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Abstract
In the semiconductor industry, automated visual inspection aims to improve the detection and recognition of manufacturing
defects by leveraging the power of artificial intelligence and computer vision systems, enabling manufacturers to profit from
an increased yield and reduced manufacturing costs. Previous domain-specific contributions often utilized classical computer
vision approaches, whereasmore novel systems deploy deep learning based ones. However, a persistent problem in the domain
stems from the recognition of very small defect patterns which are often in the size of only a few µm and pixels within vast
amounts of high-resolution imagery. While these defect patterns occur on the significantly larger wafer surface, classical
machine and deep learning solutions have problems in dealing with the complexity of this challenge. This contribution
introduces a novel hybrid multistage system of stacked deep neural networks (SH-DNN) which allows the localization of the
finest structures within pixel size via a classical computer vision pipeline, while the classification process is realized by deep
neural networks. The proposed system draws the focus over the level of detail from its structures to more task-relevant areas
of interest. As the created test environment shows, our SH-DNN-based multistage system surpasses current approaches of
learning-based automated visual inspection. The system reaches a performance (F1-score) of up to 99.5%, corresponding to
a relative improvement of the system’s fault detection capabilities by 8.6-fold. Moreover, by specifically selecting models
for the given manufacturing chain, runtime constraints are satisfied while improving the detection capabilities of currently
deployed approaches.

Keywords Computer vision · Pattern and image recognition · Deep learning · Semiconductor manufacturing · Factory
automation · Fault inspection

Introduction andmotivation

Automated visual fault inspection processes involve the
development and integration of systems for capturing and
monitoring of manufacturing results. The related manufac-
turing processes include a multitude of complex processing
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steps, whereas one of these processing steps is concerned
with the separation of the resulting components (Huang and
Pan 2015).While incorporating the analysis of the usedmate-
rials as well as the imaging of the investigated circuits, the
utilized mechanical forces induced by the laser cutting pro-
cess characterize the quality of the resulting components. The
laser cutting process itself is defined by the prevailing tem-
perature, pressure, and voltage values, whereas information
about the amount of flawless chips is ultimately derived from
the nature of the resulting components. The aim is there-
fore to identify potential manufacturing defects within the
manufacturing chain, but also to determine influential fac-
tors while avoiding complications in subsequent processing
steps. For this purpose, an important quality property is cal-
culated based on the ratio of flawless to total chips, also called
yield (Lee et al. 2017). Since a manual inspection can imply
a considerable and in particular exhaustive time expenditure,
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Wafer Chips and streets (cuts) Flawless (top) and faulty (bottom) street segments

Fig. 1 Wafer overview (left) with chips and streets (middle) as well as
flawless and faulty street segments (right) as a result of the wafer dic-
ing process (reprinted from Schlosser et al. (2019)). In order to protect

the intellectual property of the wafer imagery, the shown examples are
alienated from the original imagery while retaining a close resemblance

the automation of quality control allows manufacturers to
benefit from an increase in yield and a reduction of manu-
facturing costs.

We approach the problem of automated visual fault
detection and recognition in the field of semiconductor man-
ufacturing (Hooper et al. 2015; Rahim and Mian 2017).
Silicon wafer dicing denotes the separation of silicon wafers
into single components, whereas the dicing streets describe
the scribed regions of interest on the wafer surface. One
of the more commonly deployed separation approaches
utilizes a dicing saw (Hooper et al. 2015). Another, alter-
native method is thermal laser separation, where a thermally
inducedmechanical force results in a cleave on the wafer sur-
face (Rahim and Mian 2017). For this purpose, the cleave is
guided along the scribe in this thermally induced separation.
This separation process constitutes our quality criterion, as
a cleave deviating from the scribe results in faulty chips and
therefore a decrease in yield.

A particular challenge represents the detection and classi-
fication of complex defect patterns in pixel size, which often
occur in this application area. Figure 1 illustrates this by
means of a wafer segment (left), subdivided into chips (mid-
dle) and street cuttings (right) as they are produced through
the cutting process along the scribes. While the data acquisi-
tion of semiconductor manufacturing processes often results
in vast amounts of image data, defect patterns often occur in
pixel size within image resolutions of up to 105 ×105 pixels.

The detection and classification of such small defect pat-
terns is often a problem for deep learning based approaches.
Deep neural networks are able to either process the given
input in its native image resolution or utilize a downsampled
version of the input imagery. However, both options lead to
problems in the considered application area. The first case
would therefore result in a larger network, possibly leading
to slower processing performances, while a higher network
connectivity would lead to additional problems such as data
overfitting. In the second case, the input imagery would be

downsampled for the network, whereas smaller structures
within pixel size would be lost. Therefore, the deployed sys-
tem’s localization and classification capabilities have to be
considered in order to allow a more efficient recognition of
defect patterns.

Depending on the underlying manufacturing process, a
variety of defect patterns can occur on the wafer surface,
including “spur”, “break out”, “wrong size hole”, “overetch”,
“missing hole”, and “excessive short” as well as “cluster pat-
tern”, “edge ring”, “linear scratch”, and “semicircle” based
defect patterns (Moganti and Ercal 1998; Cho and Park
2002), also described also by Chen and Liu (2000); Liu et al.
(2002). However, the utilized wafer data are often synthe-
sized or originates from only one manufacturer or one type
of wafer, resulting in near-perfect classification accuracies
which are in turn less informative regarding the system’s
real-world classification capabilities.

Another, related research area opposing to the inspection
of visual material is concerned with the analysis of wafer
maps which are based on a contact needle inspection. Wafer
maps are typically generated by placing an uncut wafer into
a wafer prober device (Cheng et al. 2021). This test device
utilizes contact needles in order to establish a connection
to individual circuits. After the wafer is cut, the defective
circuits are sorted out, the results are color-coded as wafer
maps, and their patterns are analyzed to optimize the manu-
facturing process. However, because of its intrusive nature,
the electrical test bears the risk of potentially damaging the
wafer (Cheng et al. 2021).

Our wafer data were captured from real-world dicing
processes of different semiconductor wafers as they were
provided to us by various third-party manufacturers. After
each wafer was mounted on a taped frame, the dicing tape
was expanded to visualize the extremely thin cuts under a
wide-field light microscope following the cleaving process.
Subsequently, the microscope scans each wafer, whereas the
scanning stage allows, as in our application, a line-wise imag-
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ing of up to 150mm (6 inch) wide wafers. Finally, an option
to stitch the resulting wafer imagery is provided.

In our process scenario, wafers are diced with 200 to
300mm/s. Using laser-assisted dicing, up to 10 wafers per
hour can be processed with a die size of 2 × 2mm2 at a
feed rate of 200mm/s (Belgardt et al. 2017). The subsequent
pipeline is process and customer dependent, but often con-
sists of an imaging step (after expansion), following of a
grab-and-place robotic system picking chips from the wafer.
Here, the grabbing control system can benefit from infor-
mation about the quality of the previous dicing step. In an
efficient process pipeline, the given time for one wafer is in
the order of minutes while several thousands of single chip
and street images need to be processed by the image process-
ing system. This corresponds to several tens of milliseconds
per image, e.g., 6000 images to be processed within 5min,
resulting in 50ms per image. This or even faster computation
times were therefore defined to be among the requirements
of our selected algorithms.

The conceptual theory behind our idea is inspired by find-
ings from psychology and visual attention. We observed that
human workers pay in fact more attention to task-relevant
regions of interest (ROI, Itti et al. (1998)), i.e., streets or
street-based segments, thus focusing them. Such a focus pro-
cess is in terms of human research and neuroscience known
as visual attention (Carrasco 2011; Hamker 2005; Beuth and
Hamker 2015; Reynolds and Heeger 2009). Visual attention
has many findings, whereas a common one is the focusing of
human processing on an aspect of a scene (Hamker 2005).
When it is a particular region, as in our case, attention is
denoted as spatial visual attention (Carrasco 2011). There are
certainly different approaches that allow the implementation
of the localization process. One option is to choose a classical
computer vision pipeline for its applicability. Certainly, more
complex as well as visual attention inspired neuroscience-
related models are also existing, inter alia, saliency models
Itti et al. (1998) or system-level attention models Hamker
(2005).

Related work

The following sections give an overview over related as
well as currently deployed approaches to automated visual
fault inspection within the domain of semiconductor manu-
facturing, separated into conventional baseline approaches
(Sect. 1.1.1), machine learning (ML) based approaches
(Sect. 1.1.2), as well as deep learning (DL) based ones
(Sect. 1.1.3).

Conventional baseline approaches

Classically, the field of automated visual inspection utilized
image processing approaches which are most commonly

distinguished based on their functionality in projection-
based, filter-based, and hybrid approaches (Huang and Pan
2015). Following Huang and Pan (2015), projection-based
approaches often include principal component (PCA), lin-
ear discriminant (LDA), or independent component analysis
(ICA), whereas filter-based approaches encompass spectral
estimation and transformation-based approaches, including
discrete cosine (DCT), Fourier (FT), and wavelet transforms.
However, various conventional approaches were developed
which utilize computer vision techniques and statistics, e.g.,
Sreenivasan et al. (1993), Zhang et al. (1999), Chen and Liu
(2000), Tobin et al. (2001). For example, Zhang et al. (1999)
deployed a post-sawing inspection system which extracts
boundary features from reference images by utilizing com-
puter vision techniques.

ML-based approaches

The domain of machine learning (ML) provides a range of
powerful toolsets for image analysis. Hence, a broad variety
of research utilizes machine learning based approaches to
develop systems for automated visual fault inspection, often
resulting in improved detection and classification rates while
showing higher generalization and adaptation capabilities to
novel defect patterns. As demonstrated by Chen and Liu
(2000),Huang (2007), andXie et al. (2014), the first learning-
based approaches made use of multilayer perceptrons (MLP)
and support vector machines (SVM), including supervised
and unsupervised approaches. An adaptive resonance the-
ory network (ART) was evaluated on real-world data by
Chen and Liu (2000) and Liu et al. (2002). Chao-Ton et al.
(2002) proposed a system for post-sawing inspection which
applies various types of supervised artificial neural networks
(ANN), combining backpropagation (Werbos 1990), a radial
basis function network (RBF), and learning vector quantiza-
tion (LVQ). Xie et al. (2014) applied SVMs on synthesized
real-world data, while Xie et al. (2011), Song et al. (2013)
utilized support vector regression (SVR) and SVMs for reli-
ability analysis. Xie et al. (2013) systematically compared
different multi-class SVMs and LVQ, while Mahadevan and
Shah (2009) detected abnormal process behaviors in the
semiconductor etching process. Nawaz et al. (2014) devel-
oped an inference system for the etching process based on a
Bayesian network (Friedman et al. 1997) which evaluates the
cause-effect relationships between root causes, equipment,
and process parameters.

DL-based approaches

In the more recent years, deep learning and deep neural
network (DNN) based approaches overtook conventional
ML-based approaches for most use cases in terms of classifi-
cation accuracy (LeCun et al. 2015). However, in the domain
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of semiconductor manufacturing, current use cases are still
limited and more research has to be conducted to further
proof their applicability within the domain.

Chen et al. (2015) proposed a convolutional neural net-
work (CNN) based approach for defect pattern evaluation
of gearboxes where spectral information from time and fre-
quency domains as well as other statistical measures were
selected as input. Similarly to Lee et al. (2016), Zheng et al.
(2016) investigated the use of multivariate and univariate
time series data as CNN input. Following this approach, Lee
et al. (2017) inspected the production process over time for an
on-the-fly control and evaluated it on real-world data, while
Lee and Kim (2018) deployed recurrent neuronal networks.
Hsu and Liu (2021) designed a classification system that
utilizes a large number of sensors while feeding their data
with a temporal relation into their proposed multiple time
series CNN. Another, related area of interest is concerned
with DL-based approaches for the analysis of wafer map
patterns generated by a wafer prober test (Hsu and Chien
Hsu and Chien; Hyun and Kim 2020; Saqlain et al. 2020;
Kim et al. 2021). Depending on the nature of the resulting
patterns, inspectors can draw conclusions about the manu-
facturing process and optimize its parameterization in order
to maximize yield.

The contribution of Nakazawa and Kulkarni (2018) rep-
resents a CNN-based classification approach trained on
synthetic wafermaps in order to classify real wafer datamore
precisely, resulting in a classification accuracy of 98.2%. Fol-
lowing this approach, Cheon et al. (2019) developed a CNN
for feature extraction and classification, reaching a classifica-
tion accuracy of 96.2%without synthesizing any data for the
training process itself. Finally,O’Leary et al. (2020) extended
this approach by additionally applying energy-dispersive X-
ray spectroscopy data, which in turn allowed them to reach
a top-3 classification accuracy of 99.2%.

Following Nakazawa and Kulkarni (2018), Cheon et al.
(2019), and O’Leary et al. (2020), even the latest research
encompasses classical single CNN based architectures. As
these CNN-based approaches do not allow a distinction
depending on the level of detail, an approach has to be found
which enables the recognition of fine-grained defect patterns
in the automated visual inspection process. Furthermore,
Li and Huang (2009) concluded that a high generaliza-
tion performance has to be enforced. Therefore, supervised
approaches are suitable for this task while being capable of
achieving higher performances.

Advanced DL-based approaches including region-based
DNNs (Bochkovskiy et al. 2020; Wen et al. 2020; Han
et al. 2020) are, however, often limited by the resulting vast
amounts of region proposals for the following classification
process. Following the general approach and application of
region-based DNNs,Wen et al. (2020) proposed a system for
wafer surface defect inspection which is realized via a region

proposal network (RPN). The resulting region proposals are
utilized as input for their so-called deep multi-branch neu-
ral network, which results in a pixel-precise localization and
segmentation of the occurring defects. A similar approach is
conducted byHan et al. (2020) forwafer defect segmentation.
However, even current state-of-the-art approaches to region
proposal networks and region-based DNNs show a relatively
low processing speed and thus frame rates when utilizing
higher resolution imagery (Bochkovskiy et al. 2020). When
it comes to runtime constraints in manufacturing processes,
the visual fault inspection capabilities as well as the system’s
accuracy have to bemaximizedwhileminimizing the amount
of wrongly classified samples.

Contribution of this work

This contribution is concerned with the design of a novel
hybrid multistage system of stacked deep neural networks
(SH-DNN) that combines the advantages of classical image
processing approaches with artificial neural network based
ones. Our hybrid approach draws the focus over the level of
detail for each step of the inspection process to more task-
relevant areas of interest. It performs the localization of the
finest structures within pixel size via a classical computer
vision pipeline, while the classification process is realized
by deep neural networks. The deep neural networks are then
able to process the given input in a much higher resolution.
This allows a better processing and thus a more efficient
detection of the finest structures which often range within
a size of only a few µm and pixels within vast amounts of
high-resolution imagery.

Furthermore, all included processing steps have to be suit-
able in regards to given runtime constraints in deployment,
whichwe evaluate and account for. There are several different
approaches that allow the implementation of the localization
process. To automatically identify regions of interest and
enhance their contribution for further analysis, we chose a
classical computer vision pipeline for its applicability and
to satisfy given runtime constraints. In the evaluation of
this contribution, we give a broad overview over currently
deployed models within each step of our proposed system.
This evaluation includes the system’s classification capabil-
ities in each processing step as well as a visualization of the
resulting defect patterns and their occurrences in order to
facilitate a further assessment by an inspector.

Distinctions to our previous contributions

The ideaof anSH-DNN-based approach for automatedvisual
inspection is motivated by one of our previously presented
work-in-progress contributions. Extending the in Schlosser
et al. (2019) introduced systembased on convolutional neural
networks, the current contribution serves as a more gen-
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eral approach. This covers a deeper and broader evaluation
regarding the utilized machine and deep learning based
approaches, whereas the system itself was extended to fur-
ther interpret defect patternswithin subregions. Additionally,
an evaluation regarding the system’s real-time capabilities is
provided.

The data set differs from our previous contributions due
to a reassessment of the data, leading as a notable difference
to a revised defect pattern class specification. Furthermore,
the data set was changed between this contribution and both
Schlosser et al. (2019) and Beuth et al. (2020), to make our
approach more applicable to the process.

Our other previous contribution of Beuth et al. (2020) rep-
resents an approach with the different data set and based on a
biologically plausiblemodel of visual attention. The previous
work’s system (Beuth et al. 2020) is a neuro-computational
model deeply rooted within the neuroscience of the brain,
including neuronal firing rates and expressed human behav-
ior (Beuth 2019). The approach of Beuth et al. (2020) has
allowed us to analyze the idea of attention deeply, which was
one of the objectives of our previous contribution.

Section overview

The following sections introduce our proposed multistage
system, its underlying addressing scheme for the steps of
localization, classification, and data augmentation as well
as an overview of the wafer manufacturing data (Sect. 2).
Ensuing the implemented system for our application area in
the domain of semiconductor manufacturing in Sect. 2.3, we
give an overview over the processing steps for wafer, chip,
street, and street segment processing following a set of typi-
cally selected approaches. For the test results, evaluation, and
discussion (Sect. 3), we then give an overview over a mul-
titude of different deployed and evaluated approaches from
machine and deep learning. This includes not only an evalua-
tion regarding training and test results, but also an evaluation
regarding performance aswell as a visualization of the result-
ing defect patterns and their occurrences.

Materials andmethodology

Evoked by the parameterization of the underlying cutting
process, machine errors, or human carelessness or exhaus-
tion, highly diverse defect patterns can emerge. The exist-
ing defect patterns and error classes such as small holes,
scratches, or bubbles on the outer layers of the wafer and
street surfaces indicate the complexity of inspecting different
flawless, anomaly, and faulty classes of defect patternswithin
varying circuit layouts. These classes of defect patterns are in
turn often characterized by different structures and relation-
ships between them. For this purpose, a distinction is made

between the two error classes of flawless and faulty patterns.
Some exemplary representative chip and street samples are
shown in Tables 2 and 3. Flawless patterns do not possess
any defect patterns that entail a negative influence on the
following processing steps. In contrary to that, faulty pat-
terns include all chips displaying a structural damage to the
chip. Some patterns can be regarded as potentially defective,
denoted as anomalies. Occurrences of such anomaly cases
include for example artifacts from the imaging process or
unidentifiable patterns. For the classification process, these
samples are placed in the faulty pattern class, while anomaly
cases can be later manually inspected by a process engineer
via our visualization.

The following sections introduce our data set (Sect. 2.1),
our realized addressing scheme to allow the localization
of single elements such as chips and streets on the wafer
(Sect. 2.2), as well as our hybrid multistage system of
stacked deep neural networks (SH-DNN) (Sect. 2.3). Follow-
ing the proposed multistage system, we introduce a baseline
approach for chip classification (Sect. 2.4) as well as our
training setup (Sect. 2.5).

Data set overview

Our data set consists of various types of wafers which
all show different structures and image resolutions, rang-
ing from 224 × 224 to up to 960 × 1024 pixels per chip.
Most importantly, this also implies different characteris-
tics and occurrences of subclasses for flawless and faulty
chips, streets, and street segments. A summary is depicted in
Table 1, resulting in six different wafer types as well as up to
5 000 chips and 13 500 streets for each wafer. For street seg-
ments, each street was separated into multiple squared street
segment regions with minimal overlap.

Since the manufacturing process itself is already highly
optimized in order to minimize possible occurring defects,
image data sets for defect patterns within the domain often
feature only a limited amount of truly faulty samples. To
counteract the lower occurrence frequencies of individual
error classes for chips, streets, and streets segments, each
data set in every stage of the system is balanced for the
training process beforehand by sampling and duplicating
faulty samples. This sampling process is followed by a data
augmentation to generate additional faulty samples. Despite
several images being identical in the data set, the images
appear differently while producing a good amount of image
variations based on one source image (Beuth et al. 2020;
Zhao and Kumar 2018).

As it is often common practice to synthesize data for fault
detection and classification, it is also noted at this point that
all wafers where obtained from real-world dicing manufac-
turers, whereas each wafer was scanned after the cutting
process.
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Table 1 Data set overview with
chips (including inside and
border as well as flawless and
faulty chips) and streets
(including flawless and faulty
streets) per wafer type

Wafer type 1 2 3 4 5 6
∑

# Chips 2 113 5 041 2 304 210 754 2 050 12 472

# Inside 1 113 3 378 1 771 115 612 1 336 8 325

# Border 1 000 1 663 533 95 142 714 4 147

# Inside-flawless 920 2 920 1 623 55 445 1 336 7 299

# Inside-faulty 193 458 148 60 167 0 1 026

# Streets 4 436 13 504 7 024 428 2 368 5 376 33 136

# Flawless 3 983 12 624 6 892 297 2 094 5 329 31 219

# Faulty 453 880 132 131 274 47 1 917

Flawless and faulty chips are denoted from the inside chips only. The streets are derived as well from the
inside chips only

Table 2 Data set chip classes overviewof eight representative examples

Chip class Example

Flawless

Faulty

Flawless and faulty refers always to the quality of the center-displayed
chip

Table 3 Data set street classes overview

Street class Example

Flawless

Faulty

Fig. 2 Overview of our proposed addressing scheme for chips and
streets. Every occurring chip is given a separate coordinate denoted by
(x, y)with x, y ∈ {n +0.5, n ∈ Z}. Street coordinates are derived from
the chip coordinates by rounding up (�x�) or down (�x�). The point of
origin is situated in the center of the wafer

Chip localization and addressing scheme

If necessary, as a first processing step, the wafer images are
separated into their chips. In order to allow the localization
of each processed wafer, an addressing scheme for its chips,
streets, and street segments has to be determined. Since the
focus of the localization and classification of defect patterns
lies between the chips of a wafer, a coordinate is assigned
to each street which corresponds to a unique position inside
the wafer. The addressing scheme shown in Fig. 2 repre-
sents the basis of the chip, street, and street segment based
addressing using the example of two adjacent chips whose
point of origin is situated in the center of the wafer. There-
fore, all chips are addressed by their coordinates (x, y) with
x, y ∈ {n + 0.5, n ∈ Z}, whereby the streets on the left
(�x�, y), on the right (�x�, y), at the top (x, �y�), and at
the bottom (x, �y�) are determined as dependent on their
neighboring chips in the coordinate system. Streets are dis-
tinguished into left and right halves aswell as upper and lower
halves, hence the addressing scheme is extended by using an
additional identifier i ∈ {l, r , t, b} for left, right, top, and
bottom in relation to the current parent chip, respectively.
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Fig. 3 Processing steps control flow graph of localization, augmenta-
tion, and classification with switches S1 and S2 (adapted and reprinted
from Schlosser et al. (2019))

The proposedmultistage system

Recognizing defect patterns with higher precision is possi-
ble due to a magnification of the underlying image material.
While the localization of defect patterns in the finest struc-
tures in pixel size depends foremost on the provided image
resolution, a distinction is therefore made by further differ-
entiating depending on the level of detail, whereby chips,
streets, and street segments are considered separately. Fol-
lowing this principle, we propose a hybrid multistage system
of stacked deep neural networks (SH-DNN) based approach
which allows the localization of a specifically provided
region of interest (ROI, Itti et al. (1998)). This is advanta-
geous for the following classification process, enabling the
localized ROI to be processed in a much higher resolution.

Figure 3 depicts the control flow graph introducing the
strategy of our approach. If necessary, the images of the
provided chips are first separated according to their streets
(localization). Then, the separated streets are classified in
regards to their prevailing defect patterns in flawless and
faulty streets (classification). In order to be able to counteract
possible lower frequencies of occurrence of individual defect
patterns, a data augmentation is applied to allow the creation
of additional faulty samples (augmentation). The switches
S1 and S2 are deployed as a measurement to control the sys-
tem’s processing steps in each iteration, i.e., allowing the
later processing step to be skipped (S1) or to determine if
additional zoom levels are required (S2). Finally, by back-
tracing defects, conclusions are drawn about the condition of
the parental areas.

In addition, a recognition of defect patterns in the ear-
lier stages of the automated visual inspection process eases
the localization and classification of subsequent and more
difficult to detect defect patterns in later stages of the sys-
tem. At this point it is noted that erroneous samples within
larger parental areas are returned and omitted from further
assessment. Furthermore, the proposed multistage system’s
complexity could also be minimized. Following this princi-
ple, models with less complexity should be selected for the

Fig. 4 Implemented visual fault inspection system. The system com-
prises the chip, street, and street segment localization, augmentation,
and classification. Chip, street, and street segments each undergo one
iteration of the in Fig. 3 shown control flow graph. For details, see
Sect. 2.3

earlier stages to handle easier tasks,while deeper stages of the
system will handle more complex classification problems.

Figure 4 represents our realized SH-DNN-based system
and its processing steps. In the following sections we intro-
duce each related processing step (Sects. 2.3.1 to 2.3.5). Our
system processes a whole wafer to detect faulty and fault-
less chips. Before wafer images are processed, they were
recorded by deploying different microscopes, which provide
us with either unstitched subimages or, alternatively, prepro-
cessed images which are stitched together by the microscope
software into a single image. In our proposed system, firstly
the chips are classified into chips that are situated inside the
wafer area, and into chips on the wafer border or beyond
it. Chips that are situated on/beyond the wafer border are
also scanned by the microscope, but these chips are typically
incomplete or broken (see also Fig. 1, wafer border). In our
case, the manufacturers are not much interested in defects
in the outer chips, thus only the inner chips are further pro-
cessed.Next, our computer vision pipeline is evoked to locate
the regions of interest for the inner chips. In our application,
ROIs represent the chip borders, streets, as well as their sur-
roundings. Finally, the determined ROIs are forwarded to
the subsequent CNN in order to detect faults within these
regions. For a further, fine-grained analysis, faulty streets
are additionally investigated in detail by the street segment
analysis for defective street regions. Finally, we calculate if
a chip is faulty or not, depending on the classification of
the four borders of each chip. To show the benefits of our
level-of-detail approach, we will compare our full system to
approaches without the level-of-detail as well as approaches
for automated visual fault detection within semiconductor
industry.

Separation of chips in inside and outside the wafer border

Firstly, a localization of the chips takes place according to
their position on the wafer, i.e., the system separates chips
into inside the wafer and chips outside or on the wafer bor-
der situated chips (see Fig. 4, step chip processing). Since the
border chips are typically broken, they have to be excluded
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Table 4 Custom CNN layer
configuration for chip
classification

Unit Layer Type Output shape Kernel size Stride

conv1 conv1_1 conv 188 × 188 × 32 5 × 5 1

conv1_2 conv 186 × 186 × 48 3 × 3 1

pool1 max pool 62 × 62 × 48 3 × 3 3

dropout1 dropout 62 × 62 × 48 / /

conv2 conv2_1 conv 60 × 60 × 64 3 × 3 1

conv2_2 conv 58 × 58 × 96 3 × 3 1

pool2 max pool 29 × 29 × 96 2 × 2 2

dropout2 dropout 29 × 29 × 96 / /

conv3 conv3_1 conv 27 × 27 × 144 3 × 3 1

conv3_2 conv 25 × 25 × 192 3 × 3 1

pool3 max pool 12 × 12 × 192 2 × 2 2

dropout3 dropout 12 × 12 × 192 / /

fully conn flatten1 flatten 27 648 / /

dense1 fully conn 192 / /

dropout4 dropout 192 / /

dense2 fully conn 2 / /

Total trainable parameters: 5 781 986

Table 5 Custom CNN layer
configuration for street
classification

Unit Layer Type Output shape Kernel size Stride

conv1 conv1_1 conv 60 × 188 × 32 5 × 5 1

conv1_2 conv 58 × 186 × 48 3 × 3 1

pool1 max pool 19 × 62 × 48 3 × 3 3

dropout1 dropout 19 × 62 × 48 / /

conv2 conv2_1 conv 17 × 60 × 64 3 × 3 1

conv2_2 conv 15 × 58 × 96 3 × 3 1

pool2 max pool 7 × 29 × 96 2 × 2 2

dropout2 dropout 7 × 29 × 96 / /

conv3 conv3_1 conv 5 × 27 × 144 3 × 3 1

conv3_2 conv 3 × 25 × 192 3 × 3 1

pool3 max pool 3 × 8 × 192 1 × 3 1 × 3

dropout3 dropout 3 × 8 × 192 / /

fully conn flatten1 flatten 4 608 / /

dense1 fully conn 192 / /

dropout4 dropout 192 / /

dense2 fully conn 2 / /

Total trainable parameters: 1 358 306

from further evaluation. The border chips encompass there-
fore chips which are cut by the wafer’s border as well as all
remaining areas beyond it. We found that the recognition of
border chips is a relatively easy task as the occurring defect
pattern on the wafer border is easier to detect. The chip is
crossed by a large black shape constituting the wafer border
(Fig. 1).

Our CNN for inside and border chip classification is
inspired by Simonyan and Zisserman’s VGG Network
(Simonyan and Zisserman 2015) and consists as depicted

in Table 4 of the first shown convolutional block and fol-
lowing fully connected one. As CNNs usually operate on
mid-level image resolutions, the chip imagery is scaled to
an initial image resolution of 192 × 192 pixels. This basic
CNN is already able to achieve an accuracy of over 99%. As
a consequence, chips that are already recognized as border
chips are excluded from further processing.
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Input image

Histogram equal.

Binary thresholding

Find contours

Erosion

Bounding rectangle

Optimal?

Street localization

no

yes

Fig. 5 Processing steps of localization with in red highlighted result-
ing contours and bounding rectangle. From the bounding rectangle, the
street center coordinates (red dots) are determined. The resulting local-
ized streets are outlined in red

Performant computer vision pipeline for fault localization

In order to extract the relevant regions of interests in a given
image template of the integrated circuit layout, the following
processing steps are applied (see Fig. 4, step street process-
ing, part localization). The evoked functionality is shown
from top to bottom in Fig. 5 as single processing steps, and
they are provided by the computer vision library OpenCV.1

At first, a histogram equalization is applied to increase
the contrast and to enhance the visibility of defect patterns
under variations of brightness (OpenCV function “equalize-
Hist()”). The optimization of brightness is necessary due to
the varying illumination of the underlying material as well
as to compensate deviations arising from different mate-
rials and lighting conditions, therefore allowing a more
robust feature extraction. To remove possible artifacts, the
enhanced image is then binary thresholded (“threshold()”),
and a contour-based edge detection and border follow-
ing is applied (“findContours()”) (Suzuki and Abe 1985).
Subsequently, an erosion operation serves as an additional
processing step (“erode()”), before a minimal bounding box
enclosing the current chip is determined (“boundingRect()”).
These processing steps are repeated for all threshold values
of the binary thresholding before the final threshold value is
selected from them by means of the largest connected subset
of thresholds with bounding boxes as representative for seg-
mentation. From this final bounding rectangle, the streets are

1 https://opencv.org/.

determined via the center of the bounding box sides, which
serve as street center coordinates.

While OpenCV provides all crucial functions of the com-
puter vision pipeline, we use standard parameters for all
functions, except for the parameters “cv2.RETR_TREE” and
“cv2.CHAIN_APPROX_NONE” in the function “findCon-
tours()”. The images are stored in grayscale format. There-
fore, the binary thresholding is repeated for all grayscale
values. While working with 28 = 256 different gray lev-
els due to 8-bit grayscale images, our tests showed that
a range with a lower and an upper threshold value of 50
and 200 is often sufficient enough to find a set of promis-
ing thresholds. The binary thresholding process itself can be
repeated or aborted as long as enough thresholds with ROIs
have been determined. Regarding thresholding algorithms
Roy et al. (2014), while approaches such as Otsu’s method,
Kapur’s thresholding, and entropy-based thresholding yield
promising results, they require more processing power than
our simpler binary thresholding approach. However, binary
thresholding typically comes with the underlying problem of
finding a proper threshold. We solved this problem with the
aforementioned approach to make it applicable for this use
case, hence allowing the optimization of our pipeline.

Street classification

The street regions are localized by utilizing the pipeline of
classical computer vision techniques (previous section). On
each side, the center of the chip border is determined by the
pipeline and returned as the center of the street region. We
define a region of interest (ROI) of 120% the size of the chip
and 6× the width of the street around this center, and follow
the in Beuth et al. (2020) outlined procedure. The goal of
our application is to detect dicing defects which occur in the
space between the streets and the chips and possibly continue
inside the chips. To allow an optimal coverage of these areas,
the ROI is centered so that the currently investigated street
with its parts of adjacent chips and street crossings is situated
in the center of the image.

The street regions are then classified into the two classes
of flawless and faulty streets via a CNN (see Fig. 4, step street
processing, part classification). Our realized CNN architec-
ture configuration for street classification is also influenced
by Simonyan and Zisserman’s VGGNetwork and consists of
three convolutional blocks as shown in Table 5. Alternatively
to our custom CNN network, we conducted in our proposed
test environment (i) tests with standard deep learning net-
works and (ii) conventional machine learning methods, and
investigated them for the classification.

In order to maximize the efficiency of our network, we
emphasize the areas where defect patterns occur. Whereas
for street-based classification each chip possesses four cor-
responding streets, every street is rotated so that the side
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with the chip border faces upwards. This results in an input
layer where every image shows significantly more pixels in
width than in height. The approach allows stable regions on
the image where defect patterns might occur, e.g., the chip,
while emphasizing their contribution. Therefore, we lowered
the pooling in the direction of y for street-based classifica-
tion in comparison to the chip-based one accordingly, while
otherwise following the methodology of Beuth et al. (2020).
Streets that are already recognized as defective are forwarded
to the street-based chip classification, whereas only flawless
streets are forwarded to the next processing step of street
segment processing.

Street segment classification

To allow an even finer defect pattern localization and classi-
fication, we propose to add another processing step. Based
on the scribed regions, segments of each street are sepa-
rated (see Fig. 4, step street segment processing). Due to the
vast amounts of street segments, the street segment recogni-
tion is performed without an initial labeling of the segments
using unsupervised learning (Schmidhuber 2015). Unsu-
pervised approaches are often deployed in automated and
semi-automated visual inspection scenarios (Mei et al. 2018).
Especially autoencoders (Baldi 2012) enable the detection of
defect patterns without the need for labeled faulty samples.
An autoencoder reconstructs its given input through various
encoding and decoding steps within its network, whereas the
relevant information content as well as a representation of the
provided input is learned. Our selected model is inspired by
Zhao et al. (2016) approach to StackedWhat-Where Autoen-
coders (SWWAE) with residual learning (He et al. 2016a, b).
The deployed SWWAE-based model with residual learning
is a further development of the general autoencoder which
reuses the encoded positions for the decoding process sup-
ported by additional skip connections via residual learning.
Its implementation is described in Schlosser et al. (2020).

The deployed SWWAE is therefore utilized to encode and
decode the provided street segments, whereas the encoder
reduces the input to its relevant information content and the
decoder reuses this information content in order to recover
the input imagery. By minimizing the training loss, an objec-
tive function is optimized, which is utilized to differentiate
novel street segment samples. Therefore, by training on flaw-
less samples, it is possible to detect and discriminate faulty
samples by evaluating the SWWAE’s loss. Furthermore, a
larger loss indicates a sample that deviates strongly from the
set of trained flawless samples.

Chip classification via fault backtracing

In the final step, the result of the chip classification is returned
based on the classified streets. The obtained error classes are

mapped according to their classified defect patterns, ranging
from flawless to faulty streets (see Fig. 4, step street-based
chip classification). If a chip has at least one faulty side,
it is defined as faulty. Otherwise, it is defined as flawless.
Therefore, the street classification of the adjacent streets is
adopted for occurring chips according to Table 3. The chip
classification itself is then the final output of the system.

In parallel, the output of the street segment analysis is uti-
lized via backtracing for the defect visualization (see Fig. 4,
step segment-based street classification). Streets which con-
sist of one or more faulty segments are considered faulty.
Hence, a faulty street is derived from their faulty street seg-
ments. This does not only allow an easier assessment, but
also allows the identification of trends regarding occurring
defect patterns and their further progression.

Baseline approach for chip classification

To benchmark our system, we provide an additional model
consisting of a single DNN as a baseline approach. The vari-
ant directly classifies chips for flawless and faulty samples,
and no additional localization steps are deployed. The DNN
model is again inspired by the VGG network, consisting of
three convolutional blocks as illustrated in Table 4. For a
straightforward comparison,we alternatively evaluated again
(i) standard deep learning networks and (ii) conventional
machine learningmethods on chips in our proposed test envi-
ronment.

Training setup

Following the previously outlined data set overview, the data
set was balanced for the CNN classification in such a way
that the classes roughly occur equally frequently (class-wise
balancing) as described in Sect. 2.1. Depending on the wafer,
strong illumination differences may occur, which are in turn
suboptimal for the following processing stages. Therefore,
we chose to apply a chip-wise histogram equalization as a
wafer-wise equalization would not be sufficient enough, sim-
ilar as in our previous work (Beuth et al. 2020). Furthermore,
the data sets were sample-wise standardized by centering to
a mean of zero and dividing through the standard deviation,
both for the CNNs as well as the conventional machine learn-
ing approaches.

Regarding data augmentation, while the application of
such methods often depends on the given characteristics
of the existing image data as well as the properties of
relevant features of the defect patterns that have to be rec-
ognized, a set of classical data augmentation approaches
can be applied. The following randomized data augmenta-
tion methods are provided and implemented via the image
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augmentation library imgaug.2 Depending on the level l of
the augmentation, the respective method is amplified l-fold
(notation l×, l ∈ N≥0). This includes a rotation by up to
l ×±2◦, a translation in x and y by up to l ×5% and l ×1%,
a scaling by up to l × ±2%, as well as a mirroring on the
x-axis (Schlosser et al. 2019; Beuth et al. 2020).

For training itself, themachine learning frameworkKeras3

with its underling back end TensorFlow4 was used, which
also enables an accelerated processing by general-purpose
graphics processing units (GPGPUs). To allow a comparison
with current learning-based as well as conventional baseline
approaches, the machine learning library scikit-learn5 was
utilized.

Standard parameters were deployed for all ML- and
DL-based models that are tested in our evaluation. The
parameterization of individual models was not adjusted or
optimized by means of pre-trained weights, by utilizing
transfer learning, or by deploying additional optimization
approaches such as grid searches. To keep a fair comparison
of the different models, we decided to utilize them as out-of-
the-boxmodels as provided byKeras, and run all of themwith
precisely the same hyperparameter configuration. An exam-
ple for already implemented models are the ResNet models
provided by Keras, ResNet-50, ResNet-101 and ResNet-152
(He et al. 2016a), which differ by their corresponding layers
and depth as denoted by their identifier.

Our training setup includes: the Glorot initializer (Glorot
and Bengio 2010) for weight initialization, the Adam opti-
mizer (Kingma and Ba 2015) with a standard learning rate of
0.001 and exponential decay rates of 0.9 and 0.999, as well
as a batch size of 32. To avoid interference between training
and test data, we conducted our test runs with the data split
randomly into training, validation, and test set with a ratio of
50/25/25%.

Test results, evaluation, and discussion

In order to quantify the detection and classification capa-
bilities of defect patterns of the realized system over chips,
streets, and street segments, an evaluation of the individual
processing steps is performed. Following Fig. 4, this includes
the chip, street, and street segment localization as well as the
augmentation of the respectively given image data, but also
an evaluation of the multiple models’ complexity in order to
ensure their applicability in real-time critical environments.
The training and testing process itself should not only result

2 https://github.com/aleju/imgaug.
3 https://keras.io/, version 2.3.1.
4 https://www.tensorflow.org/, version 2.1.
5 https://scikit-learn.org/, version 0.23.1.

in stable rates regarding training, validation, and test accura-
cies, but also satisfy given runtime constraints.

In the following sections, we evaluate our proposed sys-
tem by utilizing different conventional baseline as well
as DL-based approaches (Sect. 3.1). Finally, the system’s
performance is evaluated for every given processing step
(Sect. 3.2). Tomeet current standards regarding runtime con-
straints as well as performance and visual fault detection and
classification capabilities, a set of models is selected which
in turn meet the requirements of an optimal balance of clas-
sification accuracy and performance.

Training and test results

Following the current state of art in visual inspection, mostly
single DNN based approaches are deployed. While our eval-
uation gives an overview over possible influences of each
processing step, the major outcome of the system is the clas-
sification based on streets.

Table 6 shows our test results of the selected approaches
for conventional baseline-, semiconductor-, and DL-based
approaches. These are divided into currently in the domain
of semiconductor visual inspection deployed single DNN
based solutions as well as in this field mostly uninvestigated
approaches from DL. In addition, we evaluated conventional
machine learning approaches as a baseline, which have been
used for example in the field of semiconductor manufactur-
ing in several works (Chen and Liu 2000; Chao-Ton et al.
2002;Huang 2007;Xie et al. 2011; Song et al. 2013;Xie et al.
2014). The current state of the art in the domain of automated
visual inspection in the semiconductor industry is denoted
in the result table via black outlines. The symbol ∗ denotes
the currently deployed single DNN based approaches in the
domain that were reimplemented following their original
publications.6 In our test environment, each DNN was eval-
uated after 100 epochs of training, whereas the results were
averaged over five runs. Over all tested approaches, the best
system configuration reaches a performance of 99.5% in F1-
score.

To highlight the benefits of our localization approach,
we benchmarked a system where the localization stage was
removed from the pipeline (Table 6, left column). This base-
line system utilizes the chip images as input as explained
in Sect. 2.4. For this purpose, a classification improve-
ment factor (Table 6) is defined which represents the factor
of decreasing the error rate between both systems. Based
on the resulting F1-scores, the improvement factor is cal-
culated by (100% − <chip class. F1-score>/(100% − <street-based chip class. F1-score>).
The street-based classification as well as our simple baseline
approach prove for the selected approaches in comparison

6 https://github.com/TSchlosser13/Hexnet/blob/master/_ML/models/
contrib/visual_inspection.py.
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Table 7 Performance (time per
sample) and complexity
(trainable parameters) for street
classification

Test run Trainable parameters Performance in time per sample [ms]

Conventional baseline approaches

All / < 0.1

DL-based approaches

CNN (2018)∗ 2 192 098 0.13

CNN (2019)∗ 19 236 386 0.25

CNN (2020)∗ 73 455 426 0.66

Custom CNN 1 358 306 0.22

DenseNet121 7 039 554 0.78

DenseNet169 12 646 210 0.99

DenseNet201 18 325 826 1.00

MobileNet 3 230 914 0.28

MobileNetV2 2 260 546 0.32

NASNetLarge 84 924 884 2.00

NASNetMobile 4 271 830 0.84

ResNet50 23 591 810 0.82

ResNet50V2 23 568 898 0.81

ResNet101 42 662 274 1.00

ResNet101V2 42 630 658 1.00

ResNet152 58 375 042 1.00

ResNet152V2 58 335 746 2.00

VGG16 56 674 114 0.87

VGG19 61 983 810 0.94

∗ denotes currently deployed single DNN based approaches within the domain of automated semiconductor
visual inspection. For a visualization of the test results, see appendix Table 11

Table 8 Performance (time per
sample) and complexity
(trainable parameters) for the
respective steps of localization
and classification with
MobileNetV2 as based on the
proposed multistage system in
comparison

Test run Trainable parameters Performance in time per sample [ms]

Chip-based local. / < 0.1

Chip-based class. 2 260 546 1.00

Street-based local. / 3.20

Street-based class. 2 260 546 0.32

Segment-based local. / < 0.1

Segment-based class. 251 931 0.41

Fault backtracing / < 0.1

Total 4 773 023 5.2

that our proposed SH-DNN-based system, which combines
the advantages of classical image processing approaches and
artificial neural networks, allows a more accurate detection
of the finest structures. We observed an increase in F1-scores
by comparing the results in Table 6. Especially ResNet-based
approaches result in increased F1-scores for street-based
classification. Chip classification and street-based chips clas-
sification differ for conventional baseline approaches by an
absolute of up to 3.9% F1-score (i.a., Extra Tree Classifier),
while the DL-based approaches differ by up to 3.8% (i.a.,
ResNet152V2). This enhancement corresponds to a decrease
of the error rate measured by the improvement factor of up

to 4.6-fold for the conventional approaches and even by 8.6-
fold for the DL-based ones.

Amore detailed analysis covers the single steps of our sys-
tem. For our baseline approach of chip-based classification
for flawless and faulty chips, we observe that the deployed
models show F1-scores from 62.8% up to 95%, whereby we
found that the lower scores belong to approaches such as
LDA while the highest scores to approaches such as Extra
Trees Classifier, Random Forest, or Multilayer Perceptron.
The DL-based approaches exhibit scores of up to 96.6%,
i.e., DenseNet169. These slightly reduced scores compared
to our full system are explained by the complexity of clas-
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Fig. 6 Theoretical graphs of the positive predictive value (PPV) for
classifiers with recall (r ) and specificity (s) from 98 to 99.99% as a
function of the faulty street ratio. Vertical dotted lines labelled with
W1 to W6 mark our 6 wafer types as shown in Table 1 with their
experimentally/manually determined fraction of faulty streets (x)

sifying street defect patterns on the significantly larger chip
surface without any localization steps. This finding is espe-
cially observable for all DL-based approaches, which mostly
result in score ranges of 95 to 96%, while a few networks
classify less, i.e., VGG16 and VGG19.

For our initial step of chip-based classification into inside
and border chips, a high performance of over 99% (F1-
score) is observed even for our custom CNN. The obtained
results can be explained by the fact that the task is rela-
tively straightforward as the chips of the wafer border are
crossed by a sizeable and visually distinguishable black
shape constituting thewafer border (Fig. 1). Furthermore, we
also evaluated related conventional baseline and DL-based
approaches for the inside and border chip classification as
illustrated in the appendix (Table 10). For such a simple
task it is on the contrary observed that conventional baseline
approaches already result in higher F1-scores. Models such
as the Extra Trees Classifier as well as DenseNet169, Incep-
tionResNetV2, and the NASNet models even reach scores
of 99.3 (conventional baseline approaches) and 99.8% (DL-
based approaches) (Fig. 9).

To allow a more in-depth evaluation of the system’s clas-
sification capabilities, we additionally observed the result-
ing training and validation accuracies over time for the
street classification of our custom CNN, NASNetLarge,
MobileNetV2, and ResNet152V2 as shown in the appendix,
Fig. 10.

The positive predictive value (PPV) provides us with the
probability of correct test predictions (Altman and Bland

1994). It reports the probability that one as faulty reported
chip indeed stems from an actually faulty chip. Therefore, it
is an important metric in order to analyze our classification
results in regards to the false negative rate, hence aiding in
yieldmaximization during the design process of the proposed
system. Figure 6 shows the theoretical graphs of the PPV as
a function of the faulty street ratio given for classifiers with
recalls (r ) and specificities (s) from 98 to 99.99%. This illus-
trates that the PPV depends on the classifier’s capabilities as
well as the number of faulty chips in the data in relation to the
total number of chips. Vertical dotted lines labelled with W1
to W6 mark the experimentally/manually determined frac-
tion of faulty streets of our wafer types as shown in Table 1.
Markers which are added on the brown graph belonging to
r and s of 99.5% correspond to the best classifier in our
evaluation, i.e., ResNet152V2 (Table 6). Accordingly, for
4 of 6 wafer types more than 90% of all faulty chip pre-
dictions would be actually faulty (Fig. 6). Even if the fault
rate was smaller, i.e., roughly 1% faulty streets for wafer
type 6, still more than 60% of all streets would be correctly
identified as defective. However, the faulty fraction of new
wafers is an unknown parameter and engineers have to make
assumptions for their system to judge upon its reliability.
We draw the following three conclusions regarding applica-
bility: (i) Faulty street ratio > 0.5%: Fault detections are
reliable and less than 10% of them are actually flawless. In
this context, the image analysismaybe regarded as fully auto-
matic. (ii) Faulty street ratio> 0.2%: Fault detections are 10
to 50% flawless. If defects need to be quantified exactly,
a semi-automatic approach could be applied here, whereas
the algorithm rather acts as a recommender system and the
detected faulty streets are controlledby an engineermanually.
Compared to inspecting all streets manually, a considerable
number ofworking hours can be saved. (iii) Faulty street ratio
< 0.2%: A distinctly higher recall/specificity than 99.5% is
needed to (semi-)automatically judge the quality. This could
be achieved if the classifier was adapted or trained for a spe-
cific wafer type and imaging system. We assume that values
greater than 99.9% could be achieved by having more faulty
street data from the same wafer type and imaging system.

Since data sets within the domain of semiconductor man-
ufacturing often have restrictions in terms of privacy and
redistribution, it is fairly difficult to make direct comparisons
to the results of other works. Therefore, we implemented the
proposed CNNs from related works within the domain, more
namely Nakazawa and Kulkarni (2018); Cheon et al. (2019);
O’Leary et al. (2020). As depicted in Table 6, the results of
these models also improve as soon as we apply them to our
system using our dataset.
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(a) (b)

(c) (d)

Fig. 7 Visualization of flawless (•), anomalous (•), and faulty (•) chips,
streets, and street segments for ourwafer 1 of type 1,whereas the respec-
tive defect patterns are visualized via color transitions from green over

yellow and orange to red with their increasing degree of faultiness. The
color transitions were generated via our SWWAE (Sect. 2.3.4)

Performance

The performances of the conventional baseline approaches,
DL-based approaches, as well as the proposed SH-DNN-
based multistage system were measured and evaluated. This
includes for all approaches the time for a given chip image
sample of size 192×192 pixels (Sect. 2.3.1) to be classified as
well as the necessary processing time to allow the localization
of a region of interest. Dependent on the current processing
stage of the pipeline, a sample constitutes either a chip, a
street, or a street segment image, respectively (Table 8).

To allow a comparison regarding applicability, we give an
overview over a set of selected approaches from Table 6. Our

chosen metrics include the performance in time per image
sample to focus and classify a given image for the current
processing step as well as the number of trainable parameters
for training and testing as a value of the complexity of the
system in use. The therefore in Table 8 and Fig. 11 depicted
results show the performance and complexity results for the
selected system with its model and layer configuration for
localization and classification in comparison to conventional
baseline as well as DL-based approaches.

For this purpose, all approaches were run in parallel,
whereas the classical computer vision pipeline was paral-
lelized for each iteration shown in Fig. 5. The classification
process itself was realized to run in parallel using a GPGPU.
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Fig. 8 Visualization of flawless (•), anomalous (•), and faulty (•) chips,
streets, and street segments for our wafer 1 of type 1 as a wafer overlay.
The respective defect patterns are visualized via color transitions from
green over yellow and orange to red with their increasing degree of
faultiness,whereas the color transitionswere generatedvia ourSWWAE
(Sect. 2.3.4). Since streets usually directly neighbor two chips (see also
Sect. 2.2 and Fig. 2), each obtained classification result can be further
differentiated depending on the current chip of interest

Furthermore, our test environment is solely composed of cur-
rent consumer grade hardware. This includes (i) our CPU,
»Intel(R) Core(TM) i9-9900K CPU@ 3.60GHz« with 7200
BogoMips and a maximum CPU load of 99%, (ii) our GPU,
»TITAN RTX« with a maximum GPU load of 99%, (iii) our
working memory with 128 GB of RAM, as well as (iv) our
hard drive (SSD), »Samsung 970 EVO Plus SSD« with 500
GB. Therefore, future adaptations regarding further perfor-
mance as well as runtime constraints can be satisfied with
only relatively small hardware investments.

Ensuing the in Table 8 and Fig. 11 shown visual fault
inspection and performance capabilities, Table 7 depicts the
runtimes for the selected model MobileNetV2 for chip- and
street-based classification aswell as the selected SWWAE for
street segment based classification. Additionally, the result-
ing runtimes for all localization steps as well as the fault
backtracing are shown. We would choose MobileNetV2 as a
model for a production systemas a compromise between high
performance and improved processing times. The resulting
total for MobileNetV2 as well as all related processing steps
shows an acceptable runtime with about 5.2 ms while result-
ing in a final F1-score of above 99%.Whereas relatedmodels
for each step can reach comparable scores, they also result
in worse accuracy and performance trade-offs.

It is therefore concluded that the selection of the best-
fitting model for each processing step does not only results
in accuracy- and performance-wise improvements, but also
when considering single DNN based approaches, which
even without considering greatly performance-depending
approaches such as region-based DNNs often result in dif-
ferent performances depending on the task at hand. As an
example, the region-based DNN proposed by Wen et al.
(2020) utilizes an input image size of 256 × 256 pixels,

reaching an average inspection timeof 424ms.Our approach,
however, shows inspection times of 5ms or less per inspected
chipwith a respective resolution of 192×192pixels (Table 8).
Hence, our conclusion to implement a computer vision
pipeline instead of utilizing region-based DNNs. Yet, at this
point it is also noted that such performance comparisons are
only shallow as the differences in the image resolution, used
hardware, and inspection requirements all differ. It is out
of our performance analysis’ scope to provide an in-depth
comparison with algorithm performances Dinkelbach et al.
(2012).

Visualization

The ground truth of the classified chips and streets as well
as the resulting chip, street, and street segment error classes
is visualized in Figs. 7 and 8. According to the implemented
addressing scheme, this includes the classes of chips, streets,
and street segments for flawless (•) as well as faulty (•) occur-
rences. In addition, anomaly occurrences (•) are highlighted
by the visualization system representing suspicious pattern.
The classes flawless and faulty originate from the classifica-
tion of the previous subsystems, while the anomaly pattern is
based on our SWWAE’s capabilities. The respective defect
patterns are visualized via color transitions from green over
yellow and orange to red with their increasing degree of
faultiness. The color transitions and therefore the degree of
faultiness was generated via our SWWAE and is based on the
SWWAE-models’ resulting loss from evaluating a particular
image sample (Sect. 2.3.4).

Whereas the visualized wafer overviewwith its respective
processing steps and resulting chip (Fig. 7a), street (b), and
street segment classification (c) is generated fully automat-
ically, the combination of all processing steps is shown in
Fig. 7d with the street segment results mapped on top of the
street classification results. Additionally, the shown classifi-
cation results can be further differentiated in terms of their
specific defect patterns to furthermore allow an easier and
more efficient assessment by an inspector (Fig. 8).

Conclusion and outlook

The designed and implemented automated visual fault
inspection system combines the advantages of classical
image processing approaches with deep learning based ones
in the formof a hybridmultistage systemof stacked deep neu-
ral networks (SH-DNN). The systemdraws its strengths from
the ability to detect the finest structures which often range
within a size of only a few µm and pixels within vast amounts
of high-resolution imagery. For this purpose, the multistage
system facilitates the focusingof the processingon a regionof
interest, therefore allowing a subsequent deep neural network
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to classify with higher accuracy. A distinction depending
on the level of detail enables the detection of defect pat-
terns within larger parental areas while enabling them to be
excluded from further assessment within the earlier stages
of the automated visual inspection process. Following this
principle, the results of every processing step are visualized
as based on our proposed addressing scheme, furthermore
allowing us to generate our own kind of wafer maps (Figs. 7
and 8). While these wafer maps are visually similar to the
ones created by wafer prober tests, they are created risk-free
since our inspection process is non-intrusive, which in turn
helps to ease the process of further assessment by an inspec-
tor.

An evaluation was conducted with different machine and
deep learning based approaches while comparing them to
more commonly deployed approaches of automated visual
inspection. As the results of our created test environment
show, the implemented SH-DNN-based system surpasses the
current state of the art of automated visual inspection. These
improvements are highlighted by an increase of the system’s
performance (F1-score) from 95 to 98.9% (+3.9%) for con-
ventional baseline approaches as well as from 95.7 to 99.5%
(+3.8%) for single DNN based ones. This corresponds to an
improvement of the system’s fault detection capabilities by
4.6-fold and 8.6-fold, respectively (Table 6).

While our application area has given runtime constraints
within the range of only a few milliseconds, the proposed
system is able to perform under these constraints. Low
complexity classification models are applied, which in turn
benefit the system’s real-time processing capabilities. There-
fore, the system allows the localization and classification
of defect patterns to be realized in a more precise and
timely manner as compared to single learning-based mod-
els, but also enables a more efficient processing in terms of
the system’s complexity. These benefits are highlighted by
the resulting runtimes of only 5.2 ms per chip image sam-
ple on current consumer grade hardware, whereas related
approaches, including region-based DNNs, often result in
much higher runtimes.

To allow a broader application within visual inspection
related as well as other domains, future projects can be
built on top of this system and enhanced with, e.g., sensor-
based analysis such as audio or heat signatures. While our

approach of amultistage system is certainly not limited to the
inspection of semiconductor wafers, many related as well as
mechanical engineering based problems might exist, e.g., Jia
et al. (2020), where small defect patterns have to be recog-
nized within larger amounts of data. Furthermore, the optics
of the system, including camera and lightning settings, can
be investigated and adapted for further application-specific
fine-tuning.
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Appendix

Binary classification definitions and terminology

Table 9 shows two definitions for binary classification,
whereas Def. (1) is the one mainly used for discussion in
this contribution. Binary classification metrics are presented
in the following.

Table 9 True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) definitions

Def. (1) Type Def. (2)

Faulty chip/street classified as faulty chip/street TP Flawless chip/street classified as flawless chip/street

Faulty chip/street classified as flawless chip/street FP Flawless chip/street classified as faulty chip/street

Flawless chip/street classified as flawless chip/street TN Faulty chip/street classified as flawless chip/street

Flawless chip/street classified as faulty chip/street FN Faulty chip/street classified as faulty chip/street
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– Recall / Sensitivity / True Positive Rate (r ):

r = TP

TP + FN
(1)

– Specificity / Selectivity / True Negative Rate (s):

s = TN

TN + FP
(2)

– Precision (p) / Positive Predictive Value (PPV ):

p = PPV = TP

TP + FP
(3)

– Negative Predictive Value (NPV ):

NPV = TN

TN + FN
(4)

– F1-score (F1):

F1 = 2 · r · p

r + p
(5)

– Ratio of positives (P) to the total number of observations
(P + N , with negatives N ), also denoted as prevalence:

x = P

P + N
(6)

Def. (1) in Table 9: x = # faulty chips/streets
∑

chips/streets
(7)

Def. (2) in Table 9: x = # flawless chips/streets
∑

chips/streets
(8)

– PPV as a function of x :

P PV = r · x

r · x + (1 − s) · (1 − x)
(9)

Note that PPV (and therefore F1) and NPV depend on the
ratio of the (assumed or real) number of faulty streets/chips
and the total number of streets/chips (x), while r and s do
not. The Python library scikit-learn provides us with the two
F1 metrics, one for each definition introduced in Table 9,
denoted by Def. (1) and Def. (2), respectively. In Table 6,
the first column (“F1-score”) represents the arithmetic mean
of F1 (Def. 1) and F1 (Def. 2), while the second column
(“Fault detection F1-score”) represents the F1-score follow-
ing definition (1). Recall (r ) and specificity (s) are shown in
Fig. 11.
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(a)

(b)

(c)

Fig. 9 Visualized test results for the SH-DNN-based classification with
conventional baseline approaches and DL-based approaches for chip
and street classification. Tests for inception module based DL models

for street classificationwhere omitted from the evaluation as they expect
a minimal image resolution larger than 64 × 64 pixels
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Table 10 Test results for the
SH-DNN-based classification
with conventional baseline
approaches and DL-based
approaches for inside and border
chip classification

Test run Chip-based classification: inside and border chips

F1-score [%] Fault detection F1-score [%]

Conventional baseline approaches

Linear discriminant analysis 69.5 ± 1.2 74.3 ± 1.1

Quadratic discriminant analysis 84.7 ± 1.1 82.5 ± 1.1

Extra trees classifier 99.3 ± 0.1 99.4 ± 0.2

Random forest classifier 99.0 ± 0.1 99.0 ± 0.1

Logistic regression 94.0 ± 0.5 94.0 ± 0.6

Ridge classifier 95.4 ± 0.6 95.5 ± 0.7

Gaussian Naïve Bayes 79.9 ± 2.2 78.1 ± 2.1

k-nearest neighbors classifier 98.0 ± 0.5 98.0 ± 0.4

Multilayer Perceptron classifier 98.1 ± 0.3 98.1 ± 0.3

SVC with linear kernel 96.4 ± 0.2 96.4 ± 0.2

SVC with RBF kernel 98.7 ± 0.1 98.7 ± 0.1

Decision tree classifier 95.6 ± 0.4 95.6 ± 0.5

DL-based approaches: automated visual inspection approaches

CNN (2018)∗ 99.2 ± 0.3 99.2 ± 0.3

CNN (2019)∗ 99.4 ± 0.3 99.4 ± 0.3

CNN (2020)∗ 99.5 ± 0.3 99.5 ± 0.3

Custom CNN 99.1 ± 0.2 99.1 ± 0.2

DL-based approaches: general approaches

DenseNet121 (2017) 99.6 ± 0.2 99.6 ± 0.2

DenseNet169 (2017) 99.8 ± 0.1 99.8 ± 0.1

DenseNet201 (2017) 99.6 ± 0.1 99.6 ± 0.1

InceptionResNetV2 (2017) 99.8 ± 0.1 99.8 ± 0.1

InceptionV3 (2016) 99.5 ± 0.2 99.5 ± 0.2

MobileNet (2017) 99.6 ± 0.2 99.6 ± 0.2

MobileNetV2 (2018) 99.6 ± 0.2 99.6 ± 0.2

NASNetLarge (2018) 99.8 ± 0.1 99.8 ± 0.1

NASNetMobile (2018) 99.8 ± 0.1 99.8 ± 0.1

ResNet50 (2016a) 99.6 ± 0.2 99.6 ± 0.2

ResNet50V2 (2016a) 99.6 ± 0.2 99.6 ± 0.2

ResNet101 (2016a) 99.5 ± 0.2 99.5 ± 0.2

ResNet101V2 (2016a) 99.7 ± 0.1 99.7 ± 0.1

ResNet152 (2016a) 99.7 ± 0.1 99.7 ± 0.1

ResNet152V2 (2016a) 99.6 ± 0.1 99.7 ± 0.1

VGG16 (2015) 33.3 ± 0.0 66.6 ± 0.0

VGG19 (2015) 33.3 ± 0.0 0.0 ± 0.0

Xception (2017) 99.7 ± 0.1 99.7 ± 0.1

∗ denotes currently deployed single DNN based approaches within the domain of automated and semi-
automated visual inspection
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Fig. 11 Visualized fault detection F1-score for street classification as dependent on the models’ a complexity (trainable parameters) and b
performance in time per sample (color key). For the related numeric test results, see Tables 6 for the F1 scores and 7 for the trainable parameters
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