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Abstract
Given a set of agents with approval preferences over each other, we study the task 
of finding k matchings fairly representing everyone’s preferences. To formalize fair-
ness, we apply the concept of proportional representation as studied in approval-
based multiwinner elections. To this end, we model the problem as a multiwinner 
election where the set of candidates consists of matchings of the agents, and agents’ 
preferences over each other are lifted to preferences over matchings. Due to the 
exponential number of candidates in such elections, standard algorithms for clas-
sical sequential voting rules (such as those proposed by Thiele and Phragmén) are 
rendered inefficient. We show that the computational tractability of these rules can 
be regained by exploiting the structure of the approval preferences. Moreover, we 
establish algorithmic results and axiomatic guarantees that go beyond those obtain-
able in the classical approval-based multiwinner setting: Assuming that approvals 
are symmetric, we show that Proportional Approval Voting (PAV), a well-estab-
lished but computationally intractable voting rule, becomes polynomial-time com-
putable, and that its sequential variant, which does not provide any proportionality 
guarantees in general, fulfills a rather strong guarantee known as extended justified 

A preliminary version of this paper has appeared in the proceedings of the 21st International 
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representation. Some of our algorithmic results extend to other types of compactly 
representable elections with an exponential candidate space.

1 Introduction

Matching problems involving preferences occur in a wide variety of applications, 
and the literature has identified a host of criteria for choosing a single “fair” match-
ing (Manlove 2013). In contrast to most of this work, we are interested in situations 
where multiple matchings between agents can be chosen, which allows to consider 
new dimensions of “fairness.” Such situations occur naturally in applications where 
agents need to be matched multiple times, either successively or simultaneously. 
For instance, teachers often divide students into pairs for partner work, and multiple 
matchings might be required for different learning activities and different subjects. 
Several matchings can also be chosen in pair programming, for example, one pairing 
per project milestone. Other natural applications occur in workplaces where shifts 
are executed in pairs, which is often the case for security reasons (e.g., police offic-
ers or pilots usually work in shifts as pairs).

We model scenarios of this type as the problem of finding k matchings between 
agents based on the agents’ dichotomous (i.e., approval/disapproval) preferences 
over each other. More concretely, we associate with each agent an approval set, 
i.e., a subset of other agents that are approved by the agent. In the student/teacher 
scenario, approval sets of students could, for example, consist of all students they 
like, or of all students that are deemed compatible with them by the teacher. Prefer-
ences over agents are then lifted to preferences over matchings in a straightforward 
way: An agent approves a matching if and only if she is matched to an agent she 
approves in the matching. If the task were to find only a single matching, it would 
be natural to select a matching maximizing the number of approvers (which, natu-
rally, some agents might not approve). However, when selecting multiple match-
ings, it is possible to choose different matchings to balance interests of agents and 
to strive for proportional representation: A group that makes up a p-fraction of 
the agents ( p ∈ [0, 1] ) should not be “less happy” than if this group could decide 
on ⌊p ⋅ k⌋ of the matchings, where k denotes the total number of matchings to be 
selected. This objective leads to considerations that are quite different from the 
classical goals of the matching literature such as stability or popularity. We review 
classical solution concepts in Sect.  1.1, formalize proportional representation in 
Sect. 2.3, and discuss a concrete example to illustrate the differences between them 
in Sect. 3.

The type of proportional representation-based fairness we strive for is captured 
by proportionality axioms from the approval-based multiwinner voting literature 
(Lackner and Skowron 2022). By interpreting matchings as candidates and agents 
as voters, our setting can be viewed as a special case of approval-based multiwin-
ner elections. As a consequence, voting rules and axiomatic results from this more 
general framework are applicable to our setting, to which we refer to as matching 
elections. We explicitly allow that a single candidate (i.e., matching) can be selected 
multiple times and we refer to multisets of matchings as committees. This is in 
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contrast to general approval-based multiwinner elections, where candidates can be 
selected at most once.1

This positions matching elections within the class of party-approval elec-
tions (Brill et al. 2022a), a recently introduced subclass of approval-based multiwin-
ner elections for which stronger axiomatic guarantees are obtainable.

Matching elections exhibit two characteristics that make them an intriguing sub-
domain of party-approval elections and that give rise to several interesting theoreti-
cal questions: First, the number of candidates in a matching election is exponen-
tial in the number of agents (and thus in the size of the description of an instance). 
As a consequence, a number of standard algorithms for applying voting rules or 
checking axiomatic guarantees no longer run efficiently, as they iterate over the 
candidate space. Second, preferences of agents have a very specific structure. For 
instance, it is possible to combine certain parts of two matchings, thereby obtaining 
a “compromise” candidate that is approved by some approvers of the first and some 
approvers of the second matching. Exploiting this structure has the potential to not 
only recover the computational tractability of voting rules, but also to prove pro-
portional representation guarantees that go beyond those obtainable in the general 
party-approval setting.

We also consider two natural special cases of matching elections: symmetric 
matching elections, where agents’ approvals are mutual, and bipartite matching 
elections, where agents are partitioned into two groups and agents only approve 
members of the opposite group. The previously described applications yield sym-
metric matching elections if, for example, approvals encode compatibility con-
straints. Similarly, bipartite matching elections arise whenever matched agents are 
required to have different attributes regarding professional experience, educational 
background, gender, etc.

1.1  Related work

The matching literature has established a variety of optimality criteria for selecting 
a single matching based on ordinal preferences of agents. In the following, we men-
tion several of these criteria and discuss how they relate to the ideal of proportional 
representation (see Remark  2 in Sect.  3.1 for a concrete example). Most promi-
nently, stable matchings (Gale and Shapley 1962) as well as their fractional relaxa-
tion (Roth et al. 1993) are motivated by the underlying “threat” that pairs of agents 
can block a matching. In contrast, proportionality prescribes that a pair of agents has 
the power to decide on ⌊2 ∗ (k∕n)⌋ matchings in the committee, where n denotes the 

1 As a rationale for our decision, observe that such a constraint would be rather artificial in our setting: 
Two matchings which only differ in a few pairs would already be considered as two distinct candidates in 
a matching election. Moreover, allowing each matching to be selected only once can lead to inefficiencies 
that are hard to justify. For instance, in case there is a single matching that all agents approve, it would 
be rather unnatural to forbid choosing this matching multiple times (recall the initially mentioned appli-
cations of our problems, e.g., to the planning of shifts). Lastly, the constraint that each matching can be 
selected only once is prohibitive from a computational point of view: Since counting the number of dif-
ferent matchings in a graph is #P-hard (Valiant 1979), it would be computationally intractable to decide 
whether committees of a given size exist.
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number of agents. An advantage of the latter is that we can represent the preferences 
of all agents, even those who would not be matched in any stable matching. Another 
related criterion is popularity (Gärdenfors 1975; Kavitha et al. 2011; Cseh 2017). A 
(fractional) matching is popular if it is preferred to any other matching by a major-
ity of the agents (in expectation). While this is well-motivated for selecting a single 
matching, it leads to a “dictatorship of the majority” in the multiwinner case (as 51% 
of the agents could decide on the entire committee).

Bogomolnaia and Moulin (2004) consider a setting that is similar to ours, except 
that probability distributions over matchings are chosen (rather than multiple match-
ings). They focus on the egalitarian solution  (Bogomolnaia and Moulin 2004), 
which chooses probability distributions maximizing the utility of the worst-off agent 
(breaking ties according to the leximin order). It was recently shown that such a 
probability distribution can be computed in polynomial time  (García-Soriano and 
Bonchi 2020). Bogomolnaia and Moulin (2004) only consider bipartite and symmet-
ric2 instances and show that, under these restrictions, the egalitarian solution satis-
fies strong fairness and incentive properties. However, for non-symmetric instances, 
the fairness ideal behind the egalitarian solution is not completely satisfactory, as it 
ignores how hard it is to satisfy agents. Our axioms, in contrast, implicitly reward 
groups that can be matched easily to agents they approve.

Proportional representation is traditionally studied in the context of multiwinner 
elections  (Chamberlin and Courant 1983; Monroe 1995; Faliszewski et  al. 2017). 
Recent years have witnessed a considerable amount of interest in multiwinner elec-
tions based on dichotomous preferences (Lackner and Skowron 2022). Within this 
setting, a particular focus has been on defining axiomatic properties capturing pro-
portional representation (Aziz et al. 2017; Sánchez-Fernández et al. 2017; Brill et al. 
2018; Peters et  al. 2021) and on algorithms for guaranteeing (approximately) rep-
resentative outcomes (Brill et al. 2017; Cheng et al. 2019; Jiang et al. 2020; Peters 
and Skowron 2020). Matching elections constitute a subdomain of party-approval 
elections Brill et al. (2022a).

The elections we consider in this paper have an exponential number of candi-
dates, and thus require a way to represent agents’ preferences succinctly. Similar 
approaches involving compactly represented preferences of agents have been used, 
for example, in the study of hedonic games (Bogomolnaia and Jackson 2002; Aziz 
et  al. 2019; Boehmer and Elkind 2020), fair division  (Bouveret et  al. 2010; Aziz 
et al. 2015b), and single-winner voting in combinatorial domains (Chevaleyre et al. 
2008; Lang and Xia 2016). To the best of our knowledge, multiwinner elections 
with exponentially many candidates have not yet been considered.

1.2  Our contributions

We establish matching elections as a novel subdomain of approval-based multiwin-
ner elections with an exponential candidate space and initiate their computational 
and axiomatic study. By doing so, we are able to focus on a dimension of fairness 

2 Bogomolnaia and Moulin  (2004) allow asymmetric preferences but assume that agents can only be 
matched if they approve each other, hence rendering the setting symmetric.
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which, to the best of our knowledge, has not been studied within the matching litera-
ture before. We consider several established (classes of) approval-based multiwin-
ner rules (Thiele rules, Phragmén’s sequential rule, and the method of equal shares 
(also known as Rule  X); see Sect.  2.2 for definitions) and proportionality axioms 
(PJR, EJR, and core stability; see Sect. 2.3 for definitions). Exploiting the structure 
of matching elections, we prove a number of positive results. In particular, we show 
that all considered sequential rules can be computed in polynomial time despite the 
exponential candidate space. In fact, we show the slightly more general result that 
those rules are tractable in all elections where a candidate maximizing a weighted 
approval score can be found efficiently. We furthermore show that non-sequential 
Thiele rules such as PAV can be computed efficiently in symmetric matching elec-
tions and in bipartite matching elections, whereas they are computationally intrac-
table in general3 matching elections. We present these results in Sect. 4, which we 
start with Table 1 summarizing our computational results.

The strong structure of symmetric matching elections has axiomatic ramifications 
as well: We show that a large class of sequential Thiele rules satisfy EJR in this 
setting. This is particularly surprising as these rules are known to violate even sig-
nificantly weaker axioms in general approval-based multiwinner and party-approval 
elections. On the other hand, Phragmén’s sequential rule and the method of equal 
shares do not satisfy stronger proportionality axioms compared to the general set-
ting. We present these results in Sect. 5, which we start with Table 2 summarizing 
our axiomatic results.

Lastly, in Sect. 6, we show that in matching elections it can be checked efficiently 
whether a committee satisfies EJR, whereas checking core stability or PJR is intrac-
table. The problem of checking PJR is our only example for a computational prob-
lem that is polynomial-time solvable in the party-approval setting but NP-complete 
in the setting of matching elections.

2  Preliminaries

We define party-approval elections in Sect.  2.1 and recap some approval-based 
multiwinner voting rules in Sect.  2.2 and proportionality axioms in Sect.  2.3. Let 
ℕ = {1, 2,…} , ℕ0 = ℕ ∪ {0} , and for all n ∈ ℕ let [n] = {1,… , n}.

2.1  Party‑approval elections

A party-approval election  (Brill et  al. 2022a) is a tuple (N,  C,  A,  k), where 
N = [n] is a set of agents, C a set of candidates, A = (Aa)a∈N a preference profile 
with Aa ⊆ C denoting the approval set of agent a ∈ N , and k ∈ ℕ the committee 
size.4 For each a ∈ N , we say that a approves all candidates from Aa and disap-
proves all other candidates. A committee W ∶ C → ℕ0 is a multiset of candidates, 

3 A “general” matching election is a matching election that is neither bipartite nor symmetric.
4 To avoid trivialities, we always assume that there exists at least one agent a ∈ N with Aa ≠ ∅.
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with the interpretation that W(c) is the number of copies of candidate c contained 
in committee W. The size of a committee W is given by 

∑
c∈C W(c) . For an agent 

a ∈ N and a committee W, we let the happiness score ha(W) of a denote the num-
ber of (copies of) candidates from W approved by  a, i.e., ha(W) =

∑
c∈Aa

W(c) . 
Moreover, Nc = {a ∈ N ∣ c ∈ Aa} denotes the set of approvers (also called sup-
porters) of c, and |Nc| is called the approval score of  c. A voting rule maps a 
party-approval election (N, C, A, k) to a nonempty set of committees of size k. 
All committees output by a voting rule are considered tied for winning. Party-
approval elections differ from the more general approval-based multiwinner elec-
tions  (Aziz et  al. 2017) in that candidates can appear in a committee multiple 
times.

It is usually assumed that instances of a party-approval election are described by 
listing all candidates and approval sets explicitly. Since we will deal with elections 
with an exponential candidate space, we relax this assumption and only require that 
a representation of an election is given from which the full election can be recon-
structed (as we will argue later, for matching elections its representation consists of 
listing for each agent the agents it approves of). We will show that several computa-
tional problems we consider in the following can be reduced to solving the following 
problem:

Weighted Approval Winner
Input: A representation of a party-approval election (N, C, A, k) and a weight 
function � ∶ N → ℚ≥0.
Output: A candidate maximizing the total weight of its approvers, i.e., an ele-
ment of argmax 

c∈C

∑
a∈N

c

�(a).
We let rwaw denote the running time of solving this problem.

2.2  Voting rules from multiwinner voting

We describe four methods for computing committees. For each method the output 
of the corresponding voting rule consists of all committees that can result for some 
way of breaking ties.

Thiele Rules (w-Thiele) (Thiele 1895; Janson 2016)
The class of Thiele rules is parameterized by a weight sequence w, i.e., an infinite 
sequence of non-negative numbers w = (w1,w2,…) such that w1 = 1 and wi ≥ wi+1 
for all  i. Given a weight sequence w, the score of a committee W is defined as 
scw(W) =

∑
a∈N

∑ha(W)

i=1
wi . The rule w-Thiele selects committees maximizing this 

score. Setting wi = 1∕i for all i ∈ ℕ yields the arguably most popular Thiele rule 
known as Proportional Approval Voting (PAV).
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Sequential Thiele Rules (seq-w-Thiele) (Thiele 1895; Janson 2016)
These variants of Thiele rules start with the empty committee and add candidates 
iteratively. Given a multiset W of already selected candidates, the marginal contri-
bution of a candidate c is defined as scw(W ∪ {c}) − scw(W) . In each step, seq-w-
Thiele adds a candidate with a maximum marginal contribution. Setting wi = 1∕i for 
all i ∈ ℕ yields seq-PAV.

Phragmén’s Sequential Rule (seq-Phragmén) (Phragmén 1894; Janson 2016)
In seq-Phragmén, all agents start without money and continuously earn money (i.e., 
budget) at an equal and constant speed. As soon as there is a candidate c such that 
the group Nc of supporters of c jointly owns one dollar, such a candidate is added to 
the committee W and the budget of the group Nc is reduced to zero. All remaining 
agents keep their budget. This is repeated until the committee has size k.

The Method of Equal Shares (Equal Shares) (Peters and Skowron 2020)
Initially, every agent a has a budget ba of k/n dollars. Each candidate costs one dollar 
and a candidate c is said to be q-affordable if 

∑
a∈Nc

min{ba, q} ≥ 1 . In each round, 
we add a candidate c to the committee which is q-affordable for minimum q and 
reduce the budget of each agent a ∈ Nc by min{ba, q} . The rule stops when there 
exists no q-affordable candidate for any q > 0 . Note that Equal Shares might create 
a committee of size smaller than k; in this case, the committee can be completed by 
choosing the remaining candidates arbitrarily (Peters and Skowron 2020).

Since sequential Thiele rules, seq-Phragmén, and Equal Shares add candidates to 
the committee one by one, we refer to these rules as sequential rules. See Table 1 
for an overview of the computational complexity of the introduced rules in party-
approval elections.

2.3  Axioms from multiwinner voting

Consider a party-approval election (N, C, A, k). For � ∈ [k] , a set S ⊆ N of agents is 
�-cohesive if |S| ≥ �

n

k
 and 

⋂
a∈S Aa ≠ � . The intuition is that a group of � n

k
 agents 

makes up an �
k
-fraction of the agents and should hence be entitled to decide on � 

of the k members of a committee. If the agents of the group approve one joint can-
didate, they could chose � copies of this candidate, yielding a happiness score of 
� for each member of the group. Hence, ideally, in a committee satisfying propor-
tional representation each agent that is included in some �-cohesive group (for any 
� ∈ [k] ) has a happiness score of at least � . Since this ideal is not always achievable 
(Aziz et  al. 2017; Brill et  al. 2022b), the axioms proportional justified represen-
tation (Sánchez-Fernández et al. 2017) and extended justified representation (Aziz 
et al. 2017) capture relaxations of this ideal. Core stability strengthens these two axi-
oms by additionally requiring proportional representation for non-cohesive groups:
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Proportional Justified Representation
A committee W provides proportional justified representation (PJR) if there does 
not exist an � ∈ [k] and an �-cohesive group S such that W contains strictly fewer 
than � (copies of) candidates that are approved by at least one agent in S, i.e., ∑

c∈
⋃

a∈S Aa
W(c) < �.

Extended Justified Representation
A committee W provides extended justified representation (EJR) if there does not 
exist an � ∈ [k] and an �-cohesive group S such that ha(W) < � for all a ∈ S.

Core Stability
Given a committee W, we say that a group of agents S ⊆ N blocks W if |S| ≥ �

n

k
 for 

some � ∈ [k] and there exists a committee W ′ of size � such that ha(W �) > ha(W) for 
all a ∈ S . A committee W is core stable if it is not blocked by any group of agents.

Core stability implies EJR (Aziz et  al. 2017), and EJR implies PJR  (Sánchez-
Fernández et  al. 2017). As it is standard in the literature on approval-based mul-
tiwinner elections (Lackner and Skowron 2022), we say that a voting rule satisfies 
PJR/EJR/core stability if all committees in its output always satisfy the respective 
condition.

3  Matching elections

In this section, we formally introduce matching elections and related notation. In 
Sect. 3.1, we establish matching elections as a special case of party-approval elec-
tions by giving a formal embedding. We familiarize ourselves with the newly intro-
duced setting by proving some first observations on the special structure of the 
candidate space (Sect. 3.2) as well as showing that the Weighted Approval Winner 
problem can be solved efficiently (Sect. 3.3).

A matching election is a tuple (N,  A,  k), where N = [n] is a set of agents, 
A = (Aa)a∈N a preference profile with Aa ⊆ N ⧵ {a} denoting the set of agents that 
are approved by agent a, and k ∈ ℕ the number of matchings to be chosen. For nota-
tional convenience, we also call (N, A) a matching election.

A matching M is a set of (unordered) pairs of agents, i.e., 
M ⊆ {{a, b} ∣ a, b ∈ N, a ≠ b} , such that no agent is included in more than one pair. 
If {a, b} ∈ M , we say that a is b’s partner or a is matched to b in M. A matching M 
is perfect if every agent has a partner. An agent a approves a matching M if a is 
matched to some agent  b in  M and a approves b, i.e., b ∈ Aa , and disapproves a 
matching if a is unmatched or matched to an agent it does not approve of. (Note that 
agents are indifferent between being unmatched and being matched to an agent they 
do not approve of.) We let NM denote the set of agents approving matching M. We 
call a matching M Pareto optimal if there does not exist another matching M′ such 
that NM ⊊ NM′ . We call a matching minimal if there does not exist another matching 
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M′ such that M′ ⊊ M and NM� = NM . An outcome of a matching election is a multi-
set (or committee) M of k Pareto optimal and minimal matchings.5

Approval graph
The approval graph of a matching election (N, A) is a mixed graph defined as fol-
lows. The nodes of the approval graph are the agents in N and the edges depict their 
approval preferences: For two agents a, b ∈ N , there is an undirected edge {a, b} if a 
approves b and b approves a; and there is a directed edge (a, b) if a approves b but 
b does not approve a. For an example, see the illustration on the left side of Fig. 1. 
Observe that a matching is minimal if and only if it contains only pairs which are 
connected by an (undirected or directed) edge in the approval graph. Every minimal 
and Pareto optimal matching is in particular a maximal matching in the approval 
graph when all edges are interpreted as undirected. Observe that the reverse direction 
is not true, i.e., not every maximal matching in the approval graph is Pareto optimal.

Bipartite and symmetric matching elections
We consider two natural domain restrictions for matching elections. A matching 
election (N, A) is called bipartite if there exists a partition of the agents N = N1∪̇N2 
such that each agent approves only agents from the other set, i.e., if a ∈ Ni for 
i ∈ {1, 2} , then Aa ⊆ N⧵Ni . Furthermore, we call a matching election (N,  A) 
symmetric if agents’ approvals are mutual, i.e., for two agents a, b ∈ N , b ∈ Aa 
implies a ∈ Ab . Note that the approval graph of a symmetric matching election con-
tains only undirected edges.

Remark 1 As described above, we only allow Pareto optimal and minimal match-
ings to be part of a committee. In principle, one could also require that the selected 
matchings satisfy some other criteria, e.g., the well-studied criterion of stability. A 

Fig. 1  The figure on the left depicts the approval graph of the matching election (N, A) with N = {a1,… , a6} 

and approval sets Aa1
= {a2} , Aa2

= {a3} , Aa3
= {a4} , Aa4

= {a3} , Aa5
= {a3} , and Aa6

= {a4} . The fig-

ure on the right depicts the three candidates c1 , c2 , and c3 in the corresponding party-approval election

5 Minimality is only a formal restriction introduced for the sake of consistency, as any minimal matching 
can be extended to a (nearly) perfect matching by adding pairs of unmatched agents. On the other hand, 
Pareto optimality enforces that no clearly suboptimal matchings are part of the committee. Note that we 
can convert any matching M into a Pareto optimal matching M′ with NM ⊆ NM′ by solving one instance 
of Weighted Approval Winner (for details, we refer to the proof of Lemma 1). Thus, every matching can 
be easily replaced by a “better” minimal and Pareto optimal matching.
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matching is called (weakly) stable if no pair of agents exists both strictly preferring 
each other to their currently assigned partner (Manlove 2013). For approval prefer-
ences this translates to the absence of a pair of agents that approve each other but 
both do not approve their partner in the matching. While for symmetric approvals, 
every Pareto optimal matching is stable, this is not the case for asymmetric approv-
als: For example, the matching {{a1, a2}, {a3, a5}, {a4, a6}} in Fig. 1 is Pareto opti-
mal but not stable. In fact, restricting the candidate space to stable matchings for 
asymmetric matching elections has drastic computational consequences: In Appen-
dix  1, we show that the Weighted Approval Winner problem is no longer poly-
nomial-time solvable for this variant of the model. Thus, none of our algorithmic 
results translate to this setting.

3.1  Embedding into Party‑Approval Elections

A matching election (N,  A,  k) can be transformed into a party-approval election 
(N�,C�,A�, k�) with N� = N and k� = k by defining C′ as the set of all Pareto optimal 
and minimal matchings in (N, A) and A′ as the preference profile where each agent 
approves all candidates corresponding to matchings she approves. As we thereby 
establish matching elections as a subclass of party-approval elections, voting rules 
and axioms for party-approval elections directly translate to matching elections.

To illustrate the described transformation, we convert the matching election 
with six agents, whose approval graph is depicted on the left side of Fig.  1, into a 
party-approval election. The candidates of the corresponding party-approval elec-
tion are the three Pareto optimal and minimal matchings c1 = {{a1, a2}, {a3, a4}} , 
c2 = {{a1, a2}, {a3, a5}, {a4, a6}} , and c3 = {{a2, a3}, {a4, a6}} , which are marked 
on the right side of Fig. 1. The approval sets of the agents in the party-approval elec-
tion are Aa1

= {c1, c2} , Aa2
= {c3} , Aa3

= Aa4
= {c1} , Aa5

= {c2} , and Aa6
= {c2, c3}.

To get a feeling for proportionality in this election, let us set k = 3 . Observe that 
the groups {a3, a4} and {a5, a6} make up one third of the electorate each, and at the 
same time, the members of each group can agree on a matching they commonly 
approve. In other words, both groups are 1-cohesive and are thus entitled to be rep-
resented at least once. Since a3 and a4 only approve c1 , this is a strong argument in 
favor of choosing c1 at least once. Given that c1 is chosen at least once, adding c2 
seems preferable over adding c3 , since c2 is approved by three agents, two of which 
are completely unhappy so far, whereas c3 is approved by only two (so far completely 
unhappy) agents. Lastly, there is the choice between selecting c3 , which would lead 
to every agent being satisfied at least once, and selecting one of the more popu-
lar matchings c1 or c2 again. In fact, all three resulting committees are core stable. 
PAV and seq-PAV both select {c1, c2, c3} in this example, whereas seq-Phragmén 
returns {c1, c2, c3} and {c1, c1, c2} as tied winners. Equal Shares terminates after add-
ing c1 and c2 to the committee, which can be interpreted as a three-way tie between 
{c1, c1, c2} , {c1, c2, c2} , and {c1, c2, c3}.

Remark 2 A modified version of this example shows that stability, popular-
ity and the egalitarian ideal (see Sect.  1.1) are incompatible with the ideal of 
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proportional representation: Restrict the matching election from Fig.  1 to the 
agents {a1, a2, a3, a4} . This election has two candidates c = {{a1, a2}, {a3, a4}} and 
c� = {{a2, a3}} . If the committee size is k = 4 , the proportional representation ideal 
implies that c is selected three times and c′ is selected once. In contrast to this, both 
the only fractional stable and the only fractional popular solution would select c 
with probability 1. The egalitarian solution would select each of c and c′ with prob-
ability 1/2, therefore forcing an overrepresentation of a2.

While the focus of this paper is on matching elections, we note that some of our 
results apply to general party-approval elections. In particular, we establish our algo-
rithmic results in Sect. 4.1 by reducing the computational problem at hand to solv-
ing instances of Weighted Approval Winner (which is polynomial-time solvable for 
matching elections as shown in Sect. 3.3).

3.2  First observations on the candidate space

In this subsection, we make some general first observations about features of our 
candidate space and the agents’ approval sets. We start with an observation about 
the richness of the candidate space. Given a candidate (i.e., a matching) M and an 
agent a disapproving M, it is possible to obtain a new candidate M′ that is approved 
by a and by all agents approving M except at most three:

Observation 1 Given a matching election (N, A), let M be a matching and a ∈ N⧵NM 
an agent with Aa ≠ ∅ . There exists a matching M′ which is approved by a and all but 
at most three agents from NM.

Proof Assuming that a approves at least one agent, say b, to construct  M′ , we 
remove the pair from M containing b, say {b, c} (if it exists), as well as the pair con-
taining a, say {a, d} (if it exists). Finally, we insert the pair {a, b} . Observe that, for 
the approval of a, we lost at most three approvals from M, namely the ones of b, c, 
and d.  ◻

Using this exchange argument, we can show that the number of approvals of each 
Pareto optimal matching M is at least 1

3
 of the number of approvals of any other 

matching M′.

Observation 2 Let (N, A) be a matching election and M be a Pareto optimal match-
ing. For any other matching M′ , it holds that |NM| ≥

1

3
|NM′ |.

Proof Let M be a Pareto optimal matching and M′ some other matching. To prove 
the observation, we create a third matching M̃ by the following procedure: Initially, 
set M̃ = M� . As long as there exists an agent a ∈ NM not approving M̃ , insert into 
M̃ the pair from M containing a, say {a, b} , and delete the pairs containing a and b 
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from M̃ (if they exist). This procedure terminates in |NM| steps, since every agent in 
NM is considered at most once. After termination, NM ⊆ N�M and because M is Pareto 
optimal, also NM = N

M̃
 . Since in each iteration the number of approvals went down 

by at most two, we get that |NM| ≥ |NM� | − 2|NM| . Thus, the observation follows.  ◻

From this, we know that all candidates in a matching election are approved by the 
same number of agents up to a factor of three. For symmetric matching elections, it 
is even possible to tighten this bound: Here, all candidates are approved by the same 
number of agents and it is possible to perform one-to-one exchanges. This is also the 
key observation that helps proving that many sequential Thiele rules satisfy EJR in 
symmetric matching elections.

Observation 3 In symmetric matching elections, all candidates (i) have the same 
approval score and (ii) are maximum matchings in the approval graph.

Proof To see why the observation holds, recall that, in a symmetric matching elec-
tion, the set of agents approving a minimal matching is exactly the set of matched 
agents. For the sake of contradiction, assume that there exist two minimal Pareto 
optimal matchings M and M′ where M matches more agents than M′ . Then, the sym-
metric difference of M and M′ contains at least one path of odd length starting and 
ending with an edge from M. By augmenting M′ along this path, it is possible to 
match an additional agent, which contradicts that M′ is Pareto optimal.  ◻

While part (i) of Observation 3 implies that symmetric matching elections have 
a strong structure, part (ii) has further implications on the distribution of approvals 
of agents. These follow from the Gallai–Edmonds Structure Theorem (Gallai 1964; 
Edmonds 1965), which describes the structure of maximum matchings in undirected 
graphs.

Gallai–Edmonds decomposition
Let G = (V ,E) be an undirected graph and W, X,  and Y be a partition of the set of 
nodes V, such that Y is the (potentially empty) set of nodes which are not matched 
in all maximum matchings, X are their neighbors from V ⧵ Y  , and W = V ⧵ (Y ∪ X) . 
Concerning the notation, for some subset S ⊆ V  of nodes, we denote by G[S] the 
subgraph induced by S, i.e., the graph (S, E[S]), where E[S] is the set of all edges 
from E having both end nodes in S. The decomposition theorem  (Gallai 1964; 
Edmonds 1965) says that 

1. the graph G[W] contains a perfect matching;
2. the connected components of G[Y] are all factor-critical, i.e., removing any node 

from a connected component of G[Y] results in a graph containing a perfect 
matching; and

3. in every maximum matching, all nodes from X are matched to distinct connected 
components of G[Y].
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For our setting, the theorem implies that we can partition the agents into three sets 
W, X,  and Y such that all agents from X and W approve every Pareto optimal match-
ing. Moreover, in every Pareto optimal matching, all agents from X are matched to 
agents from Y and agents from W are matched among themselves. Using this theo-
rem, we can convert every symmetric matching election into an essentially equiva-
lent bipartite matching election. Here, the agents Y form one part of the bipartition 
and agents from X (plus some dummy agents) form the other part (see the proof of 
Lemma 2 for a formal description).

3.3  Weighted approval winner problem

In the proof of Lemma  1 we show that for matching elections, we can solve 
Weighted Approval Winner by solving two maximum weighted matching instances.

Lemma 1 Given a matching election (N,  A) and a weight function � ∶ N → ℚ≥0 , 
Weighted Approval Winner is solvable in O(n3)-time.

Proof Given a matching election (N, A) and a weight function � on the agents, let 
G = (N, Ê,E) be the corresponding approval graph. Recall that G is a mixed graph, 
where N is the set of nodes, Ê is the set of directed edges and E is the set of undi-
rected edges.

We denote by Ḡ = (N, Ē) the undirected graph induced by G. More precisely, 
Ē = {{a, b} ∣ {a, b} ∈ E or (a, b) ∈ Ê} . We show how to solve the Weighted 
Approval Winner problem by computing two maximum weight matchings 
in Ḡ , with respect to two different weight functions. We start by defining the 
first weight function on the edges w ∶ Ē → ℝ≥0 . For every directed edge in G, 
(a, b) ∈ Ê , let w({a, b}) = �(a) and for every undirected edge in G, {a, b} ∈ E , let 
w({a, b}) = �(a) + �(b).

By construction of the weight function w, for every matching M in Ḡ , it holds that 
the weight of M with respect to w is equal to the weighted sum of all agents under 
� that approve M, that is, 

∑
e∈M w(e) =

∑
a∈NM

�(a) . Let M be a maximum weight 
matching in Ḡ with respect to w. By the above observation, M also maximizes the 
weighted approval sum under � among all matchings of the agents. Recall that, in 
order for M to be a candidate in the matching election (N, A), it needs to be minimal 
and Pareto optimal. While M clearly satisfies minimality (every edge included in M 
is approved by at least one agent), Pareto optimality is not guaranteed since there 
might exist agents a ∈ N with �(a) = 0.

In the following, we construct a matching M′ in Ḡ based on the matching M, that 
is minimal, satisfies NM ⊆ NM′ (and thus maximizes the weighted sum of approvals), 
and is Pareto optimal. To this end, we first define a second weight function on the 
agents, i.e., �� ∶ N → ℝ≥0 . More precisely, ��(a) = n + 1 if a ∈ NM and ��(a) = 1 
if a ∈ N ⧵ NM . Again, we derive a weight function w� ∶ Ē → ℝ≥0 on the edges 
of Ḡ as follows. For every directed edge in G, (a, b) ∈ Ê , let w�({a, b}) = ��(a) 
and for every undirected edge in G, {a, b} ∈ E , let w�({a, b}) = ��(a) + ��(b) . 
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Again, by construction of w′ it holds for every matching M′ in Ḡ that ∑
e∈M� w

�(e) =
∑

a∈NM�
��(a).

Let M′ be a maximum weight matching in Ḡ with respect to w′ . It follows directly 
from the construction of the weight functions w′ and �′ that

NM ⊆ NM′ . Hence,

and by the maximality of M with respect to w the two sides are equal. Hence, M′ also 
maximizes the weighted approval sum with respect to � . Moreover, M′ is minimal, 
since every edge in M′ is approved by at least one agent. Lastly, M′ is also Pareto 
optimal since 𝜔�(a) > 0 for all agents a ∈ N . To see this, assume for contradiction 
that there exists a matching M′′ with NM′ ⊊ NM′′ . However, since �′ is strictly posi-
tive for all agents, this would imply

a contradiction to the maximality of M′ with respect to w′ . We conclude that M′ is 
a weighted approval winner for the matching election (N, A) and the weight func-
tion �.

Thus, the Weighted Approval Winner problem for any matching election can be 
solved by computing two maximum weight matchings. This can be done in O(n3)

-time (Korte and Vygen 2012).  ◻

Note that there exist other elections with an exponential candidate space for 
which Weighted Approval Winner is polynomial-time solvable. For instance, 
for all party-approval elections (N,  C,  A,  k) where the independent set system 
(N, {S ∣ S ⊆ Nc for some c ∈ C}) forms a matroid, Weighted Approval Winner 
reduces to finding a maximum weight independent set. This problem is polynomial-
time solvable if the independence of a set S ⊆ N can be checked efficiently (Korte 
and Vygen 2012).

4  Computational complexity of winner determination

In this section, we analyze the computational complexity of computing winning 
committees for different voting rules. We give an overview of our results from this 
section in Table  1. While some of our results are tailored to matching elections, 
our algorithmic results in Sect. 4.1 are applicable to a wider class of elections with 
an exponential number of candidates. We start by considering sequential rules in 
Sect. 4.1 before we turn to Thiele rules in Sect. 4.2. For Thiele rules, we first con-
sider the general then the bipartite and lastly the symmetric setting.

Note that for all considered sequential rules, it was already shown in previ-
ous works (Aziz et al. 2015a; Brill et al. 2017; Peters and Skowron 2020) that the 

∑

e∈M

w(e) =
∑

a∈NM

�(a) ≤
∑

a∈NM�

�(a) =
∑

e∈M�

w(e),

∑

e∈M��

w�(e) =
∑

a∈NM��

𝜔�
a
>

∑

a∈NM�

𝜔�
a
=

∑

e∈M�

w�(e),
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problem of finding a winning committee is solvable in time polynomial in the num-
ber of voters and the number of candidates. However, as in matching elections the 
number of candidates can be exponential in the input size, these algorithms are ren-
dered inefficient. To regain the tractability of sequential rules, we propose new algo-
rithms that use Weighted Approval Winner as a subroutine.

4.1  Sequential rules

For all considered sequential voting rules, we show that finding the next candidate 
to be added to the committee reduces to solving Weighted Approval Winner. Recall 
that rwaw denotes the running time of solving the latter problem.

For sequential Thiele rules, this reduction is straightforward: Given a multi-
set W of already selected candidates, we set the weight of an agent a to its mar-
ginal contribution to the score in case that a candidate in Aa is added to W, i.e., 
�(a) = wha(W)+1 . The candidate returned by Weighted Approval Winner is then 
added to the committee.

Observation 4 Given a party-approval election (N, C, A, k) and a weight sequence w, 
a committee that is winning under seq-w-Thiele can be computed in O(k ⋅ rwaw)-time.

A similar reduction also works for a local search variant of PAV  (Aziz et  al. 
2018). Since this variant satisfies core stability in party-approval elections (Brill 
et  al. 2022a), a core-stable outcome in a matching election can thus be computed 
efficiently.

Observation 5 Given a party-approval election (N, C, A, k), a committee satisfying 
core stability can be computed in O(nk4 ln(k) ⋅ rwaw)-time.

Table 1  Summary of results on the complexity of computing a winning committee for several multiwin-
ner voting rules

The first column contains results for party-approval elections for which the input contains a complete list 
of the candidates, as originally defined by (Brill et al. 2022a). We remark that these previously known 
results within the setting of party-approval elections do not have any implications for matching elections. 
Our hardness result (Theorem 3) holds for w-Thiele rules satisfying w1 > w2 > 0

Rules Party-approval elec. Matching elec. Sym. matching 
elec.

Bip. matching 
elec.

w-Thiele NP-hard (Brill et al. 
2022a)

NP-hard (Thm. 3) P (Cor. 1) P (Thm. 4)

seq-w-Thiele P (Aziz et al. 2015a) P (Obs. 4, Lemma 1) P P
seq-Phragmén P (Brill et al. 2017) P (Thm. 1, Lemma 1) P P
Equal Shares P (Peters and Skowron 

2020)
P (Thm. 2, Lemma 1) P P
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Proof Brill et  al. (2022a) showed that for a party-approval election (N, C, A, k) a 
core-stable committee can be computed by running a parameterized local search 
variant of PAV. (The method was originally introduced by Aziz et al. (2018) for gen-
eral approval-based multiwinner elections.) In the following, we present this method 
tailored to the party-approval setting and show that computing a winning commit-
tee can be reduced to solving the Weighted Approval Winner problem O(nk3 ln(k)) 
times.

Let w be the weight sequence corresponding to PAV, i.e., wi = 1∕i for all i ∈ ℕ . 
The method LS-PAV starts by selecting an arbitrary size-k committee W. Then, it 
checks whether there exists an improving swap defined as follows. A swap replaces 
one (copy of a) candidate c which occurs at least once in W by (a copy of) some 
other candidate c′ ≠ c . Let W ′ be the committee obtained from W by removing (one 
copy of) c and adding one copy of c′ . The swap replacing c by c′ is called improving 
iff

where � ∶= 1

(1+2(k−1))(k−1)k
 . LS-PAV searches for an improving swap (c, c�) and, if an 

improving swap exists, updates the committee by exchanging (one copy of) c for 
(one copy of) c′ . This procedure is repeated until there do not exist any improving 
swaps.

We claim that we can check whether there exists an improving swap (and if so, 
find one) in O(k ⋅ rwaw)-time: For a given committee W, iterate over all c that are 
selected at least once in W. Define W̃ as the committee obtained from W by deleting 
(one copy of) c. We create a WEIGHTED APPROVAL WINNER instance by setting 
the weights of the agents to �(a) = w

ha(W̃)+1 . Let c′ be a weighted approval winner 
of this instance. Then, there exists an improving swap replacing c iff (c, c�) is an 
improving swap. Moreover, Brill et  al. (2022a) showed that the algorithm always 
terminates after performing at most O(nk3 ln(k)) improving swaps and that the out-
come is guaranteed to satisfy core stability.  ◻

Our algorithm for Phragmén’s sequential rule employs Weighted Approval Win-
ner in a more involved way.  ◻

Theorem 1 Given a party-approval election (N, C, A, k), a committee that is win-
ning under seq-Phragmén can be computed in O(kn ⋅ rwaw)-time.

Proof In each iteration, the problem of finding a candidate to be added to the com-
mittee can be described as follows. Each agent a ∈ N has accumulated a budget of 
�a ≥ 0 in previous rounds and earns additional money in this iteration at constant 
speed. That is, at time t ∈ ℝ≥0 of this iteration agent a owns ba(t) = �a + t dol-
lars. The total budget of the approvers Nc of a candidate c ∈ C at time t can thus 
be expressed as an affine linear function fc(t) =

∑
a∈Nc

�a + �Nc� ⋅ t , which we call 
the candidate’s budget curve. Moreover, we define f (t) = maxc∈C fc(t) as the optimal 
value curve, taking the value of the maximum budget of any supporter group for a 
candidate at time t. Define t∗ as the minimum value t ∈ ℝ≥0 such that f (t) = 1 . Such 

scw(W
�) ≥ scw(W) + �,
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a value always exists and lies in the real interval [0, 1] since f (0) ≤ 1 (by the defini-
tion of seq-Phragmén), f (1) ≥ 1 , and f(t) is continuous on [0, 1]. A candidate c∗ with 
fc∗ (t

∗) = f (t∗) = 1 is a feasible choice to be added to the committee under seq-Phrag-
mén in this iteration. See Fig. 2 for an illustration. In the following we argue that t∗ 
and c∗ can be computed by using a classical method from parametric optimization 
and solving Weighted Approval Winner as a subroutine.

Observe that the function f(t) is increasing, piecewise linear, and convex, where 
the latter holds because taking the pointwise maximum of convex functions results 
in a convex function. In order to make parts of this proof also applicable to the proof 
of Theorem 2, we are only going to use that f(t) is non-decreasing (and not that it is 
increasing) in the following. Note that for a given point t ≥ 0 , we can evaluate f(t) by 
employing the Weighted Approval Winner problem using ba(t) as the weight of each 
agent a ∈ N and computing the weight of the returned candidate. This also yields a 
candidate c with fc(t) = f (t).

The crux of finding t∗ is that f(t) is the maximum of exponentially many func-
tions. However, we observe that the piecewise linear function f(t) has at most n 
breaking points because the slope of f(t) can take at most n + 1 different values: for 
each candidate  c, |Nc| ∈ {0,… , n} and thus the slope of each candidate’s budget 
curve lies in {0,… , n} . Hence, if we knew all breaking points of f(t), we could find 
t∗ by evaluating the resulting O(n) linear subintervals of f(t). The Eisner-Severance 
method (Eisner and Severance 1976) can be employed to find the breaking points of 
f(t), using O(n) calls to WEIGHTED APPROVAL WINNER.6

Since f(t) is non-decreasing, we do not always have to find all breaking points in 
order to find t∗ . Even though this does not improve the worst-case running time, we 
describe in the following an algorithm to find t∗ , which mixes the idea of the Eisner-
Severance method with a binary search approach.

Fig. 2  Illustration of the situation in the proof of Theorem 1. The example depicts the budget curves for 
three different candidates c1, c2, and c3 . The functions fc1 (t), fc2 (t) , and fc3 (t) are depicted by a solid, dot-
ted, and dashed line, respectively. The optimal value curve f(t) is marked in blue

6 More formally, the Eisner-Severance method takes as input a piecewise linear convex function g 
defined on an interval I  . Additionally, we need to include a method to evaluate g on some point � ∈ I  
which returns the value g(�) and an affine linear function h with g(�) = h(�) and g(��) ≥ h(��) for all 
�� ∈ I  . Given this input, the Eisner Severance method finds all breaking points of g on I  using O(z) 
evaluations, where z is the number of breaking points of g.
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We start by searching for two candidates c and c such that fc(0) = f (0) and 
fc(1) = f (1) (by solving the Weighted Approval Winner problem twice). If fc(0) = 1 , 
we are done. Moreover, if fc(t) = fc(t) for all t ∈ [0, 1] , then there is no breaking 
point of f(t) within the interval [0, 1] and we can find t∗ by solving fc(t∗) = 1 . Oth-
erwise, we calculate the intersection point of fc(t) and fc(t) , say t̂ . By definition of f, 
we have fc(t̂) ≤ f (t̂) and we distinguish the following two cases:

If fc(t̂) = f (t̂) , we have found a breaking point of f(t) and there is no other break-
ing point within the intervals [0, t̂] or [t̂, 1] . Then, if f (t̂) ≥ 1 , we find t∗ by solving 
fc(t

∗) = 1 , and if f (t̂) < 1 , we find t∗ by solving fc(t∗) = 1.
If fc(t̂) < f (t̂) , we find a candidate ĉ such that fĉ(t̂) = f (t̂) (by solving Weighted 

Approval Winner). Then, if f (t̂) ≥ 1 , we repeat the process for the pair {c, ĉ} and 
the interval [0, t̄] . If f (t̂) < 1 , we repeat the process for the pair {ĉ, c} and the interval 
[t̄, 1] . We can restrict ourselves to searching within one of the two intervals because 
f(t) is non-decreasing. This recursive procedure yields a worst-case running time of 
O(n ⋅ rwaw) , as we might iterate over all breaking points.

We have to execute the above procedure for each candidate to be added to 
the committee, and thus k times in total. This leads to an overall running time of 
O(kn ⋅ rwaw).  ◻

By slightly modifying the above approach, we obtain a similar algorithm for 
Equal Shares. Here, for some fixed budgets of the agents, we need to find the mini-
mum q ∈ ℝ such that the supporters of some candidate jointly have one dollar, 
assuming that each of them pays at most q. We again define the optimal value curve 
as the maximum budget of all supporter groups dependent on q. Unfortunately, in 
this case, the optimal value curve may neither be concave nor convex. However, by 
observing that we can partition the domain into n intervals such that the optimal 
value curve is a convex function in each interval, we can solve the problem using 
again the Eisner-Severance method as in the previous proof.

Theorem 2 Given a party-approval election (N, C, A, k), a committee that is win-
ning under Equal Shares can be computed in O(kn ⋅ rwaw)-time.

Proof At any of the iterations within the execution of Equal Shares, the problem 
of finding a next candidate c∗ to be added to the committee (or deciding to stop) 
can be described as follows: Each agent a ∈ N has some leftover budget ba ≤ k∕n 
at the beginning of the iteration. Then, the budget of the supporters of a candidate 
c ∈ C under the restriction that every agent pays at most q ∈ ℝ can be expressed 
as fc(q) =

∑
a∈Nc

min{ba, q} . Similarly as in the proof of Theorem 1, we define the 
optimal value curve as f (q) = maxc∈C fc(q) . If f (k∕n) < 1 , there exists no q-afford-
able candidate for any q and Equal Shares terminates. Otherwise, we aim to find 
the minimum q∗ in the real interval [0, k/n] such that f (q∗) = 1 . Such a value exists 
because f (0) = 0 , f (k∕n) ≥ 1 (by the above assumption), and f(q) is continuous on 
[0, k/n]. Then, a candidate c∗ satisfying fc∗ (q∗) = 1 is a feasible next choice for Equal 
Shares. Given q∗ , such a c∗ can be found by one call to Weighted Approval Winner.
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Observe that f(q) is non-decreasing, since fc(q) is non-decreasing for all c ∈ C . 
However, in contrast to the proof of Theorem 1, f(q) is in general neither convex nor 
concave. As a consequence, we cannot directly apply the Eisner-Severance method 
(see Fig. 3 for an illustration). More concretely, consider some q� ∈ [0, k∕n] at which 
the piecewise linear function f(q) has a breaking point. There are two distinct causes 
that can lead to a breaking point in f(q): Cause (i) is a breaking point within the 
function fc for some candidate c. This happens when at least one supporter of c has 
budget exactly q′ . Cause (ii) is a cutting point of two functions fc1 and fc2 at point q′ , 
where c1 has less supporter with a budget higher than q′ than c2 has. While cause (i) 
leads to a decrease of the slope of f(q), cause (ii) leads to an increase of the slope 
of f(q). Importantly, if there exists no agent a ∈ N with ba = q� , we can be sure that 
cause (i) does not apply, and hence, the slope of f(q) can only increase at q′.

We reindex the agents according to their budget, i.e., b
a1
≤ b

a2
≤ ⋯ ≤ b

a
n
 . Due to 

the above reasoning, within each interval [bai , bai+1] the function f(q) is convex and 
its slope in this interval can take at most n + 1 distinct values. In order to find q∗ , we 
now evaluate f(q) at the borders of all of the intervals [bai , bai+1] for all i ∈ [n − 1] and 
select the left-most interval with f (bai∗ ) ≤ 1 ≤ f (bai∗+1) . Then, we apply the Eisner-
Severance method or its modified version as described in the proof of Theorem 1 in 
order to find the smallest q∗ ∈ [bai∗ , bai∗+1] such that f (q∗) = 1.

Both our preprocessing step and the Eisner-Severance method can be performed 
in O(n ⋅ rwaw)-time. Doing so for all k iterations yields an overall running time of 
O(kn ⋅ rwaw).  ◻

4.2  Non‑sequential Thiele rules

In Sect. 4.2.1, we show that finding a winning committee in a general matching elec-
tion is NP-hard for most Thiele rules. By contrast, as shown subsequently, this task 
becomes polynomial-time solvable for bipartite (Sect. 4.2.2) as well as for symmet-
ric (Sect. 4.2.3) matching elections.

Fig. 3  Illustration of the situation in the proof of Theorem  2. The example depicts budget curves for 
candidates c1, c2, and c3 . The functions fc1 (q), fc2 (q) , and fc3 (q) are depicted by solid, dotted, and dashed 
lines, respectively. The optimal value curve f(q) is marked in blue. Breaking points of type (i) and (ii) 
are marked by squares and circles, respectively. Intervals in which the optimal value curve is convex are 
marked by gray rectangles
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4.2.1  General matching elections

In the party-approval setting, computing a winning committee of non-constant size 
under PAV is NP-hard (Brill et al. 2022a). However, if k is constant, the task can be 
solved in polynomial-time by iterating over all size-k committees. This is in con-
trast to our setting, where we prove NP-hardness of computing a winning committee 
under a large class of Thiele rules including PAV, even for k = 2 . We reduce from 
the problem of deciding whether a 3-regular graph admits two edge-disjoint perfect 
matchings (Holyer 1981).

Theorem 3 Let w be a weight sequence with w1 > w2 > 0 . Given a matching elec-
tion (N, A, k) and some number � ∈ ℝ , deciding whether there exists a committee M 
of size k with scw(M) ≥ � is NP-complete for k = 2 , even if each agent approves at 
most three agents.

Proof We reduce from the problem of deciding whether a 3-regular graph G = (V ,E) 
contains two edge-disjoint perfect matchings M1 and M2.7 Let V = {v1,… , v�} and 
E = {e1,… , em} and observe that 3-regularity of G implies that � is even and 
m = 3�∕2 . From G, we construct a matching election (N, A, k) as follows. We intro-
duce one node agent ai for each vi ∈ V  . Moreover, for each edge {vi, vj} ∈ E with 
i < j , we add an edge gadget consisting of one happy edge agent aij and one sad edge 
agent a′

ij
 , where the node agent ai approves the happy edge agent aij , the happy edge 

agent aij approves the sad edge agent a′
ij
 , and the node agent aj approves the sad edge 

agent a′
ij
 . We set k = 2 and � = (5∕2w1 + 3∕2w2)� and refer to the two matchings to 

be found as M′
1
 and M′

2
.

We call a matching M′ of the agents N a proper matching if M′ is approved by all 
node agents and, for each edge {vi, vj} ∈ E with i < j , it either holds that 
{aij, a

�
ij
} ∈ M� or that both {ai, aij} ∈ M� and {a�

ij
, aj} ∈ M� : A proper matching M′ 

matches all � node agents to �
2
 happy and �

2
 sad edge agents and the remaining m −

�

2
 

sad and m −
�

2
 happy edge agents to each other. We show later that every two match-

ings M′
1
 and M′

2
 with scw({M�

1
,M�

2
}) ≥ � need to be proper matchings. There exists a 

one-to-one correspondence between perfect matchings M in G and proper matchings 
M′ of the agents N by including an edge {vi, vj} ∈ E in M if and only if {aij, a�ij} ∉ M� . 
A visualization of the construction is depicted in Fig.  4. One example for the 
described correspondence are the two matchings marked by dashed red edges.

Before we prove the correctness of the forward and backward direction of the 
reduction, we will compute scw({M�

1
,M�

2
}) assuming that M′

1
 and M′

2
 are proper 

matchings. It is possible to calculate scw({M�
1
,M�

2
}) by summing up the w-Thiele 

score of M′
1
 , i.e., scw({M�

1
}) , and the marginal contribution of  M′

2
 given  M′

1
 , i.e, 

scw({M
�
1
,M�

2
}) − scw({M

�
1
}) . Since we have assumed that M′

1
 is a proper matching, 

it is approved by all node agents and by all happy edge agents not matched to node 
agents. Thus, scw(M�

1
) = (� + m −

�

2
)w1 = 2�w1 , as the graph is 3-regular. Turning 

7 As this problem is equivalent to deciding whether G is 3-edge-colorable, NP-hardness follows from the 
work of Holyer et al. (1981)
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to the marginal contribution of M′
2
 , as all node agents approve both matchings, they 

contribute �w2 . Sad edge agents do not approve any matching. For the happy edge 
agents aij , it is possible to distinguish four different cases: 

Case 1:  {aij, a�ij} ∉ M�
1
 and {aij, a�ij} ∈ M�

2
 . In this case, the marginal contribution of 

aij is w1.
Case 2:  {aij, a�ij} ∈ M�

1
 and {aij, a�ij} ∈ M�

2
 . In this case, the marginal contribution of 

aij is w2.
Case 3:  {aij, a�ij} ∈ M�

1
 and {aij, a�ij} ∉ M�

2
 . In this case, the marginal contribution of 

aij is 0.
Case 4:  {aij, a�ij} ∉ M�

1
 and {aij, a�ij} ∉ M�

2
 . In this case, the marginal contribution of 

aij is 0.

By the assumption that M′
1
 is proper, exactly �

2
 happy edge agents are matched to 

node agents in M′
1
 . Thus, Case 1 can occur at most �

2
 times. Moreover, as there exist 

3

2
� happy edge agents and �

2
 of them need to be matched to node agents in M′

2
 , M′

2
 

can only be approved by � happy edge agents and thus Cases 1 and 2 combined can 
occur at most � times. Thus, as w1 > w2 , the marginal contribution of M′

2
 can be 

upper bounded by �
2
⋅ w1 +

�

2
⋅ w2 , leading to an upper bound for the combined score 

of any two proper matchings of (5∕2w1 + 3∕2w2)� . Note that we set � exactly to 
match this upper bound and that it is only possible to achieve it if the second match-
ing is chosen in a way such that Case 1 occurs �

2
 times (directly implying that the two 

matchings corresponding to M′
1
 and M′

2
 in G need to be edge-disjoint). We are now 

ready to show that there exist two edge-disjoint perfect matchings in G if and only 
there exist two matching M′

1
 and M′

2
 with scw({M�

1
,M�

2
}) ≥ (5∕2w1 + 3∕2w2)� in the 

constructed matching election.

Fig. 4  Example for the reduction from Theorem 3. The left side shows parts of a 3-regular graph and the 
right side the constructed matching election. Red dashed arcs indicate how a matching in the graph is 
transformed to a matching in the matching election
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(⇒) Let M1 and M2 be two edge-disjoint perfect matchings in G. Let M′
1
 and M′

2
 

be the corresponding proper matchings of agents from N, i.e., for t ∈ {1, 2}:

As M1 is a perfect matching, M′
1
 has a score of 2�w1 . Moreover, as M2 is perfect and 

edge-disjoint from M1 , the first three cases concerning the marginal distribution of 
M′

2
 from above all occur exactly �

2
 times, while the last case does not appear at all. 

Hence, scw({M�
1
,M�

2
}) = (5∕2w1 + 3∕2w2)�.

(⇐) Let M′
1
 and M′

2
 be two matchings such that 

scw({M
�
1
,M�

2
}) ≥ (5∕2w1 + 3∕2w2)� , which implies that they are both proper match-

ings (we show this at the end of this proof). Let M1 and M2 be the corresponding 
perfect matchings in G, i.e., for t ∈ {1, 2}:

From scw({M�
1
,M�

2
}) ≥ (5∕2w1 + 3∕2w2)� , it follows by our previous observations 

and as w1 > w2 that Case 1 appears exactly �
2
 times. Therefore, there exist �

2
 happy 

edge agents that approve M′
2
 but not M′

1
 . This implies that the corresponding edges 

are not included in M2 but included in M1 . Thus, M1 and M2 are edge-disjoint.
It remains to be proven that for every two matching M′

1
 and M′

2
 in the constructed 

matching election with scw({M�
1
,M�

2
}) ≥ (5∕2w1 + 3∕2w2)� it needs to hold that 

both of them are proper matchings. For every matching M′ of agents in N and each 
edge {vi, vj} ∈ E with i < j , one of the following four cases has to hold: 

Case 1:  {ai, aij} and {aj, a�ij} ∈ M�

Case 2:  
(
{ai, aij} ∈ M� and {aj, a�ij} ∉ M�

)
 or 

(
{ai, aij} ∉ M� and {aj, a�ij} ∈ M�

)

Case 3:  {aij, a�ij} ∈ M�

Case 4:  None of the three edges {ai, aij} , {aj, a�ij} , and {aij, a�ij} is part of M′

 Note that the last case never occurs, as M′ cannot be Pareto optimal in this case 
(we can additionally match the respective happy and sad edge agent which leads to 
a strict extension of NM′ ). This implies that the first three cases together happen 3

2
� 

times. Let y denote the frequency of the first and z the frequency of the second case 
in M′

1
 and ỹ and z̃ their frequencies in M′

2
.

We now bound the score of M′
1
 and the marginal contribution of M′

2
 in these four 

variables. The number of agents that approve M′
1
 is 2y plus z plus the number of 

times 3
2
� − y − z the third case appears:

Turning to the marginal contribution of the second matching M′
2
 , we first con-

sider the contribution of the node agents. We know that M′
2
 is approved by 2ỹ + z̃ 

M�
t
∶=

⋃

{vi,vj}∈Mt∶i<j

{{ai, aij}, {a
�
ij
, aj}} ∪

⋃

{vi,vj}∈E⧵Mt∶i<j

{{aij, a
�
ij
}}.

Mt ∶= {{vi, vj} ∈ E ∣ {ai, aij}, {a
�
ij
, aj} ∈ M�

t
}

scw(M
�
1
) =

(
3

2
� + y

)
w1.
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node agents. Since M′
1
 is approved by 2y + z node agents, at most � − 2y − z node 

agents can contribute with w1 to the marginal score of M′
2
 , while the remaining 

2ỹ + z̃ − (𝜂 − 2y − z) contribute with w2 . Turning to the edge agents, M′
2
 is approved 

by 3
2
𝜂 − ỹ − z̃ happy edge agents. Since the first matching is approved by all but y + z 

happy edge agents, the number of happy edge agents contributing w1 to the marginal 
score of M′

2
 can be upper bounded by y + z , while the remaining 3

2
𝜂 − ỹ − z̃ − y − z 

happy edge agents approving M′
2
 contribute w2 . Thus, the marginal contribution of 

M′
2
 can be upper bounded as:

Combining the two bound yields:

Recall that y, ỹ ≤
𝜂

2
 . Thus, as we have assumed that 

scw({M
�
1
,M�

2
}) ≥ (5∕2w1 + 3∕2w2)� , it needs to hold that y = ỹ =

𝜂

2
 , which implies 

that z = z̃ = 0 . From this it directly follows that M′
1
 and M′

2
 are proper matchings.  ◻

4.2.2  Bipartite matching elections

In contrast to the NP-hardness on general matching elections from the previous 
Sect. 4.2.1, all Thiele rules are tractable in bipartite matching elections.

Theorem 4 Let w be a weight sequence. In a bipartite matching election (N, A, k), a 
winning committee under w-Thiele can be computed in O

(
(kn)3

)
-time.

Proof Let (N = N1∪̇N2,A, k) be a bipartite matching election and w a weight 
sequence. We assume without loss of generality that |N1| = |N2| . If this is not the 
case, we add ||N1| − |N2|| dummy agents to the smaller side, which are neither 
approved by any of the original agents nor approve any of them. Clearly, every 
matching in this new instance can be mapped to a matching in the original instance 
of equal w-Thiele score, and vice versa.

We reduce our problem to solving one Weighted Approval Winner instance of a 
meta matching election. In the meta-election, each agent a is replaced by k copies 
a(1),… , a(k) and for all agents a ≠ b and all i, j ∈ [k] , copy a(i) approves copy b(j) if 
and only if agent a approves agent b. We construct a Weighted Approval Winner 
instance for the meta-election by setting �(a(i)) = wi for all agents a ∈ N and i ∈ [k] . 
Let M̃ be a solution of the constructed Weighted Approval Winner instance. Because 
of the special structure of the meta-instance and the fact that the weight sequence w 
is non-increasing, we can assume without loss of generality that, for every agent a, 
there exists a threshold ia ∈ [k] such that her first ia copies are exactly those that are 
matched to partners she approves in M̃ . Hence, the contribution of the copies of an 

scw({M
�
1
,M�

2
}) − scw({M

�
1
}) ≤ (𝜂 − y)w1 +

(𝜂
2
+ ỹ + y

)
w2.

scw({M
�
1
,M�

2
}) ≤

5

2
𝜂w1 +

(𝜂
2
+ ỹ + y

)
w2.
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agent a ∈ N to the weight of M̃ under � equals 
∑ia

j=1
wj . In the original instance, this 

is exactly the contribution of an agent to the w-Thiele score of a committee if she 
approves ia of the matchings in the committee. In the following, we show that, 
indeed, we can find a committee M of k matchings in the original instance such that 
every agent a ∈ N approves ia matchings in M , i.e., ha(M) = ia.

In order to do so, we extend the matching M̃ to a perfect matching in the meta-
instance respecting the bipartition. Recall that we can do so since we assumed that 
|N1| = |N2| . From that, we construct a “small” bipartite graph G which may con-
tain parallel edges. More precisely, we define the multiset of edges R of G in the 
following, straightforward way: For every edge {a(i), b(j)} ∈ M̃ for some i, j ∈ [k] , 
add one copy of the edge {a, b} to R. Then, the multiset R induces a bipartite graph 
G = (N1∪̇N2,R) which is in particular k-regular. We extract k perfect matchings from 
G by a simply greedy procedure: From Hall’s Theorem (Hall 1935) it follows that 
every regular bipartite graph contains a perfect matching. To extract our matchings, 
we start by selecting some perfect matching in G and set it to be M1 . Subsequently, 
we delete the edges contained in M1 from G. Again, the obtained graph is regular 
and hence contains a perfect matching. By induction, we can proceed until we have 
selected k perfect matchings. Lastly, we modify the extracted perfect matchings by 
deleting pairs that are not approved by any of the two endpoints, or in other words, 
we make the matchings minimal. Note that Pareto optimality of the constructed 
matchings is guaranteed by the Pareto optimality of M̃.

Let M = {M1,… ,Mk} be the committee obtained from the above procedure. By 
construction, the number of matchings that are approved by some agent a is exactly 
ia and hence scw(M) =

∑
a∈N

∑ha(M)

j=1
wj =

∑
a∈N

∑ia
j=1

wj . It remains to show that 
this is also optimal. Assume for contradiction that there exists a committee 
M

� = {M�
1
,… ,M�

k
} with scw(M

�) > scw(M) . From M′ , we construct a matching 
M̃′ in the meta-instance as follows. For all i ∈ [k] and every {a, b} ∈ M�

i
 , add the pair 

{a(i), b(i)} to the matching M̃′ . Now, for every agent a, it holds that the number of 
partners that its copies a(1),… , a(k) approve in the meta-instance matching M̃′ equals 
ha(M

�) . However, so far, it is not guaranteed that the satisfied copies of a are a pre-
fix of a(1),… , a(k) , which we need to ensure that the weight of M̃′ under � is maxi-
mal. We can ensure this by a simple exchange argument: Whenever there exists a 
copy a(i) matched to an unapproved agent, say b(j) , while there exists another copy 
a(i

�) with i′ > i matched to an approved agent, say c(j�) , we replace the pairs {a(i), b(j)} 
and {a(i�), c(j�)} by the pairs {a(i), c(j�)} and {a(i�), b(j)} . After doing this exhaustively, 
the contribution of the copies of any agent a ∈ N to the weight of the matching M̃′ 
under � is exactly 

∑ha(M
�)

i=1
wi . Hence, under � , the weight of the constructed match-

ing M̃′ is scw(M
�) , which is strictly larger than the weight of the matching M̃ , a con-

tradiction to M̃ being a weighted approval winner under � in the meta-election.
We conclude the proof by showing the claimed running time. Solving an instance 

of Weighted Approval Winner in the meta-instance can be done in O((kn)3)-time. 
Computing k perfect matchings in the “small” bipartite graph can be done in 
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O((kn)2)-time. Lastly, transforming the resulting matchings to minimal matchings 
can be done in O(kn2)-time. In total, we obtain a running time of O((kn)3).  ◻

4.2.3  Symmetric matching elections

Unfortunately, the algorithm from the proof of Theorem 4 does not directly work for 
symmetric matching elections, as not every (non-bipartite) k-regular graph can be 
partitioned into k perfect matchings. Nevertheless, it is still possible to extend the 
algorithm by reducing each symmetric matching election to an essentially equiva-
lent bipartite matching election.

Recall from Observation  3 that Pareto optimal matchings in symmetric match-
ing elections have a strong structure, as they are, in particular, maximum matchings 
in the (undirected) approval graph. Using this, we can apply the Gallai–Edmonds 
Structure Theorem (Gallai 1964; Edmonds 1965) (see Sect. 3.2) to obtain a parti-
tion of the agents into three sets W, X,   and Y such that all agents from X and W 
approve every Pareto optimal matching. Moreover, in every Pareto optimal match-
ing, all agents from X are matched to agents from Y and agents from W are matched 
among themselves. Using this, it is possible to transform every symmetric matching 
election into a bipartite one by putting agents from Y on the one side and agents 
from X and some dummy agents on the other side. It is then possible to construct 
from each winning committee under w-Thiele in the constructed bipartite election, a 
winning committee under w-Thiele in the original symmetric election. We prove this 
formally in the following lemma:

Lemma 2 There exists a function � mapping every symmetric matching election 
(N, A, k) to a bipartite and symmetric matching election �

(
(N,A, k)

)
 and a function 

� mapping every committee in �
(
(N,A, k)

)
 to a committee in (N, A, k) such that, if 

a committee M is winning under w-Thiele in �
(
(N,A, k)

)
 , then �(M) is winning 

under w-Thiele in (N, A, k). Both � and � can be computed in O(n3)-time.

Proof Let (N,  A,  k) be a symmetric matching election. Applying the Gallai–
Edmonds decomposition to the approval graph G of (N, A, k), we can partition the 
set of agents into three sets W, X, Y with the above described properties. For any 
minimal Pareto optimal matching M in (N, A, k), the only relevant information to 
determine NM is the matching between the agents in X and the agents in Y. Fol-
lowing this idea, we construct the bipartite and symmetric matching election 
𝜓
(
(N,A, k)

)
= (N� = N�

1
∪̇N�

2
,A�, k) that provides this information as follows. We set 

N�
1
= Y  and N�

2
= X ∪ D , where D is a set of dummy agents. More precisely, D is 

constructed as follows: Let Y1,… , Y
�
 be the subgroups of agents corresponding to 

the connected components in G[Y]. For each group Yi , we add |Yi| − 1 dummy agents 
d
(1)

i
,… , d

(|Yi|−1)
i

 to D. These agents approve the agents of Yi and vice versa. Lastly, 
agents from Y and X approve each other in the new preference profile A′ iff they 
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approve each other in the original preference profile A. See Fig. 5 for an illustration 
of the mapping.

We further define two transformations � and � that, given a Pareto optimal match-
ing in the symmetric instance (N,  A,  k), return a Pareto optimal matching in 
𝜓
(
(N,A, k)

)
= (N� = N�

1
∪̇N�

2
,A�, k) and vice versa. For a Pareto optimal matching M 

in (N, A, k), we define �(M) as follows: For each pair between an agent from X and 
an agent from Y in M, we add the same pair to �(M) . For all groups Yi which now 
already have one matched agent, we arbitrarily match the remaining agents from Yi 
to the dummy agents corresponding to this component. For all other groups Yi , we 
leave exactly the agent unmatched which is unmatched in M and match the remain-
ing agents to the dummy agents corresponding to this component in an arbitrary 
way. Observe that this transformation maintains the set of agents in Y that are 
matched and thus approve the matching, i.e., NM ∩ Y = N�

�(M)
∩ Y  . For the opposite 

direction, �(⋅) , let M′ be a Pareto optimal matching in the constructed bipartite 
graph. By using Pareto optimality, all dummy agents need to be matched to agents 
they approve and at most one agent from each group Yi is matched to an agent from 
X. Moreover, all agents in X need to be matched to agents they approve. We define 
the matching �(M�) by first adding all pairs between agents from X and agents from 
Y that are part of M′ and some perfect matching of the agents in W. Lastly, for all 
groups Yi , we add a matching leaving exactly one agent in Yi unmatched. More pre-
cisely, for those groups having an agent matched to an agent from X, we leave this 
agent unmatched and for a group Yi not having any agent matched to an agent from 

Fig. 5  The figure on the left depicts a symmetric matching election (N,  A,  k) with a partition of the 
agents into sets X, Y, and W as provided by the Gallai–Edmonds decomposition. The figure on the right 
depicts an (essentially equivalent) symmetric and bipartite matching election �((N,A, k)) as returned by 
the mapping defined in the proof of Lemma 2. The blue dashed edges indicate matchings that correspond 
to each other (in the mappings � and �)
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X, we leave the same agent unmatched which is unmatched in M′ . Similarly to 
before, this transformation maintains the set of agents in Y that are matched and thus 
approve the matching, i.e., N�

M� ∩ Y = N�(M�) ∩ Y .
We straightforwardly extend the two transformations from matchings to commit-

tees of matchings. More precisely, for a given multiset S = {M1,… ,Mk} in (N, A, k), 
we define �(S) ∶= {�(M1),… ,�(Mk)} and for a multiset M = {M�

1
,… ,M�

k
} in 

�
(
(N,A, k)

)
 , we define �(M) ∶= {�(M�

1
),… ,�(M�

k
)} . In order to clearly dis-

tinguish both instances, we write ha(S) for the number of matchings agent a from 
instance (N, A, k) approves in S and h�

a
(M) for the number of matchings in M an 

agent a from instance �
(
(N,A, k)

)
 approves. Observe that for some committee S in 

(N, A, k) it holds that ha(S) = h�
a
(�(S)) for all a ∈ Y  . Symmetrically, for some com-

mittee M in �
(
(N,A, k)

)
 it holds that h�

a
(M) = ha(�(M)) for all agents a ∈ Y .

We now turn to proving that � and � fulfill the property stated in the theorem. 
Assume for contradiction that M is winning under w-Thiele in �

(
(N,A, k)

)
 , but 

�(M) is not winning under w-Thiele in (N, A, k). Hence, there exists a size-k com-
mittee S in (N, A, k) with scw(S) > scw(𝜑(M)) . In particular, this implies that

Now, using one of our transformations, from S, we get a committee �(S) in the 
bipartite instance �

(
(N,A, k)

)
 such that all agents in X ∪ D are matched k times 

and ha(S) = h�
a
(�(S)) for all agents in a ∈ Y  , i.e., an agent from Y in the bipartite 

instance approves the same number of matchings from �(S) as the corresponding 
agent from the symmetric instance approves in S . We get

where the inequality follows from (1). This yields a contradiction to the optimality 
of M.

Concerning the running time of �(⋅) , note that a Gallai–Edmonds decomposi-
tion can be computed by running Edmond’s blossom algorithm  (Edmonds 1965) 
once which needs O(n3)-time. Given such a decomposition, constructing �(⋅) can 
be done in O(n2)-time. On the other hand, applying the transformation �(⋅) , we have 

(1)
∑

a∈Y

ha(S)∑

i=1

wi >
∑

a∈Y

ha(𝜑(M))∑

i=1

wi.

scw(𝜇(S)) =
∑

a∈Y

h�
a
(𝜇(S))∑

i=1

wi +

k∑

i=1

wi ⋅ (|X| + |D|)

=
∑

a∈Y

ha(S)∑

i=1

wi +

k∑

i=1

wi ⋅ (|X| + |D|)

>
∑

a∈Y

ha(𝜑(M))∑

i=1

wi +

k∑

i=1

wi ⋅ (|X| + |D|)

=
∑

a∈Y

h�
a
(M)∑

i=1

wi +

k∑

i=1

wi ⋅ (|X| + |D|)

= scw(M),
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to compute one maximum cardinality matching of the vertices Yi for each i ∈ [�] . 
Since the groups Yi correspond to the connected components of G[Y], this can be 
done by computing one maximum cardinality matching in G[Y] (where some nodes 
were deleted). This can be done in O(n3)-time.  ◻

Using the above lemma, we can extend the algorithm from Theorem 4 to sym-
metric instances:

Corollary 1 Let w be a weight sequence. In a symmetric matching election (N, A, k), 
a winning committee under w-Thiele can be computed in O((kn)3)-time.

5  Axiomatic results

As matching elections are also party-approval elections, axiomatic guarantees from 
the latter setting still apply, i.e., PAV satisfies core stability, Equal Shares satisfies 
EJR, and seq-Phragmén satisfies PJR. Below, we study whether stronger axiomatic 
guarantees are obtainable for our subdomain (see Table  2 for an overview of our 
results). We focus on symmetric matching elections, as they exhibit a particularly 
strong structure. We start with a surprising positive result: A large class of sequen-
tial Thiele rules (including seq-PAV, which fails all considered and even some 
weaker axioms in general party-approval elections) satisfy EJR.

Theorem 5 Let w be a weight sequence with wi > wi+1 for all i ∈ ℕ . Seq-w-Thiele 
satisfies EJR in all symmetric matching elections.

Proof Let (N, A, k) be a symmetric matching election. In Sect. 3.2 we have observed 
that the set N of agents can be partitioned into three sets W, X, and Y, such that 
in any Pareto optimal matching, all agents in W ∪ X are matched, agents in X are 
matched to agents in Y, and agents in W are matched among themselves. Thus, a 
group of agents violating EJR can only contain agents from Y.

Let M = {M1,… ,Mk} be some output of seq-w-Thiele (where seq-w-Thiele 
selected matching Mi in iteration i) and let M<i = {M1,… ,Mi−1} be the set of 
matchings selected in the first i − 1 rounds. Assume for contradiction that there 
exists an EJR violation, i.e., for some � ∈ [k] , there is a set S ⊆ N with |S| ≥ �n∕k , a 
Pareto optimal matching M̃ with S ⊆ N�M and ha(M) < � for all a ∈ S.

We claim that the existence of S implies that in every iteration i, at least |S| agents 
in Y which are matched in this iteration approve at most � − 1 matchings from M<i:

Claim For every i ∈ [k] , there exists a group Si ⊆ Y ∩ NMi
 with |Si| = |S| and 

ha(M<i) ≤ � − 1 for all a ∈ Si.

Proof Fix some i ∈ [k] . Note that for each a ∈ S and i ∈ [k] it holds that 
ha(M<i) ≤ � − 1 by the definition of S. Thus, if all agents in S are matched in Mi , 
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setting Si = S , the claim holds. Thus, consider some a ∈ S which is not matched 
in Mi . Since Mi and M̃ are maximum matchings in the approval graph of the 
instance, their symmetric difference consists of alternating cycles and even-
length paths. In particular, there exists an even-length path starting in a and end-
ing in some b ∈ Y  which is matched in Mi but not in M̃ . If hb(M<i) > ha(M<i) , 
we could strictly increase the marginal contribution of Mi by augmenting along this 
path, as this would lead to a approving Mi at the cost of b disapproving it. Hence, 
hb(M<i) ≤ ha(M<i) . Since all even-length paths in the symmetric difference of Mi 
and M̃ are disjoint, we can construct Si as follows: For every a ∈ S choose a itself if 
a ∈ NMi

 and else the agent at the other end of the corresponding even-length alter-
nating path.  ◻

Let S be the multiset of groups of agents Si from the claim, i.e., S ∶= {S1,… , Sk} . 
We define ga(S) ∶= |{i ∈ [k] ∣ a ∈ Si}| as the number of sets in S that include 
agent a. By construction, we know that ga(S) ≤ � for all a ∈ Y  : No group Si contains 
an agent that is already included in � of the groups S1,… , Si−1 , as this would imply 
that a approves at least � of the matchings in M<i . Since Si ⊆ NMi

 for all i ∈ [k] , 
for all a ∈ S , we have ga(S) ≤ ha(M) ≤ � − 1 . Moreover, 

∑
a∈Y ga(S) = k�S� , since 

every group Si contains exactly |S| agents from Y. We get the following contradic-
tion (where the second-to-last step holds as |S| ≥ �n∕k and the last step holds as 
|Y| ≤ n)| ∶

This concludes the proof.  ◻

However, sequential Thiele rules do not satisfy core stability in symmetric 
instances.

Proposition 1 Let w be a weight sequence. In symmetric and bipartite matching 
elections, there exist committees that are winning under seq-w-Thiele but not core 
stable.

∑

a∈Y

ga(S) =
∑

a∈S

ga(S) +
∑

a∈Y⧵S

ga(S) ≤ (� − 1)|S| + �(|Y| − |S|)

= �|Y| − |S| ≤ k|S||Y|
n

− |S| < k|S|.

Table 2  Summary of results on the axiomatic properties of several multiwinner voting rules

If a rule satisfies an axiom in the party-approval setting, then this also holds in the setting of general and 
symmetric matching elections. Our positive result in Theorem 5 holds for seq-w-Thiele rules satisfying 
w
i
> w

i+1 for all i ∈ ℕ

Rules Party-approval elections Symmetric matching elections

PAV Core stability (Brill et al. 2022a) Core stability
seq-w-Thiele Not PJR (Aziz et al. 2017) EJR (Thm. 5), not core stability (Prop. 1)
Equal Shares EJR, not core stability (Brill et al. 2022a) EJR, not core stability (Prop. 3)
seq-Phragmén PJR, not EJR (Brill et al. 2017) PJR, not EJR (Prop. 3)
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Proof To show the proposition, we present a symmetric matching election and con-
struct a committee which is winning under seq-w-Thiele but fails to be core sta-
ble.8 The instance consists of three groups of dummy agents A = {a1,… , a27} , 
B = {b1,… , b27} , and C = {c1,… , c41} and three special agents x, y, and z. Approv-
als are symmetric. The special agent x approves all agents from A, the special agent 
y approves all agents from B, and the special agent z approves all dummy agents. 
See Fig. 6 for a visualization. Note that this instance consists of 98 agents. We set 
k = n = 98 . Thus, every agent deserves to be represented by one matching.

We now construct a committee M that is winning under seq-w-Thiele and argue 
that it is not core stable. In the first nine matchings, we match x and z to distinct 
agents from A and y to distinct agents from B. In the matchings ten to eighteen, 
we match y and z to previously unmatched agents from B and x to a previously 
unmatched agent from A. Note that the selected matchings are winning under seq-w-
Thiele in their respective round, as we match only so-far unmatched dummy agents 
and assume w1 ≥ w2 . Overall, all agents from A and B are matched in exactly one 
of the first eighteen matchings. In the remaining 80 matchings, we match x to an 
agent from A, y to an agent from B, and z to an agent from C such that approvals 
within A, B, and C are distributed as equally as possible. We can do so by construct-
ing the matchings sequentially and always matching each special agent to the so far 
unhappiest agent from the respective group. Note that every matching in the con-
structed sequence is winning under seq-w-Thiele in the respective round, as approv-
als are distributed as equally as possible within each set and we have assumed that 
wi ≥ wi+1 for all i ∈ ℕ . Moreover, after matching eighteen, it is always possible to 
match z to an agent of C in a winning matching, as over the whole construction 
process, each node from A and B approves the same or more of the already added 
matchings than a node from C ( |B|, |A| < |C|).

To summarize, the summed happiness score of the agents from the three dif-
ferent sets are as follows: 

∑
a∈A ha(M) =

∑
a∈B ha(M) = 98 + 9 = 107 and ∑

a∈C ha(M) = 80. Note that it holds that 107+1
27

= 4 and 80+2
41

= 2 . By the pigeonhole 
principle, this implies that there exists at least one agent a from A that approves 
only three matchings from M , at least one agent b from B that approves only three 

Fig. 6  Approval graph of coun-
terexample for core stability for 
sequential Thiele rules from 
Proposition 1

8 To make some of the calculations easier, we construct the instance in a way such that n = k . Thus, the 
example should not be understood as a minimal counterexample.



1 3

Proportional representation in matching markets

matchings, and, as happiness scores are distributed as equally as possible, two 
agents c and c′ from C which only approve one matching. We claim that the group 
{a, b, c, c�} blocks M . Note that this group deserves to be represented by four match-
ings. Let M≃ be a set of four matchings, where a is matched to x and b is matched 
to y in all four matchings, while in two matchings, c is matched to z and in the other 
two, c′ is matched to z. Since all four agents approve strictly more matchings from 
M≃ than from M , core stability is violated.  ◻

Furthermore, Equal Shares and seq-Phragmén do not satisfy stronger guarantees 
in (symmetric) matching elections, compared to general party-approval elections.

Proposition 2 In symmetric matching elections, there exist committees that are win-
ning under seq-Phragmén and do not satisfy EJR.

Proof Consider a symmetric matching election consisting of three agents a1 , a2 , and 
a3 all approving each other. We set k = 6 and claim that the committee M consist-
ing of three times matching {{a1, a2}} and three times matching {{a2, a3}} is a win-
ning committee under seq-Phragmén. In the first step, all possible non-empty match-
ings become affordable at t = 0.5 . Breaking ties, we select {{a1, a2}} . Now, a3 has 
0.5 dollars left and thus needs to be included in the next matching. Again breaking 
ties, we select {{a2, a3}} . Continuing this way of breaking ties, we alternate between 
adding {{a1, a2}} and {{a2, a3}} until M is constructed. However, M violates EJR, 
as the group {a1, a3} is 4-cohesive but ha1(M) = ha3(M) = 3.  ◻

Proposition 3 In symmetric and bipartite matching elections, there exist committees 
that are winning under Equal Shares and do not satisfy core-stability.

Proof We depict our counterexample in Fig. 7. It consists of 13 agents {w , x, y, 
z, a1 , a2 , a3 , b1 , b2 , c1 , c2 , d1 , d2} . Approvals are symmetric. Agent w approves a1 , a2 , 
a3 , and b1 . Agent x approves b1 and b2 . Agent y approves c1 and c2 . Agent z approves 
d1 and d2 . We set k = 13 . Thereby, each agent starts with a budget of one dollar. 
We now describe a run of Equal Shares on the constructed instance which returns a 

Fig. 7  Approval graph of counterexample for core stability for Equal Shares from Proposition 2
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committee M that is not core stable. In the first eight rounds, all matchings which 
are approved by eight agents are 1

8
-affordable. Breaking ties, we select the matching 

{{w, b1}, {x, b2}, {y, c1}, {z, d1}} eight times. After that, all agents except a1 , a2 , a3 , 
c2 , and d2 have zero budget left. In the next three rounds, every matching which is 
approved by one of a1 , a2 , a3 , and c2 , and d2 is 1

3
-affordable. We select the match-

ing {{w, a1}, {x, b2}, {y, c2}, {z, d2}} three times. Subsequently, only a2 and a3 have 
budget, which makes all matchings which are approved by one of them 1-affordable. 
We select {{w, a2}, {x, b2}, {y, c1}, {z, d1}} and {{w, a3}, {x, b2}, {y, c1}, {z, d1}} as 
the last two matchings. Note that a2 and a3 both approve one matching from M , 
while c2 and d2 approve three matchings from M . Let M≃ be a set of four match-
ings, where all matchings match z to d2 and y to c2 , two of the matchings match w to 
a2 and the remaining two matchings match w to a3 . The group {a2, a3, c2, d2} blocks 
M , as they deserve to be represented by four matchings and all four agents approve 
more matchings from M≃ than from M.  ◻

In the counterexamples for seq-w-Thiele, seq-Phragmén, and Equal Shares, there 
also exist other winning committees under these rules that satisfy the respective 
notion. Presumably, this is due to the richness of the candidate space, combined with 
a high number of ties in the execution of all three rules. It remains an open ques-
tion whether the rules always return at least one winning committee satisfying the 
respective property.

6  Complexity of checking axioms

In this section, we settle the computational complexity of checking whether a 
given committee provides any of our three proportionality guarantees. We first 
consider EJR.

Deciding whether a committee W in a party-approval election provides EJR 
can be reduced to solving Weighted Approval Winner: For each � ∈ [k] , we check 
whether there exists an �-cohesive group violating EJR by marking all agents that 
approve less than � matchings from W and checking whether there exists a can-
didate that is approved by at least � n

k
 of the marked agents. The latter step can be 

solved by a single call to Weighted Approval Winner by assigning a weight of 
one to all marked agents and a weight of zero to all other agents.

Observation 6 Given a party-approval election (N, C, A, k) and a committee W, it is 
possible to check whether W provides EJR in O(k ⋅ rwaw)-time.

This approach does not extend to PJR. In fact, it turns out that checking whether 
a committee of matchings provides PJR is coNP-complete. This is in contrast to 
general party-approval elections, for which this problem can be solved in polyno-
mial time (Brill et al. 2022a). Notably, this is our only example for a computational 
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problem that is polynomial-time solvable in the party-approval setting but intracta-
ble in the setting of matching elections.

Proposition 4 Given a matching election (N,  A,  k) and a committee M , checking 
whether M provides PJR is coNP-complete, even if the given matching election is 
symmetric and bipartite.

Proof We reduce from the NP-hard Clique problem on r-regular graphs (Garey and 
Johnson 1979), where given an undirected r-regular graph G = (V ,E) and an integer 
q the question is whether there exists a set of q pairwise adjacent nodes. We assume 
without loss of generality that q > 3 . We construct a matching election and a com-
mittee M as follows.

We insert one node agent av for each node v ∈ V  , q dummy agents, and q good 
agents. All node and dummy agents approve all good agents and the other way 
round. Turning to the construction of M , for each edge {u, v} ∈ E , we add a match-
ing to M that matches au , av , and q − 2 dummy agents to good agents. Further, we 
insert 2|E| + 1 matchings in which each dummy agent is matched to a good agent. 
Lastly, we modify the instance such that k

n
= r −

q−1

2
+

1

q
 by adding agents with 

empty approval ballot and matchings that match each dummy agent to a good agent. 
Note that each node agent approves r matchings from M and a group of q agents 

deserves to be represented by q k

n
= qr −

(
q

2

)
+ 1 matchings. Moreover, note that 

only node agents can be part of a violating group, as good agents approve all match-
ings and dummy agents approve more than 2

3
 of the matchings. From this it follows 

that only node agents can be part of a violating group, as every group of agents that 
all approve the same matching and thus every cohesive group can have size at most 
2q ≤

2

3
n (only the q good agents are approved by some agent). In the following, we 

show that there exists a size-q clique in G if and only if M does not satisfy PJR. 
Intuitively, this holds as for a group of node agents X = {av ∣ v ∈ V �} for some sub-
set of nodes V ′ ⊆ V  , the set of matchings approved by some agent from X corre-
sponds to the set of edges that are incident to some node from V ′.

(⇒) Let V ′ ⊆ V  be a clique in G of size q, then exactly qr −
(
q

2

)
 different edges 

are incident to some node from V ′ (every node is incident to r edges and 
(
q

2

)
 edges 

have both endpoints in V ′ ). Since there exist q good agents, a matching where all 
agents from {av ∣ v ∈ V �} are matched to some good agent exists and is approved by 

all agents from {av ∣ v ∈ V �} . Since q
k

n
= qr −

(
q

2

)
+ 1 , this implies that 

{av ∣ v ∈ V �} is (qr −
(
q

2

)
+ 1)-cohesive. Since they together approve only 

qr −

(
q

2

)
 different matchings from M , {av ∣ v ∈ V �} is a violating group for PJR.

(⇐) Assume that there exists a violating group of agents X for PJR. Recall that 
only node agents can be part of X. Moreover, as only the q good agents are approved 
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by some node agent, it further needs to hold that |X| ≤ q . For the sake of contradic-
tion, assume that |X| = x for some x < q . Each set of vertices of size x in G needs to 

be adjacent to at least xr −
(
x

2

)
 different edges. Thus, agents from X must approve 

at least xr −
(
x

2

)
 different matchings in M , while they deserve to be represented 

by x ⋅ (r − q−1

2
+

1

q
) matchings. However, note that such a group cannot be violating, 

as, for all x ∈ [1, q − 1] , it holds that

where the last inequality holds as x ∈ [1, q − 1] and q > 3 . Thus, X needs to have 

size q. For a group of size q to violate PJR, they need to approve at most qr −
(
q

2

)
 

matchings together (as such a group can only be (qr −
(
q

2

)
+ 1)-cohesive). Thus, 

the set of vertices {v ∣ av ∈ X} is incident to at most qr −
(
q

2

)
 different edges in G 

implying that they form a clique in G.  ◻

In our hardness reduction from Proposition  4, the given committee has a non-
constant size. In fact, given a party-approval election, the problem whether a size-
k committee W provides PJR is solvable in O(2k ⋅ rwaw)-time: For all � ∈ [k] , we 
iterate over all (� − 1)-subsets of candidates W ′ ⊆ W and mark all agents whose 
approval set is a subset of W ′ . Subsequently, we check whether there exists a can-
didate approved by at least � n

k
 of the marked agents. In this case, the group of � n

k
 

agents is �-cohesive and by construction all of them approve only candidates from 
the set of � − 1 candidates W ′ . Thus, they constitute a violating group for PJR.

Observation 7 Given a party-approval election (N,  C,  A,  k) and a committee  W, 
checking whether W provides PJR can be done in O(2k ⋅ rwaw)-time.

Finally, we show that checking core stability is computationally intractable, even 
for a constant committee size.

Proposition 5 (i) Given a matching election (N, A, k) and a committee M of not nec-
essarily Pareto optimal matchings, checking whether M is core stable is coNP-hard, 
even if k = 6 and the given matching election is symmetric and bipartite. (ii) Given 
a matching election (N,  A,  k) and a committee M of Pareto optimal matchings, 

xr −

(
x

2

)
> x ⋅ (r −

q − 1

2
+

1

q
)

⇔ r −
x − 1

2
> r −

q − 1

2
+

1

q

⇔ − x > − q +
2

q
,
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checking whether M is core stable is coNP-hard, even if k = 6 and the given match-
ing election is bipartite.

Proof We start by proving the first part of the statement, where we have symmetric 
approvals and we make use of Pareto dominated matchings in the constructed com-
mittee. Afterwards, we describe how we can get rid of the Pareto dominated match-
ings at the cost of loosing symmetry.

In the NP-hard Exact Cover by 3-Sets (X3C) problem, we are given a universe X 
of size 3q and a collection C of 3-element subsets of X and the question is whether 
there exists an exact cover C′ ⊆ C of X. In fact, we reduce from the restricted ver-
sion where each element appears in exactly three sets from C. Thus, it holds that 
|C| = 3q . We construct a matching election and a committee M of size k = 6 as 
follows.

We start by describing the central part of the constructed matching election 
before adding additional agents to cope with some technical details. For each ele-
ment x ∈ X , we insert one element agent ax and one dummy element agent bx . More-
over, for each set c ∈ C , we add one set agent ac . Approvals are symmetric. For each 
element x ∈ X , the element agent ax and the dummy element agent bx approve each 
other. Moreover, the element agent ax approves the three set agents ac correspond-
ing to sets in which x is contained. We construct M such that each dummy element 
agent approves one matching, each element agent approves two matchings, and each 
set agent approves two matchings. Moreover, we modify the instance such that each 
possible blocking coalition needs to deserve to be represented by three matchings 
and needs to contain 7q of the so-far introduced agents.

To realize these requirements, we need to introduce several additional agents. 
That is, we introduce for each set c ∈ C , three dummy set agents bc , dc , and d′

c
 . 

Approvals are again symmetric. Agent bc approves the set agent ac and the two 
dummy agents dc and d′

c
 . We construct M such that bc approves two matchings, dc 

approves one matching and d′
c
 approves zero matchings. Lastly, to adjust the total 

number of agents, we add 14q filling agents with empty approval ballot. In total, the 
instance consists of 3q element agents and 3q dummy element agents, 3q set agents 
and 9q dummy set agents, and 14q filling agents, i.e., 32q agents in total. For a visu-
alization of the reduction see Fig. 8.

We are now ready to construct M realizing the already mentioned happiness 
scores of the agents. First, we add a matching where for each element x ∈ X , the ele-
ment agent ax is matched to the dummy element agent bx and, for each set c ∈ C , the 
set agent ac is matched to the dummy set agent bc . In the second matching, we match 
all element agents ax to a set agent ac that they approve. (Note that such a perfect 
matching of element agents and set agents has to exist because these agents form a 
3-regular bipartite graph.) Moreover, for each c ∈ C , we match dummy set agents 
bc and dc . Finally, we add four matchings that are not approved by anyone. Thus, as 
M consists of six matchings and as the total number of agents is 32q, each group of 
32q

6
=

16q

3
 agents deserves to be represented by one matching. We now show that the 

given X3C instance (X, C) admits an exact cover if and only if there exists a group 
violating core stability in the constructed matching election.
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(⇒) Let us assume that there exists an exact cover C′ ⊆ C of X. We claim that the 
group S consisting of all element and dummy element agents, all set agents corre-
sponding to sets from C′ , and all dummy set agents block committee M . Note that S 
consists of 6q + 1q + 9q = 16q agents and thus deserves to be represented by three 
matchings. We now describe the three blocking matchings. For each c ∈ C , bc is 
matched to dc in the first two of the three matchings and to d′

c
 in the third. For each 

c = {xi, xj, xk} ∈ C� , we match ac to axi in the first matching, to axj in the second 
matching, and to axk in the third matching. This is always possible, as C′ is an exact 
cover of X. Thereby, each element agent is matched to a set agent in one of the three 
matchings. We match each element agent in the remaining two matchings to the cor-
responding dummy element agent. Note that all element agents and all set agents 
corresponding to sets from C′ approve all three matchings. All dummy element 
agents approve two matchings. For all c ∈ C , bc approves all three matchings, dc 
approves two matchings and d′

c
 one matching. Thus, S is blocking.

(⇐) Assume that there exists a blocking coalition S for M because of a multiset 
of matchings M′ . Observe that S cannot contain any filling agents because these 
agents do not approve anyone. Note that there exist only 3q non-filling agents that do 
not approve any matching from M and only 9q non-filling agents that approve at 
most one matching from M . Since each group of 16q

3
 agents deserves to be repre-

sented by one matching and 3q ⋅ 3

16q
< 1 and 9q ⋅ 3

16q
< 2 , it needs to hold that 

Fig. 8  Example of the hardness reduction from Proposition  5 for Exact Cover By 3-Sets instance: 
X = {1, 2, 3, 4, 5, 6} and {{1, 2, 3}, {2, 4, 5}, {4, 5, 6}} ⊆ C . Numbers in the superscripts denotes the 
number of matchings from M the agent approves
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|M′| ≥ 3 and thus S needs to have size at least 16q. Moreover, note that there cannot 
exist a blocking coalition that deserves to be represented by four matchings, as there 
exist only 18q non-filling agents.

To complete the proof, we need the following claim.

Claim Let Sset ⊆ S be the set of set agents ac that are part of the blocking coalition S. 
Then, it holds that |Sset| = q.

Proof As S can only contain non-filling agents, from |S| ≥ 16q and the fact that 
there exist only 18q non-filling agents of which 3q are set agents, it follows that 
|Sset| ≥ q needs to hold. To prove that |Sset| = q , first of all, note that all set agents 
from Sset need to approve all three matchings from M′ . Thus, in total, there exist 
3|Sset| pairs in M′ each containing exactly one agent from Sset . Let w be the num-
ber of dummy element agents that are part of S, y the number of dummy set agents 
of the form dc and z the number of dummy set agents of the form d′

c
 . Overall, it 

needs to hold that |Sset| + w + y + z + 6q ≥ 16q (as the only other non-filling agents 
are the 3q element agents and the 3q dummy set agents of the form bc ) and thus 
|Sset| + w + y + z ≥ 10q . Note that as each dummy element agent needs to approve 
two matchings from M′ , even if w = 3q , each element agent can be matched to an 
agent from Sset in one matching. For the sake of contradiction, let us assume that 
t ∶= Sset − q > 0 . Then, 3t approvals for set agents are needed that do not come from 
element agents which are matched to the corresponding dummy element agent in the 
other two matchings. However, for each two of these 3t approvals, either an element 
agent needs to be matched more than once to a set agent or an dummy set agent bc 
needs to be matched twice to a set agent. While the former implies that the corre-
sponding dummy element agent cannot be part of the blocking coalition S, the latter 
implies that either one less dummy set agent of the form dc or d′

c
 can be part of the 

blocking coalition. Thus, t > 0 implies that w + y + z ≤ 9q −
3

2
t . Overall we get that 

|Sset| + w + y + z = q + t + w + y + z ≤ q + t + 9q −
3

2
t = 10q −

1

3
t . As we have ini-

tially observed that |Sset| + w + y + z ≥ 10q , it needs to hold that t = 0 . This directly 
implies that |Sset| = q.  ◻

From the claim it directly follows that S consists of the agents Sset and all non-
filling agents that are not set agents.

To ensure that all dummy element agents approve two matchings from M′ , each 
element agent needs to be matched to the corresponding dummy element agent in 
two of the three matchings. Moreover, each set agent from Sset needs to approve all 
three matchings from M′ and no dummy set agent bc can be matched to an agent 
from Sset . Thus, each element agent is matched to a set agent it approves in exactly 
one of the three matchings. Since each set agent from Sset needs to approve all three 
matchings from M′ , this implies that each set agent from Sset needs to be matched 
to each of the three element agents corresponding to its elements in one of the three 
matchings. Thus, Sset forms an exact cover of X. This concludes the correctness 
proof of the reduction.
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It is possible to slightly modify the reduction to avoid that Pareto-dominated 
matchings are part of the given committee, at the cost of losing symmetry. We start 
by modifying the approval ballots of 6q arbitrary filling agents and make them 
approve all element agents ax for x ∈ X and all dummy set agents bc for c ∈ C (but 
not the other way round). Constructing M , instead of adding four matchings not 
approved by anyone, we add four matchings in which the 6q modified filling agents 
are matched to all element agents ax and dummy set agents bc . Note that these 
matchings are Pareto optimal, as modified filling agents only approve these agents 
and the remaining non-filling agents also only approve element agents ax or dummy 
set agents bc.

The correctness of the forward direction of the proof remains unaffected, while 
for the backward direction it is necessary to argue why none of the modified filling 
agents can be part of a blocking coalition. To see this, note that these agents approve 
four matchings in M and thus any blocking coalition S they are part of needs to 
deserve to be represented by at least five matchings. However, this implies that 
|S| ≥ 5 ⋅

16q

3
> 26q , which cannot be the case, as there exist only 24q agents approv-

ing some other agent.   ◻

7  Conclusion

We initiated the study of a multiagent problem at the intersection of social choice 
and matching theory: Given the preferences of agents over each other, we model 
the problem of finding a representative multiset of matchings as a multiwinner elec-
tion. Notwithstanding the difficulty presented by an exponential candidate space, we 
exploit the structure of the election domain to recover the computational tractability 
of some sequential rules, and also establish computational and axiomatic results that 
do not hold in the general setting.

There are several intriguing directions for future work on matching elections. 
First, while we have focused on symmetric matching elections in our axiomatic 
study in Sect. 5, it would be interesting to extend this study to bipartite or general 
matching elections. In particular, it is open whether seq-w-Thiele satisfies any axiom 
in general (or bipartite) matching elections and whether seq-Phragmén satisfies EJR 
in bipartite (and symmetric) matching elections. Second, one could consider axioms 
tailored to the specific structure of the setting. For example, a natural relaxation of 
core stability could only allow groups of agents to be matched among themselves in 
a deviation. Note that both sequential Thiele rules and Equal Shares could fulfill this 
weaker version of core stability, as in the respective counterexamples for core stabil-
ity from Proposition 1 and Proposition 3 the deviating group is not matched among 
itself in the deviation. Third, it would be natural to allow agents to rank-order poten-
tial matching partners and apply ordinal multiwinner voting procedures. Fourth, it 
would be interesting to identify other multiwinner voting domains involving com-
pactly representable preferences over an exponential candidate space.
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Finally, in some applications, one is interested in finding multiple matchings of 
the same agents to be implemented one after the other. It is therefore natural to try to 
find a sequence of matchings, rather than simply a multiset (as done in this paper). 
While an arbitrary ordering of a proportional committee still provides proportional-
ity if assessed as a whole, in such temporal settings, it might also be desirable to 
satisfy proportionality constraints for every sliding window of the sequence. One 
potential way to achieve this is to introduce depreciation weights to sequential rules, 
capturing the amount and recency of representation that agents have observed so far. 
Similar ideas have been recently explored within the context of approval-based mul-
tiwinner elections (Lackner 2020).

Appendix A: Weighted approval winner for matching elections 
with stable candidate matchings

The following proposition implies that restricting ourselves to stable matchings in 
the committee in general matching elections has drastic implications on the compu-
tational tractability of the Weighted Approval Winner problem. For a motivation of 
this question consider our remark in Sect. 3.

Proposition 6 Let N be a set of agents, � ∶ N → ℚ≥0 a weight function on the 
agents, Aa ⊆ N⧵{a} an approval ballot for each agent a ∈ N , and � ∈ ℚ≥0 . Then, it 
is NP-hard to decide whether there is a matching M of the agents whose approvers 
have summed weight � and where no two agents a and b exist that both disapprove 
M but approve each other. The hardness holds regardless of whether we require that 
M is Pareto optimal or not.

Proof We reduce from a restricted NP-hard version of 3-SAT, where each variable 
occurs exactly twice positively and twice negatively (Berman et al. 2003). Given an 
instance of this problem consisting of a set X = {x1,… , xq} of variables and a set 
C = {c1,… , cp} of clauses, for each i ∈ [q] , let c+

i,1
 and c+

i,2
 denote the two clauses 

where xi appears positively and c−
i,1

 and c−
i,2

 denote the two clauses where xi appears 
negatively. We construct an instance of our problem as follows.

For each j ∈ [p] , we add a clause agent aj . For each i ∈ [q] we add two positive 
variable agents b+

i,1
 and b+

i,2
 and two negative variable agents b−

i,1
 and b−

i,2
 . For each vari-

able, the two corresponding positive variable agents approve the two negative variable 
agents and the other way round. Moreover, b+

i,1
 is approved by ac+

i,1
 , b+

i,2
 is approved by 

ac+
i,2
 , b−

i,1
 is approved by ac−

i,1
 , and b−

i,2
 is approved by ac−

i,2
 . Lastly, for each i ∈ [q] , we add 

two dummy agents di,1 and di,2 . The dummy agents approve the respective four varia-
ble agents and the other way round. Concerning the weight function, we assign weight 
one to all clause agents and weight zero to all other agents. We set � = p . Thus, we 
search for a matching that is approved by all clause agents.

(⇒) Assume that there is a satisfying assignment � for (X,  C). We construct a 
matching M as follows. For each j ∈ [p] , pick some arbitrary literal appearing in cj 
that is set to true by � . If xi for some i ∈ [q] was picked, then match the clause agent 
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aj to the agent from {b+
i,1
, b+

i,2
} which aj approves. Otherwise, if x̄i for some i ∈ [q] was 

picked, then match the clause agent aj to the agent from {b−
i,1
, b−

i,2
} which aj approves. 

For each variable that is set to true by � , we match b−
i,1

 to di,1 and b−
i,2

 to di,2 . For each 
variable that is set to false by � , we match b+

i,1
 to di,1 and b+

i,2
 to di,2 . As � is a satisfy-

ing assignment, after this, each clause cj is matched (to an agent it approves) and by 
construction each variable agent is matched at most once. Thus, M has weight � = p.

Observe that the only agents which disapprove the matching are the two positive 
variable agents for variables that are set to true by � and the two negative variable 
agents for variables that are set to false by � . None of these agents approve each 
other. Thus, as M has weight � , M is a solution to the constructed instance.

(⇐) Assume that there is a matching M approved by all clause agents where no 
two agents a and b exist that both disapprove M but approve each other. The absence 
of such a pair of agents implies in particular that for each variable either only nega-
tive or positive variable agents are matched to a clause agent. If there is a variable 
such that both a positive and a negative variable agent are matched to a clause agent, 
then both of them disapprove M but approve each other, a contradiction. Let � be the 
assignment that sets variable xi to true if at least one corresponding positive variable 
agent is matched to a clause agent in M, and to false otherwise. Then, by our above 
observation, as every clause agent is matched to a variable agent corresponding to a 
literal appearing in the clause, � is a satisfying assignment for (X, C).  ◻
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