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Abstract
The reduction of greenhouse gas emissions is the key action to limit global warming. An 
important source of greenhouse gas emissions and pollution is the inefficiency of produc-
tion processes. We report results from a stochastic nonparametric efficiency analysis using 
directional distance functions to take account of undesirable outputs like greenhouse gases. 
With this approach, we are able to provide estimates of the potential emission reductions 
for 7 main sectors in 16 European countries. A specially adapted bootstrapping approach 
allows to implement a bias correction of the estimates and to compute confidence intervals. 
The results show that static efficiency improvements are a quantitatively important element 
of the emission reductions which are required to achieve the reduction targets of the Euro-
pean Union.

Keywords  Climate policy · Environmental efficiency · Nonparametric measurement · 
bootstrapping · Europe

JEL classification  Q54 · E23 · C14

1  Introduction

The reduction of greenhouse gas (GHG) emissions on a global level is the key measure to 
counteract the detrimental effects of climate change and global warming. Other approaches 
to limit global warming, like carbon removal or geoengineering approaches are either 
infeasible or extremely risky (see Nordhaus (2019,  p. 1998) for a clear statement). This 
is largely undisputed in the economic literature (see the survey articles by Myhre et  al. 
(2001), Aldy et  al. (2010), Hsiang and Kopp (2018) and Tol (2018), among others) and 
is the basis for several international agreements. The most prominent agreements are the 
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Kyoto Protocol of 1997 and the Paris Agreement on climate change of 2015 to reduce 
GHG emissions to reach the 2 ◦ C target, meaning the stabilization of the increase in tem-
perature at “well below 2 ◦ C above pre-industrial levels”.1

The European Union (EU) as a key actor in this area has achieved an agreement among 
its member countries to reduce GHG emissions by 40% until 2030, 60% until 2040 and 
80% until 2050, compared to the levels of 1990 (EU 2011, p. 3). Recently these targets have 
been tightened to reduce GHG emissions by 55% until 2030, 80% percent until 2040 and 
to reach climate neutrality by 2050, also accounting for the effects of carbon removal tech-
nologies, land use change and forestation (see EU (2020) and especially figure 1 therein).

Efforts to improve the productive efficiency of sectors could be a potentially impor-
tant building block of an emission reduction strategy. Therefore, it is important to know 
to which extent GHG emissions could be reduced by achieving productive efficiency 
while holding the economic inputs and outputs constant. In our companion paper (Krüger 
and Tarach 2020) we applied nonparametric methods of efficiency analysis in the pres-
ence of undesirable outputs derived from a variant of data envelopment analysis (DEA) to 
give an account of the potential reductions of GHG by country and sector for the period 
2008–2016. The main finding there is that efficiency improvements can contribute consid-
erably to emission reduction, albeit the extent to which the measured potentials could be 
realized in practice remains open. However, the measurement approach used in the com-
panion paper is purely deterministic and prone to biases. Furthermore, no account of the 
estimation uncertainty is provided there.

In this paper we pick up these issues by combining the nonparametric efficiency meas-
urement approach with a specifically designed bootstrapping procedure to achieve a bias 
correction and to compute confidence intervals for assessing estimation uncertainty. To our 
knowledge this is the first time that a nonparametric approach combined with stochastic 
elements is applied in an environmental efficiency measurement context. We report esti-
mates of aggregate emission reduction potentials for 16 major EU countries and 7 main 
sectors of the private economy. As emissions we consider a broad GHG aggregate as well 
as splits to single GHGs ( CO2 , CH4 and N2O ). The results show that the bias correction 
leads to larger emission reductions compared to the “raw” measures from our companion 
paper which are based on the purely deterministic approach. We can show that the poten-
tials for emission reduction are concentrated in certain countries and sectors. In addition, 
we find that the estimation uncertainty is substantial in these cases.

In contrast to much of the literature on eco-efficiency which is also concerned with 
emission reduction on a macroeconomic level or the level of major sectors we assess the 
contribution of potential efficiency improvements to the EU reduction targets by expressing 
them as potential reductions measured in physical units, i.e. CO2 equivalents ( CO2e ). The 
usual practice  in the literature (see Camarero et al. (2014), Färe et al. (2004), Korhonen 
and Luptacik (2004), Kortelainen (2008), Kuosmanen and Kortelainen (2005), Rashidi and 
Farzipoor Saen (2015), Zaim and Taskin (2000), Zhou and Ang (2008) and Zofío and Pri-
eto (2001), among others) is to focus on relative measures instead. More closely related to 
our analysis are studies such as Domazlicky and Weber (2004) and Krautzberger and Wet-
zel (2012) which are also based on a methodological setting employing directional distance 
functions and are also confined to specific industries.

1  This 2 ◦ C target is defined in Article 2 of the Paris Agreement jointly with the plea to pursue an even 
tighter target of 1.5◦ C, see https://​newsr​oom.​unfccc.​int/​proce​ss-​and-​meeti​ngs/​the-​paris-​agree​ment/​the-​
paris-​agree​ment.

https://newsroom.unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://newsroom.unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
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The exposition in this paper starts with a description of the data and the country-sector 
coverage in Sect. 2. This is followed by the description of the nonparametric methodology 
we use to obtain our estimates of emission reduction potentials in Sect. 3. In this section, 
the implementation of the bootstrapping approach as well as the computation of the bias-
corrected measures and the confidence intervals are also outlined. Section 4 contains the 
discussion of the results from several specifications of the undesirable outputs. The specifi-
cations comprise a single total GHG aggregate as well as splits to CO2 , CH4 and N2O . We 
also discuss the results of a variant where possible enhancements of the economic output 
are permitted in addition to the emission reductions. Policy recommendations are provided 
at the end of the section. The final Sect. 5 concludes with an evaluation of the contribution 
of the emission reduction by efficiency improvements to the EU emission reduction targets 
and discusses the feasibility of the potential reductions measured.

2 � Data Description

The data required for the efficiency analysis comprise the inputs, the good (desirable) out-
puts and the bad (undesirable) outputs, i.e. the emissions of greenhouse gases. In the subse-
quent measurement of inefficiency and the potential emission reduction derived thereof we 
always include the two conventional inputs labor and capital as well as value added as the 
single economic output. The emissions as undesirable outputs are used in different forms. 
As the description of the methods will show, the inefficiency is measured as the potentially 
reachable enhancement of the good output and/or the potentially reachable reduction of 
the emissions. The economic data, meaning the inputs and the good (desirable) output are 
taken from the EU-KLEMS database. The November 2019 release we use is described by 
Stehrer et al. (2019) and can be obtained from https://​eukle​ms.​eu. Labor input is measured 
in total hours worked by employees (comprising self-employed persons and expressed in 
full-time equivalents). Capital input is quantified by the real fixed capital stock (at con-
stant 2010 prices). The output variable is gross value added (also at constant 2010 prices).2 
Using this variable is associated with a much more comprehensive data coverage compared 
to the alternative of using a gross output measure with materials and energy as additional 
input variables.3

The emissions data to quantify the bad (undesirable) outputs4 are taken from two 
sources.5 As greenhouse gas (GHG) emissions, we focus on the three main greenhouse 
gases (GHGs) which are emitted by anthropogenic sources, namely carbon dioxide ( CO2 ), 
methane ( CH4 ) and nitrous oxide ( N2O ). The global warming potentials usually differ for 
each GHG, but they can be converted to CO2 equivalents (abbreviated CO2e and measured 
in tons, kilotons or megatons). CO2 emissions are retrieved from the World Input Output 
Database (WIOD) described in Timmer et al. (2015) and can be downloaded from http://​

2  We always mean the good (desirable) economic output when we simply refer to the output in the follow-
ing.
3  This alternative would also increase the dimensionality of the input-output space which is a crucial issue 
for nonparametric analyses in general.
4  We subsequently refer to emissions when we mean the bad (undesirable) outputs.
5  These data bases are used instead of the Emissions Database for Global Atmospheric Research (EDGAR) 
because of their conformability to an economic sector classification and their coverage of more recent peri-
ods.

https://euklems.eu
http://www.wiod.org
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www.​wiod.​org. The data for CH4 and N2O emissions are retrieved from the Eurostat Air 
Emission Accounts (AEA).6 In the AEA database, CH4 and N2O emissions are already 
expressed in tons of CO2e and so we obtain our measure of total GHG emissions by simply 
adding them to the CO2 emissions from the WIOD. There are further GHGs which are of 
minor quantitative importance and therefore neglected.7

All three major GHGs have specific anthropogenic sources. CO2 emissions stem primar-
ily from burning fossil fuels (coal, oil and natural gas), but also from industrial processes 
such as the manufacturing of cement. In addition, CO2 is emitted or absorbed by land use, 
land use change and forestry (LULUCF). Although its global warming potential per ton 
is less than that of CH4 or N2O , CO2 is quantitatively the most important GHG. In 2010 
CO2 emissions (without LULUCF) accounted for 82% of total GHG emitted by the EU 
(Debelke and Vis 2015, p. 96).

CH4 has an atmospheric lifetime of 12 years, meaning that on average it stays in the 
atmosphere for only 12 years before it is broken down into CO2 and water (Hsiang and 
Kopp 2018, p. 12). It has a global warming potential of 25 CO2e (meaning one ton of CH4 
has the global warming potential of 25 tons of CO2 , Eurostat 2015, p. 105). The two major 
anthropogenic sources of CH4 emissions are industrial livestock farming and the exploita-
tion of fossil fuels. Natural gas (largely consisting of CH4 ) may be leaking when recovered 
from gas or oil fields or during transport and storage. CH4 is also contained in coal beds 
(coal mine methane), especially in deeper coal beds and coals with higher carbon content 
(i.e. hard coal), and may similarly leak during coal mining (Kholod et al. 2020). In the EU, 
CH4 emissions already declined between 1990 and 2010 by 32% (Debelke and Vis 2015, p. 
96).

N2O is a very potent GHG with the same global warming potential as 298 tons of 
CO2 (Eurostat 2015, p. 105) during an atmospheric lifetime of 116 ± 9 years (Tian et al. 
2020). In addition, N2O has a depleting effect on the stratospheric ozone layer. The major 
anthropogenic source of N2O is the agricultural sector, in particular the large-scale use of 
nitrogen fertilizers. According to Tian et  al. (2020) agricultural emissions accounted for 
about 70% of anthropogenic N2O emissions globally in 2007–2016. Other comparatively 
smaller anthropogenic sources include the fossil fuel and chemical industry. In contrast 
to rising or stagnant N2O emissions in most other countries globally, European emissions 
from agriculture declined by 21% between 1990 and 2010 (Tian et al. 2020, p. 254), which 
the authors attribute to European agricultural policies favoring more efficient fertilizer use. 
Besides, non-agricultural N2O emissions in the EU were reduced even more strongly dur-
ing that period, mainly due to improved abatement technologies in the chemical industry 
(Tian et al. 2020, pp. 253–255).

Assessing the data coverage in the database we are able to achieve an almost complete 
coverage for 16 countries and 7 sectors during the period 2008–2016 on a classification of 
sectors (industries) according to NACE Rev. 2 (equivalent to ISIC Rev. 4). The countries 
covered comprise (with World Bank country codes in parentheses):

6  These data can be accessed at https://​ec.​europa.​eu/​euros​tat/​web/​produ​cts-​datas​ets/-/​env_​ac_​ainah_​r2.
7  Further anthropogenic GHGs are sulphur hexafloriode, hydrofluorcarbons and perfluorcarbons, which are 
not included in our measure of total GHG emissions. They made up only 2% of total GHG emissions in the 
EU-28 in 2010 (Debelke and Vis 2015, p. 96), slightly rising to about 2.5% in 2018 (EEA data).

http://www.wiod.org
https://ec.europa.eu/eurostat/web/products-datasets/-/env_ac_ainah_r2
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Austria (AUT) Germany (DEU) Poland (POL)
Belgium (BEL) Greece (GRC) Slovakia (SVK)
Czech Republic (CZE) Ireland (IRL) Spain (ESP)
Denmark (DNK) Italy (ITA) Sweden (SWE)
Finland (FIN) Netherlands (NLD) United Kingdom (GBR)
France (FRA)

The sectors covered are: 

A Agriculture, Forestry and Fishing
B Mining and Quarrying
C Manufacturing
D Electricity, Gas, Steam and Air Conditioning Supply
E Water Supply Sewerage, Waste Management and Remediation Activities
F Construction
G Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles
H Transportation and Storage

The emissions data in the AEA database are only available for a sector combining the 
sectors D and E. So we had to aggregate the economic input-output data of the sectors D 
and E to a combined sector, henceforth named DE. Cross checking assures that the sums 
of the values of the sectors D and E are very close to the values of the combined sector DE 
which is also available in the EU-KLEMS data.8 Since the sector D is considerably larger 
than E in most countries we refer to the combined sector DE frequently as “energy” or as 
“energy and water” in the subsequent discussion.

We exclude Estland, Lithuania, Luxembourg and Slovenia from our analysis despite full 
data coverage. The reason is that these are very small countries and Luxembourg is merely 
a large city rather than a country. Including those small countries can severely bias the 
entire efficiency analysis when they determine parts of the frontier function and overstate 
the potential emission reductions. Growiec (2012) provides further discussion of this issue. 
In some of these countries we also suspect recording errors in the data for some sectors 
(e.g. zero emissions in sector G in Slovenia).

The value added and capital stock data are directly expressed in Euro for the majority 
of the countries (appropriately deflated with base year 2010). In the case of the non-Euro 
countries Czech Republic, Denmark, Poland, Sweden and the United Kingdom these vari-
ables are expressed in the respective national currencies. To convert the data to a common 
currency we use purchasing power parities (PPPs) from the OECD National Accounts Sta-
tistics (OECD 2020). While exchange rates only convert currencies, PPPs also take account 
of different price levels of the countries. This is important since price levels tend to be sys-
tematically higher in high-income countries than in low-income countries. Using exchange 
rates would therefore overstate the values of the variables in the case of high-income coun-
tries and understate them in low-income countries. Instead, PPPs convert expenditures to a 

8  An exception are two capital stock values of Belgium in 2008 and 2009 where the sums of the values of 
the sectors D and E deviate from those of the combined sector DE by 18 and 5 percent, respectively. Here 
we use the time series of the sum of the single sectors which looks more plausible than the time series of 
the combined sector. In the case of Spain only data for the combined sector are available and therefore these 
data are used directly.
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common price level. This is also important for countries with a common currency (as the 
Euro) which also can have rather different national price levels.9

We split these data in two five-year subperiods t1 = 2008–2012 and t2 = 2012–2016 and 
take medians over these subperiods for the subsequent empirical analysis. This eliminates 
the effects of single or even two outlying observations and makes the efficiency analysis 
more robust. The way of taking medians to robustify the analysis is in our view preferable 
to the alternative of outlier detection by methods such as those proposed by Wilson (1993) 
and subsequent outlier elimination. This procedure also solves the problem with two miss-
ing values in sector C of Ireland.10 Thus, when we refer to the first and second subperiod in 
the following we always mean the medians of the inputs and outputs (including emissions) 
over the indicated five-year intervals.

The aggregate GHG emissions over all countries and sectors are 3341 mt of CO2e in 
the first subperiod, declining to 3070 mt in the second subperiod. Figure 1 shows stacked 
barplots of the three GHG emission variables for both subperiods (the corresponding data 
are reported in Table 1 in the appendix). The left-hand side of each plot depicts the bars for 
the sectors, followed by the bars of the countries on the right-hand side (separated by the 
thick vertical line). This kind of plot gives a succinct summary of the distribution of the 
aggregate emissions over sectors and countries jointly with an indication of the distribution 
of the different GHGs ( CO2 , CH4 and N2O in mt of CO2e ). More descriptive information 
on the data is discussed in the companion paper of Krüger and Tarach (2020).

From Fig. 1 we immediately see that the sectors C and DE are most emission intensive, 
while A and H also contribute considerably, and the remaining sectors (B, F and G) are of 
minor importance. CO2 is the quantitatively most important emission category in all sec-
tors except A where CH4 and N2O emissions are dominating. CO2 is the main emission 
category in all countries, including those with large aggregate emissions (Germany, Spain, 
France, the United Kingdom, Italy and Poland), although the contribution of CH4 and N2O 
is also visible here. While the overall quantity declines from the first to the second subpe-
riod, the distribution of the emissions across sectors and countries is rather similar in both 
subperiods.

3 � Nonparametric Efficiency Measurement and Bootstrapping

For the estimation of the potential emission reductions we apply nonparametric methods of 
efficiency analysis. These methods are an extension of data envelopment analysis (DEA), 
developed by Charnes et al. (1978) and Banker et al. (1984). The specific modification we 
rely on is based on the concept of the directional distance function (DDF), introduced by 
Chambers et al. (1996) and extended to an environmental context by Chung et al. (1997). 
This approach allows to measure inefficiency as the distance to a piece-wise linear frontier 
function along a mix of possible reduction of inputs and enhancement of some outputs 

9  PPPs are also central for the construction of comparable national accounts provided in the Penn World 
Table (see Feenstra et al. 2015).
10  In the case of Ireland the capital stock values for the final years 2015 and 2016 are missing in sector C. 
Since the preceding values 2012–2014 show a rising trend and capital is an accumulating stock variable we 
can safely suppose that the missing values are larger than the value in 2014. Then taking the 5-year median 
over the subperiod 2012–2016 will result in just the value of 2014 irrespective of the exact magnitudes of 
the missing values.
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(the good, desirable outputs), while other outputs (the bad, undesirable outputs) are sup-
posed to be reduced (see Färe and Grosskopf (2004)). This property of reducing outputs 
allows to incorporate undesirable outputs like GHG emissions in a consistent way (Zhou 
et al. 2008b). Like in DEA, here also no price information is required and no functional 
form assumptions about the underlying technology (e.g. a production function) need to be 
imposed. These are major advantages of the nonparametric approach.

3.1 � Technology Set

The nonparametric approach of efficiency analysis is based on the concept of an abstract 
technology set, comprising the feasible input-output combinations. It can be stated as

where x denotes the m-vector of the input quantities, y the s-vector of the quantities of the 
good (desirable) outputs and u the r-vector of the quantities of the bad (undesirable) out-
puts.11 Since we are dealing with sectors within countries it is suitable to suppose that each 
sector operates with a different technology set.12

To impose some structure on the technology set it is supposed to be closed and convex 
(Färe and Primont 1995). Furthermore, it is supposed that standard axioms such as strong 
disposability of the inputs and the good outputs are satisfied. Two additional axioms are 
required in the context of an environmental efficiency analysis to incorporate the special 
role of undesirable outputs in a consistent way. The first is null-jointness, meaning that it 
is not possible to produce positive quantities of the good outputs without generating emis-
sions (i.e. if (x, y, u) ∈ T  and u = 0 then y = 0 ). The second is weak disposability stating 
that proportional reductions of emissions are always feasible as long as the good outputs 
are reduced by the same proportion (i.e. if (x, y, u) ∈ T  then (x, �y, �u) ∈ T  for � ∈ [0, 1] ). 
For more detailed discussions of these axioms see (Färe and Grosskopf (2004), Färe et al. 
(2005) and Zhou et al. (2008a)).13

3.2 � Directional Distance Functions

The directional distance function (DDF) is defined on the technology set T  as proposed by 
Chambers et al. (1996) and extended to the incorporation of undesirable outputs by Chung 
et al. (1997). It is a generalization of the (Shephard 1970) distance function to the case of 
non-proportional changes of the inputs and outputs and can be formally stated as

(1)T = {(x, y, u) ∈ ℝ
m+s+r
+

∶ x ≥ 0 can produce (y, u) ≥ 0},

11  In the subsequent discussion of the results we will frequently simply refer to the outputs when we mean 
the good outputs and to the emissions when we mean the bad outputs.
12  Here we also include conventional inputs as labor and capital. Related papers such as (Picazo-Tadeo 
et al. 2012) measure eco-efficiency scores by directional distance functions without using inputs.
13  An alternative to this approach is the so-called by-production approach proposed by Murty et al. (2012) 
which relies on the availability of abatement options (and requires appropriate data). This approach models 
the technology set as the intersection of two parts to be estimated separately. One part is related to the pro-
duction of the good outputs and the other part is related to the production of the bad outputs. This setting 
avoids the assumptions of weak disposability and null-jointness. Further discussion and critique is provided 
by Dakpo et al. (2016).
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Herein, the inefficiency measure � expresses the distance of a particular input-output com-
bination (x, y, u) towards the boundary of the technology set along a particular direction 
gx ≥ 0 , gy ≥ 0 , gu ≥ 0 . This measure is equal to zero if the input-output combination is 
a point on the boundary (is on the frontier function) and it is larger than zero if the input-
output combination is below the boundary (is below the frontier function).

In the following we mostly impose the restriction gx = 0 and gy = 0 , meaning that the 
inefficiency is measured exclusively as the extent of possible reduction of the bad outputs. 
In our application the entities under investigation are sectors in different countries. On such 
a high level of aggregation it is appropriate to assume that no reduction of input usage is 
intended. Since we are mainly interested in measuring the maximum potential emission 
reductions, we also exclude the possibility of output enhancement for most of the analy-
sis. In one variant we only impose gx = 0 so that the output enhancement would also be 
possible.

The data required for the computation of the DDF pertain to n countries in a particular 
sector. The analysis is performed for each sector separately, so that an additional index to 
distinguish sectors is not necessary. The data for the m inputs are contained in the m × n 
matrix X with the ith column xi comprising the input quantities of country i ( i = 1,… , n ). 
Likewise, the data for the s good outputs are contained in the s × n matrix Y and the data for 
the r bad outputs are contained in the r × n matrix U , with the ith columns yi and ui com-
prising the observations pertaining to country i for the good and bad outputs, respectively.

In (2) the direction vectors gy and gu are not specified. A frequent choice in applications 
is to make the directions proportional to the variables yi and ui which serves to let the inef-
ficiency measure be invariant to units of measurement (see e.g. Chung et al. (1997) and 

(2)DDF(x, y, u; gx, gy, gu) = sup{� ≥ 0 ∶ (x − �gx, y + �gy, u − �gu) ∈ T}.
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Färe et al. (2007)). Since this is restrictive it would be beneficial to compute the directions 
endogenously. Hampf and Krüger (2015) propose one possibility to endogenize the direc-
tion in an environmental efficiency setting and Färe et al. (2013) provide a related proposal 
to compute endogenous directions in the case of a slacks-based inefficiency measure. As 
pointed out by Chen and Delmas (2012), these proposals have the additional advantage 
of avoiding the problem of dominated (weakly-efficient) reference points on the frontier 
function.

We follow Hampf and Krüger (2015) and propose the following optimization problem 
to endogenize the computation of the direction vector

where ’ ⊙ ’ denotes the direct (Hadamard) product. Herein, � is a n-vector containing the 
weight factors to determine the reference point on the frontier function. The direction 
weights �y and �u are computed jointly with � and � with the objective of maximizing the 
distance towards the frontier function. The identification of � is permitted by the additional 
constraint 1��y + 1

��u = 1 . In this specification the direction vectors are proportional to yi 
and ui which lets the inefficiency measure be invariant to the units of measurement.

The optimization problem (3) is nonlinear and therefore difficult so solve. This is caused 
by � and �y or �u arising multiplicatively. By defining �y = ��y and �u = ��u the problem 
can be transformed to a well-behaved linear programming problem

Taking the constraint 1��y + 1
��u = 1 from (3) into account we easily see that the value 

of the objective function 1��y + 1
��u = � ⋅ (1��y + 1

��u) is equal to � as before. Program 
(4) can be easily solved by the ordinary simplex algorithm.14 The solution values for � , 
�y and �u can be backed out from the solutions for �y and �u by � = 1

��y + 1
��u as well as 

�y = �y∕� and �u = �u∕� . For a particular country i the solution values are denoted �i , �yi , 
�ui , �yi , �ui and �i ( i = 1,… , n).15

With these solution values we can compute the efficient input-output combination on 
the frontier function with the coordinates x̂i = X�i , ŷi = Y�i and ûi = U�i . The poten-
tial reductions of the r bad outputs for country i in the sector under consideration can be 
computed as ui − ûi = �ui ⊙ ui = 𝛿i�ui ⊙ ui . We see that the potential emission reductions 

(3)

max
𝛿,�y ,�u ,�

𝛿

s.t. xi ≥ X�

yi + 𝛿�y ⊙ yi ≤ Y�

ui − 𝛿�u ⊙ ui = U�

1
��y + 1

��u = 1

�,�y,�u ≥ 0

(4)

max
�y,�u,�

1
��y + 1

��u

s.t. xi ≥ X�

yi + �y ⊙ yi ≤ Y�

ui − �u ⊙ ui = U�

�, �y, �u ≥ 0

14  For the computation of the solutions in this paper the R-package “lpSolve” is used.
15  In the case of the efficient countries (with � = 0 ) the solution for �

y
 and �

u
 is indeterminate. Clearly, 

there exists no direction towards the frontier function if an observation already stays on the frontier func-
tion.
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depend on the magnitude of the inefficiency measure �i as well as on the optimized direc-
tion vector �ui of country i. The total emission reduction potential of country i is the sum 
over all emission categories RPi = 1

�(ui − ûi) with 1 denoting a conformable vector of ones 
and the prime denoting transposition. The sum can, of course, only be validly computed if 
the emission variables are denominated in a common unit of measurement. This is indeed 
the case in our application where greenhouse gas emissions are expressed in CO2 equiva-
lents. To report the results later on we further aggregate the potential emission reductions 
across countries and sectors. Potential output enhancement can likewise be computed as 
ŷi − yi = �yi ⊙ yi = 𝛿i�yi ⊙ yi for the case where we do not impose �yi = 0 or �yi = 0 a 
priori.

3.3 � Variable Returns to Scale

The above stated optimization problems compute the inefficiency measures under the 
assumption of constant returns to scale (CRS). In a cross-country sectoral setting with 
countries of rather different size and with a rather different sectoral structure CRS seems 
to be an overly restrictive assumption. So it would be beneficial to get rid of this rather 
unrealistic assumption and to measure inefficiency under variable returns to scale (VRS). 
In nonparametric approaches of efficiency measurement VRS is usually induced by adding 
the constraint 1�� = 1 to the optimization problems. In the case of environmental efficiency 
analysis this would violate the weak disposability property. Zhou et al. (2008a) show how 
to induce VRS in a way which is consistent with weak disposability. This implementation 
again leads to a linear programming problem

with an additional parameter � which is bounded in [0, 1]. Details can be found in Zhou 
et al. (2008a). As before, we obtain the solution values for �y, �u which allow to back out 
� = 1

��y + 1
��u , �y = �y∕� and �u = �u∕� and to compute the emission reduction poten-

tials. This problem can again be easily solved by the simplex algorithm. Here also, the 
solution values are denoted �i , �yi , �ui , �yi , �ui and �i for a particular country i ( i = 1,… , n ). 
We stick to the VRS assumption throughout this paper.

3.4 � Bootstrapping

The inefficiency measures and the derived reduction potentials are estimates from a data 
sample which are subject to measurement error and therefore stochastic in nature. Fron-
tier function estimation is associated with a further peculiarity. Specifically, the empirical 
implementation of the linear programming problems (4) or (5) is based on the observed 
input-output combinations in the data. This lets the empirically estimated frontier func-
tion provide a closer envelopment of the data than the true (unobserved) frontier func-
tion. As a consequence, the empirically determined technology set T̂DDF underlying the 
subsequent analysis is a subset of the true technology set T  , i.e. T̂DDF ⊆ T  . This leads to 

(5)

max
𝛽,�y ,�u,�

1
��u + 1

��u

s.t. 𝛽xi ≥ X�

yi + �y ⊙ yi ≤ Y�

ui − �u ⊙ ui = U�

1
�� = 𝛽

1 ≥ 𝛽 ≥ 0 , � , �y, �u ≥ 0
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downward-biased estimates of the inefficiency measures and the emission reduction poten-
tials. This bias can be substantial and bootstrapping provides a practical way to achieve a 
correction (see Simar and Wilson 2008, 2011).

We resort to a bootstrapping approach to compute bias-corrected estimates of the 
reduction potentials and to establish confidence intervals for these measures. The specific 
approach pursued here is analogous to the procedure proposed by Simar and Wilson (1998) 
adapted to the setting of directional distance functions. Compared to the double-bootstrap 
algorithm of Simar et  al. (2012) the chosen approach is more transparent and easier to 
communicate. The approach of Simar et al. (2012) uses a complicated orthogonal trans-
formation of the data and two smoothing loops which requires the selection of two critical 
bandwidth parameters instead of one. This bandwidth choice is particularly problematic 
in small-sample situations. Moreover, the algorithm seems not to be adapted to the inclu-
sion of bad outputs since the direction vector pertaining to the outputs is restricted to be 
non-negative.

The smoothed bootstrap algorithm adapted from Simar and Wilson (1998) to the DDF 
setting starts with some preparatory steps. First, the DDF and the optimal directions are 
computed from the original data by solving (5) to obtain 𝛿i as well as the optimal directions 
�yi and �ui for all i = 1,… , n . The directions are computed once and kept fixed during the 
whole procedure. Furthermore, the bandwidth parameter h for the smoothing is chosen as 
described in Simar and Wilson (2011) where also some R code is provided.

The main part of the bootstrapping algorithm cycles B times through the following 
steps:

•	 A bootstrap resample is obtained by first drawing with replacement from 
D = {𝛿1,… , 𝛿n,−𝛿1,… ,−𝛿n} which implements a boundary reflection about zero. The 
result of this step is denoted 𝛿i (i = 1,… , n).

•	 The smoothing step is performed by adding h ⋅ �i to each draw, where the �i are inde-
pendent standard normal draws, thus obtaining 𝛿i + h ⋅ 𝜀i and finally returning 
𝛿∗
i
=
||||
𝛿 + (𝛿i + h ⋅ 𝜀i − 𝛿)∕

√
1 + h2∕𝜎̃2

𝛿

||||
 for all i = 1,… , n where 𝛿 and 𝜎̃2

𝛿
 denote the 

sample mean and variance of 𝛿i (i = 1,… , n) , respectively.
•	 These resampled inefficiencies are used to construct the bootstrap resample of the refer-

ence points by setting x∗
i
= xi , y∗i = yi + (𝛿i − 𝛿∗

i
)�yi ⊙ yi , u∗i = ui − (𝛿i − 𝛿∗

i
)�ui ⊙ ui 

for all i = 1,… , n . By that operation the observation ( yi, ui ) is first projected on the 
frontier (by +𝛿i ) and then randomly away from the frontier (by −�∗

i
 ) along the fixed 

direction ( �yi ⊙ yi and −�ui ⊙ ui ). The resulting bootstrap resample consists of 
X∗ = (x∗

1
,… , x∗

n
) , Y∗ = (y∗

1
,… , y∗

n
) and U∗ = (u∗

1
,… , u∗

n
).

•	 The efficiency measures are computed by solving (keeping the directions fixed) 

 for each i = 1,… , n , where xi , yi and ui constitute the original observation for country 
i and X∗ , Y∗ and U∗ are taken from the preceding step. The results are the bootstrap 
inefficiency measures 𝛿∗

i
 for all i = 1,… , n . From the bootstrap inefficiency measures 

(6)

max
𝛽,𝛿,�

𝛿

s.t. 𝛽xi ≥ X∗�

yi + 𝛿�yi ⊙ yi ≤ Y∗�

ui − 𝛿�ui ⊙ ui = U∗�

1
�� = 𝛽

1 ≥ 𝛽 ≥ 0 , � ≥ 0
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the emission reduction potentials Δû∗
i
= 𝛿∗

i
�ui ⊙ ui or potential output enhancement 

Δŷ∗
i
= 𝛿∗

i
�yi ⊙ yi are obtained for all i = 1,… , n.16

Cycling through the preceding steps B times we obtain the bootstrap resamples ( ̂𝛿∗
i,b

 , Δŷ∗
i,b

 , 
Δû∗

i,b
 ) with b = 1,… ,B for each country i = 1,… , n in a given sector.

Based on the bootstrap resamples the bias correction and percentile confidence intervals 
can be obtained. Letting zj be the generic notation of either interesting variable (e.g. aggre-
gates of reduction potentials over sectors or countries), we denote the estimate from the 
original data by ẑj and the bootstrap resamples by ẑ∗

j,b
 for each b = 1,… ,B.

The bias correction is performed by computing ẑbc,j = ẑj −
�biasj with 

�biasj = B−1
∑B

b=1
ẑ∗
j,b
− ẑj . This measure is only computed for those cases j (countries or sec-

tors) where ��biasj�∕𝜎̂j > 1∕
√
3 with 𝜎̂2

j
= (B − 1)−1

∑B

b=1
(ẑ∗

j,b
− z̄∗

j,b
)2 and z̄∗

j,b
= B−1

∑B

b=1
ẑ∗
j,b

 . 
The rationale for this rule is that the absolute bias has to be sufficiently large compared to 
the standard deviation in order to achieve a reduction in the mean squared error from the 
bias correction (see Simar and Wilson 2008, p. 449f.).

Percentile confidence intervals [ẑcl,j, ẑcu,j] are established using the �∕2 and 1 − �∕2 
percentiles of {ẑ∗

j,1
,… , ẑ∗

j,B
} , denoted ẑcl,j and ẑcu,j , respectively, for some confidence level 

1 − � . For the usual value of � = 0.05 we thus have Pr(ẑcl,j ≤ zj ≤ ẑcu,j) = 0.95.
One problem that occasionally arises during the bootstrap resamples is that we obtain 

reduction potentials which are larger than the actual emission quantities. To deal with this 
problem we prune out those cases in the spirit of an accept-reject procedure. The bias cor-
rection and the confidence intervals are established from this truncated distribution. Since 
we base the confidence intervals on a large number of bootstrap replications (actually 
B = 20, 000)17 there always remains a sufficient number of replications for obtaining reli-
able estimates of the confidence bounds. The bias correction, which is more concerned 
with the center of the distribution instead of the tails, is even less affected by the pruning 
operation anyway.

4 � Results and Discussion

The exposition of the results in this section is structured along four specification variants: 
(a) with a single emission variable (total GHG emissions in CO2e ), (b) with two emission 
variables ( CO2 and other (non-CO2 ) GHG emissions) and (c) with three emission variables 
( CO2 , CH4 , N2O measured in CO2e ). Whereas we fix �y = 0 in these variants, we pursue 
an additional variant (d) where we also allow for enhancement of the (good) output. We 
consider the two subperiods t1 = 2008-2012 and t2 = 2012–2016 where all inputs and out-
puts are computed as medians over the indicated years to achieve greater robustness of the 
results.18 Most of the discussion focuses on the second subperiod, since there is not much 
change in the pattern of results across sectors and countries between both subperiods and 
the results for the more recent subperiod are of greater relevance for the current discussion 
about climate change. All variants include the conventional inputs capital K and labor L as 

16  As a computational detail an offset is added to � in (6) and subtracted after the solution is obtained. This 
allows for negative values for � arising during the bootstrap replications.
17  We also explored an even higher number of 50,000 bootstrap replications for selected variants and 
reached essentially the same findings.
18  Recall that the median is a more robust measure of location compared to the mean.
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well as the single economic output Y as defined in Sect. 2. Finally, in Sect. 4.4 we conclude 
this section with an extensive discussion of policy implications.

4.1 � Total Greenhouse Gas Emissions

We start with total GHG emissions as the single emission variable. Figure 2 depicts the 
results for the first subperiod in the upper panel and for the second subperiod in the lower 
panel. In each panel we depict the actual emissions (open circles, connected by a dashed 
line) and the bias-corrected emission reduction potentials (bullet points, connected by a 
solid line) aggregated for the 7 sectors on the left side and the 16 countries on the right 
side. The vertical lines extending above and below the bullet points indicate the 95% boot-
strap confidence intervals as explained above. The scale on the ordinate reveals that all 
values are expressed in million tons (mt) of CO2e.

The corresponding numerical results are reported in Table 2 in the appendix for refer-
ence. There we see that the sum of actual emissions over all sectors and countries amounts 
to 3341 mt of GHG (in CO2e ) in the first subperiod which decrease to 3070 mt in the sec-
ond subperiod. Total bias-corrected reduction potentials are 1522 mt (with 95% confidence 
interval [1236, 1886]) in the first subperiod and 1448 mt (with 95% confidence interval 
[1177, 1801]) in the second subperiod. These amount to 46% and 47% of the actual emis-
sions in the two subperiods, respectively.

Figure  2 shows that the bias-corrected reduction potentials are quite sizable in some 
sectors and in a number of countries. Notice that the countries are of rather different size 
economically and this is also reflected in the differences of the actual GHG emissions. 
The bias correction lets the estimates of the reduction potentials appear much larger com-
pared to their “raw” counterparts discussed at length in the companion paper of Krüger 
and Tarach (2020).19 Most of the confidence intervals are quite narrow pointing to rather 
precise estimates of the potential emission reductions. There are some exceptions, how-
ever, where the confidence intervals are wider. These exceptions pertain to sectors or coun-
tries with larger actual emissions and larger reduction potentials (e.g. sectors C and DE or 
Germany).

We first turn to the lower panel with the results for the second subperiod. Regarding 
the sectors the estimated reduction potentials are particularly large in sector DE (mostly 
energy) and C (manufacturing) where they amount to 49% and 52% of the actual emis-
sions, respectively.20 This is followed by sectors A (agriculture) and H (transport) where 
the reduction potentials are smaller in absolute terms, amounting to 57% and 29% of the 
actual emissions, respectively. For the remaining sectors the reduction potentials are small 
to negligible.

Germany (DEU) is the country with the largest actual emissions, but its reduction 
potential is of the same size as that of the United Kingdom (which is considered as an EU 

19  The gray line depicts the “raw” reduction potentials (without bias correction) which are throughout 
smaller than their bias-corrected counterparts and track them quite closely, except in some cases where the 
actual emissions are particularly large.
20  In sector DE emissions are to a large extent determined by the share of fossil power generation. France 
and Sweden are very efficient and have shares of nuclear and water power of about 80% (see NEA-OECD 
(2018, p. 19) and Byman (2016, p. 8), respectively). Thus, the reduction potentials of the other countries 
implicitly require similar shares of non-fossil power  generation which may be realized by either nuclear 
power, water power or other renewable forms (biomass, solar, wind).
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member country during the sample period until 2016) which has the second largest actual 
emissions. Other countries with sizable reduction potentials are Poland, Italy, France and 
Spain (with decreasing reduction potentials in this order). The reduction potentials amount 
to 34% of the actual emissions in the case of Germany, 61% for the United Kingdom, 67% 
for Poland, 48% for Italy, 45% for France and Spain. Reduction potentials of the other 10 
countries in our sample are absolutely smaller and thus are not as easily visible. Nonethe-
less, for both groups of countries reduction potentials are very much in proportion to their 
actual GHG emissions. During 2012–2016, these 10 smaller countries account for almost 
one quarter of total GHG emissions in our sample. As can be verified from Table 2, sum-
ming the reduction potentials of these countries results in almost one quarter of the total 
reduction potential as well. Hence, although we primarily focus our discussion here on the 
results for the largest countries, we want to stress that the joint contribution of the smaller 
countries to emission reduction is as important as that of the largest countries.

Comparing these results with those for the first subperiod in the upper panel of the 
figure we find the distributions across sectors and countries to be rather similar in both 
subperiods. The major difference is the overall magnitude of the actual emissions and the 
estimated reduction potentials which are both larger in the first compared to the second 
subperiod. There are exceptions from this rule in the some sectors and countries as can be 
seen from a closer inspection of Table 2 in the appendix but these are of minor quantita-
tive importance. Combined with the greater relevance of the more recent subperiod for the 
current debate about climate change, this similarity justifies the focus on the subperiod 
2012–2016 in the subsequent discussion of the other variants

4.2 � CO
2
 and other GHG ( CH

4
 and N

2
O ) Emissions

In this subsection, we proceed by splitting total GHG emissions into CO2 and other GHG 
emissions (which is the sum of CH4 and N2O , or equivalently total GHG minus CO2 , 
expressed in CO2e ). Bias-corrected estimates of reduction potentials and confidence 

Fig. 2   Potential Emission Reduction of Total GHG for the Period 2008–2012 (upper panel) and the Period 
2012–2016 (lower panel), Variant (a)
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intervals are calculated for each of the two emission variables as well as for their sum (total 
GHG emissions). Figure 3 shows actual emissions and reduction potentials for the sectors 
and countries in the sample, and Table 3 in the appendix permits a closer look at the exact 
quantities. Aggregated over all sectors and countries we find total GHG reduction poten-
tials of 1642 mt (with 95% confidence interval [1321, 2049]), amounting to 53% of the 
actual emissions.

The lowest panel of the figure reveals that sector A is by far the largest emitter of other 
GHG, and these emissions also account for the majority of emissions in this sector (about 
80%). In addition to sector A, emissions of other GHG are sizable in absolute terms in sec-
tor DE, although they amount only to about 10% of the sector’s total GHG emissions. In 
contrast, emissions of other GHG in sector B are small in absolute size, but nonetheless 
make up 42% of total GHG emissions here. Figure 3 shows that the sectors C and H emit 
mostly CO2 . Together with sector DE they account for the majority of CO2 emissions in 
our sample. One result of this subsection, which is evident from the middle panel of Fig. 3, 
is that sector C has almost the same CO2 reduction potential as sector DE, although it emits 
clearly less CO2 , which points to the relevance of the manufacturing sector for saving CO2 
emissions. Another finding is that there is overall higher inefficiency regarding other GHG 
rather than CO2 in relative terms. In particular, the share of reduction potentials to actual 
emissions for other GHG is with 64% (largely concentrated in sector A) considerably above 
the corresponding value for CO2 (51%).

Looking at the countries we observe that reduction potentials for other GHG are par-
ticularly sizable for the two largest emitters of other GHG, namely France and Germany, 
where they make up 42% and 26% of the countries’ total GHG reduction potentials, respec-
tively. This indicates that it is important also to include the agricultural sector with its CH4 
and N2O emissions in the respective emission reduction plans in France and Germany. For 
some other large countries, the potentially feasible reductions for other GHG are compara-
bly smaller than for CO2 (at or below 17% of total GHG reduction potentials in the cases 
of the United Kingdom, Poland, Italy and Spain). Confidence intervals are generally quite 
narrow for reductions of other GHG for most sectors and countries.

Next, we further split the other GHG emissions into CH4 and N2O emissions. Figure 4 
shows the results of this split (see also Table 4). The differences to the results above can 
be explained by the direction choice where now one further possibility is available. During 
the second subperiod 2012–2016, our sample countries and sectors emitted a total of 3070 
mt CO2e , out of which 6% were N2O emissions, 12% CH4 emissions, and 82% CO2 emis-
sions. As above, the shares of reduction potentials in actual emissions are higher for N2O 
(81%) and CH4 (57%) than for CO2 (45%). For total GHG this translates into a share of 
reduction potentials in actual emissions of 48%, or 1487 mt (with 95% confidence interval 
[1214, 1840]).

Since the use of nitrogen fertilizers is the major source of N2O emissions, their reduc-
tion potentials are clearly largest in sector A. Here, we find that the lower bound of the 
confidence interval indicates that reduction potentials below 65% of actual emissions are 
unlikely at the 95% confidence level. Our results imply that there is the potential for the 
sample countries to continue the N2O reduction path that has already started in Europe dur-
ing 1990–2010 (see Tian et al. (2020) for regional trends of anthropogenic N2O emissions 
for the period 1980–2016). Sector A also is the major source of CH4 emissions (mainly 
from animal livestock) and our results reveal that it has a sizable potential for reducing 
CH4 . Our bias-corrected estimate is 69% of actual emissions (144 mt of CO2e ) and a reduc-
tion potential of less than 50% of actual emissions is unlikely based on the 95% confidence 
interval. In addition to sector A, Fig. 4 reveals that sector DE contributes substantially to 
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CH4 emissions with a rather small reduction potential. Finally, for sector B the CH4 reduc-
tion potentials are an order of magnitude smaller than those of sector A, and for the other 
sectors they are negligible.

4.3 � Combined Direction with Output Enhancement

In the preceding subsections we have measured inefficiency exclusively in the direction of 
reducing emissions, holding the good output and the inputs constant. As noted in Sect. 3.2, 
it is not sensible to measure inefficiency in the direction of reducing the inputs at this high 
level of aggregation. However, instead of pure emission reductions a combination of emis-
sion reductions and output enhancement (i.e. economic growth) is a realistic objective 
of policy makers. We account for this possibility by permitting more flexible directions 
�y ≥ 0 in the linear program of equation (3).21 By this, we allow emission reductions to be 
traded off against output enhancement, so that inefficiency measures reflect a combination 
of emission reduction and output enhancement.

These estimates are reported (again for the second subperiod) in Fig.  5 and Table  5. 
For the emission variable we use total GHG, so that reduction potentials can be directly 

Fig. 3   Potential Emission Reduction of CO
2
 and Other GHG for the Period 2012–2016, Variant (b)

21  The boundary solution of pure emission reductions is still possible but needs no longer be optimal.
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compared with those from Sect. 4.1 for the period 2012–2016. In total, allowing for out-
put enhancement causes reduction potentials to decline from 1448 mt to 1272 mt (with 
95% confidence intervals changing from [1177, 1801] to [1028, 1595]), or equivalently 
from 47% to 41% of the actual emissions. This decline is rather small, indicating that most 
inefficiency is due to generating too much emissions instead of producing too less of the 
economic output. When comparing the upper panel of Fig. 5 with the lower panel of Fig. 2, 
we notice only slight differences regarding the distribution across sectors. It is visible that 
reduction potentials for sector C (manufacturing) decline the most (by about 100 mt) from 
52% to 40% of actual emissions. For the other sectors the differences are much smaller. 

Fig. 4   Potential Emission Reduction of CO
2
 , CH

4
 and N

2
O for the Period 2012–2016, Variant (c)
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This is in line with our estimates for output enhancement potentials, which are low in all 
sectors except C (see Fig. 5, lower panel).22 Hence, we find that a great deal of inefficiency 
in the direction of output enhancement, being large enough to substantially lower the scope 
for emission reductions, is present only in sector C.

For most countries we find reduction potentials of somewhat smaller size than in 
Sect. 4.1. Figure 5 (upper panel) reveals a distribution across countries which is very simi-
lar to that of Fig. 2 (lower panel). There are three exceptions (Belgium, France and Poland) 
where we obtain even higher reduction potentials than in Sect. 4.1. This can be attributed 
to the bias correction applied to the “raw” estimates.

4.4 � Policy Recommendations

Altogether, the preceding discussion shows that there is a sizable extent of inefficiency in 
the sectors which could be transformed into emission reductions. Therefore, the question 
arises how can policy support the realization of the potentials in practice. Policy should 
aim at inducing firms to improve their productive efficiency (which then improves the effi-
ciency of the sectors we measure here) to move towards the frontier function combined 
with specific measures to channel this movement in the right direction, i.e. mainly in the 
direction of emission reduction and less in the direction of output enhancement. In the 
long-run, effort to generate technological progress to shift the frontier function towards less 
emission intensive modes of production would also work in the right direction, although 
this aspect is beyond the scope of the measurement exercise we conduct here.

Fig. 5   Potential Emission Reduction of Total GHG and Output Enhancement for the Period 2012–2016, 
Variant (d)

22  Even for sector G (mainly wholesale and retail trade), which produces substantial value added, output 
enhancement potential is quite low, indicating that this sector is overall quite efficient in transforming inputs 
to output.
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As a theoretical guidepost for structuring the discussion of policy measures we use the 
macroeconomic model of Stern and Kander (2012). From the first-order condition in equa-
tion (15) of that paper one can derive an equation for energy demand as

with E denoting the energy input in the underlying CES production function, Y gross out-
put, and pE∕p the price of energy relative to the price of output. AE is an augmentation 
factor of the energy input in the production function. This factor increases if a sector in 
a country improves its energy efficiency. It can be viewed as also comprising the aspect 
of energy quality as discussed in Stern and Kander (2012) and Stern (2010). Increasing 
energy quality acts like a further factor (named Q in Stern and Kander (2012)). If we con-
sider E as the input of mostly fossil fuels, changing the energy mix towards renewable 
energy sources operates analogous to an improvement of energy quality associated with 
less GHG emissions. The parameter � is related to the elasticity of substitution � between 
energy and a capital-labor aggregate by � = (� − 1)∕� and �E is a further production func-
tion parameter related to the energy input.

Various estimates of the parameters are reported in table 1 of Stern and Kander (2012). 
They can be roughly summarized as �E ≈ 0.2 , � ≈ 2∕3 and � ≈ −1∕2 . Taken at face value 
we get a calibrated version of the energy demand equation as

This shows that the energy demand and therefore GHG emissions (assuming that a sub-
stantial part of energy is generated from fossil sources) are linearly related to the level of 
gross output. Emissions are decreasing with a higher relative price of energy pE∕p as well 
as with an improvement of productive efficiency leading to a larger AE . These variables are 
linked to various policy measures which are discussed in the following. In addition to the 
direct effect of pE∕p there is a further, indirect, effect working through AE , i.e. adopting 
more energy efficient and therefore less emission intensive technologies in the medium to 
long run when pE∕p is higher.

To increase the productive efficiency of sectors, a large variety of policy measures can 
be beneficial. Examples of these measures directed generally towards inefficiency reduc-
tion are fostering competition, reducing some regulations, incentivizing research and devel-
opment and protecting intellectual property. Yet, the effect of these policy measures has 
to be channeled towards improvements in energy efficiency ( AE ) or energy quality which 
are associated with emission reductions. There are many diverse policy measures available 
which could be appropriately combined and coordinated.

This policy mix, of course, has to comprise traditional instruments of environmental 
policy such as phasing out the most emission-intensive modes of power generation (i.e. 
coal), abandoning certain modes of travel (e.g. short-distance flights) or setting energy con-
sumption standards for new products (e.g. cars, heating). Incentives or subsidies for behav-
ior modification (i.e. switching to electric cars, more attractive public transport, thermal 
insulation of buildings) could also direct efficiency improvement in the desired direction.

A well-designed carbon price is a key measure to influence the relative price of fos-
sil-fuel based energy ( pE∕p ) and thus, by the energy demand relation, also combustion 
thereof (Sen and Vollebergh 2018; Best et  al. 2020). Important for the design here is a 

(7)E = �
1∕�(1−�)

E
⋅ Y ⋅

(
pE

p

)−1∕(1−�)

⋅ A
�∕(1−�)

E

(8)E = 0.2 ⋅ Y ⋅

(
pE

p

)−2∕3

⋅ A
−1∕3

E
.
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broad sector and country coverage (Aldy et al. 2010, p. 928). One finding of our efficiency 
analysis, in particular from Sect. 4.2, is that emission reduction potentials for the manu-
facturing sector are substantial, i.e. of similar magnitude as for the energy sector. We also 
find substantial reduction potentials in the transport sector, although these are smaller in 
relative terms. Currently, European emission trading still covers only power generation, 
heavy industry and intra-European aviation (Delreux and Ohler 2019,  p. 7). Thus, com-
prehensive EU-wide carbon tax policies could push manufacturing and transport sectors 
closer to their frontier in the desired direction of reducing CO2 emissions. An extension of 
emission trading to these sectors, if designed effectively (i.e. with a steadily decreasing cap 
of overall emissions), would also work in the desired direction. However, for the manufac-
turing sector, we also find in Sect. 4.3 that there is considerable inefficiency in the output 
direction. Therefore, a uniform carbon price could easily be set too low in order to channel 
the direction of inefficiency reduction towards CO2 reduction in those sectors where much 
efficiency can also be gained by output enhancement instead.

Furthermore, innovations are important for decarbonization. Sufficient carbon pric-
ing works in the direction of inducing innovations for technologies with high potential for 
GHG emission reductions and therefore increases AE (Aghion et al. 2016; van den Bergh 
and Savin 2021). These include in particular renewable energy technologies (i.e. wind and 
solar), large-scale and cost-efficient energy storage, and electric cars. Equally important 
may be all types of innovations which are able to substantially improve the energy effi-
ciency of products or production processes, in particular if the energy used there is still 
fossil-fuel based.23 To induce innovative activity, public funding of research and develop-
ment could be specifically targeted at these areas. As knowledge creation is a public good, 
there is considerable under-investment in these areas to be expected (Knopf et al. 2013, p. 
233). However, it seems generally difficult to anticipate which technologies will be most 
crucial for the energy system of the future. Thus, with respect to the direction of research 
and development funding, “policy-makers have to strike a delicate balance between sup-
porting promising developments whilst avoiding the temptation to prematurely pick win-
ners” (Knopf et al. 2013, p. 234).

These policy measures appear to be well adapted to the sectors C, DE and H with a large 
amount of CO2 emissions, while sector A (agriculture) is special in its emission mix caused 
by the use of fertilizers, animal livestock, as well as its essentiality for human nutrition. 
When comparing our results for N2O to other studies, these seem to be quite optimistic. 
For example, Winiwarter et al. (2018) estimate that if only the lowest-cost N2O abatement 
measures were implemented, global emissions thereof could be reduced by 6.2% compared 
to a baseline scenario, while if also high-cost abatement measures were implemented, 
global N2O reduction potentials would amount to 26%. Independent of the exact quantity 
of N2O reduction potentials, there are several N2O abatement measures available which 
in the agricultural sector generally comprise any measures that improve the efficiency of 
nitrogen application to crops (Winiwarter et al. 2018, table 1). There is also evidence that 
organic farming, in particular biodynamic farming, reduces N2O emissions per yield and is 
associated with a modest uptake of CH4 (Skinner et al. 2019, p. 4).

The extent of measured inefficiency is, of course, not confined to Europe. In other coun-
tries, emerging economies in particular, there are also huge quantities of potential emission 

23  An example are activities such as steel or cement production, where substitution of fossil fuel may be 
more difficult and where there are sizable regional differences in energy efficiency (Oda et al. 2012).
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reductions to be expected which could be realized by means of efficiency improvements. 
Thus, strengthening international cooperation and technology transfer from advanced 
countries towards emerging countries at favorable conditions could tremendously enhance 
the overall benefit.

5 � Discussion and Conclusion

The bottom line of the results of the above analysis with the stochastic nonparametric 
approach to environmental efficiency analysis is that the bootstrap bias-corrected esti-
mates of potential reductions of GHG emissions by reducing the inefficiency relative to the 
most efficient countries in each of seven sectors are quantitatively substantial. Along with 
the bias-correction also confidence bounds are established which show that the reduction 
potentials are estimated with great precision in some sectors while being wider in other 
sectors. The comparison with the results of the companion paper (Krüger and Tarach 2020) 
shows that the bias correction leads to substantially increased estimates of the potential 
emission reductions.

To put the magnitudes of the estimated potential emission reductions into perspec-
tive we compare them to the emission reduction targets recently tightened by the Euro-
pean Commission (see EU 2020). Therein, an emission target of 45% (meaning a reduc-
tion by 55%) compared to the GHG emission levels in 1990 until 2030 is postulated. 
Since the 16 sample countries of our study overall emitted roughly 5000 mt of GHG 
in 1990 (retrieved from the EEA greenhouse gas data viewer) this implies a necessary 
emission reduction of about 2750 mt until 2030. As stated by the European Environ-
mental Agency (EEA 2019), it is highly likely that the target level of a reduction of 20% 
compared to 1990 is to be achieved or is even slightly outperformed by 2020. Thus, an 
emission reduction of about 1000 mt is already achieved to date. The remaining 1750 
mt until 2030 are not far away from the bias-corrected estimates of the total potential 
emission reductions aggregated over both countries and sectors (ranging from 1271 mt 
in variant (d) to 1642 mt in variant (b)) and are well within the confidence intervals. 
The distribution of the EU reduction targets across sectors also corresponds to the pat-
tern of our estimated reduction potentials. Therefore, becoming more efficient can pro-
vide a substantial part of the reductions until 2030, especially in the sectors with large 
emission volumes.

The distribution of the reduction potentials across countries reflects their (economic) 
size. Naturally, larger countries tend to have larger manufacturing and transportation 
sectors which goes along with a need for a larger energy generating sector. These are 
the sectors with the largest actual emission quantities and also with the largest reduc-
tion potentials. Poland seems to be an exception operating with a much higher emission 
intensity.24 Agriculture is another sector with large GHG emissions which are here more 
caused by CH4 and N2O rather than CO2 . Thus, in addition to conventional environmen-
tal policy measures and new technologies which come to mind first, structural change in 
a direction towards the less emission intensive sectors could contribute to the realization 

24  This is in broad agreement with the literature on eco-efficiency, where also some countries as Austria, 
Germany and Sweden are found to be rather efficient while eastern European countries such as Poland 
appear very inefficient (see Camarero et al. (2014) and Kortelainen (2008)).
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of reduction potentials. Exactly this form of structural change is taking place since sev-
eral decades in the form of tertiarization (where tertiarization means an increasing share 
of the less emission intensive service sector at the expense of the primary and secondary 
sectors; Fourastié 1949).

Of course, it is not realistic to expect that these emission reductions can be fully 
achieved within the next decade. The reasons for this assessment are manifold. Policy 
measures become effective with a time lag. Despite structural change going in the right 
direction it is a rather sluggish process taking place over longer spans of time. Here, the 
demand side and the slowly changing consumer preferences play a major role. Economic 
actors also adapt to changing conditions such as prices and also adverse reactions are to 
be expected (such as “rebound effects”; Greening et  al. 2000). Structural change is also 
impeded by the specific roles of the countries in the context of international specialization 
which prevents that all countries will reach the same sectoral structure (de Araújo et  al. 
2020).

On the other hand, the present analysis is purely static (mostly confined to the medians 
to 2012–2016) and does not take account of the emission reducing effects of technologi-
cal change. New technologies and in particular less emission intensive forms of energy 
generation and mobility are crucial for reaching the targets. Since the European countries 
are only responsible for a small share of global GHG emissions, spillover effects and the 
transfer of these emission reducing technologies to countries outside Europe is the key 
factor for new technologies to become effective for large scale emission reduction. This 
leads to the natural extension of this work towards a dynamic analysis (by projecting 
the potential emission reductions into the future) or an extension with a global country 
sample.
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Appendix

Table 1   GHG emissions across sectors and countries

GHG ( CO
2
 , CH

4
, N

2
O ) and their totals (column GHG) are expressed in mt of CO

2
e . Minor discrepancies 

may arise when the sum of the individual GHGs is compared to their totals. This is due to taking the sum 
and the median operations in different orders for the totals

Period 2008–2012 Period 2012–2016

CO
2

CH
4

N
2
O GHG CO

2
CH

4
N

2
O GHG

Sectors
 A 92.193 208.540 158.558 460.256 89.712 208.016 160.372 459.659
 B 52.031 33.637 0.941 86.494 42.449 31.123 0.898 73.785
 C 817.971 7.452 17.099 841.163 756.424 7.236 10.555 774.389
 DE 1190.735 138.968 16.030 1345.091 1053.977 117.502 15.930 1183.434
 F 52.972 0.079 1.073 54.123 49.755 0.067 1.045 50.885
 G 74.259 0.316 0.563 75.132 67.838 0.250 0.596 68.618
 H 469.594 4.549 4.685 478.748 449.482 4.335 5.210 458.907

Countries
 AUT​ 51.107 6.920 3.191 61.114 43.931 6.470 3.172 53.483
 BEL 73.401 8.399 6.847 88.198 66.619 7.929 6.059 80.396
 CZE 90.279 14.302 4.285 108.843 80.649 13.945 4.396 99.051
 DEU 654.103 56.302 36.961 747.224 641.271 54.210 37.423 732.635
 DNK 78.315 7.153 5.405 90.926 64.979 6.857 5.402 77.228
 ESP 230.152 37.313 14.355 283.416 203.419 35.532 15.064 254.097
 FIN 52.091 5.091 4.471 61.539 44.399 4.740 4.543 53.900
 FRA 229.250 57.504 40.761 327.310 207.434 54.678 39.493 299.578
 GBR 386.425 62.979 20.077 467.680 341.522 51.729 19.234 412.077
 GRC​ 74.828 9.422 5.151 89.561 61.145 9.045 4.219 74.408
 ITA 304.934 43.995 16.758 365.478 255.947 41.205 15.619 312.340
 IRL 33.364 12.069 6.111 51.442 32.168 12.760 6.373 51.625
 NLD 142.834 18.525 8.112 170.053 138.514 17.553 8.051 164.691
 POL 273.152 43.978 19.542 336.437 260.262 43.084 19.303 321.933
 SVK 30.617 4.469 2.317 37.254 27.183 4.162 1.758 33.054
 SWE 44.903 5.119 4.607 54.534 40.197 4.632 4.497 49.180

Total
Σ 2749.754 393.539 198.949 3341.008 2509.637 368.528 194.605 3069.678
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Table 2   Potential emission reduction of total GHG for the Period 2008-2012 (upper panel) and Period 
2012–2016 (lower panel), Variant (a)

Total GHG are expressed in million tons (mt) of CO
2
 equivalents and reported with three digits following 

the decimal point. 95% percent bootstrap confidence intervals are in square brackets

Total GHG Period 2008-2012 Total GHG Period 2012–2016

Actual Estimate Conf. interval Actual Estimate Conf. interval

Sectors
 A 460.256 213.643 [144.405, 292.685] 459.659 264.259 [210.028, 338.978]
 B 86.494 47.723 [31.040, 71.862] 73.785 40.674 [25.127, 59.511]
 C 841.163 453.659 [326.684, 605.299] 774.389 402.751 [287.109, 538.407]
 DE 1345.091 641.263 [481.872, 890.818] 1183.434 580.397 [430.116, 845.409]
 F 54.123 21.969 [17.803, 29.988] 50.885 14.559 [10.164, 22.237]
 G 75.132 17.891 [9.874, 29.784] 68.618 14.956 [8.742, 25.026]
 H 478.748 126.126 [93.834, 174.577] 458.907 130.819 [96.634, 179.703]

Countries
 AUT​ 61.114 29.662 [25.144, 35.780] 53.483 27.579 [23.597, 33.000]
 BEL 88.198 40.568 [27.973, 61.432] 80.396 36.432 [25.800, 50.537]
 CZE 108.843 72.512 [68.170, 78.469] 99.051 75.065 [71.876, 79.836]
 DEU 747.224 254.258 [77.702, 523.120] 732.635 252.501 [84.405, 534.271]
 DNK 90.926 21.414 [4.333, 50.740] 77.228 19.342 [4.014, 45.480]
 ESP 283.416 116.465 [73.985, 183.253] 254.097 113.490 [82.492, 153.683]
 FIN 61.539 26.210 [16.878, 43.054] 53.900 23.291 [15.014, 39.776]
 FRA 327.310 115.542 [52.775, 206.256] 299.578 135.333 [94.202, 197.693]
 GBR 467.680 293.249 [263.718, 333.514] 412.077 252.008 [224.468, 292.130]
 GRC​ 89.561 23.852 [3.886, 59.044] 74.408 23.218 [4.581, 56.536]
 ITA 365.478 157.301 [119.860, 203.656] 312.340 151.437 [122.248, 190.379]
 IRL 51.442 22.263 [14.082, 34.416] 51.625 15.396 [2.101, 34.861]
 NLD 170.053 94.760 [79.141, 114.023] 164.691 65.654 [36.604, 115.461]
 POL 336.437 211.488 [181.380, 252.492] 321.933 216.391 [194.421, 246.129]
 SVK 37.254 21.470 [18.714, 25.195] 33.054 18.647 [15.938, 22.180]
 SWE 54.534 21.231 [15.523, 29.114] 49.180 22.442 [17.679, 29.551]

Total
Σ 3341.008 1522.274 [1236.410, 1885.573] 3069.678 1448.417 [1176.830, 1801.477]
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Table 5   Potential emission reduction of total GHG and output enhancement for the Period 2012–2016, var-
iant (d)

Total GHG and economic output are expressed in million tons (mt) of CO
2
 equivalents and in bn (in PPP of 

2010), respectively. Both are reported with three digits following the decimal point. 95% percent bootstrap 
confidence intervals are in square brackets

Output Total GHG

Actual Estimate Conf. interval Actual Estimate Conf. interval

Sectors
 A 176.698 44.130 [30.172, 62.709] 459.659 248.062 [174.338, 336.317]
 B 80.654 35.034 [19.751, 55.689] 73.785 36.179 [22.278, 56.240]
 C 1809.919 678.039 [425.829, 1014.403] 774.389 306.796 [212.143, 424.805]
 DE 314.613 49.079 [28.352, 85.066] 1183.434 547.370 [397.768, 792.031]
 F 597.705 35.946 [12.313, 75.856] 50.885 14.100 [10.217, 21.628]
 G 1320.321 94.173 [45.442, 168.895] 68.618 11.536 [7.331, 18.844]
 H 546.876 47.462 [27.166, 78.382] 458.907 107.550 [82.477, 145.105]

Countries
 AUT​ 126.909 28.021 [20.330, 37.812] 53.483 14.858 [11.615, 19.785]
 BEL 134.940 15.215 [6.451, 31.835] 80.396 42.007 [24.473, 69.574]
 CZE 118.664 44.038 [37.385, 54.093] 99.051 49.621 [42.766, 60.568]
 DEU 1124.347 207.739 [26.270, 524.734] 732.635 171.658 [62.563, 360.565]
 DNK 72.893 15.874 [6.789, 27.895] 77.228 10.218 [1.709, 22.885]
 ESP 442.674 131.032 [99.570, 175.213] 254.097 94.736 [58.357, 165.020]
 FIN 65.276 24.055 [16.677, 35.392] 53.900 16.570 [10.382, 28.677]
 FRA 625.329 92.779 [36.879, 190.854] 299.578 156.579 [84.457, 243.573]
 GBR 612.464 109.440 [80.558, 146.340] 412.077 238.760 [194.299, 321.503]
 GRC​ 62.585 8.165 [1.552, 18.656] 74.408 14.299 [3.408, 34.666]
 ITA 602.858 174.096 [111.289, 249.810] 312.340 96.580 [77.844, 127.095]
 IRL 61.638 11.475 [1.313, 30.100] 51.625 9.361 [1.278, 21.550]
 NLD 225.522 30.538 [15.204, 57.622] 164.691 60.244 [34.418, 103.644]
 POL 376.336 45.867 [24.653, 80.858] 321.933 247.319 [184.337, 315.200]
 SVK 62.312 43.017 [36.939, 50.859] 33.054 5.665 [4.376, 7.861]
 SWE 132.039 2.511 [0.847, 5.233] 49.180 22.626 [17.129, 30.944]

Total
Σ 4846.786 983.863 [676.145, 1380.091] 3069.678 1271.601 [1028.342, 1594.755]
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