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Abstract
This paper deals with the resource-constrained project scheduling problem with partially renewable resources and general
temporal constraints with the objective to minimize the project duration. The consideration of partially renewable resources
allows to integrate the decision about the availability of a resource for a specific time period into the scheduling process.
Together with general temporal constraints, which permit to establish minimum and maximum time lags between activities,
even more aspects of real-life projects can be taken into account. We present a branch-and-bound algorithm for the stated
problem that is based on a serial schedule-generation scheme. For the first time it is shown how a dominance criterion can be
applied on the associated generation scheme to reduce the start times in each scheduling step. To improve the performance of
the solution procedure, we integrate consistency tests and lower bounds from the literature and devise new pruning techniques.
In a comprehensive experimental performance analysis we compare our exact solution procedure with all available branch-
and-bound algorithms for partially renewable resources. Additionally, we investigate a directly derived priority rule-based
approximation method from our new enumeration scheme. The results of the computational study demonstrate the efficiency
of our branch-and-bound algorithm and reveal that the derived approximation method is only suited to solve small- and
medium-sized instances.

Keywords Project scheduling · Branch and bound · Resource-constrained project scheduling · Partially renewable resources ·
Minimum and maximum time lags

1 Introduction

In the field of project scheduling, a great deal of effort has
been devoted over the years to renewable resources, which
are able to model resources like staff or machines that are
assumed to be available in a specific quantity at each point
in time (or period). In this work, we consider a more gen-
eral resource type, which has firstly been introduced under
the term partially renewable resources in the framework of
project scheduling by Böttcher et al. (1999). The correspond-
ing problem, denoted by RCPSP/π , is a generalization of
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the classical resource-constrained project scheduling prob-
lem (RCPSP). Themotivation for the extension of RCPSP by
partially renewable resources stems from the restrictiveness
of the renewable resources in the sense that the availability
for each time period has to be fixed in advance, separated
from the scheduling process. This limitation is resolved by
partially renewable resources that are defined over multiple
time periodswith a given capacity. Thereby, the resources are
consumed only on the defined time periods by the activities
of the project. Examples for the application of RCPSP/π can
be found in Böttcher et al. (1999) for the flexible planning of
lunch breaks, in Alvarez-Valdes et al. (2008) for the assign-
ment of weekend work, or in Alvarez-Valdes et al. (2015) for
a school timetabling problem.

In the last decades, approximation and exact solution pro-
cedures have been developed for RCPSP/π . In Böttcher et al.
(1999) and Schirmer (1999), priority rule-based methods
for RCPSP/π are investigated. The works of Alvarez-Valdes
et al. (2006, 2008, 2015) are devoted to a GRASP and a
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scatter search algorithm, and in Schirmer (1999) different
local-search procedures are considered. The state-of-the-art
approximation method for RCPSP/π in terms of the solution
quality is given by the scatter search algorithm. This proce-
dure makes use of a priority rule-based generation scheme
to determine feasible schedules, which are iteratively com-
bined with each other to obtain better solutions. Böttcher
et al. (1999) devised the only exact solution procedure for
RCPSP/π . The branch-and-bound algorithm (BnB) is based
on the enumeration scheme by Talbot and Patterson (1978)
for which the authors have developed two feasibility bounds.

For the first time, Watermeyer and Zimmermann (2020)
have extended RCPSP/π by taking minimum and maximum
time lags between the activities into account (RCPSP/max-
π ). An example for this problem is the planning of a training
program for an employee that consists of a theoretical and a
practical course. Thereby, the theory has to be taught first, the
practical course is not supposed to be conducted more than
twoweeks after, and at most one course should take place at a
weekend day. The temporal constraints between both courses
are represented by minimum and maximum time lags, while
the weekend constraint is given by a partially renewable
resource that is defined over all weekend dayswith a capacity
for one course. The state-of-the-art exact solution procedure
for RCPSP/max-π and RCPSP/π is provided inWatermeyer
and Zimmermann (2020) by a relaxation-based BnB. The
procedure progressively reduces the possible resource con-
sumptions by the activities of the project in each branching
step and solves the corresponding resource relaxations.

In this workwe present a newBnB for RCPSP/max-π that
is based on a serial schedule-generation scheme. The new
enumeration approach schedules all activities of the project
successively by assigning a start time to an activity in each
branching step. In this way, partial schedules are augmented
in the course of the enumeration until there is no feasible start
time left or a complete schedule is determined.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a formal description of RCPSP/max-π . In
Sect. 3 we discuss the enumeration scheme of our BnB. Sec-
tion 4 deals with improving techniques, and Sect. 5 describes
the BnB. In Sect. 6 we present the results of a comprehen-
sive experimental performance analysis and provide some
conclusions in Sect. 7.

2 Problem description

RCPSP/max-π can be represented by an activity-on-node
project network N with node set V , covering all activities of
the project, and arc set E ⊂ V × V , implying the prece-
dence relationships among them. Each activity i ∈ V is
assigned a non-interruptible processing time pi ∈ Z≥0 and
a resource demand rdik ∈ Z≥0 for each partially renewable

resource k ∈ R. The temporal constraint for each activity
pair (i, j) ∈ E is specified by a start-to-start precedence
relationship and arc weight δi j ∈ Z, meaning that each tem-
poral constraint is given by S j ≥ Si +δi j , establishing a time
lag between the start times of activities i and j . In the fol-
lowing we speak of a minimum time lag between activities
i and j if δi j ≥ 0 and say that a maximum time lag is given
if δ j i < 0. The node set V :={0, 1, . . . , n + 1} includes two
fictitious activities 0 and n + 1, i.e., p0 = pn+1 = 0, which
represent the beginning and the termination of the project,
respectively. It is assumed that each project starts at time 0
and is completed before a prescribed deadline d̄, i.e., S0 = 0
and Sn+1 ≤ d̄ . In the remainder of this work, we call a vec-
tor S = (Si )i∈V with Si ∈ Z≥0 and S0 = 0 a schedule
and speak of a time-feasible schedule if all temporal con-
straints are satisfied and Sn+1 ≤ d̄. By ST , we denote the
set of all time-feasible schedules. The resource constraints
of RCPSP/max-π are given by the resource capacities Rk ∈
Z≥0 of all partially renewable resources k ∈ R. Thereby, the
availability of each resource is only limited on a specified
subset of all time periods within the entire planning horizon
Πk ⊆ {1, 2, . . . , d̄}. As a consequence, only the resource
consumption of an activity i ∈ Vk :={i ∈ V | rdik > 0} over
the time periods inΠk has to be taken into account. In order to
express the number of the timeperiods inΠk an activity i ∈ V
is in execution, we introduce the so-called resource usage
ruik(Si ):=|]Si , Si + pi ] ∩ Πk |. Based on the resource usage,
the resource consumption of a resource k ∈ R by an activ-
ity i ∈ V follows directly with rcik(Si ):=ruik(Si ) · rdik , so that
the resource constraints can be stated by

∑
i∈V rcik(Si ) ≤ Rk

for all k ∈ R. In the following, we call a schedule S that
fulfills all resource constraints a resource-feasible schedule
and denote the set of all resource-feasible schedules by SR .
Furthermore, we say that schedule S ∈ S is feasible with
S:=ST ∩ SR as the set of all feasible schedules.

The objective of RCPSP/max-π is to determine a feasible
schedule S∗ with the shortest project duration among all fea-
sible schedules S ∈ S. The corresponding problem is stated
by

Minimize f (S) = Sn+1

subject to S ∈ S
}

(P)

with f : S 	→ R as the objective function that assigns the
project duration to each feasible schedule S. We call a sched-
ule S that solves problem (P) an optimal schedule and denote
the set of all optimal schedules by OS .

It should be noted that there also exist other approaches
to model partially renewable resources by assigning multiple
subsets of time periods to each of themwith the advantage of
a more intuitive connection to resources in real-life applica-
tions (Böttcher et al. 1999). In this work, we use the so-called
normalized formulation for partially renewable resources
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that turned out to be more appropriate for theoretical issues
since each restriction of a real-life resource is represented by
exactly one partially renewable resource.

3 Enumeration scheme

In general, the enumeration scheme of a BnB specifies the
procedure to construct the search tree or rather implicates
how to generate all direct descendants of a search node. In
the following, we present the enumeration scheme of our
BnB, which is based on a serial schedule-generation proce-
dure complemented by an unscheduling step. The concept
of unscheduling is based on the work of Franck et al. (2001)
that provides a serial schedule-generation scheme for RCPSP
with general temporal constraints (RCPSP/max).

The construction procedure of the directed outtree corre-
sponding to the enumeration scheme of our BnB is described
in Algorithm 1. In this procedure, each enumeration node
is represented by a pair (C, S) with C ⊆ V as the set of
all currently scheduled activities and S as a time-feasible
schedule that represents the start times Si for all activities
i ∈ C and the earliest time-feasible start times for all not
currently scheduled activities i ∈ V \ C. To simplify the fol-
lowing explanations, we use the concept of partial schedules,
referring to Definition (2.6.3) in Neumann et al. (2003), to
describe the start times of all currently scheduled activities
for some enumeration node.

Definition 1 SC :=(Si )i∈C with C ⊆ V and schedule S is
called a partial schedule. In case that S j ≥ Si + δi j for all
(i, j) ∈ E ∩C×C, partial schedule SC is said to be time-fea-
sible and is termed resource-feasible if

∑
i∈C rcik(Si ) ≤ Rk

for all k ∈ R. In compliance with schedules, a time-feasible
and resource-feasible partial schedule SC is called feasible.
SC∪{i} with i ∈ V \ C is said to be the augmentation of SC
by activity i and Si is termed time-feasible, resource-fea-
sible or feasible if partial schedule SC∪{i} is time-feasible,
resource-feasible or feasible, respectively.

Algorithm 1 outlines the enumeration scheme of our BnB.
In the initialization step, the distance matrix D:=(di j )i, j∈V
with di j as the length of a longest path between activities
i and j in project network N is calculated with the Floyd-
Warshall algorithm (Ahuja et al. 1993, Sect. 5.6). Then,
the earliest and latest time-feasible schedules ES and LS are
derived and the root node (C, S) is initialized by C:={0} and
S:=ES, meaning that the project start is scheduled at time 0,
so that partial schedule SC = (0) with S0 = 0 corresponds
to the root node. For the enumeration scheme we use set Ω

to store all generated enumeration nodes that are still to be
explored, and Φ to gather all generated schedules during the
construction procedure. Accordingly, these sets are initial-
ized by Ω:={(C, S)} and Φ:=∅.

Algorithm 1: Enumeration scheme

Input: Instance of problem RCPSP/max-π
Output: Set Φ of candidate schedules

1 Determine distance matrix D = (di j )i, j∈V
2 Set ESi := d0i , LSi := −di0 for all i ∈ V
3 C := {0} S := ES
4 Ω := {(C, S)} Φ := ∅
5 while Ω = ∅ do
6 Remove (C, S) from set Ω
7 if C = V then
8 Φ := Φ ∪ {S}
9 else

10 Select activity i ∈ C̄
11 Θi := {τ ∈ {Si , . . . ,LSi } | rck (SC) + rcik(τ ) ≤ Rk for all

k ∈ Ri }
12 Calculate Ti (Algorithm 2)
13 forall the t ∈ Ti do
14 S′

i := t S′ := (max(S j , S′
i + di j )) j∈V

15 if ∃ j ∈ C : S′
j > S j then

16 C′ := C \ { j ∈ C | S′
j > S j }

17 else
18 C′ := C ∪ {i}
19 Ω := Ω ∪ {(C′, S′)}
20 return Φ

In each iteration of Algorithm 1 some pair (C, S) is
removed from Ω . In case that C = V , some activity i ∈ C̄
from the set of all not currently scheduled activities C̄:=V \C
is chosen. For this activity, all resource-feasible start times
in {Si , . . . ,LSi } are determined and stored in the so-called
scheduling setΘi . The resource-feasibility is ensured by tak-
ing the resource consumption rck (S

C):= ∑
j∈C rcjk(S j ) for

each resource k ∈ Ri :={k ∈ R | rdik > 0} of partial schedule
SC into account. Afterward, based on a dominance criterion
with similarities to left-shift dominance rules for renewable
resources (see, e.g., Stinson et al., 1978; Demeulemeester
and Herroelen, 1992), the reduced scheduling set Ti is cal-
culated. Ti comprises all start times from Θi with a lower
resource consumption for at least one resource k ∈ Ri com-
pared to all lower start times in Θi . The calculation of Ti ,
which is defined by Ti :={τ∈Θi | �τ ′∈[0, τ [ ∩Θi : ruik(τ ) ≥
ruik(τ

′) for all k ∈ Ri }, is described in Sect. 3.1. Based
on the reduced scheduling set Ti , all direct descendants of
enumeration node (C, S) are generated. For each descendant
node (C′, S′), some scheduling time t ∈ Ti is established
as the start time S′

i of activity i , followed by an update
of the earliest time-feasible start times for all activities by
S′:=(max(S j , S′

i + di j )) j∈V if it is assumed that activity i
starts at time t . Since for each start time t ∈ Ti the conditions
S j + d ji ≤ t for all currently scheduled activities j ∈ C are
satisfied, in case that t is not time-feasible, there has to be at
least one activity j ∈ C with S j − di j < t . This means that
the induced latest start time LSi (S j ):=S j − di j of activity i
by some activity j ∈ C prevents the time-feasibility of start
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time t . As a consequence, in order to achieve the time-feasi-
bility of S′C∪{i} with S′

i = t , all currently scheduled activities
j ∈ C with t > LSi (S j ) or rather S′

j > S j are unscheduled
by setting C′:=C \ { j ∈ C | S′

j > S j }. More precisely, the
unscheduling of an activity is done by removing it from the
set of all currently scheduled activities C of the direct ances-
tor node. It should be noted that 0 ∈ C′ is always ensured by
t ≤ LSi due to the definition of Θi . In case that start time
t is time-feasible (t ≤ min j∈C LSi (S j )), activity i is sched-
uled at start time S′

i = t by setting C′:=C ∪ {i}. Finally, after
the scheduling or unscheduling step, the descendant node
(C′, S′) is stored in Ω in order to be explored in one of the
following iterations. From the description of the procedure to
schedule or unschedule activities it follows directly that each
partial schedule SC of an enumeration node (C, S) is feasi-
ble. Therefore, in case that some node (C, S) with C = V is
removed from Ω , schedule S = SC ∈ S is stored in Φ as a
candidate schedule. After all enumeration nodes have been
explored, i.e., Ω = ∅, Algorithm 1 terminates and returns
set Φ, which contains all candidate schedules generated in
the course of the enumeration procedure.

3.1 Reduced scheduling set

This section deals with the calculation of the reduced
scheduling set Ti in each branching step of Algorithm 1. For
the first time, we provide a procedure to determine dominant
start times from Θi , while all existing schedule-generation
schemes for partially renewable resources consider all start
times from Θi in each scheduling step (see Schirmer, 1999;
Alvarez-Valdes et al., 2006; 2008; 2015).

Algorithm 2: Reduced scheduling set

Input: Scheduling set Θi
Output: Reduced scheduling set Ti

1 Ti := ∅ t := minΘi element := true

2 while t < ∞ do
3 forall the τ ∈ Ti do
4 element := false
5 forall the k ∈ Ri do
6 if ruik(t) < ruik(τ ) then
7 element := true
8 break
9 if element = false then

10 break
11 if element = true then
12 Ti := Ti ∪ {t}
13 t := min{τ ∈ Θi | τ > t}
14 return Ti

The procedure to calculate the reduced scheduling set
Ti :={τ ∈Θi | �τ ′∈[0, τ [[0] ∩ Θi :ruik(τ )≥ ruik(τ

′) for all

k ∈ Ri } from Θi is given in Algorithm 2. To simplify the
representation, the definition min ∅:=∞ is assumed. In the
course of the procedure, variable t serves as the start time that
is considered in the current iteration, while boolean variable
element is used to indicate if start time t is or is not an element
of Ti . The algorithm starts with an empty set Ti and checks
in each iteration for some start time t ∈ Θi if there is any
start time τ ∈ Ti with ruik(t) ≥ ruik(τ ) for all k ∈ Ri . This is
done in the procedure by checking for each τ ∈ Ti if there is
at least one resource k ∈ Ri with ruik(t) < ruik(τ ). If this is
the case for all start times in Ti , meaning that there is no start
time τ ∈ Ti with ruik(t) ≥ ruik(τ ) for all k ∈ Ri , t is added to
Ti . Since all start times t ∈ Θi are considered in an increas-
ing order, the condition that there is no start time τ ∈ Ti with
ruik(t) ≥ ruik(τ ) for all k ∈ Ri implies that there is also no
lower start time in Θi satisfying this condition. This can be
verified by noticing that for each start time τ ∈ Θi that has
not been added to Ti in the course of Algorithm 2, there is at
least one lower start time τ ′ ∈ Ti with ruik(τ

′) ≤ ruik(τ ) for
all k ∈ Ri . Finally, since for each start time t ∈ Θi that is not
an element of Ti at the end of the procedure there is at least
one earlier start time τ ∈ Θi (τ ∈ Ti ) with ruik(t) ≥ ruik(τ )

for all k ∈ Ri , we can state that Algorithm 2 is correct.

3.2 Correctness of the enumeration scheme

In what follows, we prove that Algorithm 1 generates at least
one optimal schedule in finitely many iterations if and only if
there is at least one feasible solution. It should be noted that
the total correctness ofAlgorithm 1 follows directly from this
proof since each candidate schedule is feasible, i.e., Φ ⊆ S.
First of all, Theorem 1, which is based on Lemmas 1 and 2,
states that the enumeration scheme generates at least the set
of all so-called active schedules AS. In line with Neumann
et al. (2000), we call a feasible schedule S active if and only if
there is no feasible schedule S′ = Swith S′ ≤ S, i.e., S′

i ≤ Si
for all i ∈ V . By definition, for each non-active feasible
schedule there is at least one activity whose start time can be
left-shifted to obtain a feasible schedule. As a consequence,
there has to be at least one optimal schedule that is active for
each instance with S = ∅, so that Theorem 1 implicates the
completeness of Algorithm 1, i.e., S = ∅ ⇔ Φ ∩ OS = ∅.
Lemma 1 Let Ti be the reduced scheduling set of Θi . Then
Ti contains exactly all lowest scheduling times t ∈ Θi that
satisfy ruik(t) ≤ ruik(τ ) for any τ ∈ Θi and all k ∈ Ri , i.e.,
Ti = T∪

i := ⋃
τ ∈Θi

{min{τ ′ ∈ Θi | ruik(τ ′)≤ruik(τ ) for all k ∈
Ri }}.
Proof Consider any start time t ∈ Ti . From the definition
of Ti it follows directly that t = min{τ ∈ Θi | ruik(τ ) ≤
ruik(t) for all k ∈ Ri }, so that Ti ⊆ T∪

i is given. Next, let
τ ∈ Θi and t :=min{τ ′ ∈ Θi | ruik(τ ′) ≤ ruik(τ ) for all k ∈
Ri } be given and assume t /∈ Ti . Since t /∈ Ti implies t >
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min{τ ′ ∈ Θi | ruik(τ ′) ≤ ruik(τ ) for all k ∈ Ri }, which would
contradict the assumption for t , Ti ⊇ T∪

i and therefore Ti =
T∪
i follows. ��

Lemma 2 Let S f ∈ S be any feasible schedule and (C, S)

somenode corresponding to the enumeration schemeofAlgo-
rithm 1 with C = V , S ≤ S f and rujk(S j ) ≤ rujk(S

f
j ) for all

j ∈ C and all k ∈ R j . Then there is at least one direct
descendant node (C′, S′) that fulfills the conditions S′ ≤ S f

and rujk(S
′
j ) ≤ rujk(S

f
j ) for all j ∈ C′ and all k ∈ R j .

Proof Let i ∈ C̄ be the selected activity for the generation
of the direct descendants of enumeration node (C, S). First
of all, S f

i ∈ Θi can be derived from Si ≤ S f
i ≤ LSi and

rck (S
C) + rcik(S

f
i ) ≤ rck (S

f ) ≤ Rk for all k ∈ Ri . Since

S f
i ∈ Θi , from Lemma 1 we get t :=min{τ ∈ Θi | ruik(τ ) ≤

ruik(S
f
i ) for all k ∈ Ri } ∈ Ti , so that t ≤ S f

i and ruik(t) ≤
ruik(S

f
i ) for all k ∈ Ri . Accordingly, considering the direct

descendant node corresponding to start time t of activity i ,
S′ ≤ S f is implied by t ≤ S f

i (t + di j ≤ S f
i + di j ≤

S f
j for all j ∈ V ) and the conditions rujk(S

′
j ) ≤ rujk(S

f
j )

for all j ∈ C′ and k ∈ R j are satisfied as well, either if
activity i is scheduled (C′:=C ∪ {i}) or some activities are
unscheduled. ��
Theorem 1 Algorithm 1 generates all active schedules, i.e.,
Φ ⊇ AS.
Proof For each active schedule Sa ∈ AS the conditions
S ≤ Sa and rujk(S j ) ≤ rujk(S

a
j ) for all j ∈ C and all

k ∈ R j are satisfied with (C, S) corresponding to the root
node. Accordingly, it follows from Lemma 2 that there exists
at least one path in the enumeration tree on which each
node (C, S) satisfies the conditions S ≤ Sa and rujk(S j ) ≤
rujk(S

a
j ) for all j ∈ C and all k ∈ R j , respectively. Since for

the generation of any direct descendant node either the start
time S j for at least one activity j ∈ C is increased (S′

j > S j )

or some activity i ∈ C̄ is scheduled (C′:=C ∪ {i}), each such
path has a finite length. Finally, from the property of Algo-
rithm 1 that each generated schedule S ∈ Φ is feasible and
since S ≤ Sa with S = Sa would contradict the assumption
that Sa is active, we can state that Algorithm 1 generates all
active schedules. ��
Finally, Lemma 3 establishes that the enumeration scheme
terminates after a finite number of iterations.

Lemma 3 Algorithm 1 generates at most (d̄+1)|V |(d̄+1) enu-
meration nodes.

Proof For the generation of any descendant node in the enu-
meration scheme of Algorithm 1 either the selected activity
i ∈ C̄ is scheduled or the start time S j of any activity j ∈ C
is increased by at least one unit. Since the start time of each

activity is bounded from above by d̄ + 1, an upper bound
for the maximum depth of the enumeration tree is given by
|V |(d̄ + 1). Accordingly, an upper bound for the maximum
number of generated nodes is given by (d̄ + 1)|V |(d̄+1) tak-
ing into consideration that the number of start times in Ti is
bounded from above by d̄ + 1. ��

4 Improving techniques

In Watermeyer and Zimmermann (2020) it has already been
shown for a relaxation-based BnB for RCPSP/max-π that
the application of consistency tests, lower bounds , and tech-
niques to avoid redundancies can have a great impact on the
performance. In what follows, we extend our enumeration
scheme to be able to use consistency tests and lower bounds
fromWatermeyer and Zimmermann (2020) and to apply new
devised pruning techniques that are described in Sect. 4.3.

4.1 Extended enumeration scheme

For the extension of the enumeration scheme we establish
a domain Wi ⊆ H :={0, 1, . . . , d̄} for the start time Si of
each activity i ∈ V . Set Wi contains all possible start times
of activity i ∈ V , i.e., Si ∈ Wi . In line with Definition 1 in
Watermeyer and Zimmermann (2020), we callW :=(Wi )i∈V
with Wi ⊆ H for all i ∈ V and W0 = {0} a start time
restriction and denote by Wi the start time restriction of
activity i ∈ V . In the following we speak of a W -feasible
schedule S if S ∈ ST (W ):={S ∈ ST | Si ∈ Wi for all
i ∈ V } and say that a partial schedule SC is W -feasible if
there is at least one schedule S′ ∈ ST (W ) with S′

i = Si
for all scheduled activities i ∈ C. Furthermore, in accor-
dance with Definition 1, we say that start time Si of some not
currently scheduled activity i ∈ C̄ is W -feasible exactly if
augmentation SC∪{i} is W -feasible. Therefore, if t is estab-
lished as the earliest possible start time of some activity
i ∈ V , the earliest W -feasible start time of any activity j ∈
V is expressed by ES j (W , i, t):=(min S̃T (W , i, t)) j with
S̃T (W , i, t):={S ∈ ST (W ) | Si ≥ t}. In the same way, the
latest W -feasible start time of an activity j ∈ V is given by
LS j (W , i, t):=(max ŜT (W , i, t)) j with ŜT (W , i, t):={S ∈
ST (W ) | Si ≤ t} if t is assumed to be the latest possible start
time of activity i ∈ V . In Watermeyer and Zimmermann
(2020), two algorithms have been introduced that are able to
determine the minimal point of S̃T (W , i, t) and the maximal
point of ŜT (W , i, t), respectively.

The extension of the enumeration scheme is given in
Algorithm 3. For each enumeration node a start time restric-
tion W is stored in addition, so that each node is given
by a triple (C, S,W ). At the beginning of the algorithm,
Wi :={ESi , . . . ,LSi } for all i ∈ V ensures that all feasible
schedules S ∈ S are covered by the set of all W -feasible
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Algorithm 3: Extended enumeration scheme

Input: Instance of problem RCPSP/max-π
Output: Set Φ of candidate schedules

1 Determine distance matrix D = (di j )i, j∈V
2 ESi := d0i , LSi := −di0 for all i ∈ V
3 Wi := {ESi , . . . ,LSi } for all i ∈ V
4 C := {0} S := ES
5 Ω := {(C, S,W )} Φ := ∅
6 while Ω = ∅ do
7 Remove (C, S,W ) from set Ω
8 if C = V then
9 Φ := Φ ∪ {S}

10 else
11 Select activity i ∈ C̄
12 Θi := {τ ∈ Wi | rck (SC) + rcik(τ ) ≤ Rk for all k ∈ Ri }
13 Calculate Ti (Algorithm 2)
14 forall the t ∈ Ti do
15 S′

i := t S′ := min S̃T (W , i, S′
i )

W ′ := (Wj \ [0, S′
j [) j∈V

16 if ∃ j ∈ C : S′
j > S j then

17 C′ := C \ { j ∈ C | S′
j > S j }

18 else if S′
i = t then

19 C′ := C ∪ {i}
20 Ω := Ω ∪ {(C′, S′,W ′)}
21 return Φ

schedules in the root node, i.e., ST (W ) ⊇ S. In the fur-
ther course of the algorithm, recalling that Wi represents the
domain of start time Si , all start times in Ti of some activ-
ity i ∈ C̄ are limited to Wi . Accordingly, each start time
t ∈ Ti that is assigned to activity i ∈ C̄ is assured to be an
element of Wi . In the branching step, in order to generate a
descendant node (C′, S′,W ′), some start time t ∈ Ti is estab-
lished as the earliest start time of activity i ∈ C̄ by setting
S′
i :=t . Following, the earliest W -feasible schedule S′ with
S′ ≥ S and S′

i ≥ t is determined. Since S = (minWi )i∈V
is assured at the start of each iteration, the earliest W -fea-
sible schedule with S′ ≥ S and S′

i ≥ t is obtained by
S′:=min S̃T (W , i, t). If there is at least one scheduled activ-
ity j ∈ C with ES j (W , i, t) > S j (S′

j > S j ), which implies
that t > LSi (W , j, S j ), start time t of activity i is not W -
feasible. As a consequence, all activities j ∈ C with S′

j > S j

have to be unscheduled, so that activity i can be scheduledW -
feasible at start time t in case that t = ESi (W , i, t) (S′

i = t).
It should be noted that in general, due to the breaks in W ,
S′
i = t is not assured even if there is no scheduled activ-

ity j ∈ C with S′
j > S j . Accordingly, it is only possible to

schedule activity i W -feasible at time t if S′
i = t .

The proof of the total correctness of the extended enu-
meration scheme is closely related to that of Algorithm 1.
In Lemma 2, only the conditions S f ∈ ST (W ) for node
(C, S,W ) and S f ∈ ST (W ′) for its direct descendant node
(C′, S′,W ′) have to be considered in addition. Based on this,
the completeness of Algorithm 3 follows analogously to the

proof of Theorem 1, while Lemma 3, which still applies to
Algorithm 3, states the total correctness.

4.2 Lower bounds and consistency tests

In this section, we shortly present lower bounds and con-
sistency tests that have been developed in Watermeyer and
Zimmermann (2020).

The first lower bound is equal to the earliest time-feasible
project termination if the start time restrictions of all activi-
ties are taken into account. The corresponding lower bound is
givenbyLB0π :=ESn+1(W )withES(W ):=min ST (W ). The
second lower boundLBDπ is determined in a destructiveway,
meaning that a hypothetical upper bound on the project dura-
tion d is increased as long as it precludes any feasible solution
(Brucker and Knust, 2003). To determine the destructive
lower bound LBDπ in any node (C, S,W ), a binary search
is conducted on some time interval [LB0π ,UB − 1] with
UB as the best solution that has been found in the course
of the BnB or d̄ + 1, otherwise. In each iteration, it is
checked if the sum of the minimum possible consumptions
min{rcik(τ ) | τ ∈ Wi ∩ [ESi (W ),LSi (W , n + 1, d)]} over
all activities exceeds the capacity of at least one resource
k. In this case, there cannot be any feasible schedule with
Sn+1 ≤ d, so that d + 1 is established as a lower bound for
the binary search. Otherwise, d − 1 is set as an upper bound.
This procedure continues until LBDπ is determined, i.e., the
lowest hypothetical upper bound on the project duration that
does not preclude any feasible schedule.

In general, a consistency test establishes an implicit
constraint of a problem if some specified condition is sat-
isfied. For all consistency tests we consider, these implicit
constraints are unary on the start time of some activity.
Accordingly, each consistency test is described by a condi-
tion and a reduction rule on the start time restriction of some
activity. In line with Dorndorf et al. (2000a), each of the fol-
lowing consistency tests can be interpreted as a function γ

mapping any start time restrictionW to an updated start time
restriction W ′:=γ (W ) with W ′

i ⊆ Wi for all i ∈ V .
The first three consistency tests are based on the temporal

constraints S j ≥ Si +δi j for all (i, j) ∈ E of problem (P), so
that they could be applied on any project scheduling problem
independent on the considered resource type. The follow-
ing two consistency tests are well known and have already
been applied on project scheduling problems (see, e.g., Dorn-
dorfet al., 2000b; Alvarez-Valdes et al., 2008). The first
(second) test is based on checking for some activity pair
(i, j) ∈ E if the currently lowest (greatest) possible start
time W j :=minWj (Wi :=maxWi ) of activity j (i) is con-
sistent with the lowest (greatest) possible start time minWi

(maxWj ) of activity i ( j) with respect to time lag δi j . The
corresponding conditions and reduction rules are given as
follows:
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W j < Wi + δi j ⇒ Wj :=Wj \ [0,Wi + δi j [
Wi > W j − δi j ⇒ Wi :=Wi \ ]W j − δi j ,∞[
In this work, both tests are gathered under the term tempo-
ral-bound consistency test.

The next consistency test, which is also based on the tem-
poral constraints of problem (P), checks for each possible
start time of some activity whether there even exists any W -
feasible schedule with this start time of the activity. One pass
of the so-called temporal consistency test considers all start
times in the start time restrictions over all activities. The cor-
responding condition and reduction rule for some start time
t ∈ Wi of an activity i ∈ V is given by

�S ∈ ST (W ) : Si = t ⇒ Wi :=Wi \ {t}.

Next, we deal with consistency tests that take the resource
constraints of problem (P) into account. All the following
tests have in common that they check for each start time of
some activity if its induced resource consumption and the
minimum consumptions over all other activities exceed the
capacity of at least one resource. The general condition is
stated by

∃k ∈ R : rcik(t) +
∑

j∈Vk\{i}
min{rcjk(τ ) | τ ∈ Wr

j } > Rk .

The difference between the consistency tests is given by the
determination of the possible start times Wr

j for the activi-
ties j ∈ V \ {i}. For the resource-bound consistency test,
Wr

j is given by the start time restriction, i.e., Wr
j :=Wj .

Extensions of the resource-bound consistency test are the
so-called D-interval and W -interval consistency tests that
restrict the number of start times in Wr

j by taking temporal
constraints into account. While the D-interval consistency
test considers Wr

j :=Wj ∩ [t + di j , t − d ji ], the W -in-
terval consistency test restricts Wr

j even more by setting
Wr

j :=Wj ∩ [ES j (W , i, t),LS j (W , i, t)].

4.3 Pruning the enumeration tree

In this section, we present two techniques that are able to
reduce the set of schedules that are explored by a node in the
course of the enumeration scheme. For both methods, the
branching step of Algorithm 3 is extended by a procedure
that reduces the start time domain of the branching activity.
It should be noted that in contrast to methods that remove
generated nodes, the following techniques prune parts of the
enumeration tree by adding constraints to each node in the
branching step to prevent that parts of the search tree are
generated at all. In a first step we develop the two pruning
techniques separately from each other. Afterward, we show
that the combination of both methods ensures that each part

of the time-feasible region is explored exactly once in the
course of the enumeration scheme.

The first technique is based on the storage of the resource
usage that is induced by the selected activity and its start
time in the branching step as a lower bound for all possible
start times of the considered activity. In order to apply the so-
called usage-preserving technique (UPT), the branching step
of the extended enumeration scheme is adapted as follows.
Before start time t ∈ Ti is established as the earliest start time
of some activity i ∈ C̄ in line 15 of Algorithm 3, W ′:=W is
initialized andW ′

i :={τ ∈ W ′
i |ruik(τ ) ≥ ruik(t) for all k ∈ Ri }

is set. Additionally, for all further operations in line 15, start
time restriction W is replaced by W ′. Since the application
of UPT in Algorithm 3 implies for any node (C, S,W ) and
any schedule S′ ∈ ST (W ) that the conditions S ≤ S′ and
rujk(S j ) ≤ rujk(S

′
j ) for all j ∈ C and all k ∈ R j are satisfied,

Corollary 1 follows.

Corollary 1 Let UPT be used in Algorithm 3, let S f ∈ S be
any feasible schedule, and (C, S,W ) some node correspond-
ing to the enumeration scheme of Algorithm 3with C =V and
S f ∈ST (W ). Then there is at least one direct descendant
node (C′, S′,W ′) that fulfills the condition S f ∈ ST (W ′).

As a consequence of Corollary 1, noticing that ST (W ′) ⊆
ST (W ) for some node (C, S,W ) and any of its descendants
(C′, S′,W ′), preciselyST (W ) is completely explored by enu-
meration node (C, S,W ) and all its descendants. In other
words, there is no descendant node that explores a part of the
time-feasible region ST that is not a part of ST (W ). It should
be noted that due to the unscheduling of activities this is not
assured if UPT is not applied.

The second pruning technique is based on the considera-
tion of the resource usages of all start times in the reduced
scheduling set that are lower than the established earliest start
time of the selected activity in the branching step. To apply
the second pruning technique, the same extensions as for the
first method are made in line 15 of Algorithm 3, except for
the setting of W ′

i that is replaced by W ′
i :={τ ∈ W ′

i | �τ ′ ∈
[0, t[ ∩ Ti : ruik(τ ) ≥ ruik(τ

′) for all k ∈ Ri }. Accordingly, the
second method removes each start time τ fromW ′

i if there is
at least one start time τ ′ in the reduced scheduling set Ti that
is lower than t and satisfies ruik(τ ) ≥ ruik(τ

′) for all k ∈ Ri .
Since this implies for each start time τ ∈ W ′

i that there is
at least one resource k ∈ Ri with ruik(τ ) < ruik(τ

′) for each
τ ′ ∈ [0, t[ ∩ Ti , we call this method usage-limitation tech-
nique (ULT).

In what follows, we investigate the application of both
pruning techniques in Algorithm 3. For this, we consider two
direct descendants (C′, S′,W ′) and (C′′, S′′,W ′′) of some
node in the enumeration tree. In addition, we assume that
both nodes (C′, S′,W ′) and (C′′, S′′,W ′′) are generated by
establishing t ′ and t ′′ with t ′ < t ′′ as the earliest start time
of the branching activity i ∈ C̄, respectively. Considering
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the specifications of both pruning techniques to reduce the
start time restriction of the branching activity,W ′

i ∩W ′′
i = ∅

is given. Since W ′
i ∩ W ′′

i = ∅ directly implies ST (W ′) ∩
ST (W ′′) = ∅, Corollary 2 follows from Corollary 1.

Corollary 2 Let UPT and ULT be used in Algorithm 3, let
S f ∈ S be any feasible schedule, and (C, S,W ) some node
corresponding to the enumeration scheme of Algorithm 3
with C = V and S f ∈ ST (W ). Then there is exactly one
direct descendant node (C′, S′,W ′) that fulfills the condition
S f ∈ ST (W ′).

Taking ST (W ′) ⊆ ST (W ) for some node (C, S,W ) and any
of its descendants (C′, S′,W ′) into account, fromCorollary 2
it follows that each candidate schedule is generated exactly
once if both pruning techniques UPT and ULT are used. Fur-
thermore, we can state that in the course of the enumeration,
each part of the time-feasible region is explored exactly once,
so that any redundancy is excluded.

5 Branch-and-bound algorithm

In this section we present the general framework of our BnB
that enables a wide range of different settings concerned with
the construction of the enumeration tree and the applica-
tion of improving techniques. The first part of this section
is devoted to the search strategy of our BnB that determines
the way to construct the enumeration tree. In order to pro-
vide a generic framework for the construction of the search
tree, in line with Watermeyer and Zimmermann (2020), we
divide the search strategy in different parts, called traversing,
branching, generation, and ordering strategy.

For the traversing strategy, which determines the node
to be considered next in the course of the BnB, we have
implemented twoalternatives. Thefirst alternative is thewell-
known depth-first search (DFS), while the second one is an
extension of the DFS that has been introduced by Water-
meyer and Zimmermann (2020). The so-called scattered-
path search (SPS) selects after a predefined time span, among
all not completely explored nodes with lowest search tree
level, a node with the lowest bound on the project duration.
After some node has been chosen to be explored next, the
branching strategy determines the activity to be considered
in the branching step. For this, in a first step, the so-called eli-
gible set E ⊆ C̄, i.e., the set of all activities that could be used
for the branching step, is determined. The first alternative
takes all not currently scheduled activities into consideration
(C̄), i.e., E :=C̄. In contrast, the other two alternatives that
are both based on a strict order ≺ in set V , reduce the set
C̄, where E ⊆ {i ∈ C̄ | Pred≺(i) ⊆ C} holds with Pred≺(i)
as the set of all direct predecessors of activity i ∈ V in a
precedence graph G≺ with V as the node set and the cover-
ing relation cr(≺) of the strict order as the arc set. The strict

orders we use in this work have been introduced as distance
order (≺ D) and cycle order (≺ C) in Franck et al. (2001) and
Neumann et al. (2003, Sect. 2.6). For further details we refer
the reader to those references. In the following, we assume
that the eligible set E is given. Then in the next step of the
branching strategy, the activity with the best priority value
πi and the lowest index in set E is selected for the branching
step. Accordingly the branching activity is given by

i :=min{i ′ ∈ E | πi ′ = ext
h∈E

πh},

where ext ∈ {min,max} indicates if lower (min) or greater
(max) priority values are preferred. In what follows, we
present some priority rules that have shown promising
results in preliminary tests. First, we deal with priority
rules that have already been discussed in the literature (see,
e.g., Kolisch, 1996; Franck et al., 2001) and are con-
cerned with the temporal constraints of the problem. These
include among others the latest start time rule (LST) with
πi = LSi and the slack time rule (ST) with πi = LSi −
ESi . For both priority rules we have also tested dynamic
versions that take the start time restrictions and the best
found solution UB into account that are given by πi =
LSUBi (W ) (LSTd) and πi = LSUBi (W )−ESi (W ) (STd) with
LSUBi (W ):=LSi (W , n + 1,UB − 1). Additionally, we have
implemented a dynamic version of ST (STdI) that consid-
ers the number of start times in the start time restriction by
πi = |Wi ∩ [ESi (W ),LSUBi (W )]|. Further rules are given
by the total successor rule (TS) with πi = |Reach≺(i)| and
Reach≺(i) as the set of all successors of activity i ∈ V inG≺,
the path following rule (PF) with πi = l(i) and l(i) as the
maximal number of nodes on any longest directed path from
node i ∈ V to n + 1 in project network N , and the maximal
resource consumption rule (MRC) with πi = pi

∑
k∈Ri

r dik .
In contrast to the priority rules from the literature, the follow-
ing rulesmake use of the properties of the partially renewable
resources. For this, the maximal possible additional resource
consumption pi rdik by an activity in relation to the maximal
remaining resource capacity R̄k is considered with

R̄k :=Rk −
∑

i∈Vk
rcik(W ,LSUBi (W ))

and rcik(W , d):=min{rcik(τ ) : | : τ ∈Wi ∩ [ESi (W ), d]}. We
have tested the following two different versions. The total
maximal additional relative resource consumption rule (TMAR)
with

πi = pi
∑

k∈Ri :R̄k =0

rdik
R̄k

+
∑

k∈Ri :R̄k=0

1,
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and the average maximal additional relative resource con-
sumption rule (AMAR) with πi = π ′

i /|Ri | and π ′
i as the

priority value of TMAR.
After the branching activity has been selected for some

enumeration node, the last part of the search strategy is con-
cerned with the generation and the ordering of the direct
descendants. For the generation strategy, we distinguish
between the possibilities either to generate all direct descen-
dants (all) or to restrict the number of generated nodes by
a maximal value (restr), where one and the same node must
possibly be explored more than once. Furthermore, we have
implemented different orders in which all start times in the
reduced scheduling set Ti of branching activity i ∈ E are con-
sidered. The most intuitive alternative for this takes always
the lowest start time from Ti that has not been used so far
to generate a direct descendant node (LT). The other alterna-
tive assigns a priority value πt to each start time t ∈ Ti and
considers all start times in Ti in an order of non-decreasing
priority values (PV), where ties are broken on the basis of
lower start times. In what follows, we present the best pri-
ority value we have found to order the start times in Ti . The
corresponding priority value

πt =
∑

k∈Ri

aikt + 1

4
max
k∈Ri

(bik)(t − ESi (W ))

with

aikt :=
{
rcik(t)/R̄k, if R̄k = 0

1, otherwise

and

bik :=
{
rdik/R̄k, if R̄k = 0

1, otherwise

is a combination of a priority value that is highly related to
the TMAR rule and a penalty term that increases the prior-
ity value in a linear fashion based on the difference between
start time t and the earliest W -feasible start time ESi (W ).
Finally, after all direct descendant nodes have been gener-
ated, the ordering strategy determines the order in which they
are considered in the further course of the BnB. In this work,
all generated descendant nodes are explored in an order of
non-decreasing lower bounds on the project duration (LB),
which has shown to provide good results in computational
experiments.

In accordancewithWatermeyer and Zimmermann (2020),
we apply three different sets of consistency tests in our
BnB. Set Γ B contains the temporal- and resource-bound
consistency test, Γ D the temporal-bound and D-interval
consistency test, and Γ W the temporal and W -interval con-

sistency test. γ α
β (W ) denotes the start time restriction that

results if all consistency tests in Γ β are applied on W for α

iterations. α = ∞ implies that the fixed point correspond-
ing to Γ β is determined. To be able to differentiate between
the possibilities for the D-interval and W -interval consis-
tency test to use all resources or only the resources that are
demanded by activity i , we use the notations γ α

β (W )[R] and
γ α
β (W )[Ri ].

Algorithm 4: Branch-and-bound algorithm

Input: Instance of problem RCPSP/max-π
Output: Optimal schedule S∗

1 Determine distance matrix D = (di j )i, j∈V
2 ESi := d0i , LSi := −di0 for all i ∈ V
3 Wi := {ESi , . . . ,LSi } for all i ∈ V
4 Apply preprocessing on W
5 if ST (W ) = ∅ then terminate (S = ∅)
6 LBG := minWn+1

7 C := {0} S := minST (W ) LB := LBG

8 Ω := {(C, S,W ,LB)} UB := d̄ + 1

9 while Ω = ∅ do
10 Remove (C, S,W ,LB) from stack Ω

11 if LB < UB then
12 Apply consistency tests in Γ D or Γ W on W
13 if SUB

T (W ) = ∅ then
14 Select activity i ∈ E and initialize Λ := ∅
15 Θi := {τ ∈ Wi | rck (SC) + rcik(τ ) ≤ Rk for all k ∈ Ri }
16 Calculate Ti (Algorithm 2)
17 while Ti = ∅ do
18 Remove t from set Ti

(according to the generation strategy)
19 S′

i := t S′ := min S̃T (W , i, S′
i )

W ′ := (Wj \ [0, S′
j [) j∈V

20 Apply consistency tests in Γ B on W ′
21 if SUB

T (W ′) = ∅ then
22 S′ := minST (W ′)
23 if ∃ j ∈ C : S′

j > S j then
24 C′ := C \ { j ∈ C | S′

j > S j }
25 else if S′

i = t then
26 C′ := C ∪ {i}
27 if C′ = V then
28 S∗ := S′ UB := S∗

n+1
29 Ti := Ti \ [t + 1,∞[
30 else
31 Compute lower bound LB′
32 if LB′ < UB then
33 Λ := Λ ∪ {(C′, S′,W ′,LB′)}
34 Put all nodes from Λ on stack Ω

(according to the ordering strategy)
35 if UB = d̄ + 1 then terminate (S = ∅)
36 else return S∗

In what follows, we outline the framework of our BnB,
which is given inAlgorithm 4. It should be noted that in order
to simplify the presentation, we assume that a depth-first
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search (DFS) is used and that all direct descendants of each
enumeration node are generated at once (all). Accordingly,
all other alternatives for the traversing and the generation
strategy are omitted. In the first part of Algorithm 4, a pre-
processing step is performed on the start time restriction W ,
for which we calculate the fixed point of set Γ W consider-
ing all resources, meaning that W :=γ ∞

W (W )[R] is set. In
case that the preprocessing step cannot prove the infeasi-
bility (ST (W ) = ∅), the global lower bound LBG is set to
minWn+1, the upper bound on the minimum project dura-
tion UB is set to d̄ + 1, and the root node is initialized
and put on stack Ω . In each iteration, an enumeration node
(C, S,W ,LB) is removed from stack Ω and it is checked
if it could provide a solution with a better project dura-
tion than UB, i.e., LB < UB. In this case, consistency
tests from set Γ D or Γ W are applied on the start time
restriction W . If the consistency tests can show that the con-
sidered node and all its descendants cannot generate any
feasible schedule with a better project duration thanUB, i.e.,
SUB
T (W ):=ŜT (W , n+1,UB−1) = ∅, the next enumeration

node in Ω is considered. Otherwise, based on the branching
strategy, the eligible set E is determined and the branching
activity i ∈ E is selected, followed by the initialization of Λ,
which is used to store all direct descendants of the considered
enumeration node. In the next step, analogously to Algo-
rithm 3, Θi and the reduced scheduling set Ti are calculated.
The start times in Ti are considered in an order depending on
the generation strategy. Given some start time t that has been
removed from Ti , t is established as the earliest start time
of the branching activity. It should be noted that line 19 of
Algorithm 4 can be adapted as described in Sect. 4.3 to apply
the pruning techniques UPT and ULT. After the initialization
(and update) of start time restrictionW ′, the consistency tests
from set Γ B are applied on W ′. The direct descendant node
corresponding toW ′ is directly pruned from the enumeration
tree if SUB

T (W ′) = ∅. Otherwise, in case that the existence
of any feasible schedule in ST (W ′) with a better objective
function value than UB cannot be excluded, it is checked if
some activities have to be unscheduled or if the branching
activity can be scheduled. If C′ = V after the scheduling of
the branching activity, a new best feasible solution S∗:=S′
has been found,UB is set to S∗

n+1, and all start times in Ti that
are greater than t are removed, noticing that they cannot gen-
erate any better feasible solution. Otherwise, the lower bound
LB′ for the descendant node is calculated by LB0π or LBDπ .
In case that LB′ < UB, the node is added to the list Λ, which
is used after the generation of all direct descendant nodes to
put them on the stack Ω in an order of non-increasing values
of their lower bounds LB′. The described procedure reiter-
ates until there is no enumeration node left to be considered,
i.e., Ω = ∅. In case that UB = d̄ + 1 at the end of the algo-
rithm, we can state that there is no feasible solution, while
otherwise, Algorithm 4 returns an optimal solution S∗.

6 Performance analysis

In this section, we evaluate the performance of our BnB.
For this, we conduct computational experiments on dif-
ferent benchmark sets with partially renewable resources.
To provide a comprehensive investigation, we compare our
procedure with all available BnB from the literature for
RCPSP/max-π and RCPSP/π . In a second step, we derive
a priority rule-based approximation method from our new
enumeration approach and evaluate its performance in com-
parison with the associated BnB.

The computational experiments have been conducted on
a workstation with an Intel Core i7-8700 CPU with a clock
pulse of 3.2 GHz and 64 GB RAM under Windows 10 on
a single thread. The algorithms were all coded in C++ and
compiled by the 64-bit Visual Studio 2017 C++-compiler.

6.1 Comparison of branch-and-bound algorithms

In the first part of the performance analysis, we compare our
constructiveBnB (CBB)with all available exact solution pro-
cedures from the literature for partially renewable resources.
In the second part, we derive a schedule-generation scheme
from our new enumeration approach and compare its results
with those of CBB.

6.1.1 General temporal constraints

In this section, CBB is compared with the relaxation-based
BnB (RBB) from Watermeyer and Zimmermann (2020) on
instanceswith general temporal constraints. To the best of our
knowledge, RBB represents the only BnB for RCPSP/max-
π that is available in the open literature so far. For the
comparison of CBBwith RBB, we have conducted computa-
tional studies on a benchmark set that covers instances with
n = 10, 20, 50, 100, 200 real activities, all of them with 30
partially renewable resources. The benchmark set UBOπ ,
which is available online,1 is an adaptation of the well-
known benchmark set UBO for RCPSP/max, which has been
generated by the instance generator ProGen/max (Schwindt
1996, 1998). As described in Watermeyer and Zimmermann
(2020), the test sets for RCPSP/max-π , denoted by UBOnπ ,
were obtained by a replacement of the renewable resources
by partially renewable resources that have been generated in
accordance with the procedure in Schirmer (1999, Sect. 10).

Table 1 provides an overview of the settings we have used
for CBB in the computational experiments depending on
the instance size. The settings were determined by prelim-
inary computational tests in the same way as for RBB in
Watermeyer and Zimmermann (2020). Table 1 gives the set-

1 https://www.wiwi.tu-clausthal.de/abteilungen/betriebswirtschaftsle
hre-und-unternehmensforschung/forschung/benchmark-instances.
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Table 1 Settings for the performance analysis

UBO10π UBO20π UBO50π UBO100π UBO200π

Traversing strategy DFS SPS [2s] SPS [5 s] SPS [5 s] SPS [5 s]

Branching strategy C̄ , MRC(max) C̄ , MRC(max) ≺ D, STdI(min) ≺ C, PF(max) ≺ C, PF(max)

Generation strategy restr-LT [10] restr-LT [10] restr-PV [5] restr-PV [15] restr-PV [15]

Ordering strategy LB(min) LB(min) LB(min) LB(min) LB(min)

Consistency tests γ ∞
B γ ∞

B , γ 1
D[Ri , 2] γ ∞

B , γ 1
W [Ri ] γ ∞

B , γ 1
W [Ri , 2] γ ∞

B

Lower bound LBDπ LBDπ LBDπ LB0π LB0π

Pruning techniques UPT UPT UPT+ULT UPT+ULT UPT+ULT

tings that have shown the best balance between the number
of solved instances and instances whose solvability statuses
were determined among all settings we have tested. It should
be noted that we have also analyzed the performance of
both BnB that were conducted with only one setting over
all instances of benchmark set UBOπ . The corresponding
results are given in the supplementary material of this paper
(Online Resource 1). While the most terms in Table 1 are
in line with Sect. 5, there are some additional specifications,
which are explained in the following. The values in brackets
in Table 1 give the time span for the scattered-path search, the
maximal number of generated nodes in onebranching step for
the generation strategy, and the maximal search tree level on
which the sets of consistency tests are applied. The values in
parentheses indicate if lower (min) or greater (max) priority
values or lower bounds are preferred. As already mentioned,
Table 1 lists the settings that have shown the best balance
between the number of instances that were solved and whose
solvability status remained open among all settings we have
tested. From Table 1 it follows that the restriction of the
eligible set for the branching step in accordance with strict
orders (≺ D,≺ C) is only beneficial for greater instances.
Furthermore, the computational studies reveal that resource-
based priority rules are preferable for small instances to select

the branching activity, whereas temporal-based or network-
based priority rules are better suited for greater instances. It is
also worth mentioning that SPS and the usage of priority val-
ues for the generation of direct descendant nodes (PV) have
both a great impact on the performance for greater instances.
Finally, taking a look on the improving techniques, Table 1
shows that it is beneficial over all instances to use UPT and to
calculate the fixed point γ ∞

B in each enumeration node, while
additional procedures can enhance the performance just for
a few test sets.

Since for the greatest instances the improving techniques
of CBB have shown to result in a significant increase in the
number of instances whose solvability status could not be
determined, we have implemented awarm-up phase (W). For
this procedure, CBB is conducted with no improving tech-
nique for n/10 seconds, followed by CBB with the settings
that are given in Table 1 (CBB+W).

Table 2 shows the performance of CBB and RBB. For
the performance analysis, we have used a time limit of 300
seconds. The results for RBB are taken from Watermeyer
and Zimmermann (2020), where RBB has been tested on
the same workstation under the same conditions as CBB.
In the third column, Table 2 gives the number of instances
for which the earliest start time schedule ES is not optimal

Table 2 Performance of CBB
and RBB (300s)

#nTriv #opt #feas #inf #unk Δlb (%) ∅
cpu (s) ∅

cpu
opt (s) ∅

cpu
inf (s)

UBO10π
CBB 693 534 534 159 0 53.43 0.065 0.067 0.056

RBB 693 534 534 159 0 53.43 0.032 0.040 0.004

UBO20π
CBB 621 537 581 40 0 64.67 28.086 7.846 0.702

RBB 621 500 578 40 3 65.09 46.149 8.076 8.006

UBO50π
CBB 527 183 491 5 31 88.16 198.016 13.774 26.827

RBB 527 145 486 3 38 95.49 217.958 8.022 0.279

UBO100π
CBB 484 85 472 0 12 168.68 249.827 14.307 –

RBB 484 79 465 0 19 174.30 254.409 20.681 –

CBB 466 95 449 0 17 222.93 243.429 22.502 –

UBO200π CBB+W 466 95 466 0 0 220.09 245.209 31.234 –

RBB 466 79 466 0 0 224.03 253.934 28.271 –

123



106 Journal of Scheduling (2023) 26:95–111

(#nTriv), so-called non-trivial instances in line with Alvarez-
Valdes et al. (2008). Since trivial instances can efficiently be
solved to optimality, they are excluded from all investigations
in the remainder of this work. The following columns list for
each test set the number of instances for which an optimal
solution is found and verified (#opt), infeasibility is shown
(#inf), a feasible solution is found (#feas), or the solvability
status remains unknown (#unk). The next columns give the
average percentage deviation of the determined upper bound
UB from the earliest time-feasible project termination ESn+1

(Δlb) and the average computing time (∅cpu). The percentage
deviation fromESn+1 is defined by zero for each instance that
were shown to be infeasible. For comparison purposes both
measures are given in relation to the number of all non-trivial
instances. The last two columns provide the average com-
puting time over all instances that were solved to optimality
(∅cpu

opt ) and have been shown to be infeasible (∅
cpu
inf ). Table 2

reveals a great dominance of CBB for test sets UBO20π ,
UBO50π , and UBO100π , whereas RBB is able to solve test
set UBO10π in less computing time. The results for test set
UBO200π show that CBB+W also clearly dominates RBB,
while CBB is not capable to determine the solvability sta-
tus for all instances without the warm-up phase. It should
be noted that this result gives an important implication for
constructive approximation methods for RCPSP/max-π that
redundancies should be maintained in the solution proce-
dure for greater instances. Since CBB+W was only able to
improve the performance for UBO200π , the corresponding
results for all other test sets are omitted. A closer look at the
results shows that the intractability of the instances is strongly
affected by a lower resource availability and a higher number
of demanded resources per activity. These results are in line
with general expectations, since the described characteristics
increase the interdependence between the scheduling times
of the activities. It should be noted that further performance
tests with a time limit of 600s showed that the gap between
CBB and RBB over all test sets remained rather unchanged
and that only a few more instances were solved by both pro-
cedures, respectively.

In order to evaluate the quality of the best found solu-
tions by CBB for which the optimality could not be verified,
Table 3 provides a comparison with the best solutions of
RBB. For test set UBO200π the results of CBB+W are con-

sidered. The first part of Table 3 gives an overview about the
number of instances for which a feasible solution has been
found by at least one (#∪

feas) or by both procedures (#∩
feas),

followed by the number of instances for which only CBB
(# <

feas) or RBB (# >
feas) was able to find a feasible solution.

For the test sets UBO20π , UBO50π , and UBO100π , CBB is
able to find a feasible solution for more instances than RBB,
where there is no instance for which only RBB detects a fea-
sible solution. In the second part of Table 3, the quality of
the feasible solutions is compared with each other. The first
column gives the number of instances for which both proce-
dures have found a feasible solution, but not both procedures
could verify the optimality for (#∩,nv

feas ). These instances are
subdivided into the number of instances with a better (#<), an
equal (#=), or a worse (#>) found solution byCBB compared
to RBB. The last two columns are concerned with the aver-
age deviations of the best found project durations by CBB
from those of RBB, which are assumed to be given by S CBB

n+1
and S RBB

n+1 , respectively. In the first column, the average of
the absolute deviation S CBB

n+1 − S RBB
n+1 over all considered

instances is given (Δ abs
RBB), while the second column depicts

the average of the relative deviation (S CBB
n+1 − S RBB

n+1 )/S RBB
n+1

from the best found project duration by RBB (Δ rel
RBB). The

second part of Table 3 shows that CBB obtains better feasi-
ble solutions for more instances than RBB over all test sets.
Furthermore, the last two columns indicate a dominance of
CBB in terms of a better solution quality.

In order to illustrate the impact of the improving tech-
niques on the performance of CBB, Table 4 shows the results
for test set UBO20π with a time limit of 300 seconds if the
search strategy in accordance with Table 1 is applied with
different combinations of the given improving techniques.
In the first two lines, the results of CBB are given if it is
conducted without any improving technique, except that the
lower bound LB0π is calculated in any enumeration node,
termed basic version in the following. To investigate the
benefit to calculate the reduced scheduling set Ti in each
branching step, in Table 4 the results of two different basic
versions of CBB are listed that consider the start times in
Θi or Ti , respectively. In the following lines, the improving
techniques from Table 1 are individually added to the basic
version of CBB. The calculation of the reduced scheduling
set as well as all improving techniques enhances the perfor-

Table 3 Comparison of the
feasible solutions of CBB with
RBB (300s)

instance set #∪
feas #∩

feas #<
feas #>

feas #∩,nv
feas #< #= #> Δ abs

RBB Δ rel
RBB (%)

UBO10π 534 534 0 0 0 – – – – –

UBO20π 581 578 3 0 79 37 32 10 −2.37 −1.55

UBO50π 491 486 5 0 344 290 38 16 −16.87 −4.74

UBO100π 472 465 7 0 390 243 31 116 −14.51 −2.42

UBO200π 466 466 0 0 391 251 20 120 −20.27 −1.19
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Table 4 Impact of components
on the performance for test set
UBO20π (300s)

#opt #feas #inf #unk Δlb (%) ∅
cpu (s) ∅

cpu
opt (s) ∅

cpu
inf (s)

BnB (basic version Θi ) 120 546 3 72 81.20 246.446 29.134 49.019

BnB (basic version Ti ) 142 560 5 56 79.28 235.378 25.654 65.402

+Preprocessing 214 567 22 32 75.22 193.991 23.165 0.493

+LBDπ 222 567 22 32 75.22 190.887 24.408 1.010

+Consistency tests 343 576 23 22 71.17 129.094 10.667 0.363

+UPT 537 581 40 0 64.67 28.086 7.846 0.702

mance of CBB with a significant reduction in the average
deviation Δlb and computing time ∅

cpu.

6.1.2 Precedence constraints

In this section we investigate the performance of CBB on
RCPSP/π benchmark sets. To evaluate the performance,
CBB is compared with RBB and the only available BnB
for RCPSP/π (BOT), which has been developed in Böttcher
et al. (1999). Since the original code for BOT could not be
provided to us, we have reimplemented BOT in line with
Böttcher (1995) and Böttcher et al. (1999). As preliminary
tests have shown, the best results for BOT are obtained if
the feasibility bounds FB1 and FB2 as described in Böttcher
et al. (1999) are used. Hence, we have applied both feasibility
bounds in all computational experiments on BOT.

The first benchmark set contains 2160 instances with 10
real activities (P10π ) and 250 instances with 15, 20, 25,
and 30 real activities (P15π , P20π , P25π , P30π ), respec-

tively.All of themwere generatedwith 30 partially renewable
resources. These test sets have been used in Alvarez-Valdes
et al. (2006, 2008) for a performance analysis and were pro-
vided to them by the authors of Böttcher et al. (1999). Table 5
shows the results of an experimental performance analysis
on the Böttcher benchmark set with a time limit of 300 sec-
onds. For CBB and RBB we have used the settings of test
set UBO20π , except for test set P25π , for which we have
conducted the computational tests on CBB with the settings
of test set UBO50π . Table 5 shows that both CBB and RBB
dominate BOT over all instances, while only small differ-
ences are given between CBB and RBB, except that RBB
tends to show lower computing times.

The second RCPSP/π benchmark set was generated by
Schirmer (1999) and was later extended by Alvarez-Valdes
et al. (2006, 2008). The test sets of Schirmer (1999) cover
960 instances with 10, 20, 30, and 40 real activities (J10π ,
J20π , J30π , J40π ), respectively, with 30 partially renewable
resources. Later, Alvarez-Valdes et al. (2006, 2008) added a

Table 5 Performance on the
Böttcher benchmark set (300s)

#nTriv #opt #feas #inf #unk Δlb (%) ∅
cpu (s) ∅

cpu
opt (s) ∅

cpu
inf (s)

CBB 2108 827 827 1281 0 11.20 0.055 0.056 0.054

P10π RBB 2108 827 827 1281 0 11.20 0.007 0.007 0.007

BOT 2108 827 827 1281 0 11.20 0.023 0.023 0.023

CBB 204 188 188 16 0 37.23 1.704 1.845 0.051

P15π RBB 204 188 188 16 0 37.23 1.948 2.114 0.002

BOT 204 181 181 16 7 38.19 12.717 2.727 0.036

CBB 165 139 142 17 6 52.69 16.464 0.112 0.052

P20π RBB 165 139 142 17 6 52.66 16.920 0.660 0.002

BOT 165 136 139 16 10 54.71 27.124 3.974 2.187

CBB 136 112 116 14 6 69.31 22.155 0.109 0.062

P25π RBB 136 112 115 14 7 68.90 22.074 0.018 0.010

BOT 136 105 111 11 14 74.32 46.535 0.465 25.457

CBB 122 104 104 8 10 91.99 24.655 0.072 0.053

P30π RBB 122 104 104 8 10 91.99 24.615 0.029 0.003

BOT 122 98 104 3 15 98.53 53.327 2.095 0.196
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Table 6 Performance on the
SAV benchmark set (300s)

#nTriv #opt #feas #inf #unk Δlb (%) ∅
cpu (s) ∅

cpu
opt (s) ∅

cpu
inf (s)

CBB 808 803 803 5 0 10.37 0.063 0.063 0.055

J10π RBB 808 803 803 5 0 10.37 0.060 0.060 0.052

BOT 808 802 802 5 1 10.54 0.541 0.171 0.041

CBB 565 563 565 0 0 5.22 1.965 0.906 –

J20π RBB 565 564 565 0 0 5.22 2.313 1.785 –

BOT 565 509 561 0 4 7.93 35.533 6.436 –

CBB 453 431 453 0 0 4.37 17.603 3.189 –

J30π RBB 453 427 453 0 0 4.18 20.723 3.717 –

BOT 453 345 435 0 18 14.18 75.767 5.573 –

CBB 386 347 386 0 0 6.06 35.153 5.386 –

J40π RBB 386 341 386 0 0 6.07 38.599 4.103 –

BOT 386 261 363 0 23 21.24 100.109 4.376 –

CBB 346 269 346 0 0 8.91 73.353 8.476 –

J60π RBB 346 268 346 0 0 14.06 69.313 2.172 –

BOT 346 186 309 0 37 40.50 140.073 2.502 –

test set with 960 instances, each of them with 60 real activ-
ities (J60π ) and 30 partially renewable resources. It should
be noted that 9 instances of test set J10π , which have been
proven to be infeasible in Schirmer (1999, Sect. 10.4), could
not be provided to us, so that they are not part of the perfor-
mance analysis. In the following, we summarize all instances
fromSchirmer (1999) andAlvarez-Valdes et al. (2006, 2008)
under the term SAV benchmark set. In Table 6, the results of
the computational tests on the SAVbenchmark setwith a time
limit of 300 seconds are given. As for the Böttcher instances,
we have used the settings of UBO20π for CBB and RBB
for the computational experiments, with the only exception
that CBB has been conducted with the settings of UBO50π
for test set J60π . Table 6 reveals that both CBB and RBB
outperform BOT on the SAV benchmark set. Furthermore,
Table 6 shows slightly better results for CBB compared to
those of RBB.

6.2 Schedule-generation scheme

The enumeration approach ofCBB,which is based on a serial
schedule-generation scheme (SGS), can directly be used as a
framework for a priority rule-based approximation method.
For this, in each branching step only one of the direct descen-
dant nodes has to be chosen in accordancewith a priority rule.
In what follows, we investigate the performance of a regret-
based biased random sampling method that makes use of a
regret measure that has been introduced by Drexl (1991) and
Drexl and Grünewald (1993).

Considering the extended enumeration scheme in Algo-
rithm 3, each activity i ∈ E and each start time t ∈ Ti that
could be selected in a branching step is assigned a priority
value πi (πt ). 2 For simplicity, let D be the set of all candi-
dates for each selection and s some candidate (activity i or
start time t). Then, in accordance with Kolisch (1996), each
candidate s is assigned a regret value

ρs :=
⎧
⎨

⎩

max
h∈D

πh − πs, if ext = min

πs − min
h∈D

πh, if ext = max

depending on whether lower (ext = min) or greater (ext =
max) priority values are preferred and a selection probability

ψs := (ρs + 1)α
∑

h∈D
(ρh + 1)α

.

The eligible set E and the priority values for the start times are
determined in accordance with the settings for CBB. Based
on preliminary tests, parameter α for the calculation of the
selection probability ψs is set to α = 2 for n = 10, α = 4
for 10 < n ≤ 30, α = 16 for 30 < n ≤ 60, and α = 32 for
all greater instances (n > 60).

Table 7 shows the performance of SGS on test sets
UBO10π , UBO20π , and UBO50π for Z = 100 and Z =

2 In contrast to Algorithm 3, the eligible set E is considered for the
activity selection in order to provide the possibility to use the distance
order or cycle order as described in Sect. 5.
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Table 7 Performance of SGS on test sets UBO10π , UBO20π , and UBO50π

Z = 100 Z = 1000

#inst #nfeas Δlb (%) ΔCBB (%) ∅
cpu (s) #nfeas Δlb (%) Δ CBB (%) ∅

cpu (s)

SGS(Θi ) 534 17 81.82 9.46 0.091 8 75.44 4.27 0.098

SGS(Ti ) 534 12 79.01 7.50 0.093 5 74.88 4.21 0.202

UBO10π +RB 534 4 75.13 4.55 0.088 1 71.92 1.87 0.194

+UPT 534 0 70.90 1.04 0.078 0 69.66 0.18 0.131

CBB 534 0 69.34 0.00 0.067

SGS(Θi ) 581 34 93.28 21.59 0.090 22 82.34 10.80 0.493

SGS(Ti ) 581 27 88.21 16.56 0.109 18 79.59 8.32 0.735

UBO20π +RB 581 16 82.14 11.12 0.182 12 75.52 4.90 0.709

+UPT 581 9 74.75 3.92 0.119 5 72.18 2.08 0.371

CBB 581 0 69.12 0.00 29.972

SGS(Θi ) 522 34 147.76 54.17 1.078 32 109.82 18.95 6.663

SGS(Ti ) 522 32 124.20 33.38 1.363 32 107.14 16.41 8.621

UBO50π +RB 522 31 123.73 32.93 1.341 31 106.80 16.11 8.800

+UPT 522 74 106.46 13.87 0.536 54 97.89 6.27 3.940

CBB 522 31 89.00 0.00 199.656

Table 8 Performance of SGS on test sets UBO100π and UBO200π

Z = 10 Z = 100

#inst #nfeas Δlb (%) ΔCBB (%) ∅
cpu (s) #nfeas Δlb (%) Δ CBB (%) ∅

cpu (s)

SGS(Θi ) 484 18 350.92 120.75 1.243 18 315.76 103.12 10.575

SGS(Ti ) 484 18 259.00 71.99 1.519 18 227.62 53.56 13.567

UBO100π +RB 484 18 259.06 72.03 1.533 17 226.96 52.85 13.627

+UPT 484 224 261.55 45.04 0.503 130 217.47 18.39 2.794

CBB 484 12 168.68 0.00 249.827

SGS(Θi ) 466 0 473.45 152.90 7.964 0 452.01 143.49 70.409

SGS(Ti ) 466 0 335.24 85.71 8.260 0 311.78 75.28 76.583

UBO200π +RB 466 0 335.28 85.70 8.315 0 311.76 75.26 76.996

+UPT 466 189 340.11 65.57 3.327 76 274.49 30.47 22.722

CBB+W 466 0 220.09 0.00 245.209

1000 iterations. In order to evaluate the impact of the reduced
scheduling set Ti , the results for SGS are given for the
case that Θi or Ti is considered for the start time selection,
denoted by SGS(Θi ) and SGS(Ti ). Additionally, the results
for SGS(Ti ) are provided if the resource-bound (RB) consis-
tency test (+RB) or the RB consistency test with the pruning
technique UPT (+UPT) is applied. For comparison purposes,
in the last row for each test set the results for CBB are given.
The computational studies were conducted on all non-trivial
instances that could not be shown to be infeasible by CBB
(#inst). Δlb and ∅

cpu are given in relation to these instances,
while ΔCBB represents the average percentage deviation of
the best found solution by SGS from the shortest project
duration that has been determined by CBB in relation to the

number of instances for which SGS was able to find a feasi-
ble solution. For this, it should be noted that all instances, for
which SGS was able to determine a feasible solution, were
feasibly solved by CBB as well. Finally, the last measure is
given by the number of instances for which SGSwas not able
to find a feasible solution (#nfeas).

Table 7 shows the best results for SGS that were obtained
among all priority rules for the activity selection that are
described in Sect. 5. The corresponding priority rules that
have been applied on test sets UBO10π , UBO20π , and
UBO50π are, respectively, given by LST, LSTd, and STdI

with ext = min. It can be seen from Table 7 that the cal-
culation of the reduced scheduling set Ti always results in
a better performance for SGS and that the RB consistency
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test is able to improve the solution procedure, but with a sig-
nificant greater impact on test sets UBO10π and UBO20π .
This observation might be explained by the reduction of the
start times that are not part of any feasible solution by the
RB consistency test whose effectiveness seems to increase if
less possible start times are considered. In contrast, the addi-
tional application of the pruning technique UPT could only
obtain better results for small instances, while the number
of instances for which no feasible solution was determined
is getting greater for test set UBO50π . The negative impact
of UPT might be assumed to be caused by the reduction of
redundancies that tend to increase the probability for unfavor-
able scheduling decisions if the number of activities is getting
greater. The comparisonwithCBB reveals that SGSperforms
only reasonable on small instances (UBO10π , UBO20π ) if
the improving techniques are applied, while the best solu-
tions for test set UBO50π (+RB) deviate more than 16%
on average from the solutions of CBB even if Z = 1000
iterations are conducted.

Due to the significant increase in the computing time,
Table 8 provides the results of SGSon test setsUBO100π and
UBO200π for Z = 10 and Z = 100 iterations. The priority
rules ST and STd with ext = min were applied on the test
sets UBO100π and UBO200π , respectively. In accordance
with the results for test set UBO50π , the application of UPT
leads to an increase in the number of instances for which
SGS is not able to determine a feasible solution. Further-
more, the RB consistency test can at most slightly improve
the performance, while the advantage of the reduced schedul-
ing set Ti even tends to increase for greater instances. The
best solutions of SGSclearly deviate from the shortest project
durations determined by CBB on average, so that SGS seems
to be not well suited to solve large instances.

The results of SGS on the Böttcher and SAV benchmark
set show similar trends as for the test sets UBO10π and
UBO20π . For details, we refer the reader to the supplemen-
tary material of this paper.

In conclusion, SGS shows a reasonable performance on
small instances if the RB consistency test and the pruning
technique UPT are applied, while the procedures lack to
improve the performance for greater instances, which might
be assumed to be caused by the increase in the number of
possible start times in each scheduling step. In our opin-
ion, a promising way to improve the performance of SGS
on greater instances might be to implement procedures that
store information about the decisions that were made in pre-
vious iterations. One way for this might be given by adapting
the construction procedure of the search tree that has been
presented for CBB.

7 Conclusions

We have presented a branch-and-bound algorithm (BnB) for
the resource-constrained project duration problem with par-
tially renewable resources and general temporal constraints
(RCPSP/max-π ) that is based on a serial schedule-genera-
tion scheme. For the first time it has been shown that it is
sufficient to consider only a subset of all resource-feasible
start times in each branching step. By an extension of the
enumeration scheme by start time domains, improving tech-
niques from the literature could be included. Furthermore,
we were able to devise new pruning techniques to prevent
redundancies with a significant impact on the performance.

In a comprehensive experimental performance analysis
we have compared our exact solution procedure with all BnB
that are available in the open literature for partially renew-
able resources. The computational experiments could reveal
a great dominance of our BnB for RCPSP/max-π . The favor-
able performance could also be confirmed for instances that
are restricted to precedence constraints with significant bet-
ter results compared to the only available BnB for RCPSP/π .
In a second step, we investigated a directly derived schedule-
generation scheme from our new enumeration approach. It
has been shown that the approximation procedure obtains
reasonable results for small instances, while a limitation for
large instances became apparent.

As the computational experiments have shown, the per-
formance of a BnB for RCPSP/max-π is strongly influenced
by the way to enumerate the candidate solutions. Therefore,
the investigation of further enumeration schemes seems to be
a promising field for future research. Moreover, the experi-
ments could demonstrate that there is a great need for new
types of approximation methods that goes beyond classical
priority rule-based generation schemes.
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tary material available at https://doi.org/10.1007/s10951-022-00735-
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