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Abstract
ComputingWasserstein barycenters of discretemeasures has recently attracted consid-
erable attention due to its wide variety of applications in data science. In general, this
problem is NP-hard, calling for practical approximative algorithms. In this paper, we
analyze a well-known simple framework for approximating Wasserstein-p barycen-
ters, where we mainly consider the most common case p = 2 and p = 1, which is
not as well discussed. The framework produces sparse support solutions and shows
good numerical results in the free-support setting. Depending on the desired level
of accuracy, this requires only N − 1 or N(N − 1)/2 standard two-marginal optimal
transport (OT) computations between the N input measures, respectively, which is
fast, memory-efficient and easy to implement using any OT solver as a black box.
What is more, these methods yield a relative error of at most N and 2, respectively,
for both p = 1, 2. We show that these bounds are practically sharp. In light of the
hardness of the problem, it is not surprising that such guarantees cannot be close to
optimality in general. Nevertheless, these error bounds usually turn out to be drasti-
cally lower for a given particular problem in practice and can be evaluated with almost
no computational overhead, in particular without knowledge of the optimal solution.
In our numerical experiments, this guaranteed errors of at most a few percent.
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1 Introduction

Wasserstein barycenters are an increasingly popular application of optimal transport in
data science [1, 2]. They have nice mathematical properties, since they are the Fréchet
means with respect to the Wasserstein distance [3–5]. Their applications range from
mixing textures [6, 7], stippling patterns and bidirectional reflectance distribution
functions [8], or color distributions and shapes [9] over averaging of sensor data [10]
to Bayesian statistics [11], just to name a few. For further reading, we refer to the
surveys [12, 13].

Unfortunately, Wasserstein barycenters are in general hard to compute [14]. Many
algorithms restrict the support of the solution to a fixed set and minimize only over the
weights. Such methods include projected subgradient [15], iterative Bregman projec-
tions [16], (proximal) algorithms based on the latter [17], interior point methods [18],
Gauss-Seidel based alternating direction of multipliers [19], multi-marginal Sinkhorn
algorithms and its accelerated variants [20], debiased Sinkhorn barycenter algorithms
[21], methods using the Wasserstein distance on a tree [22], accelerated Bregman
projections [23] and methods based on mirror proximal maps or on a dual extrapola-
tion scheme [24], among others. While iterative Bregman projections are a standard
benchmark that are hard to beat in terms of simplicity and speed, fixed-supportmethods
applied on a grid suffer from the curse of dimensionality.

On the other hand, barycenters without such restriction are called free-support
barycenters. This approach can overcome the curse of dimensionality, since the optimal
solution is sparse. Free-support barycenters can be computed directly from the solution
of the closely related multi-marginal optimal transport (MOT) problem. The latter
was originally introduced in [25] in the continuous setting for squared Euclidean
costs and further generalized in various ways, e.g., to entropy regularized [26, 27]
and unbalanced variants with non-exact marginal constraints [28]. The solution to
MOT can be obtained by solving a linear program (LP) that unfortunately scales
exponentially in N , however [29]. Although there are exact polynomial-time methods
for measures on R

d for fixed d [30], see also LP-based methods in [29, 31, 32],
these are not necessarily fast in practice and rather involved to implement. A remedy
is to resort to approximative approaches, which include so far a Newton-approach
that iteratively alternates between optimizing over the weights and supports [15],
another LP-based method [33], an inexact proximal alternating minimization method
[34], an iterative stochastic algorithm [35] and the iterative swapping algorithm [2].
A free-support barycenter method based on the Frank–Wolfe algorithm is given in
[36]. Another method in [37] computes continuous barycenters using another way of
parameterizing them. For approaches for MOT similar to this paper, see [38]. Further
speedups can be obtained by subsampling the given measures [39] or dimensionality
reduction of the support point clouds [40].

Despite the plethora of literature, many algorithms with low theoretical computa-
tional complexity or high accuracy solutions are rather involved to implement. This
impedes its actual usage and further research in practice. To the best of our knowl-
edge, there does not exist an algorithm that fulfills the following list of desiderata in
the free-support setting:
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• simple to implement,
• sharp theoretical error bounds,
• sparse solutions, and
• good numerical results in practice.

The purpose of this paper is to show that all of these points can be achieved using one
iteration of a simple well-known fixed-point algorithm, which only requires some off-
the-shelve two-marginal OT solver as ingredient to its otherwise easy implementation.
Here we consider the cases p = 2 and p = 1, where the latter has received less
attention in the literature so far. One such fixed-point iteration consists in computing
optimal transport plans from a given measure to the input measures and pushing each
atom to the p-barycenter of its target locations. For the cost of N − 1 OT plans, this
yields a relative error bound of N , or a 2-approximation, respectively, when averaging
over these results, which requires to solve N (N −1)/2 OT problems. The key to these
theoretical bounds is based on the observation that the they are already fulfilled for the
input measures or their mixture, respectively, which we choose as initialization. On
the other hand, we show that the aforementioned fixed-point iteration guarantees to at
least retain the current approximation quality, but improves it considerably in practice
in the first step.

Note that other algorithms with an upper error bound of 2 have been proposed in
[33] for p = 2. The basic algorithm produces a barycenter with support∪N

i=1supp(μ
i )

by solving an LP over its weights. However, while this support choice leads to bad
approximations in practice (consider, e.g., two distinct Dirac measures as input), for a
merely theoretical 2-approximation, no computation is necessary as mentioned above.
On the other hand, the implementation and proofs of the other algorithms in that paper
with better results in practice are rather involved.

In view of the hardness of the Wasserstein barycenter problem [14], it is clear that
the derived relative error bounds cannot be close to 1 for every set of inputs, unless P
= NP. However, the improvement made by one iteration is straightforward to evaluate
in the proposed algorithms, such that it can output relative error bounds specific to
the given problem without knowing the optimal solution. We observe these resulting
improved bounds to be close to 1 in the numerical experiments.

This paper is organized as follows: We introduce the Wasserstein barycenter prob-
lem and our notation in Sect. 2. In Sect. 3, we state the algorithms considered in this
paper. In Sect. 4, we analyze their worst-case relative error. In Sect. 5, we provide
a comparison with other algorithms on a synthetic data set, a numerical exploration
of Wasserstein-1 barycenters, and two applications of the discussed framework. Con-
cluding remarks are given in Sect. 6.
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2 Wasserstein barycenter problem

In the following, we denote by ‖ ·‖ the Euclidean norm onRd and byP(Rd) the space
of probability measures on R

d . Let 1 ≤ p < ∞. For two discrete measures

μ1 =
n1∑

k=1

μ1
kδ(x

1
k ), μ2 =

n2∑

l=1

μ2
l δ(x

2
l ),

theWasserstein-p distance is defined by

W p
p (μ1, μ2) = min

π∈�(μ1,μ2)
〈cp, π〉,

where 〈cp, π〉 = ∫
Rd×Rd cp dπ with cp(x, y):=‖x − y‖p and �(μ1, μ2) denotes

the set of probability measures on R
d × R

d with marginals μ1 and μ2. The above
optimization problem is convex, but can have multiple minimizers π .

In this paper, we are given N discrete probability measures μi ∈ P(Rd) supported
at supp(μi ) = {xi1, . . . , xini }, where the xil are pairwise different for every i , i.e.,

μi =
ni∑

l=1

μi
l δ(x

i
l ), i = 1, . . . , N .

Let �N := {λ ∈ (0, 1)N : ∑N
i=1 λi = 1} denote the open probability simplex. For

given weights λ = (λ1, . . . , λN ) ∈ �N , we are interested in the computation of
Wasserstein barycenters, which are the solutions to the optimization problem

min
ν∈P(Rd )

�p(ν), �p(ν):=
N∑

i=1

λiW p
p (ν, μi ). (2.1)

The following theorem restates important results from [41, Prop. 3], which con-
nects barycenter problems with what is nowadays known as multi-marginal optimal
transport, as well as [29, Prop. 1, Thm. 2] and [42, Thm. 1] in our notation.

Theorem 2.1 The barycenter problem (2.1) has at least one optimal solution ν̂. Every
optimal solution ν̂ fulfills

supp(ν̂) ⊆
{ N∑

i=1

λi x
i : xi ∈ supp(μi ), i = 1, . . . , N

}
. (2.2)

Moreover, there exists an optimal solution ν̂, such that

#supp(ν̂) ≤
N∑

i=1

ni − N + 1. (2.3)
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Proof Note that (2.2) is straightforward to obtain from the relation to multi-marginal
optimal transport [41, Prop. 3]. In the special case p = 2, the results from [29], in
particular (2.3), can readily be generalized to arbitrary λ ∈ �N . For general p ≥ 1 and
barycenter problems with even more general cost functions, this follows from sparsity
of multi-marginal optimal transport recently shown in [42, Thm. 1] in combination
with [41, Prop. 3]. ��

In particular, the theorem says that finding optimal Wasserstein barycenters is a
discrete optimization problem over the weights of its finite support, which is contained
in the convex hull of the supports of the μi . However, the number of possible support
points scales exponentially in N .

3 Algorithms for barycenter approximation

In this section, after motivating the main framework considered in this paper in
Sect. 3.1, we discuss two more concrete configurations of it in Sects. 3.2 and 3.3.

3.1 Motivation

In its core, the algorithms in this paper approximate barycenters by “averaging optimal
transport plans” from a particular reference measure to the input measures in some
sense. This approach is well-known and comes in various flavors in the literature. For
example, it can be viewed through the lens of generalized geodesics in Wasserstein
spaces [43] and recent literature on linear optimal transport and relatives [44–48].
On the other hand, in [15], one of the first papers on the numerical approximation of
Wasserstein barycenters, the idea is presented as aNewton iteration. The same iteration
is analyzed in the continuous setting in [49], and it can be used as a characterization of
Wasserstein barycenters in termsof fixedpoints of this procedure, even for uncountably
many input measures [50]. See also [51] for this algorithm in the context of weak
optimal transport.

Let us define the averaging of transport plans more precisely.

Definition 3.1 Given a discrete measure ν = ∑nν

k=1 νkδ(yk) ∈ P(Rd) and transport
plans

π i :=
nν∑

k=1

ni∑

l=1

π i
k,lδ(yk, x

i
l ) ∈ �(ν,μi ), i = 1, . . . , N ,

set π = (π1, . . . , πN ) and let for k = 1, . . . , nν , p ≥ 1, the barycentric map
Mp

λ,π : supp(ν) → R
d be defined as

mk = Mp
λ,π (yk):= argminm∈Rd

N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
‖m − xil ‖p.
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Furthermore, we define the mapping

Gp
λ,π (ν):=

nν∑

k=1

νkδ(mk). (3.1)

That is, each atom yk in the measure ν is pushed to the weighted barycenter mk of its
target locations xil , where the weights are given by the λi and the weights of the source
locations as given by the transport plans π i , relative to the corresponding transported
mass νk .

Note that for p = 2, the map Mp
λ,π is the classical mean, whereas for p = 1, it is

called geometric median. It is uniquely defined, whenever the points are not collinear,
see [52]. Otherwise, in case of ambiguity, the set of minimizers is a one-dimensional
line segment, of which we choose the midpoint. However, unlike in the case p = 2,
there is no explicit formula or exact algorithm involving only arithmetic operations
and k-th roots to compute Mp

λ,π , see [53]. Nevertheless, the geometric median can be
approximated using Weiszfeld’s algorithm, which consists mainly in the fixed point
iteration

m(k+1) =
( N∑

i=1

λi

‖xi − m(k)‖
)−1( N∑

i=1

λi xi
‖xi − m(k)‖

)
,

with a particular choice of the starting point m(0) that guarantees m(k) �= xi for all
i = 1, . . . , N and k ≥ 0. This method is a gradient descent method and accelerated
methods are also available. For more details, we refer to the survey [52].

Next, we comment on the relation of Gp
λ,π to Wasserstein barycenters. In the most

important case p = 2, formula (3.1) simplifies when the transport plans are non-mass-
splitting, that is, for every i = 1, . . . , N , each π i is supported on the graph of some
transport maps T i : supp(ν) → supp(μi ) with T i

#ν = μi . In that case, Gp
λ,π pushes

ν forward by the average of the transport maps,

Gp
λ,π =

( N∑

i=1

λi T
i
)

#
.

This is called McCann interpolation for N = 2. In the nondiscrete setting, if ν is
absolutely continuous, then optimal transport maps T i exist by Brenier’s theorem,
see e.g. [54, Thm. 1.22]. In fact, [49] discusses the following fixed-point iteration for
approximate barycenter computation:

1. Compute the optimal transport maps T i from ν to μi , i = 1, . . . , N

2. Update ν ←
( ∑N

i=1 λi T i
)

#
ν, repeat.

It is shown that if there is a unique fixed point, then this is the optimal barycenter and the
iteration converges, which is the case for, e.g., Gaussian measures. The convergence
is numerically observed to be very fast, and in certain special cases, it is reached
already in one iteration. Taking the geometric structure of the Wasserstein space into
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Fig. 1 Barycenter cost �2(ν
(k)) over the number of iterations k in blue. The black dashed line depicts the

optimal cost �2(ν̂)

account, see, e.g., [43], the fixed-point procedure above is the the typical algorithm
for computing Fréchet means on manifolds [3–5].

This motivates the algorithms presented in this paper, which consist in deliberately
performing only the first iteration of the fixed-point procedure above. More precisely,
the approximate barycenters are of the form ν̃ = Gp

λ,π (ν) for certain plans π i and
initial measures ν. We found that this yields the best tradeoff between speed and
accuracy in practice, since the error improvement of further iterations is typically
rather small.

We illustrate this claim by the following numerical example. We create N = 10
discrete measures μi = ∑n

l=1
1
n δ(xil ), i = 1, . . . , N , with n = 50 points each, which

we sample uniformly from the unit disk and center to have mean zero. We initialize
with ν(0):=μ1 and perform the iteration above until convergence after 5 iterations, that
is, ν(6) = ν(5). Optimal transport maps T i always exist here, since we have empirical
measures with the same number of atoms. In Fig. 1, we show the cost �2(ν

(k)) with
respect to k and compare to the cost �2(ν̂) of an optimal barycenter ν̂, that is, a
solution of (2.1). While the error �2(ν

(k)) − �2(ν̂) is decreased in the first step by
83.2%, the improvement in the second iteration is only 37% of the remaining error
and decreases even further until convergence to a suboptimal solution. Moreover, the
absolute cost decrease �2(ν

(2)) − �2(ν
(1)) in the second iteration is only 7.5% of the

decrease �2(ν
(1)) − �2(ν

(0)) of the first iteration. This also makes sense intuitively,
since it seems reasonable that the largest improvement is gained by pushing every
support point from some rather arbitrary initialization to the barycenter of several
other reasonably chosen support points of the μi .

Furthermore, from a theoretical standpoint, there are simple examples with con-
vergence after one iteration for both presented algorithms below, such that we cannot
expect in general to gain any improvements using more than one iteration either. In
particular, as in the numerical example above, there is no way to guarantee conver-
gence to the optimum of this iterative procedure in general, which is the case for any
algorithm due to the NP-hardness of the problem [14].
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3.2 Reference algorithm

In this section, we choose ν = μ j as initialization. For simplicity of notation, reorder
the measures such that j = 1. That is, we compute N − 1 optimal transport plans

π i =
n1∑

k=1

ni∑

l=1

π i
k,lδ(x

1
k , x

i
l ) ∈ argminπ∈�(μ1,μi )〈cp, π〉, i = 2, . . . , N

and consider the approximate barycenter defined by

ν̃ =
n1∑

k=1

μ1
kδ(M

p
λ,π (x1k )). (3.2)

Note that the support of ν̃ given by (3.2) is very sparse, since it contains only n1
elements, which is an interesting feature from a computational point of view.

For p = 2, if the input measures are given in terms of matrices Xi ∈ R
ni×d , where

the rows are the support points, and the corresponding mass weights are the vectors
μi ∈ R

ni for all i = 1, . . . , N , then computing the support matrix Y ∈ R
n1×d of (3.2)

can be written as an average of N matrix products as outlined in Algorithm 1.

Algorithm 1 Reference algorithm, p = 2

Input: Support points Xi ∈ R
ni×d , masses μi ∈ R

ni , i = 1, . . . , N , weights
0 < λ ∈ R

N

π1:= diag(μ1)

for i = 2, . . . , N do
Compute π i ∈ argminπ∈�(μ1,μi )〈c, π〉 ∈ R

n1×ni

end for
Y := diag(μ1)−1 ∑N

i=1 λiπ
i · Xi

Output: support Y ∈ R
n1×d , masses μ1 ∈ R

n1

In the case p = 1, since there is no closed form for Mp
λ,π (x1k ), we have to make

slight modifications to the algorithm in that case.

Remark 3.2 Let fx,λ(m):= ∑N
i=1 λi‖xi − m‖ and m̂ = argminm∈Rd f (m). We show

that Weiszfeld’s algorithm is guaranteed to approximate f (m̂) up to a multiplicative
factor of (1+ε) for a certainminimal number of iterations that is explicitly computable.
In [52, Thm. 8.2] it is shown for the Weiszfeld iterates m(k) that

f (m(k)) − f (m̂) ≤ M

k
‖m(0) − m̂‖2,

with an explicit formula for M , depending only on the xi andm(0). Since f is convex,
from ∇ f = 0, a simple calculation shows that m̂ must lie in the convex hull of the xi .
Thus

123



Simple algorithms for Wasserstein barycenters

‖m(0) − m̂‖2 ≤ max
i=1,...,N

‖m(0) − xi‖2.

Moreover, by (4.3), it holds

N∑

i< j

λiλ j‖xi − x j‖ ≤
N∑

i=1

λi‖xi − m̂‖ = f (m̂),

such that for any given ε > 0, choosing

k ≥ M · maxi=1,...,N ‖m(0) − xi‖2
ε
∑N

i< j λiλ j‖xi − x j‖

guarantees that

f (m(k)) = ( f (m(k)) − f (m̂)) + f (m̂) ≤ M

k
‖m(0) − m̂‖2 + f (m̂)

≤ Mε
∑N

i< j λiλ j‖xi − x j‖
M · maxi=1,...,N ‖m(0) − xi‖2 ‖m(0) − m̂‖2 + f (m̂) ≤ (1 + ε) f (m̂).

This prepares us to state the reference algorithm for the case p = 1, see Algorithm 2.

Algorithm 2 Reference algorithm, p = 1

Input: Measures μi = ∑ni
l=1 μi

l δ(x
i
l ), i = 1, . . . , N , weights λ ∈ �N , Weiszfeld

accuracy ε

π1:= diag(μ1)

for i = 2, . . . , N do
Compute π i ∈ argminπ∈�(μ1,μi )〈c, π〉

end for
for k = 1, . . . , n1 do

mk := argminm∈Rd
∑N

i=1 λi
∑ni

l=1
π i
k,l

μ1
k
‖m − xil ‖ up to factor (1 + ε)

end for
Output: approximate barycenter ν̃:= ∑n1

k=1 μ1
kδ(mk)

3.3 Pairwise algorithm

We will see that in order to achieve better results than the reference algorithm, it is
beneficial to “average out” the asymmetry introduced by choosing μ1 as the reference
measure in (3.2). Therefore, we choose
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ν =
N∑

i=1

λiμ
i (3.3)

as initial measure in this section. However, instead of computing optimal plans from
ν to each μi , we solve

π i j ∈ argminπ∈�(μi ,μ j )〈c, π〉

pairwise for every 1 ≤ i < j ≤ N and use the transport plans

π i =
N∑

j=1

λ jπ
j i ∈ �(ν,μi ), (3.4)

in (3.1), so that our approximate barycenter ν̃ with (3.3) and (3.4) reads as

ν̃ = Gp
λ,π (ν) =

N∑

i=1

λi

ni∑

k=1

μi
kδ(Mλ,(π i1,...,π i N )(x

i
k)). (3.5)

Splitting up the OT computations like this scales better in terms of computational
complexity and seems to yield better numerical results in practice. Clearly, we will
have

#supp(ν̃) ≤ n1 + · · · + nN ,

that is, ν̃ meets practically the same sparsity bound as an optimal solution ν̂, see (2.3).

Remark 3.3 Note that the inner sum in (3.5) is of the form (3.2). If we denote by ν̃i the
barycenter obtained from the reference algorithm, whenμi was the referencemeasure,
i.e., permuted to the first position, our approximation (3.5) is simply

ν̃ =
N∑

i=1

λi ν̃
i .

However, since we can choose π j i = (π i j )T, we save half of the necessary OT
computations compared to executing the reference algorithm N times.

Algorithm 3 summarizes this approach for p = 2 using matrix-vector notation,
where � denotes element-wise multiplication and 1d denotes a d-dimensional vector
of ones. Note that η denotes an upper bound of the relative error for the particular
given problem, i.e., it holds that �2(ν̃)/�2(ν̂) ≤ η. This is proven in Sect. 4.

Again, these matrix-vector computations will not work in the case p = 1. Instead,
Algorithm 4 outlines the computation of (3.5) using Weiszfeld’s algorithm.
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Algorithm 3 Pairwise algorithm, p = 2

Input: Support points Xi ∈ R
ni×d , masses μi ∈ R

ni , i = 1, . . . , N , weights
0 < λ ∈ R

N

Set M = n1 + · · · + nN
for i = 1, . . . , N do

π i i := diag(μi )

for j = i + 1, . . . , N do
Compute π i j ∈ argminπ∈�(μi ,μ j )〈c, π〉 ∈ R

ni×n j

π j i :=(π i j )T

end for
end for

P :=
⎡

⎢⎣
π11 . . . π1N

...
. . .

...

πN1 . . . πNN

⎤

⎥⎦ ∈ R
M×M

X :=
⎡

⎢⎣
X1

...

XN

⎤

⎥⎦ ∈ R
M×d

�:=
[
λ1, . . . , λ1︸ ︷︷ ︸

n1 times

, . . . , λN , . . . , λN︸ ︷︷ ︸
nN times

]T
∈ R

M

μ:= [
μ1
1 . . . μ1

n1 . . . μN
1 . . . μN

nN

]T ∈ R
M

Y := diag(μ)−1 · P · diag(�) · X ∈ R
M×d

ν:=� � μ ∈ R
M

η:=2 − νT · ((Y − X) � (Y − X)) · 1d/

N∑

i< j

λiλ j 〈c2, π i j 〉 ∈ R

Output: support Y ∈ R
M×d , masses ν ∈ R

M , error bound η ∈ [1, 2]

4 Analysis

In this section, we give worst case bounds for the relative error �p(ν̃)/�p(ν̂), where
ν̃ is an approximate barycenter computed by one of the algorithms above, ν̂ is an
optimal barycenter, and �p is the objective defined in (2.1). In the proofs, we will use
the following basic identities.
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Algorithm 4 Pairwise algorithm, p = 1

Input: Measures μi = ∑ni
k=1 μi

kδ(x
i
k), i = 1, . . . , N , weights λ ∈ �N , Weiszfeld

accuracy ε

for i = 1, . . . , N do
π i i := diag(μi )

for j = i + 1, . . . , N do
Compute π i j ∈ argminπ∈�(μi ,μ j )〈c1, π〉 ∈ R

ni×n j

π j i :=(π i j )T

end for
end for
for i = 1, . . . , N do

for k = 1, . . . , ni do

mi
k := argminm∈Rd

∑N
j=1 λ j

∑n j
l=1

π
i j
k,l

μi
k
‖m − x j

l ‖ up to factor (1 + ε)

end for
end for
η:= ∑N

i=1 λi
∑N

j=1 λ j
∑nν

k=1

∑ni
l=1 π

i j
k,l‖mi

k − x j
l ‖/∑N

i< j λiλ j 〈c1, π i j 〉
Output: barycenter ν̃:= ∑N

i=1 λi
∑ni

k=1 μi
kδ(m

i
k), error bound η ∈ [1, 2]

Lemma 4.1 For any points x1, . . . , xN , y ∈ R
d , λ ∈ �N and m:= ∑N

i=1 λi xi , we
have the following identities:

N∑

i=1

λi‖xi − y‖2 = ‖m − y‖2 +
N∑

i=1

λi‖xi − m‖2, (4.1)

N∑

i=1

λi‖xi − m‖2 =
N∑

i< j

λiλ j‖xi − x j‖2, (4.2)

N∑

i=1

λi‖xi − y‖ ≥
N∑

i< j

λiλ j‖xi − x j‖. (4.3)

Proof For (4.1), we set z:=m − y to obtain

N∑

i=1

λi‖xi − y‖2 =
N∑

i=1

λi‖xi − m + z‖22 =
N∑

i=1

λi

(
‖z‖2 + ‖xi − m‖2 − 2〈xi − m, z〉

)

= ‖m − y‖2 +
N∑

i=1

λi‖xi − m‖2.
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For (4.2), plugging y = x j into (4.1), we get

N∑

i=1

λi‖xi − x j‖2 = ‖m − x j‖2 +
N∑

i=1

λi‖xi − m‖2.

Weighting this equality with λ j and summing over j = 1, . . . , N , we get

N∑

i, j=1

λiλ j‖xi − x j‖2 =
N∑

j=1

λ j‖x j − m‖2 +
N∑

j=1

λ j

N∑

i=1

λi‖xi − m‖2

= 2
N∑

i=1

λi‖xi − m‖2.

Dividing by 2 yields (4.2). For (4.3), note that by the triangle inequality,

N∑

i< j

λiλ j‖xi − x j‖ = 1

2

N∑

i=1

λi

N∑

j=1

λ j‖xi − x j‖

≤ 1

2

N∑

i=1

λi

N∑

j=1

λ j (‖xi − y‖ + ‖y − x j‖)

= 1

2

( N∑

i=1

λi‖xi − y‖ +
N∑

j=1

λ j‖y − x j‖
)

=
N∑

i=1

λi‖xi − y‖.

��
In order to upper bound �p(ν̃)/�p(ν̂), we require a lower bound on �p(ν̂).

Proposition 4.2 For any discrete ν ∈ P(Rd) and p = 1, 2, it holds that

�p(ν) ≥
N∑

i< j

λiλ jW p
p (μi , μ j ). (4.4)

Proof Let p ∈ {1, 2} and ν = ∑nν

k=1 νkδ(yk) be arbitrary. Take π i ∈ argminπ∈�(ν,μi )

〈cp, π〉, then by definition,

�p(ν) =
N∑

i=1

λiW p
p (ν, μi ) =

N∑

i=1

λi

nν∑

k=1

ni∑

li=1

π i
k,li ‖yk − xili ‖p.

Since it holds for any i = 1, . . . , N and k = 1, . . . , nν that

∑

l1,...,li−1,li+1,...,lN

π1
k,l1

. . . π i−1
k,li−1

π i+1
k,li+1

. . . πN
k,lN

νN−1
k

= 1,
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we get

�p(ν) =
N∑

i=1

λi

nν∑

k=1

∑

l1,...,lN

π1
k,l1

. . . πN
k,lN

νN−1
k

‖yk − xili ‖p

=
nν∑

k=1

∑

l1,...,lN

π1
k,l1

. . . πN
k,lN

νN−1
k

N∑

i=1

λi‖yk − xili ‖p

and by (4.2) and (4.3), this yields

�p(ν) ≥
nν∑

k=1

∑

l1,...,lN

π1
k,l1

. . . πN
k,lN

νN−1
k

N∑

i< j

λiλ j‖xili − x j
l j
‖p

=
N∑

i< j

λiλ j

nν∑

k=1

∑

li ,l j

π i
k,li

π
j
k,l j

νk
‖xili − x j

l j
‖p.

It is straightforward to check that

nν∑

k=1

∑

li ,l j

π i
k,li

π
j
k,l j

νk
δ(xili , x

j
l j
) ∈ �(μi , μ j ),

and so we get

�p(ν) ≥
N∑

i< j

λiλ jW p
p (μi , μ j ).

��
Equipped with (4.4), we can see that already the simple choices ν = μ j and

ν = ∑N
i=1 λiμ

i for the initial measure approximate the optimal barycenter to some
extent.

Proposition 4.3 Let p ∈ {1, 2} and ν̂ be an optimal barycenter in (2.1).

(i) For ν:=μ j , it holds that

�p(ν)

�p(ν̂)
≤ 1

λ j
.

Note that in particular, if j ∈ argmaxNi=1 λi , then �p(ν)/�p(ν̂) ≤ N.

(ii) Let ν:= ∑N
i=1 λiμ

i , then

�p(ν)

�p(ν̂)
≤ 2.
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(iii) If ν is chosen randomly as one of the μi with probabilities λi , then also

E[�p(ν)]
�p(ν̂)

≤ 2.

Proof (i) Let ν:=μ j , then we see that

�p(ν) = �p(μ
j ) =

N∑

i=1

λiW p
p (μi , μ j ).

By (4.4),

�p(ν̂) ≥
N∑

i< j

λiλ jW p
p (μi , μ j ) ≥ λ j

N∑

i=1

λiW p
p (μi , μ j ),

such that

�p(ν)

�p(ν̂)
≤ 1

λ j
.

(ii) For the choice ν:=∑N
i=1 λiμ

i , taking π i j ∈ argminπ∈�(μi ,μ j )〈cp, π〉, we note
that

N∑

j=1

λ jπ
j i ∈ �(ν,μi ).

Hence,

�p(ν) =
N∑

i=1

λiW p
p

( N∑

j=1

λ jμ
j , μi

)
≤

N∑

i=1

λi 〈cp,
N∑

j=1

λ jπ
j i 〉

= 2
N∑

i< j

λiλ jW p
p (μi , μ j ),

such that

�p(ν)

�p(ν̂)
≤ 2.

(iii) This follows similarly as (ii) does by linearity of expectation.
��
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In general, there is no polynomial-time algorithm that will achieve an error arbi-
trarily close to 1 with high probability, see [14]. In light of this result, it is interesting
to see that it is possible to obtain a relative error bound of 2 as in [33], but without
performing any computations. However, note that merely using a mixture of the inputs
yields rather useless barycenter approximations in practice; consider, e.g., two distinct
Dirac measures.

Although we will see that the bounds above are still more or less sharp for Algo-
rithms 1–4, these algorithms perform a lot better in practice. Moreover, these bounds
are typically drastically improved as soon as a specificproblem is given, seeRemark4.6
and Sect. 5.

Using one of the mentioned trivial choices as initial measures, all algorithms above
aim to improve the approximation quality using themappingGp

λ,π . Next, we show that
given any approximate barycenter ν, executing Gp

λ,π on ν never makes the approxi-

mation worse, if we choose the OT plans π i ∈ �(ν,μi ) to be optimal.

Proposition 4.4 Given a discrete ν = ∑nν

k=1 νkδ(yk) ∈ P(Rd), p ≥ 1, let

π i :=
nν∑

k=1

ni∑

l=1

π i
k,lδ(yk, x

i
l ) ∈ argmin π∈�(ν,μi )〈cp, π〉

be optimal transport plans. Then it holds

�p(G
p
λ,π (ν)) ≤ �p(ν).

Proof By definition of π i , we have for all i = 1, . . . , N that

W p
p (ν, μi ) = 〈cp, π i 〉 =

nν∑

k=1

ni∑

l=1

π i
k,l‖yk − xil ‖p.

Set

π̃ i :=
nν∑

k=1

ni∑

l=1

π i
k,lδ(mk, x

i
l ) ∈ �(Gp

λ,π (ν), μi ),

where mk = Mp
λ,π (yk). Then it holds that

�p(G
p
λ,π (ν)) =

N∑

i=1

λiW p
p (Gp

λ,π (ν), μi ) ≤
N∑

i=1

λi 〈cp, π̃ i 〉

=
N∑

i=1

λi

nν∑

k=1

ni∑

l=1

π i
k,l‖mk − xil ‖p =

nν∑

k=1

νk

N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
‖mk − xil ‖p

=
nν∑

k=1

νk min
m∈Rd

N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
‖m − xil ‖p
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≤
nν∑

k=1

νk

N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
‖yk − xil ‖p =

N∑

i=1

λi

nν∑

k=1

ni∑

l=1

π i
k,l‖yk − xil ‖p

=
N∑

i=1

λiW p
p (ν, μi ) = �p(ν).

��
Combining the results above, we immediately get the following error bounds for

the algorithms introduced in Sect. 3.

Corollary 4.5 Let p ∈ {1, 2} and let ν̂ be an optimal barycenter.

(i) If ν̃ is obtained by Algorithm 1 (case p = 2) or Algorithm 2 (case p = 1), then
it holds that

�p(ν̃)

�p(ν̂)
≤ 1

λ1
or

�p(ν̃)

�p(ν̂)
≤ 1 + ε

λ1
,

respectively. Moreover, if instead the reference measure is chosen randomly with
probabilities equal to the corresponding λi , then

E[�p(ν̃)]
�p(ν̂)

≤ 2 or
E[�p(ν̃)]

�p(ν̂)
≤ 2(1 + ε).

(ii) If ν̃ is obtained by Algorithm 3 (case p = 2) or Algorithm 4 (case p = 1), then
it holds that

�p(ν̃)

�p(ν̂)
≤ 2 or

�p(ν̃)

�p(ν̂)
≤ 2(1 + ε),

respectively.

Proof This follows immediately by combining Propositions 4.3 and 4.4, and the fact
that

N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
‖m − xil ‖

is only optimized by mk up to a factor (1 + ε) for every k = 1, . . . , nν in the case
p = 1. ��
Remark 4.6 Next,we showhow to improveon the 2-approximationbound for a specific
given problem.We assume thatwe are given optimal or close to optimal transport plans

π i =
nν∑

k=1

ni∑

l=1

π i
k,lδ(yk, x

i
l ) ∈ �(ν,μi ), i = 1, . . . , N .
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In case of the pairwise algorithm (Algorithms 3 and 4), we use

π i =
N∑

j=1

λ jπ
j i ∈ �(ν,μi ), where π j i ∈ argminπ∈�(μ j ,μi )〈cp, π〉.

Given our approximate barycenter

ν̃ =
nν∑

k=1

νkδ(mk), mk = Mp
λ,π (yk),

consider again

π̃ i :=
nν∑

k=1

ni∑

l=1

π i
k,lδ(mk, x

i
l ) ∈ �(ν̃, μi ).

Then

�p(ν̃) =
N∑

i=1

λiW p
p (ν̃, μi ) ≤

N∑

i=1

λi 〈cp, π̃ i 〉 =
N∑

i=1

λi

nν∑

k=1

ni∑

l=1

π i
k,l‖mk − xil ‖p.

Together with (4.4), this gives

�p(ν̃)

�p(ν̂)
≤

∑N
i=1 λi

∑nν

k=1

∑ni
l=1 π i

k,l‖mk − xil ‖p

∑N
i< j λiλ jW p

p (μi , μ j )
. (4.5)

In the case p = 2, since

mk = Mp
λ,π (yk) =

N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
xil with

N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
= 1,

by incorporating (4.1), the denominator in (4.5) simplifies to

�2(ν̃) ≤
nν∑

k=1

νk

N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
‖mk − xil ‖2

=
nν∑

k=1

νk

( N∑

i=1

λi

ni∑

l=1

π i
k,l

νk
‖yk − xil ‖2 − ‖mk − yk‖2

)

=
N∑

i=1

λi

nν∑

k=1

ni∑

l=1

π i
k,l‖mk − xil ‖2 −

nν∑

k=1

νk‖mk − yk‖2
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= �2(ν) −
nν∑

k=1

νk‖mk − yk‖2,

such that by Proposition 4.3 (ii), we get

�2(ν̃)

�2(ν̂)
≤ 2 −

∑nν

k=1 νk‖mk − yk‖2
∑N

i< j λiλ jW2
2 (μi , μ j )

. (4.6)

Either way, for both p = 1, 2, the right-hand sides of (4.5) and (4.6) can be evaluated
with almost no computational overhead after the execution ofAlgorithmsAlgorithms 3
and 4, since the optimal transport plans π i j between μi and μ j have already been
computed.This usually gives boundsmuch closer to one than theworst-case guarantees
in Corollary 4.5.

Finally, we discuss the sharpness of the bounds in Corollary 4.5.

Proposition 4.7 Let N ≥ 2 and consider the case with λ = ( 1
N , . . . , 1

N ) ∈ �N . There
exist measures μ1, μ2 = μ3 = · · · = μN , such that if ν̂ is an optimal barycenter, the
following hold true:

(i) Let ν̃ be computed with Algorithm 1, then

�2(ν̃)

�2(ν̂)
= N = 1

λ1
.

If the reference measure is chosen uniformly at random, then

E[�2(ν̃)]
�2(ν̂)

= 2 − 1

N
N→∞−→ 2.

(ii) Let ν̃ be computed with Algorithm 2, then

�1(ν̃)

�1(ν̂)
= N − 1 = 1

λ1
− 1.

If the reference measure is chosen uniformly at random, then

E[�1(ν̃)]
�1(ν̂)

= 2
(
1 − 1

N

)
N→∞−→ 2.

(iii) Let ν̃ be computed with Algorithm 3, then

�2(ν̃)

�2(ν̂)
≥ N − 1

N

(
1 + N − 1

N

)
N→∞−→ 2.
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(iv) Let ν̃ be computed with Algorithm 4, then

�1(ν̃)

�1(ν̂)
= 2 − 1

N
N→∞−→ 2.

Proof We consider

μ1:=δ(0), μ2 = . . . = μN :=1

2
(δ(−1) + δ(1)).

(i) For π i defined as in Algorithm 1, it holds

π i = 1

2
(δ(0,−1) + δ(0, 1)), i = 2, . . . , N .

and thus

ν̃ = δ
(1
2
(−1 + 1)

)
= δ(0) = μ1.

Thus,

�2(ν̃) =
N∑

i=1

λiW2
2 (ν̃, μi ) = N − 1

N
.

On the other hand, consider

ν = 1

2

(
δ
(

− N − 1

N

)
+ δ

(N − 1

N

))
,

then

�2(ν) =
N∑

i=1

λiW2
2 (ν, μi ) = 1

N

((N − 1

N

)2 + (N − 1)
( 1

N

)2) = N − 1

N 2 ,

such that

�2(ν̃)

�2(ν̂)
≥ �2(ν̃)

�2(ν)
= N = 1

λ1
.

(ii) We only need to compute the following medians:

argminm∈Rd
1

N
‖0 − m‖ + 1

2

N∑

i=2

1

N
(‖ − 1 − m‖ + ‖1 − m‖) = 0,

argminm∈Rd
1

N
‖0 − m‖ +

N∑

i=2

1

N
(‖ − 1 − m‖) = −1, and
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argminm∈Rd
1

N
‖0 − m‖ +

N∑

i=2

1

N
(‖1 − m‖) = 1.

Then we see that ν̃ = μ1, such that

�1(ν̃) =
N∑

i=1

λiW1(μ
1, μi ) = 1

N
· 0 +

(
1 − 1

N

)
· 1 = 1 − 1

N
,

and for any j ∈ {2, . . . , N },

�1(μ
j ) = 1

N
· 1 +

(
1 − 1

N

)
· 0 = 1

N
,

which leads to

�1(ν̃)

�1(ν̂)
≥ �1(ν̃)

�1(μ j )
= N − 1 = 1

λ1
− 1.

For the randomized case, we get

E[�1(ν̃)] = 1

N
�1(μ

1) +
(
1 − 1

N

)
�1(μ

j ) = 1

N
·
(
1 − 1

N

)
+

(
1 − 1

N

)
· 1

N

= 2
1

N

(
1 − 1

N

)
,

such that

E[�1(ν̃)]
�1(ν̂)

≥ 2 1
N (1 − 1

N )

1
N

= 2
(
1 − 1

N

)
.

(iii) We get for i = 2, . . . , N that

π i j =
{

1
2 (δ(−1, 0) + δ(1, 0)), j = 1,
1
2 (δ(−1,−1) + δ(1, 1)), j = 2, . . . , N ,

and hence

ν̃i = 1

2

(
δ
(N − 1

N
· (−1) + 1

N
· 0

)
+

(
δ
(N − 1

N
· 1 + 1

N
· 0

))

= 1

2

(
δ
(

− N − 1

N

)
+ δ

(N − 1

N

))
.

Thus,

ν̃ = 1

N
δ(0) + N − 1

2N

(
δ
(

− N − 1

N

)
+ δ

(N − 1

N

))
.

123



J. v. Lindheim

Hence, it is easy to compute that

W2
2 (ν̃, μi ) =

{
N−1
N ( N−1

N )2 = ( N−1
N )3, i = 1

1
N ( N−1

N )2 + N−1
N ( 1

N )2 = 1
N3 N (N − 1) = N−1

N2 , i = 2, . . . , N ,

such that

�2(ν̃) = 1

N

(( N − 1

N

)3 + (N − 1)
( N − 1

N2

))
= N − 1

N2

(( N − 1

N

)2 + N − 1

N

)
.

Finally, considering

ν = 1

2

(
δ
(

− N − 1

N

)
+ δ

(N − 1

N

))
,

we get

�2(ν̃)

�2(ν̂)
≥ �2(ν̃)

�2(ν)
=

(N − 1

N

)2 + N − 1

N
= N − 1

N

(
1 + N − 1

N

)
N→∞−→ 2.

(iv) In this case, we get

ν̃ = 1

N
δ(1) + N − 1

2N

(
δ(−1) + δ(1)

)
.

Compute

�1(ν̃) =
N∑

i=1

λiW1(ν̃, μi ) = 1

N
· N − 1

N
+ N − 1

N
· 1

N
= 2(N − 1)

N 2 .

On the other hand, for any j ∈ {2, . . . , N },

�1(ν
j ) = 1

N
W1(ν

j , ν1) = 1

N
,

such that

�1(ν̃)

�1(ν̂)
≥ �1(ν̃)

�1(ν j )
= 2

N−1
N2

1
N

= 2
(
1 − 1

N

)
N→∞−→ 2.

��
Remark 4.8 Intuitively, the example used in the proof of Proposition 4.7 is based on
the fact that the analyzed algorithms can not split μ1 = δ(0) into two Dirac measures
with weight 1/2, in which case the approximations would be optimal. We chose the
example in the proof for simplicity of exposition. However, it is also possible to show
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the same sharpness results usingmeasuresμ1, . . . , μN that all have two support points.
To this end, for N odd and some small ε > 0, consider

μ1:=1

2
(δ(0,−ε) + δ(0, ε)),

μ2 = μ4 = · · · = μN−1:=1

2
(δ(−1,−ε) + δ(1, ε))

μ3 = μ5 = · · · = μN :=1

2
(δ(−1, ε) + δ(1,−ε)).

5 Numerical results

We present a numerical comparison of different Wasserstein-2 barycenter algorithms,
the computation of a Wasserstein-1 barycenter, and, as applications, an interpolation
betweenmeasures and textures, respectively. To compute the exact two-marginal trans-
port plans of the presented algorithms, we used the emd function of the Python-OT
(POT 0.7.0) package [55], which is a wrapper of the network simplex solver1 from
[8], which, in turn, is based on an implementation in the LEMON C++ library.2

5.1 Numerical comparison

In this section, we compare different Wasserstein-2 barycenter algorithms in terms
of accuracy and runtime. We would like to include popular algorithms as iterative
Bregman projections into the comparison. However, many of these algorithms operate
in a fixed-support setting, that is, they only optimize over the weights of some a priori
chosen support grid. On the other hand, free-support methods are the ideal candidate
for sparse and possibly high-dimensional point cloud data, i.e., if such a grid structure is
not present. An approximation of such data with a coarse grid decreases the accuracy
of the solution, but a fine grid increases the runtime of the fixed-support methods.
Hence, the fair choice of a comparison data set is challenging.

We attempt to solve this problem by choosing a grid data set with relatively few
nonzero mass weights, that has nevertheless been commonly used as a benchmark
example in the literature, also for fixed-support algorithms. It originates from [15] and
consists of N = 10 ellipses shown in Fig. 2, given as images of 60 × 60 pixels. We
take λ ≡ 1/N .

First, we compute approximate barycenters ν̃ using the presented algorithms in
the case p = 2, which we call “Reference” and “Pairwise” below.3 Furthermore,
we compute the barycenter using publicly available implementations for the methods
[18, 21, 36], called “Debiased”, “IBP”, “Product”, “MAAIPM” and “Frank–Wolfe”

1 https://perso.liris.cnrs.fr/nicolas.bonneel/FastTransport/.
2 http://lemon.cs.elte.hu/pub/doc/latest-svn/index.html.
3 https://github.com/jvlindheim/free-support-barycenters.
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Fig. 2 Data set of 10 nested ellipses

below,4 the exact barycenter method from [30] called “Exact” below,5 and the method
from [23] called “FastIBP” below.6 We also tried the BADMM7 method from [56],
but since it did not converge properly, we do not consider it further.

While the fixed-support methods receive the input measures supported on
{0, . . . , 59/60} × {0, . . . , 59/60} as gray-valued 60 × 60 images, the free-support
methods get the measures as a list of support positions and corresponding weights.
Clearly, the sparse support of the data is an advantage for the free-support methods. As
a means to facilitate the comparison, we execute the reference and pairwise algorithms
also as fixed-support versions. Instead of computing optimal solutions in Algorithms 1
and 3 and, we approximate the optimal transport plans π i j using the Sinkhorn algo-
rithm on the full grid. We call these algorithms “Reference full” and “Pairwise full”
below. Note that, as do the implementations of “IBP”, “Debiased” and “Product”, we
exploit the fact that the Sinkhorn kernel K = exp(−c/ε) is separable, such that the
corresponding convolution can be performed separately in x- and y-direction, see,
e.g., [13, Rem. 4.17]. This also reduces memory consumption, since it is not neces-
sary to compute a distance matrix in R

3600×3600. We remark that the runtime of the
Sinkhorn algorithms crucially depends on the desired accuracy. In analogy to “IBP”,
“Debiased” and “Product” that terminate, once the barycenter measure has a maxi-
mum change of 10−5 in any iteration, we terminate once this tolerance is reached in
the first marginal of π i j . We check for this criterion only every 10-th iteration, since
it produces computational overhead (contrary to the aforementioned methods).

For all Sinkhorn methods, we used a parameter of ε = 0.002 and otherwise chose
the default parameters. For the reference algorithm, we have chosen the reference
measure to be the upper left measure shown in Fig. 2. To compare the runtimes, we
executed all codes on the same laptop with Intel i7-8550U CPU and 8GB memory.
The Matlab codes were run in Matlab R2020a. The runtimes of the Python codes are
averages over several runs, as obtained by Python’s timeit function. The results are
shown in Fig. 3 and Table 1.

4 https://github.com/hichamjanati/debiased-ot-barycenters.
5 https://github.com/eboix/high_precision_barycenters.
6 https://github.com/tyDLin/FS-WBP.
7 https://github.com/bobye/WBC_Matlab.
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Fig. 3 Barycenters for data set in Fig. 2 computed by different methods. The weight of a support point is
indicated by its area in the plot

Table 1 Numerical results for the ellipse barycenter problem. The runtime is measured in seconds. The
ranking is the sum of the standard scores of the logarithm of the relative error and the runtime, respectively.
The best values of all approximative algorithms are highlighted in bold

�(ν̃) �(ν̃)/�(ν̂) Runtime Ranking Free support

Reference 0.02683 1.0061 0.0501 −1.65 �
Pairwise 0.02669 1.0012 0.3095 −1.41 �
Pairwise full 0.02678 1.0042 0.5092 −1.14 �
Debiased 0.02675 1.0033 1.5061 −0.90 ×
Reference full 0.02716 1.0186 0.1128 −0.84 �
IBP 0.02723 1.0214 0.0914 −0.76 ×
Product 0.02688 1.0082 21.2982 0.02 ×
MAAIPM 0.02672 1.0020 158.5085 0.24 ×
Exact 0.02666 1.0000 18187.6740 1.38 �
FastIBP 0.02753 1.0323 111.0340 1.59 ×
Frank–Wolfe 0.02870 1.0763 68.2480 3.48 �

While the exact method has a very high runtime, no approximative method achieves
a perfect relative error of �2(ν̃)/�2(ν̂) = 1. However, the error is well below 2 for
all methods, which is a lot better than the worst case bounds shown above. In fact,
using the problem-adapted bounds as outlined in Remark 4.6, without knowledge of ν̂,
the pairwise algorithm already guarantees a relative error of at most 1.64%. Whereas
the pairwise algorithm achieves the lowest error of all approximative algorithms with
around 0.12%, the reference algorithm achieves the lowest runtime of 0.05 seconds.
Notably, the FastIBP method is a lot slower than IBP whilst producing a more blurry
result, which might indicate an implementation issue. While the Frank–Wolfe method
suffers from outliers, the support of most fixed-support methods is more extended than
exact barycenter’s support, since Sinkhorn-barycenters have dense support.
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Fig. 4 Barycenters computed with Algorithms 2 and 4 and for the data set in Fig. 2 and cost functions
c1(x, y) = ‖x − y‖ and c2(x, y) = ‖x − y‖2. The weight of a support point is indicated by its area in the
plot

We attempt to measure the best compromise between low error and runtime by
means of the sum of the standard scores of the logarithmic relative errors and run-
times, respectively, where the standard score or zscore is the value normalized by the
population mean and standard deviation. Table 1 is sorted according to this ranking
score. The reference and pairwise algorithm are the best with respect to this metric.
As expected, the full-support versions of the reference and pairwise algorithms have
worse runtime and also accuracy, which can likely be explained by the errors of the
Sinkhorn algorithm. Nevertheless, they offer a competitive tradeoff between speed
and accuracy with respect to the other methods, which shows that the advantage of the
framework considered in this paper is not only due to the sparse support of the chosen
data set. Altogether, the results of the proposed algorithms look promising.

5.2 Wasserstein-1 barycenters

Next, we compute approximate Wasserstein-1 barycenters of the same data set as in
the previous Sect. 5.1 using the Algorithms 2 and 4. The results are depicted in Fig. 4
in the top row.

Note that the elliptic structure of the barycenter is only retained to some degree,
which can probably be explained by the choice of c1 as the cost function. For example,
it is easy to show that the OT plans corresponding to W2

2 are translation equivariant.
On the other hand, this property fails for any other p ∈ [1, 2) ∪ (2,∞], as it is easy
to derive from the example with μ, ν ∈ P(R2) defined by
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μ:=1

2
(δ(0, 0) + δ(1, 0)), ν:=1

2
(δ(0, 0) + δ(0, 1)).

Thus, we also execute algorithms Algorithms 2 and 4, where we swap c1 for the
squared Euclidean costs c2 in order to compute the OT plans π i j ∈ �(μi , μ j ), but
continue to compute the barycenter support using Weiszfeld’s algorithm. The results
are shown in Fig. 4 in the bottom row.

Now the elliptic structure is preserved a lot better and the results are very similar
to the Wasserstein-2 barycenters. We conclude that the choice of cost function had a
larger impact on the results thanwhether the barycenter support is constructed using the
means or geometric medians. Algorithms 2 and 4 with c2 thus seem like an interesting
alternative to Algorithms 1 and 3 in the case where one expects outlier measures, since
the median is more robust to outliers than the mean, see, e.g. [57].

5.3 Multiple different sets of weights

For this numerical application, we compute barycenters between four given measures
for multiple sets of weights λk = (λk1, . . . , λ

k
N ), λk ∈ �4, k = 1, . . . , K , obtaining an

interpolation between those measures. An advantage of the presented algorithms for
that application is that the optimal transport plans between the input measures, which
are the bottleneck computations, only need to be performed once, whereas the matrix
multiplications for interpolations with new weights are fast. We use the proposed
algorithms for a data set of four measures given as images of size 50× 50, for sets of
weights that bilinearly interpolate between the four unit vectors. The originalmeasures
are shown in the four corners of Fig. 6. For the reference algorithm, we use the upper
left measure as the reference measure. The results are shown in Figs. 5 and 6.

While the running time of the reference algorithm is shorter, its solution has several
artifacts, in particular when the weight λk1 of the reference measure is low. On the
other hand, through effectively averaging the reference algorithm for different choices
of the reference measure, the pairwise algorithm is able smooth out some of these
artifacts. We compare the results of both algorithms for λ = (0.04, 0.16, 0.16, 0.64)
in Fig. 7. We also computed the upper error bound η of the pairwise algorithm given
by (4.6) exemplarily for uniform weights, which is 3.6%.

5.4 Texture interpolation

For another application, we lift the experiment of Sect. 5.3 from interpolation of mea-
sures in Euclidean space to interpolation of textures via the synthesis method from
[6], using their publicly available source code.8 While the authors already interpo-
lated between two different textures in that paper, requiring only the solution of a
two-marginal optimal transport problem to obtain a barycenter, we can do this for
multiple textures using approximate barycenters for multiple measures. Briefly, the
authors proposed to encode a texture as a collection of smaller patches Fj , where each,
say, 4×4-patch is encoded as a point x j ∈ R

16. The texture is then modeled as a “fea-

8 https://github.com/ahoudard/wgenpatex.
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Fig. 5 Approximate barycenters for different sets of weights computed by Algorithm 1

ture measure” 1
M

∑M
j=1 δ(x j ) ∈ P(R16), such that this description is invariant under

different positions of its patches within the image. Finally, this is repeated for image
patches at several scales s, obtaining a collection of measures (μs), s = 1, . . . , S.
Synthesizing an image is done by optimizing an optimal transport loss between its
feature measure and some reference measure (and then summing over s), as obtained,
e.g., from a reference image. Thus, the synthesized image tries to imitate the reference
image in terms of its feature measures. Here, we choose four texture images of size
256 × 256 from the “Describable Textures Dataset” [58]. We compute their feature
measures μ1,s, . . . , μ4,s for each scale. Next, as in Sect. 5.3, we compute approxi-
mate barycenters ν̃k,s for all k and s using the reference algorithm, where k runs over
different sets of weights, and perform the image synthesis for each k using the ν̃k,s as
feature measures to imitate. The results are shown in Fig. 8. Using this approach, one
obtains a visually pleasing interpolation between the four given textures.
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Fig. 6 Approximate barycenters for different sets of weights computed by Algorithm 3

Fig. 7 Close comparison of two approximate barycenters of the reference and pairwise algorithms for the
weights λ = (0.04, 0.16, 0.16, 0.64)

123



J. v. Lindheim

Fig. 8 Interpolation of four different textures that are displayed in the four corners. The weight set for the
barycenter computations performed for each image is shown above each synthesized image

6 Conclusion

In this paper,wederived two straightforward algorithms fromawell-known framework
for Wasserstein-p barycenters for p = 1, 2. We analyzed them theoretically and
practically, showing that they are easy to implement, produce sparse solutions and
are thus memory-efficient. We validated their speed and precision using numerical
examples.

In the future, it would be interesting to generalize the discussed algorithms and
bounds to other p ≥ 1. For instance, for p = ∞, the barycentric map Mp

λ,π corre-
sponds to the solution of the so-called smallest-sphere-problem, which can be solved
by Welzl’s algorithm [59]. Finding a lower bound as in Proposition 4.2 for general
p ≥ 1 is not straightforward, since the proofs of (4.2) and (4.3) are specific to p = 2
and p = 1.
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