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Abstract
Computing a sample mean of time series under dynamic time warping is NP-hard. Con-
sequently, there is an ongoing research effort to devise efficient heuristics. The majority of
heuristics have been developed for the constrained samplemean problem that assumes a solu-
tion of predefined length. In contrast, research on the unconstrained sample mean problem
is underdeveloped. In this article, we propose a generic average-compress (AC) algorithm
to address the unconstrained problem. The algorithm alternates between averaging (A-step)
and compression (C-step). The A-step takes an initial guess as input and returns an approx-
imation of a sample mean. Then the C-step reduces the length of the approximate solution.
The compressed approximation serves as initial guess of the A-step in the next iteration.
The purpose of the C-step is to direct the algorithm to more promising solutions of shorter
length. The proposed algorithm is generic in the sense that any averaging and any compres-
sion method can be used. Experimental results show that the AC algorithm substantially
outperforms current state-of-the-art algorithms for time series averaging.

Keywords Time series averaging · Fréchet function · Heuristic · Nonconvex optimization

1 Introduction

Time series such as stock prices, climate data, energy usages, sales, biomedical measure-
ments, and biometric data are sequences of time-dependent observations that often vary in
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Fig. 1 Mean time series (blue) of the two sample time series x(1) and x(2) shown in red. Both time series
have a single peak but are out of phase and slightly vary in speed. We may think of x(1) and x(2) as the daily
average temperature of some region during the summer at two different years. Based on this information, a
typical summer of this region has a single extreme heat wave. The arithmetic mean μ = (x(1) + x(2))/2 in
Fig. 1a has two attenuated peaks suggesting that a typical summer has two moderate heat waves. In contrast,
the DTW mean z in Fig. 1b captures the characteristic properties of x(1) and x(2) and shows a single peak as
a representative summary of both sample peaks. (Color figure online)

temporal dynamics, that is in length, speed, and shifts in phase. For example, the same word
can be utteredwith different speaking speeds. Similarly, monthly temperature or precipitation
extremes of certain regions can differ in duration and may occur out of phase for a period of
a few weeks.

To account for temporal variations in proximity-based time series mining, the dynamic
time warping (DTW) distance is often the preferred choice of proximity measure [1, 3, 4].
An intricate problem in DTW-based time series mining is time series averaging. The problem
consists in finding a typical representative that summarizes a sample of time series. Different
forms of time series averaging have been applied to improve nearest neighbor classifiers [20,
31, 32], to accelerate similarity search [37], and to formulate k-means clustering in DTW
spaces [17, 30, 32, 36]. Figure 1 presents an example illustrating why the arithmetic mean can
be inappropriate for time series averaging and motivates a concept of mean under dynamic
time warping that can cope with temporal variations.

Time series averaging itself and as a subroutine of data mining tasks is inspired by the
fundamental concept of mean in statistical inference. One central path in statistical inference
departs from the mean, then leads via the normal distribution and the Central Limit Theorem
to statistical estimation using the maximum likelihood method. The maximum likelihood
method in turn is a fundamental approach that provides probabilistic interpretations to many
pattern recognition methods.

This central path is well-defined in Euclidean spaces, but becomes obscure in mathemat-
ically less structured distance spaces. Since an increasing amount of non-Euclidean data is
being collected and analyzed in ways that have not been realized before, statistics is under-
going an evolution [26]. Examples of this evolution are contributions to statistical analysis
of shapes [5, 13, 24], complex objects [29], tree-structured data [14, 40], graphs [15, 19, 23],
and time series [7, 17, 32].

Though the volume of time series data currently collected exceeds those of the other
data structures mentioned above, the concept of a mean in DTW spaces is least understood.
However, a better understanding of time series averaging is the first step towards devising
sound pattern recognitionmethods based on time series averaging such as k-means clustering.
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Examples of how the lack of a clear understanding of time series averaging may lead the
field astray can be found in [7, 21].

As for other non-Euclidean distance spaces, the standard approach to time series averaging
in DTW spaces is based on an idea by Fréchet [16]: Suppose that S = {x1, . . . , xN } is a
sample of N time series. A sample mean of S is any time series μ that globally minimizes
the Fréchet function

F : U → R, z �→ 1

N

N∑

i=1

dtw(z, xi )
2,

where dtw(x, y) is the DTW-distance and U is a set of time series of finite length. The search
space U typically takes two forms:

1. Unconstrained form: U is the set of all time series of finite length.
2. Constrained form: U is the set of all time series of length n.

A sample mean is guaranteed to exist in either case but may not be unique [22]. In addition,
computing a sample mean is NP-hard [8].

In general, data mining algorithms such as k-means, vector quantization, and anomaly
detection that rely on a sample mean typically expect a true sample mean in their objective
function, that is a sample mean that minimizes the variance in a Euclidean sense or more
generally the Fréchet function in any distance space. As experiments indicate [7], better sam-
ple means result in better solutions of the k-means algorithm. The k-means algorithm needs
to recompute the sample mean several times. The error of suboptimal solutions propagates
during evolution of the k-means algorithm resulting in possibly distorted clusters. Similarly,
a suboptimal sample mean in anomaly detection could result in lower precision and recall.

Consequently, there is an ongoing research on devising heuristics for minimizing the
Fréchet function. Most contributions focus on devising and applying heuristics for the
constrained sample mean problem. State-of-the-art algorithms are stochastic subgradient
methods [35], majorize-minimize algorithms [17, 30, 35], and soft-DTW [11]. In contrast,
only few work has been done for solving the unconstrained sample mean problem. One
algorithm is an (essentially optimal) dynamic program that finds global solutions of the
unconstrained problem in exponential time [7]. A second algorithm is a heuristic, called
adaptive DBA (ADBA) [28]. This algorithm uses a majorize-minimize algorithm (DBA) as
a base-algorithm and iteratively refines subsequences to improve the solution quality.

The unconstrained problem is more challenging than the constrained one in the following
sense: The constrained problem for length n ∈ N can bemodelled as an optimization problem
in a Euclidean space R

n , where we have efficient local optimization techniques such as
subgradient methods.1

In contrast, the unconstrained problem can bemodelled as a finite collection of constrained
problems for sample means of length n = 1, . . . , n0 where the maximum possible length
n0 of a sample mean is bounded by the Reduction Theorem [22]. The maximum length n0
depends linearly on the lengths of the sample time series. A naive approach to address the
unconstrained problem is to use a mean algorithm for the constrained problem and run it for
all lengths n = 1, . . . , n0 and return the solution with lowest Fréchet function value.

Apart from the fact that the naive approach is likely to be computationally intractable,
there is the additional problem of how to choose an initial mean time series of desired length
for each constrained mean algorithm. Current heuristics choose as initial point a random time
series from the sample or the medoid of the sample. The initial length is therefore restricted to

1 The majorize-minimize algorithms [17, 30] such as DBA are subgradient methods [35].
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the lengths of the sample time series. One approach to obtain initial points of arbitrary length
is generating them from a normal distribution. However, this method performed considerably
worse in experiments [30].

In thiswork, we propose a generic average-compress (AC) algorithm for the unconstrained
sample mean problem that addresses these issues. The AC algorithm repeatedly alternates
between an averaging (A-step) and a compression (C-step). The A-step requires a time series
as initial guess,minimizes theFréchet function, and returns an approximate solution as output.
The C-step compresses the approximation of the A-step to obtain an improved solution. The
compressed solution of the C-step serves as initial guess of the A-step in the next iteration.

To ensure that the C-step returns an improved solution, a whole compression chain is
efficiently computed and the best compression is selected. TheACalgorithmcan be initialized
with a time series from the sample and iteratively seeks for promising solutions of shorter
length using a compression technique. Thus, compression addresses both issues, finding a
suitable length of the approximate solution for the unconstrained sample mean problem and
finding suitable initial points for current state-of-the-art samplemean algorithms. In principle,
any averaging algorithm and any compression method can be applied. Here, we propose a
compressionmethod thatminimizes the squaredDTWerror between original and compressed
time series. Empirical results suggest that the AC scheme substantially outperforms state-of-
the-art heuristics including ADBA.
Our main contributions can be summarized as follows.

1. We propose a generic average-compress (AC) algorithm for the unconstrained sample
mean problem under Dynamic Time Warping,

2. we empirically evaluate different configurations of the AC algorithm on 85 benchmark
data sets from the UCR archive [10], using two compression techniques and multiple
state-of-the art averaging heuristics,

3. we empirically show that on average the AC algorithm considerably outperforms current
state-of-the-art averaging algorithms on the UCR benchmark data sets.

This article is organized as follows: Sect. 2 describes the AC algorithm. In Sect. 3 we
present and discuss empirical results. Finally, Sect. 4 concludes with a summary of the main
findings and an outlook for future research.

2 Average-compress algorithm

In this section, we develop an average-compress (AC) algorithm for approximately solving
the unconstrained sample mean problem. To this end, we first introduce the DTW-distance
(Sect. 2.1), the concept of a sample mean under DTW (Sect. 2.2), and compressions (Sect.
2.3). Thereafter, we describe the AC algorithm in Sect. 2.4.

2.1 Dynamic time warping

For a given n ∈ N, we write [n] = {1, . . . , n}. A time series is a sequence x = (x1, . . . , xn)
with elements xi ∈ R for all i ∈ [n]. We denote the length of time series x by |x | = n, the set
of time series of length n by Tn , and the set of all time series of finite length by T . Consider
the (m × n)-grid defined as

[m] × [n] = {(i, j) : i ∈ [m], j ∈ [n]} .
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A warping path of order m × n and length � is a sequence p = (p1, . . . , p�) through the
grid [m] × [n] consisting of � points pl = (il , jl) ∈ [m] × [n] such that
1. p1 = (1, 1) and p� = (m, n)

2. pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for all l ∈ [� − 1].
The first condition is the boundary condition and the second condition is the step condition of
theDTW-distance.Wedenote the set of allwarping paths of orderm×n byPm,n . Suppose that
p = (p1, . . . , p�) ∈ Pm,n is a warping path with points pl = (il , jl) for all l ∈ [�]. Then p
defines an expansion (or warping) of the time series x = (x1, . . . , xm) and y = (y1, . . . , yn)
to the length-� time series φp(x) = (xi1 , . . . , xi� ) andψp(y) = (y j1 , . . . , y j� ). By definition,
the length � of a warping path satisfies max(m, n) ≤ � ≤ m + n.

The cost of warping time series x and y along warping path p is defined by

Cp(x, y) = ∥∥φp(x) − ψp(y)
∥∥2 =

∑

(i, j)∈p

(
xi − y j

)2
,

where ‖·‖ denotes the Euclidean norm and φp and ψp are the expansions defined by p. The
DTW-distance of x and y is

dtw(x, y) = min
{√

Cp(x, y) : p ∈ Pm,n

}
.

A warping path p with Cp(x, y) = dtw2(x, y) is called an optimal warping path of x and
y. By definition, the DTW-distance minimizes the Euclidean distance between all possi-
ble expansions that can be derived from warping paths. Computing the DTW-distance and
deriving an optimal warping path is usually solved via dynamic programming [34, 39].

2.2 Samplemeans under DTW

Let S = {x1, . . . , xN } be a sample of N time series xi ∈ T . Note that S is a multiset that
allows multiple instances of the same elements. A sample mean of S is any time series that
minimizes the Fréchet function [16]

F : U → R, z �→ 1

N

N∑

i=1

dtw(z, xi )
2,

where U ⊆ T is a subset of time series. The value F(z) is the Fréchet variation of sample S
at z. The infimum inf z F(z) serves as a measure of variability of S. Here, the search space
U takes one of the following two forms: (i) U = T and (ii) U = Tm . We refer to (i) as the
unconstrained and to (ii) as the constrained sample mean problem. Note that the constrained
formulation only restricts the length of the candidate solutions, whereas there is no length
restriction on the sample time series to be averaged.

A sample mean exists in either case but is not unique in general [22]. This result implies
that F attains its infimum (has a unique minimum). However, computing a sample mean is
NP-hard [8]. The implication is that we often need to resort to heuristics that return useful
solutions within acceptable time.

We briefly describe two state-of-the-art algorithms for the constrained sample mean prob-
lem: a stochastic subgradient method (SSG) [35] and a majorize-minimize algorithm (DBA)
[17, 30]. For a detailed description of both algorithms, we refer to [35].

To present the update rule of both algorithms in a compact form, we introduce the notions
of warping and valence matrix as proposed by [35]. Suppose that p ∈ Pm,n is a warping
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Algorithm 1 Stochastic Subgradient Method
1: procedure SSG(η, m, x1, . . . , xN )
2: initialize solution z ∈ Tm
3: initialize best solution z∗ = z
4: repeat
5: reshuffle order of sample time series
6: for i ← 1 to N do
7: compute optimal warping path pi of z and xi
8: compute valence matrix Vi of pi
9: compute warping matrix Wi of pi
10: update solution z according to the rule
11: z ← z − 2η (Vi z − Wi xi )

12: record best solution z∗ = argmin {F(z∗), F(z)}
13: until termination
14: return z∗

path. The warping matrix of p is the zero-one matrixW = (wi j ) ∈ {0, 1}m×n with elements

wi j =
{
1 (i, j) ∈ p

0 otherwise
.

The valencematrix ofwarping path p is the diagonalmatrix V = (vi j ) ∈ N
m×m with positive

diagonal elements

vi i =
n∑

j=1

wi j .

Suppose that z and x are time series of length |z| = m and |x | = n. ThenW warps x onto the
time axis of z. Each diagonal element vi i of V counts how many elements of x are warped
to element zi .
Stochastic Subgradient Algorithm. Subgradient methods for time series averaging have been
proposed by [35]. Algorithm 1 outlines a vanilla version of the SSG algorithm with constant
learning rate η. In practice, more sophisticated stochastic subgradient variants such as Adam
[27] are preferred. The input of Algorithm 1 are a learning rate η, a length-parameterm of the
constrained search space, and a sample x1, . . . , xN of time series to be averaged. The output
is a time series with lowest Fréchet variation that has been encountered during optimization.
Majorize-Minimize Algorithm.Majorize-minimize algorithms for time series averaging have
been proposed in the 1970s mainly by Rabiner and his co-workers with speech recognition
as the primary application [32, 42]. The early approaches fell largely into oblivion and where
successively rediscovered, consolidated, and improved in a first step by Abdulla et al. [2]
in 2003 and then finalized in 2008 by Hautamaki et al. [17]. In 2011, Petitjean et al. [30]
reformulated, explored, and popularized the majorize-minimize algorithm by Hautamaki et
al. [17] under the name DTW Barycenter Averaging (DBA).

Algorithm 2 describes the DBA algorithm. It takes a length-parameter m and a sample of
time series as input and returns the candidate solution of the last iteration as output. The DBA
algorithm terminates after a finite number of iterations in a local minimum of the Fréchet
function [35].
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Algorithm 2 DBA Algorithm
1: procedure DBA(m, x1, . . . , xN )
2: initialize solution z ∈ Tm
3: repeat
4: //*** Majorize
5: for i ← 1 to N do
6: compute optimal warping path pi of z and xi
7: compute valence matrix Vi of pi
8: compute warping matrix Wi of pi
9: //*** Minimize
10: update solution z according to the rule

11: z ←
⎛

⎝
N∑

i=1

Vi

⎞

⎠
−1 ⎛

⎝
N∑

i=1

Wi xi

⎞

⎠

12: until termination
13: return z

Algorithm 3 Adaptive Scaling
1: procedure ADA(x)
2: x ′ ← x // current compression
3: repeat
4: i ∈ argmin{|x ′

j − x ′
j+1| : j < |x |}

5: x ′ ← merge(x ′, i)
6: C(x) ← C(x) ∪ {

x ′}

7: until |x ′| = 1
8: return C(x)
9:
10: procedure merge(x ′, i)
11: z ← x ′
12: replace zi by (x ′

i + x ′
i+1)/2

13: delete zi+1
14: return z

2.3 Compressions

Let x ∈ T be a time series of length n. A compression of x is a time series x ′ of length
m ≤ n that maintains some desirable problem-specific properties of x . By definition, x is
also a compression of itself. A compression chain of x is a sequence C(x) = (

x ′
1, . . . , x

′
k

)
of

k ∈ [n] compressions x ′
i of x such that

1 ≤ ∣∣x ′
1

∣∣ <
∣∣x ′

2

∣∣ < · · · <
∣∣x ′

k

∣∣ ≤ n.

There are numerous compression methods such as principal component analysis, discrete
Fourier transform, discrete wavelet transform, and manymore. Here, we consider two simple
methods: adaptive scaling (ADA) and minimum squared DTW error (MSE).
Adaptive Scaling. Algorithm 3 describes ADA. The procedure takes a time series x =
(x1, . . . , xn) as input and returns a compression chain C(x) consisting of n compressions
of x of length 1 to n. To compress a time series x ′

k+1 of length k + 1 to a time series
x ′
k of length k, ADA merges two consecutive elements with minimal distance. The merge

subroutine in Algorithm 3 replaces these two consecutive time points by their average.
Finding the smallest distance in Line 4 takes O(

∣∣x ′∣∣) time. In each iteration, the length of
x ′ is reduced by one. Thus, the complexity of computing all n compressions is O(n2).
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Minimum Squared DTW Error Compression. The second compression method computes a
time series of a given length such that the squared DTW error is minimized. Let x ∈ T be a
time series of length n and let m < n. We call each

x ′ ∈ argmin
{
dtw(x, z)2 : z ∈ Tm

}

an MSE compression of x of length m. Observe that the MSE compression problem for x
is the constrained sample mean problem of the sample S = {x}. Algorithm 4 outlines MSE
compression.

It is not hard to see that for a compression x ′, an optimal warping path p between x and x ′
warps every element of x to exactly one element of x ′, that is, φp(x) = x . Thus, we can write

p = (
(1, 1), . . . , (i1, 1), (i1 + 1, 2), . . . ,

(i1 + i2, 2), . . . , (n − im), . . . , (n,m)
)
,

(1)

where
∑m

l=1 il = n. Let dl = ∑l
j=1 i j , l ∈ [m], and d0 = 0. The squared DTW error of x ′ is

dtw(x, x ′)2 =
m∑

l=1

dl∑

i=dl−1+1

(xi − x ′
l )
2. (2)

MSE compression is also known as adaptive piecewise constant approximation [9] and as
segmentation problem [38]. It can be solved exactly via dynamic programming in O(n2m)

time [6]. Moreover, the dynamic program allows to find all n compressions (for each length
m = 1, . . . , n) in O(n3) time by running it once for m = n (as it is done in Algorithm 4).

Interestingly, MSE compression is also related to one-dimensional k-means clustering. To
see this relationship, consider an optimal warping path between the compression x ′ and the
original time series x as in Eq. (1). Then, the squared DTW error is minimal for x ′

l =
(xdl−1+1+· · ·+ xdl )/il . Thus, finding anMSE compression x ′ of length k can also be seen as
a one-dimensional k-means clustering problem, where every cluster consists of a consecutive
subsequence of elements in x . Indeed, the dynamic program in Algorithm 4 is the same as
for one-dimensional k-means [41] (without previously sorting the elements in x).

To reduce the computational complexity, several heuristics and approximations for MSE
compression have been proposed [9, 25, 38, 43]. Also ADA compression can be regarded as
a heuristic for MSE compression since it greedily averages two consecutive elements.

To conclude, with MSE compression, we consider an exact solution method to a sound
compression problem and with ADA compression, we consider a fast heuristic. Among the
various heuristics, we have chosen ADA compression because it has been successfully tested
for improving approximate solutions of the constrained sample mean problem [30].

2.4 The average-compress algorithm

In this section, we assemble the pieces of the previous sections and propose a generic average-
compress (AC) algorithm for approximately solving the unconstrained samplemean problem.
AC Algorithm. The AC algorithm alternates between averaging (A-step) and compression
(C-step). For this purpose, any averaging algorithm and any compression method can be
used. Algorithm 5 depicts the generic procedure. The input of the algorithm is a sample S
of time series and an initial guess z ∈ T . It then repeatedly applies the following steps until
termination:
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1. A-step: approximate sample mean

z ← average(S, z).

2. C-step: compute a compression chain

C(z) ← compress(z).

3. Evaluate solution:

(a) Select the shortest compression z∗ ∈ C(z) such that F(z∗) ≤ F(z′) for all z′ ∈ C(z).
(b) If F(z∗) < F(z), set z ← z∗ and go to Step 1, otherwise terminate.

Line 7 computes the complete compression chain C(z) that consists of all |z| compressions
of z of lengths 1 to |z|. To accelerate the algorithm at a possible expense of solution quality,
sparse compression chains can be considered.

In the following, we explain why and under which conditions compression is useful. To
simplify our argument, we assume that AC uses an averaging algorithm for the constrained
sample mean problem (such as SSG or DBA). In this case, the length m of the initial guess
restricts the search space of AC to the set T≤m of all time series of maximum length m.
The choice of the length-parameter m via the initial guess is critical. If m is too small, the
search space T≤m may not contain an unconstrained sample mean. For a given sample S,
the Reduction Theorem [22] guarantees the existence of an unconstrained sample mean of
a length at most mS = ∑

x∈S |x | − 2(|S| − 1). Consequently, we can safely constrain the
search space to T≤mS for solving the unconstrained sample mean problem. Then, a naive
approach to minimize the Fréchet function on T≤mS is to solve mS constrained sample
mean problems on TmS , . . . , T1 and then to pick the solution with lowest Fréchet variation.
When using state-of-the-art heuristics for the mS constrained problems, the naive approach
is computationally infeasible.

The purpose of compression is to substantially accelerate the intractable naive approach
at the expense of solution quality. Instead of solving all mS constrained problems, the AC

Algorithm 4MSE Compression
1: procedure MSE(x)
2: initialize compression table C
3: initialize cost table D such that D[i, j] ← 0 if i = 0 or j = 0
4: C[1, 1] ← (x1)
5: D[1, 1] ← 0
6: for i ← 1 to |x | do
7: for m ← 1 to i do
8: j∗ ← 0
9: d∗ ← ∞
10: initialize μ∗ ← [ ]
11: for j ← m to i do
12: μ ← (

∑i
l= j xl )/(i − j + 1)

13: d ← ∑i
l= j (xl − μ)2

14: if D[ j − 1,m − 1] + d < d∗ then
15: d∗ ← D[ j − 1,m − 1] + d
16: μ∗ ← μ

17: j∗ ← j
18: D[i,m] ← d∗
19: C[i,m] ← C[ j∗ − 1,m − 1].append(μ∗)

20: C(x) ← {C[|x |,m] : 1 ≤ m ≤ |x |}
21: return C(x)
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Algorithm 5 Average-Compress Algorithm
1: procedure AC(X , z)
2: z∗ ← z // best solution found so far
3: f∗ ← F(z∗) // variation of z∗
4: �∗ ← |z∗| // length of z∗
5: repeat
6: A-Step: z ← average(X , z)
7: C-Step: C(z) ← compress(z)
8: //*** Evaluate solution
9: z ← argmin

{
F(z′) : z′ ∈ C(z) ∪ {z}}

10: if F(z) < f∗ or (F(z) = f∗ and |z| < �∗) then
11: f∗ ← F(z)
12: l∗ ← |z|
13: z∗ ← z
14: until convergence
15: return z∗

algorithm uses compressions to select a few promising search spaces Tm0 , Tm1 , . . . , Tmk with
mS = m0 > m1 > · · · > mk ≥ 1. Startingwith TmS = Tm0 , the solution zi−1 found in Tmi−1

is compressed in order to determine the next search space Tmi . The length-parameter mi of
the next search space Tmi corresponds to the length of the compression zi of zi−1 with lowest
Fréchet variation. Obviously, this idea only accelerates the naive approach if the lengthmi of
the best compression is substantially smaller than the length mi−1 of the previous solution.

The theoretical upper bound mS provided by the Reduction Theorem [22] is usually
very large such that existing state-of-the-art heuristics for solving the constrained problem
on T≤mS are computationally intractable. In this case, also the AC algorithm using such a
heuristic would be infeasible. However, empirical results on samples of two time series of
equal lengthn suggest that the length of an unconstrained samplemean ismore likely to be less
than n [7]. Similar results for larger sample sizes are unavailable due to forbidding running
times required for exact sample means. For solving constrained sample mean problems, it is
common practice to choose m within the range of the lengths of the sample time series [30].
Within this range, experimental results showed that an approximate solution of a constrained
sample mean can be improved by reducing its length using adaptive scaling [30]. These
findings suggest to choose the length-parameter m within or slightly above the range of
lengths of the sample time series.

3 Experiments

Our goal is to assess the performance of the proposed AC algorithm. For our experiments,
we use the 85 data sets from the UCR archive [10]. Appendix 1 summarizes the parameter
settings of the mean algorithms used in these experiments.

3.1 Comparison of ADA andMSE

We compared the performance of ADA and MSE as compression subroutines of the AC
algorithm. We applied the following configurations:
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Acronym Algorithm I

DBA DTW Barycenter Averaging [17, 30] –
DBA-ADA1 DBA with ADA compression [30] 1
DBA-MSE1 DBA with MSE compression 1
DBA-ADA DBA with ADA compression ∗
DBA-MSE DBA with MSE compression ∗

Column I refers to the number of iterations of the repeat-until loop of the AC Algorithm.
Compression schemes with ∗ iterations run until convergence. We applied DBA and the four
AC algorithms to approximate the class means of every UCR training set.2

To assess the performance of the mean algorithms, we recorded the percentage devia-
tions, ranking distribution, and space-saving ratios. Here, we used the solutions of the DBA
algorithm as reference. The percentage deviation of a mean algorithm A is defined by

pdev(A) = 100 · F(zA) − F(zDBA)

F(zDBA)
,

where zDBA is the solution of the DBA algorithm and zA is the solution of algorithm A.
Negative (positive) percentage deviations mean that algorithm A has better (worse) Fréchet
variation than DBA. The ranking distribution summarizes the rankings of every mean algo-
rithm over all samples. The best (worst) algorithm is ranked first (last). The space-saving
ratio of algorithm A is

ρss(A) = 1 − |zA|
|zDBA| .

A positive (negative) space-saving ratio means that the solution zA is shorter (longer) than
zDBA.

Table 1 summarizes the results. The top table shows the average, standard deviation, min-
imum, and maximum percentage deviations from the Fréchet variation of the DBA algorithm
(lower is better). The table in the middle shows the distribution of rankings and their corre-
sponding averages and standard deviations. The best (worst) algorithm is ranked first (fifth).
Finally, the bottom table shows the average, standard deviation, minimum, and maximum
space-saving ratios (higher is better).

All AC variants improved the solutions of the DBA baseline by 4.6% to 7.0% on average
and 45%(±2%) in the best case. By construction, an AC solution is never worse than a
DBA solution. The best method is DBA-MSE with average rank 1.0 followed by DBA-
MSE1 and DBA-ADA with average ranks 2.4 and 2.5, respectively. These three methods
clearly outperformed DBA-ADA1 proposed by Petitjean et al. [30].

On the majority of data sets the AC algorithm converged after two or three iterations
to a local optimum. In rare cases, four iterations were required. The number of iterations
does neither correlate with the length of the time series nor with the sample size. The main
improvement of DBA-MSE andDBA-ADAoccurs at the first iteration. The first compression
appears to be most aggressive, because it collapses flat regions. Subsequent averaging steps
slightly shift the compressed candidate solutions. These shifts may create new flat regions,
which can be further compressed to obtain better solutions.

We also considered the lengths of the approximatedmeans. Recall that all mean algorithms
started with the same initial guess (medoid). The length of a DBA solution corresponds to

2 The UCR data sets have prespecified training and test sets.

123



896 Journal of Global Optimization (2023) 86:885–903

Table 1 Results of ADA and MSE compressions

Percentage deviations
DBA DBA-ADA1 DBA-MSE1 DBA-ADA DBA-MSE

avg 0.0 −4.6 −6.0 −5.6 −7.0

std 0.0 4.8 5.9 5.6 6.6

min 0.0 −43.1 −43.9 −47.1 −47.7

max 0.0 0.0 0.0 0.0 0.0

Ranking distribution
Rank DBA DBA-ADA1 DBA-MSE1 DBA-ADA DBA-MSE

1 0.5 2.5 2.7 10.2 96.8

2 0.2 0.6 56.2 34.6 3.2

3 0.3 9.7 37.0 55.2 0.0

4 0.0 87.1 4.1 0.0 0.0

5 99.0 0.0 0.0 0.0 0.0

avg 5.0 3.8 2.4 2.5 1.0

std 0.3 0.6 0.6 0.7 0.2

Space-saving ratios
DBA DBA-ADA1 DBA-MSE1 DBA-ADA DBA-MSE

avg 0.00 0.34 0.44 0.36 0.45

std 0.00 0.21 0.24 0.22 0.24

min 0.00 0.00 0.00 0.00 0.00

max 0.00 0.96 0.99 0.96 0.99

the length of its initial guess, whereas solutions of AC algorithms are likely to be shorter by
construction. The bottom table shows that solutions of ADA compression save about a third
(0.34, 0.36) of the length of DBA solutions on average and solutions of MSE compressions
close to a half (0.44, 0.45). As for the Fréchet variation, most of the space-saving occurs in
the first iteration of an AC algorithm.

3.2 Comparison of AC algorithms

The goal of the second experiment is to compare the performance of the following mean
algorithms:

Acronym Algorithm I

DBA DTW Barycenter Averaging [17, 30] –
SSG stochastic subgradient method [35] –
ADBA adaptive DBA [28] –
DBA-MSE DBA with MSE compression ∗
SSG-MSE SSG with MSE compression ∗
ADBA-MSE adaptive DBA with MSE compression ∗
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Table 2 summarizes the results using the same legend as in Table 1. The percentage
deviations and rankings suggest that the three AC variants DBA-MSE, SSG-MSE, and
ADBA-MSE performed substantially better than the corresponding base algorithms DBA,
SSG, and ADBA, respectively. The SSG-MSE algorithm performed best with an average
rank of 1.4, followed by ADBA-MSE (2.9), SSG (3.1), and DBA-MSE (3.3). Interestingly,
ADBA performed worse than DBA-MSE. Both, ADBA and DBA-MSE, are based on the
DBA algorithm. The difference between both algorithms is that ADBA compresses and
expands selected subsequences of the current DBA solution, whereas DBA-MSE only com-
presses the current DBA solution. The results indicate that simple MSE compression on
the entire sequence appears to be a better strategy than ADBA’s compression and expan-
sion schemes on selected subsequences. Notably, SSG performed best among the three base
averaging algorithms DBA, SSG, ADBA, and performed even better than DBA-MSE. These
results are in contrast to those presented in [28], where ADBA outperformed SSG (and also
DBA). Our findings confirm that the performance of SSG substantially depends on a careful
selection of an optimizer (such as Adam) and a proper choice of the initial learning rate.

Next, we examine the length of the solutions. Note that SSG also does not alter the length
of its initial guess such that ρss(DBA) = ρss(SSG) = 0. The bottom table shows that MSE
compression schemes reduce the length of the solutions obtained by their corresponding base
algorithm (DBA, SSG, and ADBA). The space-saving ratios of the AC variants are roughly
independent of the particular base algorithm for mean computation (0.43–0.45). Notably, the
base algorithm ADBA is more likely to compress rather than to expand the DBA solutions.
This finding is in line with the hypothesis that an exact mean is typically shorter than the
length of the sample time series [7].

3.3 Qualitative analysis of mean algorithms

The goal of this section is to qualitatively analyze the behavior and phenomena behind
the different types of mean algorithms. For this, we considered DBA, ADBA, and the AC
variant SSG-MSE relative to an exact dynamic program (EDP) proposed by [7]. Since the
sample mean problem is NP-hard, we only considered a sample with two sample time series
of length 24 from the Chinatown data set [12]. The two sample time series slightly differ in
their amplitudes and on a high abstraction level, they have the following features in common:
Both start with a wide valley followed by a peak, a flat plateau-like valley at a high altitude
until they finally end with a descent.

Figure 2 shows the sample time series and the sample means returned by the four algo-
rithms. The four algorithms differ in the level of feature abstraction and in susceptibility
of spurious features, whereby lower level feature representations are more prone to spuri-
ous features than higher level ones: The EDP exhibits the common shape of both sample
time series. In addition, it filters out variations of speed by condensing the mean to length
16. The SSG-MSE algorithm more aggressively condenses a solution than EDP resulting in
a more compact and higher level description of a mean of length 13. In contrast to EDP,
the AC variant SSG-MSE has smoothed out the flat plateau-like valley. We note that this
“over-compression” is shape-dependent but not length-dependent. As indicated by Fig. 2,
over-compression is more likely for flat and less likely for steep regions. The solution of
ADBA more moderately condenses a solution than SSG-MSE and EDP resulting in a lower
level representation of length 18. In addition, ADBA includes a spurious plateau at the begin-
ning that occurs only in the upper sample time series. Finally, DBA aims at capturing the
common features of both sample time series with respect to a predefined length (here 24). The
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Table 2 Results of the AC algorithms

Percentage deviations
DBA SSG ADBA DBA-MSE SSG-MSE ADBA-MSE

avg 0.0 −7.4 −6.4 −7.0 −11.6 −9.4

std 0.0 16.1 10.4 6.6 13.8 10.5

min 0.0 −79.7 −81.8 −47.7 −83.3 −82.0

max 0.0 188.1 17.7 0.0 50.0 13.3

Ranking distribution
Rank DBA SSG ADBA DBA-MSE SSG-MSE ADBA-MSE

1 1.9 5.1 1.1 9.5 80.6 8.9

2 2.1 37.6 1.7 22.9 10.5 21.9

3 2.4 20.8 8.6 25.9 2.1 41.4

4 8.1 19.5 33.7 14.0 0.5 21.0

5 11.4 11.1 36.7 27.8 6.3 6.8

6 74.1 5.9 18.3 0.0 0.0 0.0

avg 5.5 3.1 4.6 3.3 1.4 2.9

std 1.1 1.3 1.0 1.3 1.0 1.0

Space-saving ratios
DBA SSG ADBA DBA-MSE SSG-MSE ADBA-MSE

avg 0.00 0.00 0.31 0.45 0.43 0.45

std 0.00 0.00 0.21 0.24 0.24 0.24

min 0.00 0.00 −0.04 0.00 0.00 0.00

max 0.00 0.00 0.91 0.99 0.99 0.97

resulting solution contains more low level features than the other approaches and includes
spurious features which occur in only one of both time series. Finally, we hypothesize that
spurious features may also occur in exact solutions when two sample time series do not share
many common features.

Figure 2 shows the error of each mean algorithm as the percentage deviation of their
Fréchet variations from the minimum Fréchet variation. The Fréchet variation measures the
amount of dispersion of a sample of time series. Such a measure is, for example, important
in evaluating k-means clustering using validation indices based on the Fréchet variation for
each cluster. The errors of the heuristics differ substantially with EDP ranked first followed
by SSG-MSE (1.0%), ADBA (10.1%), and DBA (19.3%). We hypothesize that low level
and spurious features could result in erroneous measures of dispersion. These errors then
propagate to pattern recognition methods based on time series averaging such as k-means
clustering.

3.4 Application: k-means clustering

In this experiment, we investigated how the quality of a mean algorithm affects the quality of
a k-means clustering. Let S = {x1, . . . , xn} ⊆ T be a set of n finite time series. The goal of
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0 5 10 15 20 25

(a) EDP(exact solution)

0 5 10 15 20 25

(b) SSG-MSE

0 5 10 15 20 25

(c) ADBA

0 5 10 15 20 25

(d) DBA

Fig. 2 Comparison of different sample mean algorithms. Each plot shows the mean (blue) of two time series
of length 24 (black) and the optimal alignments (green) as found by the corresponding algorithm. The error
specified above each plot is the percentage deviation of the Fréchet variation of the corresponding solution
from the minimal Fréchet variation. The length of the means are 16 in (a), 13 in (b), 18 in (c), and 24 in (d).
(Color figure online)

k-means is to find a set Z = {z1, . . . , zk} of k centroids z j ∈ T such that the k-means error

J (Z) = 1

n

n∑

i=1

min
z∈Z dtw(xi , z)

2

is minimized. We used DBA, SSG, ADBA, DBA-MSE, SSG-MSE, and ADBA-MSE for
computing the set Z of centroids. We applied the six variants of k-means to 70 UCR data
sets and excluded 15 UCR data sets due to overly long running times (see Appendix 1). We
merged the prespecified training and test sets. The number k of clusters was set to the number
of classes and the centroids were initialized by the class medoids.

Table 3 summarizes the results. The top table presents the average, standard deviation,
minimum, and maximum percentage deviations from the respective minimum k-means error
(lower is better). The percentage deviation of k-means algorithm A for data set D is defined
by

pdev(A, D) = 100 ∗ J (ZA) − J (ZD)

J (ZD)
,

whereZA is the set of centroids returned by algorithm A andZD is the best solution obtained
by one of the six k-means algorithms. The bottom table shows the distribution of rankings and
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Table 3 Results of k-means clustering

Percentage deviations
DBA SSG ADBA DBA-MSE SSG-MSE ADBA-MSE

Avg 20.0 8.3 8.1 11.5 1.5 3.8

Std 58.1 10.8 4.8 58.1 6.2 3.5

Max 491.8 55.6 26.5 488.5 44.4 17.1

Ranking distribution
Rank DBA SSG ADBA DBA-MSE SSG-MSE ADBA-MSE

1 2.9 2.9 0.0 14.3 81.4 5.7

2 0.0 22.9 0.0 30.0 12.9 28.6

3 4.3 15.7 14.3 24.3 0.0 42.9

4 7.1 21.4 41.4 11.4 0.0 18.6

5 11.4 31.4 27.1 18.6 5.7 2.9

6 74.3 5.7 17.1 1.4 0.0 1.4

Avg 5.5 3.7 4.5 2.9 1.4 2.9

Std 1.1 1.4 0.9 1.4 1.0 1.0

their corresponding averages and standard deviations. The best (worst) algorithm is ranked
first (sixth).

The results show that the AC approach substantially improved all k-means variants using
one of the base averaging methods (DBA, SSG, ADBA). Notably, SSG-MSE performed
best with an average percentage deviation of 1.5% and an average rank of 1.4, followed by
ADBA-MSE (3.8% and 2.9). The average percentage deviations of DBA and DBA-MSE are
substantially impacted by the results on a single data set (DiatomSizeReduction). Removing
the DiatomSizeReduction data set yields an average percentage deviation of 13.2 for DBA
and 4.6 for DBA-MSE, whereas the other average percentage deviations remain unchanged
up to ±0.1%. These findings confirm the hypothesis raised by Brill et al. [7] that better mean
algorithms more likely result in lower k-means errors.

4 Conclusion

We formulated a generic average-compress algorithm for the unconstrained sample mean
problem in DTW spaces. Starting with an initial guess of sufficient length, the AC algo-
rithm alternates between averaging and compression. In principle, any averaging and any
compression algorithm can be plugged into the AC scheme. The compression guides the
algorithm to promising search spaces of shorter time series. This approach is theoretically
justified by the Reduction Theorem [22] that guarantees the existence of an unconstrained
sample mean in a search space of bounded length. Experimental results show that the AC
algorithm substantially outperforms state-of-the-art heuristics for time series averaging. In
addition, we observed that better averaging algorithms yield lower k-means errors on average.
Open research questions comprise application of the AC scheme to the empirical analysis of
alternative compression methods for the AC algorithm and reducing its computational effort.
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A Experimental settings

A.1 Hyperparameter settings

In all experiments, we selected the sample medoid as initial guess of a mean algorithm. The
DBAalgorithm terminated after convergence and latest after 50 epochs (cycles through a sam-
ple). The ADBA algorithm terminates subsequence optimization when the sum of the scaling
coefficients changes its sign and latest after 50 iterations. The SSG algorithm terminated after
50 iterations without observing an improvement and latest after max (50, 5000/n) epochs.
As optimization scheme, SSG applied Adam [27] with β1 = 0.9 as first and β2 = 0.999 as
secondmomentum. To cope with the problem of selecting an initial learning rate, we used the
procedure described in Algorithm 6. The input is a sample S of size n. The output is the best
solution found. The algorithm terminates if the solution did not improve for two consecutive
learning rates and latest if

√
n/2i ≤ 10−6.

Algorithm 6 SSG with learning rate selection
1: procedure SSG(S)
2: n ← |S|
3: i ← 1
4: repeat
5: test SSG with learning rate

√
n/2i

6: record best solution z∗ found so far
7: i ← i + 1
8: until convergence
9: return z∗

A.2 Data sets excluded from k-means experiments

The following list contains all UCR data sets excluded from k-means clustering due to
computational reasons:
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