aggregation rule (GMIp)
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Fig. 2 Schema of transferring the linear meta-inductive optimality result to the geometric aggregation rule.
The ∗–variables are the variables of a logarithmic prediction game which is a certain instance of (AMIp).
For this instance, the general meta-inductive optimality result holds, as was shown in sect. 5.1. One can
equate this instance with (GMIp). Now, via reverse engineering one can define success measures gsgmi ,gsi
which allow for geometric meta-inductive optimality in the probabilistic prediction game (∗–free variables)

by defining suitable “geometrical” weights (gwi ) and success rates (gsi ) (time index
omitted). The schema of this approach is provided in Fig. 2.

Given such a procedure, an optimality result can also be proved for geometric
probability aggregation as follows: In the spirit of geometric scoring, we define the
absolute success of a method as the logarithm of the product of the scores achieved in
each round. For this purpose we design the following geometric success measure for
the probabilistic predictions of the candidate methods (cf. equation (6) in the technical
appendix):

gsi,t = 1

t
· log

⎛

⎝
∏

1≤u≤t

Pri,u(eu)

ε

⎞

⎠ .

Here, ε > 0 is a small real number, such that Pri,t (E(t) = vm) > 0 holds for all
i ∈ {1, . . . , n}, t ∈ N and vm ∈ Val. The latter requirement is called “epsilon-
regularity” and is needed for logarithmic prediction games; a detailed justification is
given in the appendix.

The normalised weights for the candidate methods are defined as usual (with the
standard proviso that if t=0 or the denominator is zero, gwi,t := 1/n):

gwi,t = max(0, gsi,t − gsgmi,t )∑
1≤ j≤n

max(0, gs j,t − gsgmi,t )

The success rate gmist of the geometric meta-inductive method Prgmi (GMIp) is
defined in the same way as the candidate method’s success rate (above), with one
difference: there is the additional factor ct that reverses the normalisation factor 1/ct
in the definition of the geometric average (cf. equation (7) of the appendix):

gmist = 1

t
· log

∏

1≤u≤t

(
ct · Prgmi,u(eu)

ε

)
,

where ct is the normalisation term according to(GM) in section 2 :
c =

∑

1≤ j≤k

∏

1≤i≤n

Pri,u(v j )
gwi,u .
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That the success measure for the candidate methods must differ from that of the geo-
metric meta-inductivist results from the fact that geometric averaging of probabilities
requires the additional step of re-normalising the resulting probability function; this
step is not needed in arithmetic averaging. Now, given this success measures it holds
(the proof is given in the appendix):

Theorem 2 Prgmi as defined in (GMIp) is long run access optimal, given the success
rate gsi (as defined in (6) in the appendix) for the candidate methods and gmis (as
defined in (7) in the appendix) for the geometric meta-inductive method:

lim
t→∞max(gs1,t , . . . ,gsn,t ) − gmist ≤ 0

with the following short run bounds for the regrets: ∀i ∈ {1, . . . , n}:

gsi,t − gmist ≤ 1

ε
· √

n/t (∀i ∈ {1, . . . , n}).

A similar result is possible for the exponential version of (GMIp); again, for a lack
of space, we omit the details here. The result shows that also geometric probability
aggregation can be performed in a success-based way, such that the long run access
optimality as well as tight short run bounds of such aggregation can be guaranteed.
This provides an epistemic rationale for geometric aggregation. Furthermore, as was
the case for linear probability aggregation, also here the outcome is probabilistically
coherent due to the normalisation of weights (gwi ) and the fact that the geometrically
weighted average of individual probability functions results in a probability function
again. Note, however, that due to the restrictions of geometrical pooling this result is
much less general. Whereas for linear pooling with success-based weights we proved
an optimality result that holds for the full range of convex loss functions, for geomet-
rical pooling we were only able to show to prove optimality for a particular geometric
loss and scoring function.

6 Conclusion

In this paper we have argued for a new solution to the problem of weighted prob-
ability aggregation. We have seen that some general constraints determine families
of aggregation rules. However, even if arguments can be put forward for deciding in
favor of a particular family, in the classical approach the choice of an exact aggre-
gation rule of the respective family remains epistemically undetermined. We have
argued that a success-based calculation of weights—as is done in the framework of
meta-induction—allows for a much more precise choice. Success-based weighting
also provides a rationale for such a choice, since it guarantees long run optimality in
probabilistic prediction tasks. Aswe have tried tomake clear in this investigation, if we
have a broad enough information basis that allows us to track the predictive success of
the set of probability functions in question, we can employ this information to further
determine the weights. Whereas the exact choice of the weights for linear and geomet-
ric probability aggregation might still depend on the context and purposes in question
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(e.g., depending on which loss function is used to measure success), such choices can
be epistemically justified as long as the respective conditions of the optimality results
are given. For the case of linear probability aggregation, we could justify a broad field
of applications, namely, all those cases, where the success of a probabilistic forecast
is measured via a convex loss function. For the case of geometric probability aggre-
gation, our result is more restricted but proves at least the possibility of an optimal
success-oriented determination of weights.

Funding Open Access funding enabled and organized by Projekt DEAL. Research of this paper was funded
by the German Research Foundation (DFG), research group (FOR 2495), project A2.1 (SCHU 1566/11-2).

Declarations

Conflict of interest The authors declare that there is no conflict of interest related to the research of this
paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Optimality of geometric ggregation

Here, we provide details for our approach to geometric meta-inductive probability
aggregation. Recall Fig. 2 of sect. 5.2. We go through it according to the following
steps: we first define geometric pooling 1©, then device a game with predictions of
logarithms of probabilities with an arithmetic meta-inductivist 2©, define the respec-
tive success measures of this game 3©, transform this game into a prediction game
about probabilities with a geometric meta-inductivist 4©, define—via backwards
engineering—the respective success measures of this game 5©, show that this is the
success measure for geometric pooling and thus verify the optimality of the geometric
meta-inductivist with respect to these success measures 6©.

2© 1©
pr∗

ami , pr
∗
i ⇐ Prgmi , Pri

⇓ ⇑ 6©
3© s∗ami , s

∗
i gsgmi ,gsi 5©

⇓ ⇑∑
i
w∗
i · pr∗

i = ∏
i
Pri

gwi

4©

1©: We aim at the optimality of Prgmi as defined in (GMIp).
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We start with the geometric prediction game with predicted probabilities pri,t =
Pri,t (Et = vm) (vm ∈ Val). We transform this game into an ordinary arithmetic
prediction game by designing an ordinary game whose task is to predict the logarithm
of the predicted probabilities of the geometric game. There are three problems to be
solved before we can start.

First, if the predicted probability is zero, its logarithm is negatively infinite, which
is intractable. Therefore, we have to assume that the predicted probabilities are lower
bounded by some arbitrarily small but positive value ε > 0, i.e., Pri,t (E(t) = vm) > ε

holds for all i ∈ {1, . . . , n}, t ∈ N and vm ∈ Val. The latter condition is called ε-
regularity. It is stronger than ordinary regularity, because there are infinitely many
points in time. Moreover, (ε-)regularity implies the condition of coherence from
Sect. 2. Note that the condition of ε-regularity would be too strong as a it general con-
dition for probabilities that are implicitly conditionalised to evidence, because if the
evidence e entails the negation of a hypothesis h then, obviously, Pr(h|e) = 0. How-
ever, we require this condition only for the predicted probabilities of the next event,
which are implicitly conditionalised at most on past events, but not on present events.
For these probabilities, the predicted event is analytically independent of (implicitly)
conditioning events, and therefore, the condition of ε-regularity is reasonable.

Second, the logarithms of probabilities are zero or negative, but we want positive
event values and predictions. A simple solution to this problem is suggested by the
solution of our first problem: we just have to predict the logarithms of these proba-
bilities viewed as multiples of ε, i.e., the probabilities divided by ε; the logarithms of
them will always be positive and range between 0 and 1/ε.

Third, the so-defined predictions log
(
Pri,t (E(t)=v)

ε

)
of our transformed arithmetic

game do not range in the interval [0, 1] but in the interval [0, log(1/ε)]. However,
this does not matter, because we assume that the loss and scoring function of our
transformed game is the natural one. For natural loss functions the optimality results
for meta-induction can be transformed easily to any scoring interval of the form [0, b]
(with scoring s(p, e) = b − |p − e|, “p” for “prediction”). The long run optimality
result stated in Sect. 4 applies directly, and the short-run bounds for (AMI) and (EAMI)
hold if they are multiplied with the breath b of the scoring interval (cf. Schurz 2019,
p.88).

Wedesignate the parameters of the corresponding arithmetic-logarithmic prediction
game by putting an asterix ∗ over the predictions and scores of this game. Therefore,
for all candidate methods M1, . . . , Mn in the latter game, values vm ∈ Val and times
t it holds:

pr∗
i,t (vm) = log

(
Pri,t (vm)

ε

)
= log(Pri,t (vm)) + log

(
1

ε

)
(1)

Note that the predictions pr∗
i,t of the logarithmic game are no longer probabilities.

2©: Since the maximal score of a logarithmic prediction is log(1/ε), the loss of a
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logarithmic prediction pr∗
i,t = log(Pri,t (et )/ε) is given as

l∗(pr∗
i,t ) = log(1/ε) − log(Pri,t (et )/ε) = log

(
ε

ε · Pri,t (et )
)

= −log(Pri,t (et )).

Therefore, the corresponding score is given as

s∗(pr∗
i,t ) = log(1/ε) − l(pr∗

i,t ) = log(1/ε) + log(Pri,t (et )) = log(Pri,t (et )/ε).

The success rate of the candidate methods is denoted as s∗i,t and thus given as follows:

s∗i,t = 1

t
·

∑

1≤u≤t

log

(
Pri,u(eu)

ε

)
(2)

The same definition applies to the success rate of themeta-inductivist of the arithmetic-
logarithmic game, denoted as s∗ami,t . Applying probabilistic meta-induction to the
candidate methods of the logarithmic prediction game yields, according to (AMIp):

pr∗
ami,t+1(vm) =

∑

1≤i≤n

w∗
i,t · pr∗

i,t+1(vm)
︸ ︷︷ ︸

=
(1)

log
( Pri,t+1(vm )

ε

)

(3)

As before, the weights w∗
i,t are success-based (s∗i,t ) as follows:

w∗
i,t = max(0, s∗i,t − s∗ami,t )∑

1≤ j≤n
max(0, s∗j,t − s∗ami,t )

(4)

Since (3) is an instantiation of (AMIp) and we assumed a convex loss function, it
follows from our investigation in Sect. 5.1 that Pr∗

ami is long run access optimal.
Therefore, we have defined the relevant success measures s∗i , s∗ami for the logarithmic
game 3© �.

We now transform the logarithmic predictions and scores of the arithmetic game
into ordinary probabilistic predictions of a geometric game with suitably defined
scores. Retransforming pr∗

i to Pri is possible by exponentiation, i.e., by defining

Pri,t (vm) = epr
∗
i,t (vm) (which is the inverse function of log, assuming that log is the

natural logarithm). Similarly for the meta-inductive aggregation method:

Prmi,t+1(vm) = epr
∗
ami,t+1(vm) =

(3)

exp

⎛

⎜⎜⎜⎜⎝

∑

1≤i≤n

w∗
i,t · pr∗

i,t+1(vm)
︸ ︷︷ ︸

=
(1)

log(Pri,t+1(vm ))

⎞

⎟⎟⎟⎟⎠
=

∏

1≤i≤n

Pri,t+1(vm)
w∗
i,t

(5)
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Now, (5) resembles already (GMIp), so 4© �. Only two things are different: First,
the weights w∗

i,t are still based on the scores of the arithmetic-logarithmic game, and,
second, the normalisation factor 1/c of the geometric aggregation rule (cf. (GMIp) is
missing.

We now define a corresponding scoring and success measure for the geometric
game which allows us to achieve long run optimality together with short run bounds
for the normalised geometric aggregation Prgmi accomplished by (GMIp) based on
the individual probabilities Pr1, . . . , Prn . This is done as follows.

• The score (s) of the probabilistic predictions Pri,t is defined as: s(Pri,t ) =
Pri,t (et )/ε, where this score is obtained by subtracting the corresponding loss
l(Pri,t ) = (1/ε) − (Pri,t (et )/ε) from the maximal score (1/ε).

• In the spirit of geometric aggregation, we define the absolute geometric success
of a series of predictions as the logarithm of the product of their scores, i.e., as
(log

∏
1≤u≤t s(Pri,u)). Alternatively, we could use a logarithmic loss function

already for the one-round scores and define log(Pri,t (et )/ε) as the score of one
round. In this case, the absolute success after t rounds would be given as the sum
of these logarithmic scores. Both methods are equivalent. This is the reason why
one finds both labels in the literature quite often used interchangeably: geometric
pooling (due to the product) and ogarithmic pooling.
The geometric success per round, abbreviated asgsi,t , is obtained from the absolute
geometric success by dividing through t :

gsi,t =
log

(
∏

1≤u≤t
s(Pri,u)

)

t
=

log

(
∏

1≤u≤t

Pri,u(eu)
ε

)

t
(6)

• However, the result of (2) is identical with that of (6), and therefore, we get:

s∗i,t = gsi,t

i.e., the average per round success of the logarithmic arithmetic game agrees with
the average per round success of the geometric game. This promises that the
optimality result is transferable from the logarithmic arithmetic to the geometric
game, providedweapply the same transformation to the score of themeta-inductive
method. However, this is not enough for the geometric meta-inductive method,
since this method involves the additional (time-dependent) normalisation constant
ct . For this reason, we have to define a scoring function gs and a success measure
gsi,t for geometricmeta-inductive probability aggregationwhich “de-normalises”,
i.e., gets rid of this constant, by implementing the normalisation factor ct into the
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score:

gs(Prgmi,t ) = ct · Prgmi,t (et )

ε

where ct =
∑

1≤ j≤k

∏

1≤i≤n

Pri,t (v j )
gwi,t

and Prgmi,t is defined as in(GMIp) in sect. 5,

with the geometric weights gwi,t defined as usual

gwi,t = max(0,gsi,t − gsgmi,t )∑
1≤ j≤n

max(0,gs j,t − s∗
gmi,t )

.

Again, the standard proviso gwi,t = 1/n is assumed for t=0 or if the denominator
should be zero.

• Based on this “de-normalising” score we can define the de-normalised geometric
success rate of Prgmi as

gmist = 1

t
· log

⎛

⎝
∏

1≤u≤t

gs(Prgmi,u)

⎞

⎠ =

1

t
· log

⎛

⎝
∏

1≤u≤t

(
Prgmi,u(eu)

ε
· c

)⎞

⎠ .

(7)

Therefore, we calculated the relevant successmeasures gsi ,gmis for the geometric
game, hence 5© �.

• We have already shown that the relative geometric success of a candidate method
equals the relative success rate of this method in the logarithmic arithmetic game:
s∗i,t = gsi,t . We also know that the meta-inductive predictions in the logarithmic
arithmetic game, pr∗

ami with success rate s
∗
ami , is long run access optimal and has

short run bounds given by multiplying the short run bounds of (AMI) and (EAMI)
of sect. 4 with the breath 1/ε of the scoring interval of the logarithmic scores (see
the theorem below).

• We show now that the geometrically aggregated meta-inductive predictions of the
geometric game, Prgmi with success rates gmist , are likewise long run access
optimal and satisfy the same short run bounds, by showing that for all times t > 0,
s∗ami,t = gmist holds:

– By (7) the geometric success rate of the meta-inductive method is

gmist = 1

t
· log

∏

1≤u≤t

(
c · Prgmi,u(eu)/ε

)
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– According to (GMIp):

Prgmi,u(eu) =
∏

1≤u≤n

(Pri,u(eu)gswi,u )

c

so, the normalisation factor c cancels and we get:

gmist = 1

t
· log

∏

1≤u≤t

⎛

⎜⎜⎝

n∏
i=1

(Pri,u(eu)gwi,u )

ε

⎞

⎟⎟⎠

.
– Reformulation gives us:

gmist = 1

t
·

∑

1≤u≤t

⎛

⎝
∑

1≤u≤n

(
gwi,u · log( Pri,u(eu)

ε
)

)⎞

⎠

– which is identical with

1

t
·

∑

1≤u≤t

s(pr∗
i,u) = s∗ami,t

since we identify the starred weights w∗
i,t with the weights of the geometric meta-

inductivist gwi,u . It follows that gmist = s∗ami,t .

This completes the proof of theorem 2 at the end of sect. 5. 6© �.
We conjecture that this result can be generalised to other loss and scoring functions

and that one could get rid of the “de-normalisation” in the success rate of Prgmi .
However, this is a very complex topic and work for future research.
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