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Abstract
We show that the VIX Index structurally underestimates model-free implied vola-
tility because its implementation omits extrapolation of the volatility smile in the 
tails. We use the asymptotic behavior of the volatility surface to construct a cor-
rection term that is model-independent and only requires option prices at the two 
outermost strikes. We show how to apply this correction to the VIX Index ex-post 
as well as how to modify its implementation accordingly. Furthermore, we show 
that the degree of underestimation varies over time. For the S&P 500 Index and the 
DJIA Index the error is larger in periods of sustained low volatility. This cannot be 
observed for the Volatility-of-VIX Index.

Keywords Model-free implied volatility · Volatility smile · VIX index · Variance 
swaps

JEL Classification G10 · G12 · G13

1 Introduction

The CBOE VIX Index is the one of the most commonly used indicators for investor 
fear. It implements the static replication approach to variance swap pricing by Carr 
and Madan (1998), who show how to replicate the future realized variance of an 
assets’ return process between today and a future date T using the prices of options 
expiring at T. Britten-Jones and Neuberger (2000) coin the term model-free implied 
variance (MFIV), as the replication strategy does not depend on the assumption of a 
stochastic model for the underlying. The replication portfolio requires a continuous 
set of strikes from 0 to infinity. Since in practice option strikes are discrete and only 
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actively traded in a relatively narrow range around the current price of the underly-
ing, systematic errors are introduced.

Specifically, the methodology behind the VIX Index as outlined in CBOE (2018) 
truncates the tails completely, and makes no effort to compensate for this. This leads 
to structural underestimation of MFIV in the VIX Index implementation. Option 
trading activity varies over time with changing market regimes. When interest in 
far-from-the-money options wanes during calm market periods, the observable area 
of the volatility smile is truncated further than in more volatile periods. As the width 
of the observable option strike grid changes, the underestimation varies over time. 
Many hedging strategies reduce their risk exposure when the VIX Index is elevated. 
The structural underestimation therefore implies that these strategies underestimate 
market risk, and are systematically overinvested or underhedged. The goal of this 
paper is to examine this truncation error and to understand its dynamics over time. 
The truncation error term can compensate for the time-varying structural underes-
timation in the VIX Index by systematically accounting for grid width, and make 
values from different market regimes or underlyings comparable.

To compensate for truncation, we apply a result by Lee (2004) on the asymptotic 
behaviour of the volatility smile. By deconstructing the main integral of Britten-
Jones and Neuberger (2000), which is based on Carr and Madan (1998), we isolate 
the tails of the volatility smile and compute them using asymptotic option prices. 
This yields a very simple truncation error correction term that is completely inde-
pendent of model assumptions. The only required observations are the option prices 
at the outermost strike to parameterize each tail. The calculation is demonstrated 
using the reference data by CBOE (2018).

We calculate the truncation error for volatility indices of both the S&P 500 Index 
and the Dow Jones Industrial Average Index, and show how the truncation error var-
ies depending on market conditions. As a counterexample, we show that the Volatil-
ity-of-VIX Index does not exhibit this pattern.

Our findings have implications for the analysis of the volatility premium as well 
as VIX Index futures. The volatility premium refers to the positive expected return 
that sellers of options capture. In the literature, it is commonly defined as the differ-
ence between the volatility of the underlying price and the VIX Index. For example, 
Eraker (2021) presents a general equilibrium model based on long-run risk that is 
able to capture the volatility premium as well as the negative correlation between 
prices of the underlying. Gruber et al. (2020) construct a state-based volatility pro-
cess to model the term structure of the volatility premium in periods of low and 
high volatility separately. The structural underestimation of the VIX Index might 
explain a small portion of this premium. Bardgett et al. (2018) examine the infor-
mation content of options on VIX Index futures and document a that it varies over 
time. Cheng (2019) studies the volatility premium embedded in VIX futures and 
finds a lower than expected response to rising market risk. Bakshi et al. (2021) show 
that VIX futures are in contango when jumps in volatility exist, and are correlated 
with jumps in the price of the underlying. This implies that the volatility premium 
compensates the option seller for the risk of large jumps. Eraker and Yang (2020) 
construct a sophisticated consumption-based equilibrium framework to integrate 
the pricing VIX and SPX options as well as equity and variance premium. The 
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structural underestimation in the VIX Index is likely priced into VIX futures, and 
the described patterns might distort the VIX Index futures term structure.

To begin our analysis, we review the related literature. Next, we examine the con-
struction of the VIX Index in detail to identify its structural bias. We then investi-
gate the asymptotic behaviour of the volatility smile and show how to correct for 
truncation. Finally, historical option prices are used to calculate the truncation error 
over time, revealing its dependence on market volatility.

1.1  Notation

Markets are assumed to be free of arbitrage opportunities and complete. This implies 
the existence of an equivalent martingale measure (EMM) which is uniquely charac-
terised by the risk neutral density �ℚ of the stochastic process ruling the underlying. 
The fair value of a derivative is given by the expected value of its payoff under ℚ.

Contracts live from time 0 to time T, which is specified in years. The current time 
is t ∈ [0, T] . The time to maturity is � = T − t . For discrete returns, actual trading 
days per year are used for annualization; for continuous cases, 365.25 calendar days 
and 252 trading days are assumed.

The price of an underlying at t is St , its forward price at time t is Ft = Ste
r� . 

Option strikes in absolute (dollar) terms are denoted K, while the strike in terms of 
log-moneyness against the forward price is denoted k = log

(
K

F0

)
 . Capitalized option 

prices C(K, �) and P(K, �) are quoted in dollar value, their counterparts in log-
moneyness terms, such that C(K, �) = F0c(k, �) and P(K, �) = F0p(k, �) . Unless 
explicitly specified, prices refer to the average of the bid and ask quotes. Q(K, �) and 
q(k, �) denote the price of the out-of-the-money option in dollar and log-moneyness, 
respectively.

The term implied volatility (IV) refers to the Black-Scholes implied volatility 
(BSIV) �BSIV that solves

uniquely, where Cobserved(K, �) is an observed call price at strike K and 
CBlack-Scholes(K, �, �BSIV ) is the Black-Scholes price at strike K and volatility �BSIV . 
The term volatility smile describes the set of BSIVs that is produced by all options 
on an underlying asset with the same expiration date. The term volatility surface 
refers to the collection of volatility smiles of all available expiration dates at a cer-
tain point in time.

Unless explicitly specified, all options are of European style, and dividends and 
interest rate r are assumed to be zero and omitted for clarity.

(1)Cobserved(K, �) = CBlack-Scholes(K, �, �BSIV )
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1.2  Literature review

Some fundamental results in the literature provide insight into the relationship 
between observed option prices and forward variance of the underlying. Breeden 
and Litzenberger (1978) show that the risk neutral price probability distribution of 
an underlying at expiration is uniquely determined by the complete set of options 
without assumption of a parametric model for the underlying. Neuberger (1994) 
introduces the concept of futures contracts that pay the natural logarithm of an 
underlying future at expiration and shows that the payoff of a delta-hedged log-con-
tract depends purely on volatility of the underlying, provided its variance is constant 
over time. Independently, Dupire (1994) shows that a unique risk-neutral density �ℚ 
can be recovered from market prices, if all prices are compatible with no arbitrage 
conditions and the underlying is governed by a diffusion process.

Carr and Madan (1998) show that a volatility swap whose payoff is the realized 
volatility of the underlying can be fairly priced by statically replicating log-contracts 
using the result of Breeden and Litzenberger (1978) and delta-hedging them as sug-
gested by Neuberger (1994). Specifically, they show that a 1

K2
-weighted portfolio of 

out-of-the-money options has virtually constant sensitivity to changes in variance, 
and construct a portfolio that perfectly replicates forward variance of a continuous 
underlying.1 Furthermore, it is only based on the assumption of risk-neutrality, and 
does not rely on a specific stochastic model for the underlying process, except that 
it follows a diffusion. Britten-Jones and Neuberger (2000) extend their analysis and 
show that this result holds in the case of stochastic volatility in the underlying as 
well. Demeterfi et  al. (1999) explore the effect of skewness on the price of vari-
ance and volatility swaps for continuously moving underlyings. Based on Carr and 
Madan (1998), Britten-Jones and Neuberger (2000) define MFIV as

with K being a strike from the set of all observable strikes, and, since the expecta-
tion is taken under ℚ , C(K, �) = 𝔼

ℚ

t
[max(Ft − K, 0)].

Jiang and Tian (2005) show that Eq. 2 holds for price processes with jumps. They 
find evidence that the MFIV is a more accurate predictor of future realized variance 
than historical variance or Black-Scholes ATM implied variance.

Even though the result by Carr and Madan (1998) has been thoroughly investi-
gated, the discrete and truncated nature of option markets still presents challenges 
in practical applications. The VIX Index was originally introduced by the Chicago 
Board Options Exchange (CBOE) in 1993 to measure market-expected 30-day vola-
tility of the S &P 100 Index. In its original formulation as suggested by Fleming 
et  al. (1995) it was defined as at-the-money Black-Scholes implied volatility, and 
computed by solving Eq. 1 with the current 30-day at-the-money option. In 2003, 

(2)𝔼
ℚ

0

[

∫
T

0

(
dFt

Ft

)2
]
= 2∫

∞

0

C(K, �) − max(F0 − K, 0)

K2
dK,

1 For detailed derivation, see Demeterfi et al. (1999) or Derman and Miller (2016), Ch. 4.
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the VIX Index was updated to reflect the advances in option pricing theory laid 
out above, in conjunction with a change of the underlying to the S &P 500 Index. 
CBOE (2018) provide details on the updated calculation and Sect. 2 discusses its 
shortcomings. CBOE (2011) introduced a single-stock variant of the VIX Index 
for a handful of stocks whose options are very liquid. In 2012, CBOE (2012) intro-
duced the Volatility-of-VIX Index, which applies the methodology of the VIX Index 
to options on the VIX Index itself. Jiang and Tian (2005) examine the practical-
ity of   2 and identify two distinct sources of implementation error: discretization 
due to the fact that observed strikes of options are naturally discrete, but Eq. 2 is 
based on a continuous integral in K; and truncation because Eq. 2 requires integra-
tion along K ∈ [0,∞) . They state theoretical upper bounds for the truncation and 
discretization errors. Jiang and Tian (2007) examine the implementation of Eq.  2 
by CBOE (2018) and find it to be systematically flawed. They show that, depending 
on the volatility environment, the magnitude of the implementation error is predict-
able. This paper partially extends their analysis. They suggest a numerical scheme 
to overcome the issues using cubic splines for interpolation, and linear extrapola-
tion in log-moneyness space k beyond the outermost strikes. Benaim et al. (2009) 
investigate the concept of model-based interpolation and extrapolation, where a sto-
chastic process is calibrated to fit option prices, which is used to generate a syn-
thetic option price surface that overcomes the issues of truncation and discretization. 
They find that this approach introduces systematic errors in the tails. They suggest 
supplementing a model-based interpolation with numerical extrapolation. Broadie 
and Jain (2008) analyze the effect of discretization on the pricing of variance swaps 
using a variety of stochastic processes for the underlying and find that errors due 
to discretization are usually small, but the effect of jumps – which manifest in the 
tails of the smile – can be large. Carr and Wu (2009) and Jiang and Tian (2005) 
extrapolate with constant BSIV beyond the outermost strikes. While simple, this 
approach has several drawbacks. First, it satisfies the conditions set forth by Benaim 
and Friz (2009) if and only if we limit the underlying process to be log-normally 
distributed (the Black-Scholes case). For this specific case, the approach outlined in 
this paper can be adapted using the distribution-specific dynamics of Benaim and 
Friz (2009) to achieve an equivalent result. Second, it introduces dependency on the 
observed cutoff point: a cutoff point at a larger |k| has, under the described growth 
dynamics, necessarily a equal or larger BSIV, such that constant extrapolation leads 
to similar, albeit lower, structural underestimation as the implementation by CBOE 
(2018). Jiang and Tian (2007) furthermore criticise the introduction of kinks into the 
volatility smile, which violate no-arbitrage conditions. They interpolate with natural 
cubic splines and extrapolate BSIV linearly in log-moneyness, with the slope of the 
extrapolation function matching the first derivative of the spline at the outermost 
strike. Except for a Black-Scholes world where a constant extrapolation would be 
exact, any linear growth violates the no-arbitrage bounds set forth by Lee (2004).2 

2 Any positive linear growth violates Lee (2004)’s upper bound, and any negative linear growth is 
excluded by the lower bound of constant growth in the Black-Scholes case, where all moments of the 
underlying distribution are finite. For details, see Gatheral (2006, p. 99)
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Carr and Wu (2009) utilize MFIV to estimate variance risk premia for indices and 
single stocks. They also provide a detailed interpolation and extrapolation proce-
dure, which differs from Jiang and Tian (2007) in that they use linear interpolation 
between strikes and constant extrapolation beyond the outermost strikes.

The relationship of the distribution of the underlying and the shape of the volatility 
surface permits analysis of the asymptotic behaviour of BSIV in the tails. Hodges 
(1996) establishes that the no-arbitrage bounds set forth by Merton (1973) can be 
expressed by quoting option prices in terms of their BSIV, where a positive BSIV 
prevents arbitrage of between options and the underlying plus cash, and having a sin-
gle BSIV per strike and T enforces Put-Call parity. Furthermore, he provides bounds 
for the slope of implied volatility in the tails. Lee (2005) describes the static and 
dynamic characteristics of the volatility smile, and shows how the volatility smile can 
be interpreted as probabilistic density. Carr and Wu (2016) provide insights into the 
dynamic evolution of the volatility surface and derive no-arbitrage constraints based 
on those dynamics. Lee (2004) examines the asymptotic behaviour of BSIV in the 
strike domain. He finds that under absence of arbitrage the growth of BSIV is bound 
from above by 

√
�

T
|k| , where � ∈ [0, 2] being specific to either the left or right wing. 

Benaim and Friz (2009) expand and refine this result and show that the asymptotics 
of the volatility smile are a non-linear transform of the asymptotics of the underly-
ings’ return distribution. They show that the result of Lee (2004), under some mild 
technical conditions, precisely determines tail behaviour. Furthermore, they show 
how to explicitly derive the asymptotic behaviour of the BSIV for a variety of sto-
chastic models. Benaim et al. (2012) examine the relationship between the moment-
generating function and the moment formula. They suggest using it to extrapolate the 
implied volatility surface in the strike domain. In a preceding analysis, Drǎgulescu 
and Yakovenko (2002) come to agreeing results for the special case of distributions 
with stochastic variance. Gulisashvili (2010) provides asymptotic formulas for call 
options, as well as error estimates, based on Lee (2004) and Benaim and Friz (2009).

2  Structural shortcomings of the VIX index

The calculation of the VIX Index is laid out in detail in CBOE (2018). An overview 
is provided in Appendix 1.

CBOE (2018) implement Eq. 2 as a weighted Riemann sum based on Demeterfi 
et al. (1999) using the midpoint rule as

with N ∈ ℕ+ being the number of observed option prices, Ki being a strike price with 
Ki < Ki+1∀i ∈ ℕ+ , K∗ being the at-the-money strike price, QKi

 being the observed price 
of an out-of-the-money option at Ki , 𝛥Ki =

Ki+1−Ki−1

2
∀1 < i < N for all strikes between 

endpoints, and �K1 = K2 − K1 and �KN = KN − KN−1 for the strikes at the endpoints.

(3)MFIV2 =
2

T
�N

i=1

�Ki

K2
i

erTQKi
−

(
Ft

K∗
− 1

)2

,
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Equation 3 implies that the tails of the volatility smile are cut off, leading to a sys-
tematic underestimation of forward variance. The truncation error becomes larger 
when the strike price grid becomes narrower in k. It also grows after large price 
movements in the underlying, specifically in the time between large price drops in 
the underlying, and the creation of new options by market makers.

Between strikes, each observation is weighted by half of the difference of the 
surrounding strikes. This is akin to a constant level interpolation symmetrically 
around each observation. The errors of this interpolation between strikes tend to be 
approximately self-cancelling, leading to a small error from interpolation. This does 
not happen in the region around the strike with the smallest Black-Scholes implied 
variance, leading to a fluctuating error sign. Some discussion on this can be found 
in Jiang and Tian (2005).3 The extend of this depends on the shape of the smile 
around its minimum. Higher skewness in the underlying implied distribution tend to 
increase the fluctuation.

3  Asymptotic extrapolation and construction of the truncation error

The implementation of the VIX Index by CBOE (2018) does not compensate for 
truncation. By deconstructing Eq. 2, we compensate for the missing tails. We then 
examine the required strike grid width as well as convergence behaviour of the trun-
cation error.

3.1  Construction of the truncation error

To compensate for truncation we utilize the asymptotic behaviour of BSIV by com-
puting the respective Black-Scholes option prices and calculating the partial MFIV 
contribution of each tail.

Extrapolating with constant BSIV of the outermost option price would make the 
truncation error compensation highly dependent on only the price of these options, 
without taking the varying strikes into account. We utilize Gulisashvili (2010), who 
shows that Lee (2004)’s formula can be used to extrapolate option prices in the 
strike domain.

If we where to assume knowledge of the underlying distribution, we could use the 
precise tail behaviour based on Benaim and Friz (2009), as suggested by Gulisash-
vili (2010). The specific case of a Black-Scholes-compliant underlying would then 
result in constant extrapolation. While the boundary condition of Lee (2004) does 
not necessarily apply close to the money, it allows us to find the non-parametric 
asymptotic truncation error of MFIV, provided kmin ≤ 0 ≤ kmax and both kmin and 
kmax have sufficient distance from 0. Section 3.2 examines this issue in greater detail.

To compute the truncation error compensation, we first deconstruct MFIV into 
three segments: the observed center segment, and two tails. For the tails, we derive 

3 Specifically, see figure 2 in Jiang and Tian (2005).



322 P. Stahl 

1 3

the Black-Scholes option price as a function of k and a tail-specific parameter � . 
After calculating � for each tail to fit the outermost option price, we substitute the 
option price within the tail segments of the deconstructed MFIV. The center seg-
ment is left unchanged. The two tails compensate the missing MFIV contribution of 
Eq. 3.

By rewriting Eq. 2 in log-moneyness terms, we get

Appendix 2 provides a detailed derivation.
Since the asymptotic BSIV depends exclusively on k and � as k ⟶ ±∞ , we can 

define the extrapolated price of a far-out-of-the-money call option c̃(k, 𝜏, 𝛽) as

where � is the Normal CDF.4
As suggested by Benaim et  al. (2012), � is chosen according to the outermost 

observed option for each tail individually. Since

we fix the outermost strike for each tail, and compute the respective �left,right as

First, we derive the right side truncation error where k > 0 . The observation farthest 
to the right is located at kmax . Hence, max(0, 1 − ek) = 0 . The truncation error to the 
right side is a function of only kmax and �right given by

(4)MFIV = 2∫
+∞

−∞

c(k, �, �k) − max(0, 1 − ek)

ek
dk.

(5)c̃(k, 𝜏, 𝛽) = 𝛹 (d̃1(k, 𝜏, 𝛽)) − ek𝛹 (d̃2(k, 𝜏, 𝛽)),

(6)d̃1(k, 𝜏, 𝛽) = −
k

√
𝛽�k�

+
1

2

√
𝛽�k�, and

(7)d̃2(k, 𝜏, 𝛽) = d̃1(k, 𝜏, 𝛽) −
√
𝛽�k�.

(8)� ∶= lim sup
k⟶±∞

�2
BS
T

|k|
,

(9)�left =
T

|kmin|
�2
kmin

and

(10)�right =
T

|kmax|
�2
kmax

.

(11)TEright(kmax, 𝛽right) = 2∫
+∞

kmax

c̃(k, 𝜏, 𝛽right)

ek
dk.

4 See Appendix 3 for derivation.
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The left side truncation error follows in similar fashion, using the asymptotic price 
of a far-out-of-the-money put option such that

The total truncation error is the sum of both sides given by

In comparison to Jiang and Tian (2005), who provide parametric as well as non-
parametric upper bounds for the truncation error, this result provides an asymptotic 
value for the total truncation error. Provided kmin and kmax are sufficiently far from 0, 
this yields a correction term that can be added to MFIV without relying on numeri-
cal methods, and instead only relying on asymptotic properties of the volatility 
surface.

To calculate this truncation error, the uncorrected MFIV value, the observed min-
imum and maximum option prices, and their strikes are required. Beyond absence of 
arbitrage, no further parametric assumptions are required.

Figure  1 illustrates the extrapolation approach on a simulated volatility smile. 
The dotted line shows the volatility smile of a Merton-model with the specified 
parameters. The cutoff points are chosen to be kmin = −0.6 and kmax = 0.6 , and we 
calculate �left and �right as described above. The extrapolated wings are shown as a 
solid line. In the implementation described by CBOE (2018), the extrapolated wings 
are considered to be 0.

To apply the correction to an observed volatility index VI, square it to convert to 
variance, add the error correction from 14, and take its square root

3.2  Minimum requirements for strike grid width

The result of Lee (2004) only holds asymptotically, therefore the suggested trunca-
tion error may lead to overestimation when the observable strike grid is too narrow.

(12)p̃(k, 𝜏, 𝛽left) = c̃(k, 𝜏, 𝛽left) − (1 − ek) and

(13)TEleft(kmin, 𝛽left) = 2∫
kmin

−∞

p̃(k, 𝜏, 𝛽left)

ek
dk.

(14)
TEtotal(kmin, kmax, �left, �right) = TEleft(kmin, �left)

+ TEright(kmax, �right)

(15)
= 2∫

kmin

−∞

p̃(k, 𝜏, 𝛽left)

ek
dk

+ 2∫
+∞

kmax

c̃(k, 𝜏, 𝛽right)

ek
dk.

(16)VIcorrected =

√
VI2

uncorrected
+ TEleft(kmin, �left) + TEright(kmax, �right).
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To confirm the applicability of the extrapolation, we analyse the behaviour of the 
tail-parameters �left and �right as |k| → ∞ and show that the observed strike grid tends 
to be wide enough to admit extrapolation. A reasonable minimum cutoff strike can 
be found be found by calculating � for every possible cutoff strike of the volatility 
smile. By definition, � will level off further out-of-the-money, where the extrapola-
tion will be in agreement with the smile. Since the observed volatility smile is trun-
cated, this requires modelling the underlying explicitly. Gulisashvili (2010) provides 
explicit error estimates for the extrapolation term if the model is known. By impos-
ing a minimum cutoff strike for each wing, this uncertainty of the extrapolation can 
be reduced.

The VIX Index has a time-to-expiration of 30 days. For short expirations, the 
jumps tend to be a more important feature than stochastic volatility. Therefore the 
Merton jump-diffusion model has been chosen as illustrative benchmark.5

The top panel of Fig. 2 shows the dynamics of �Left and �Right as the cutoff strike 
is shifted outwards for multiple expirations. With increasing time to maturity, lev-
eling off happens slower and the grid width requirement widens. Depending on data 
availability, the approach by Lee (2004) might not be sufficient. The model-specific 
approach by Benaim and Friz (2009) may help alleviate some uncertainty of the 
estimators, however one would be left with model risk.

The bottom panel of Fig. 2 shows a histogram of cutoff strikes for both left and 
right wing for SPX Index. Based on this data, taking the intended � = 0.083 into 
consideration, a minimum cutoff strike of k = ±0.05 appears to provide a reasonable 
compromise between data availability and resulting uncertainty for our application. 

5 Other models and parameterizations are provided in Appendix 4.

Fig. 1  Illustration of the extrapolation approach. Simulated volatility smile generated with a Mer-
ton-model with � = {� = 0.3, � = 0.5, � = 0.5, � = 0.1} . Left wing cutoff point kmin = −0.6 with 
�left = 0.0646 , and right wing cutoff point kmax = 0.6 with �right = 0.2185 . Note that the extrapolation 
extends beyond the shown range and the extrapolation is only limited by machine precision
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For the SPX Index, this condition is satisfied for 99.8% of data points in the left 
wing, and for 97.8% of data points in the right wing.6

3.3  Convergence of TELeft and TERight

Note that the integral in Eq. 2 is well-defined. By the substitution rule, the integral 
in Eq. 4 is also well-defined. In particular, we have

and the same is true for the integral from −∞ to −k̃.
By definition of c̃(k, 𝜏, 𝛽) and p̃(k, 𝜏, 𝛽) and the asymptotic behaviour of �k by Lee 

(2004), we can approximate TETotal to any given degree by moving the boundary 

(17)∫
∞

k̃

c(k, 𝜏, 𝜎k) − max(1 − ek, 0)

ek
dk → 0, as k̃ → ∞

Fig. 2  Top panel shows the dynamics of Lee (2004)’s tail parameter � as a function of k for vari-
ous expiration times. Computation based on a Merton jump-diffusion model with parameter set 
�Merton = {� = 0.2, � = −0.15, � = 0.05, � = 0.5} (Calibration parameters for the S &P-500 Index from 
Gatheral (2006, p. 63)). Bottom panel shows the frequency of daily cutoff strikes of the SPX Index with 
a time-to-maturity between 28 and 32 days (approximately � = 0.083 ) between January 1996 and April 
2016. Data extends beyond the shown range, but is hidden for visual clarity. Results for different models 
and parameterizations are provided in Appendix 4

6 The results of the SPX Index analysis for different minimum cutoff strikes are provided in Appendix 5.
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for the approximating proper integral further out, and are limited only by machine 
precision.7

4  Applying the truncation error term to the VIX index

To apply the truncation error to the VIX Index we must either modify the VIX Index 
to remove the extrapolation described above or calculate the actual cutoff points for 
the truncation error. Using the sample data provided by CBOE (2018) we show how 
to practically apply the truncation error.

4.1  Preliminary modifications

By construction, the VIX Index implements a very short extrapolation through the 
definition of �K1 and �KN in Eq. 3. To deal with this modification, we can either 
shift the cutoff-strikes outward, or modify the underlying price weights at the 
endpoints.

4.1.1  Ex‑post approach

When applying our correction term to the VIX Index (and similar indices with this 
protruding extrapolation), the outermost strikes need to be shifted outwards as

4.1.2  Direct approach

A slight modification to Eq. 3 can make the outward shift of the cutoff point super-
fluous. It is then straightforward to include the extrapolation. By redefining �Kmin 
and �Kmax , we can avoid the shift described above.

In the original form, the observation at Ki is weighted with �Ki =
Ki+1−Ki−1

2
 , i.e. 

half of the distance between the surrounding strikes. This implies a constant option 
price for an interval with length �Ki , centered around Ki . At the outermost strikes, 
�Kmin,max is defined as the distance to the adjacent strike, e.g. �Kmin = Kmin+1 − Kmin 
(CBOE, 2018, p.8).

To simplify the extrapolation, we redefine �Kmin,max to represent half of the dis-
tance to the adjacent strike as

(18)K∗
min

= K1 −
K2 − K1

2
and

(19)K∗
max

= KN +
KN − KN−1

2
.

7 Our analysis is implemented in Python 3.9 x64 and appears to be stable to approximately 
k = ±30 , which should suffice for any practical application.
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This modification alleviates the implicit extrapolation, but requires computing the 
center part of the MFIV implementation.

4.2  Step‑by‑step example

We will illustrate the approach using the dateset provided by CBOE (2018, Appen-
dix 1 and 2). The original document provides two option chains, one 25 days from 
expiration (“near term”), a second chain 32 days from expiration (“next term”). We 
will show the calculations based on the near term set, and provide results the next 
term.

We calculate the individual strike contributions as �Ki

K2
i

erTqi based on the modified 
�K values as shown in Table 1. The contributions of the two outermost strikes are 
halved. We compute the implied variance as

Next, we compute single-sided truncation error corrections using Eqs. 13 and 11 and 
add both to the computed variance. Finally, we compute the time-weighed average 
of the near-term and the far-term variance, and annualise to find the final extrapo-
lated index value. Table 2 provides intermediary results.

CBOE (2018) reports a VIX level of 13.69. After the adjustment and compen-
sation for truncation errors on both tails, we find a level of 14.07. In this specific 
example, truncation leads to an underestimation of variance of approximately 0.38 
percentage points.

This adjustment simplifies the extrapolation significantly. The drawback is that it 
cannot be applied to a precomputed or observed volatility index value, and is there-
fore mostly useful where MFIV is to be computed from scratch.

5  Historical analysis

The truncation error is larger when the observed option strike grid is narrower. Fol-
lowing demand of market participants, market makers create new contracts. This 
changes the width of the strike grid over time. In this section, we analyze how the 
availability of observable option prices affects the truncation error over time. In 
periods of high market volatility, the strike grid of observable option prices tends to 
be wide, which implies a low total truncation error. As volatility levels quiet down 

(20)�K∗
min

=
Kmin+1 − Kmin

2
and

(21)�K∗
max

=
Kmax − Kmax−1

2
.

(22)�2 =
2

T

(
∑

i

�Ki

K2
i

erTqi −

(
F

K0

− 1

)2
)
.
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after periods of steady growth, the strike grid shrinks, and the truncation error grows 
larger. In effect, the VIX Index is typically precise in turbulent market phases, but 
underestimates MFIV when it is low. This effect is shown for the S &P 500 Index 
(SPX Index) and the associated VIX Index, as well as the Dow Jones Industrial 
Average (DJIA Index) with its respective volatility index. The Volatility-of-VIX-
Index (VVIX Index) does not exhibit this pattern.

5.1  Dataset and computation

The dataset consists of options traded on the CBOE Options Exchange between Jan-
uary 1st, 1996 and April 29th, 2016, spanning 5118 trading days. It contains daily 
bid and ask prices for 233186 option contract on the SPX Index, the DJIA Index, 
and the VVIX Index. The options have been selected to have a remaining lifetime 

Table 2  Step-by-step results of 
�K-adjustment and truncation 
error correction in reference to 
CBOE (2018)

Near-term Next-term

�2

Reference
0.018463 0.018821

�Reference 0.135878 0.137190
VIXReference 0.136858
�2

Adjusted
0.018479 0.018793

�Adjusted 0.135938 0.137087
VIXAdjusted 0.136797
�Left 0.085886 0.081216
�Right 0.059768 0.062062
TEleft 0.000542 0.000273
TEright 0.000867 0.000695
�2

incl.TE
0.019888 0.019761

�incl.TE 0.141025 0.145074
VIXincl.TE 0.140688

Table 1  Strike contributions to CBOE-VIX computation with standard and adjusted definition of 
�K

min,max

Affected contributions are highlighted. Data is taken from CBOE (2018, Near term data only)

K Put/Call Mid-quote �K Original contribution �K∗ Modified contribution

1370 Put 0.2 5.0 0.0000005328 2.5 0.0000002664
1375 Put 0.125 5.0 0.0000003306 5.0 0.0000003306
1380 Put 0.15 5.0 0.0000003938 5.0 0.0000003938
⋮ ⋮ ⋮

2095 Call 0.2 5.0 0.0000002278 5.0 0.0000002278
2100 Call 0.1 5.0 0.0000003401 5.0 0.0000003401
2125 Call 0.1 25.0 0.0000005536 12.5 0.0000002768
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between 23 and 37 days. The same liquidity requirements as laid out in CBOE 
(2018) are applied. Contracts that have not been traded on a given day (and thus 
have a “stale price”) are excluded for that day. For each day and maturity, once two 
contracts with neighbouring strikes and stale prices are encountered, all contracts 
further away from the money are discarded as well. These constraints leave around 
2.73 million observations, 1.57 million of which for contracts on the SPX Index. 
The option price data is matched to price data of the underlying price and to linearly 
interpolated U.S. treasury rates.

Since the choice of each wings’ � depends on the respective outside strike, we 
require a minimum log-moneyness of ±0.05 . If the strike grid is narrower than this, the 
truncation error might grow unreasonably large. Based on the analysis in Sect. 3.2 and 
the intended time-to-expiration of 30 days, ±0.05 appears to provide sufficient space for 
the � to level out.

For each day with sufficient option price data, the volatility index is calculated in 
two ways. First, we follow the reference implementation by CBOE (2018). Second, the 
truncation error is calculated and added to the strike-adjusted reference implementa-
tion. �Left and �Right are computed for the left and right wing based on the price with the 
lowest (highest) available strike after applying liquidity requirements. This is done for 
each trading day with available and admissible data.

5.2  Analysis

As strike price grid width changes over time, the total truncation error fluctuates. 
From day to day, fluctuations are due to the discrete nature of strikes and the fact 
that stale prices are not considered in the calculation. Using smoothed data reveals 
the structural effect on the volatility index. The truncation error grows in calm mar-
ket phases, and contracts during correction phases. As market volatility spikes dur-
ing a correction, high implied volatility levels and option delta create short-term 
spikes in the truncation error, which level off quickly. The daily log changes of the 
corrected volatility indices exhibit lower standard deviation and higher kurtosis than 
their uncorrected counterparts.

Figure  3 shows the behaviour of the truncation error over time. The top panel 
illustrates the configuration of the option market in relationship to the underlying 
SPX Index over time. Each dot represents the outermost option strike observable 
at each point in time, with the options being subject to the liquidity constraints 
of CBOE (2018). The middle panel compares the VIX Index implementation as 
described in Sect. 2 with the amended implementation as described in Sect. 4.1.2. 
The bottom panel provides the relative error size and its 25-day rolling mean. The 
overall average truncation error is 1.13%.

In broad strokes, four distinct periods can be identified from Fig. 3. From 1996 
to 2004, the SPX Index shows a large correction. The VIX Index is generally above 
20%. The truncation error is fluctuating heavily, but its 25-day rolling mean mostly 
remains below its global average. Between 2004 and 2007 the SPX Index developed 
positively. The VIX Index mostly remaines below 20%. The truncation error fluctu-
ates less, and its rolling mean rises to 2% and remains on this level. From 2007 to 
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late 2012, the multiple large corrections in the SPX Index take place. The VIX Index 
spikes during the corrections, and remains above 20%. In this period, the truncation 
error falls below 1%, where it remains for most of the time. After 2012 until the end 
of the dataset in 2016, the SPX Index develops positively, and the VIX Index again 
remains around or below 20%. The truncation error grows to 2% and remains on this 
relatively high level. In the last few months of the dataset, a slight increase in the 
VIX Index coincides with a drop in the truncation error.

Overall, the truncation error appears negatively related to the VIX Index. In peri-
ods of high volatility, the truncation error fluctuates, but its rolling mean remains 
below the overall average truncation error. As the VIX Index remains on low levels, 
the truncation error is consistently elevated.

Figure 4 shows the results of the historical calculation for the DJIA Index. Strike 
price grids, after applying liquidity requirements, for the DJIA Index tend to be nar-
rower than for the SPX Index. The truncation error has an overall average of 2.72%, 
which is higher than the truncation error of the SPX Index.

Fig. 3  Observable option strikes and the effect on the truncation error over time. Top panel shows the 
S&P 500 Index level and the outermost observable strikes of each respective date. Middle panel shows 
the VIX Index and the VIX Index after adding the correction. Bottom panel shows the total truncation 
error and its 25-day rolling mean
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The observation period can again be divided into four distinct periods. From the 
1996 to 2004, the DJIA Index moves roughly sideways and exhibits elevated levels 
of volatility including several sharp spikes. The truncation error fluctuates strongly 
and its rolling mean fluctuates between 1 and 5%, but remains mostly below its over-
all average. From 2005 to 2007, the DJIA Index exhibits positive performance, and 
volatility levels remain consistently below 20%. The truncation error in this period 
is consistently elevated between 2.5% and 4.3%. In the period from 2008 to 2013, 
coinciding with negative returns, three large volatility spikes can be observed. The 
truncation error spikes during periods of negative market returns, and falls quickly 
below its overall average. From 2013 to 2016, DJIA Index returns are positive, and 
volatility levels are low. The rolling mean of the truncation error remains above its 
overall average for almost the entire time.

This behaviour is consistent with the analysis of the SPX Index. In periods with 
low DJIA VIX Index levels, the truncation error tends to be on a higher level. How-
ever, immediately after strong market corrections with corresponding volatility 

Fig. 4  Observable option strikes and the effect on the truncation error over time. Top panel shows the 
DJIA Index level and the outermost observable strikes, subject to liquidity requirements. Middle panel 
shows the DJIA VIX Index and the DJIA VIX Index after adding the correction. Bottom panel shows the 
total truncation error and its 25-day rolling mean
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spikes, the truncation error spikes as well. This pattern is only very faintly visible in 
the analysis of the SPX Index.

Figure  5 shows the truncation error of the VVIX Index over time, the option-
implied forward volatility of the VIX Index. The VVIX Index, detailed in CBOE 
(2012), applies the same methodology as CBOE (2018) to options on the VIX 
Index. The VIX Index is governed by a return distribution that is fundamentally dif-
ferent from a stock price index, with the most prominent difference being its mean 
reversion property in combination with a positive expected jump size. Furthermore, 
its negative correlation with the SPX Index makes it possible to use options on the 
VIX Index as hedging instruments for SPX Index-related delta risks. Fernandes 
et al. (2014) attempt to model the underlying process of the VIX Index directly and 
confirm both properties.

The dynamics of the VIX Index and the related VVIX Index appear very stable. 
While there are large spikes in the VIX Index during market corrections in the SPX 
Index, the VVIX Index exhibits much higher levels than the VIX Index, and fluctu-
ates much more. The fluctuations are smaller in magnitude than those of the VIX 
Index, thus its range tends to be more localized over time. The individual trajectories 
appear more erratic than in the VIX Index, where spikes can often be linked with 
SPX Index corrections. Spikes in the VVIX Index occur but are less extensive.

Considering the truncation error, the available timeseries can be split into two 
periods. From 2006 to 2010, the truncation error starts on a very high level, but 
quickly shrinks to below the overall average level of 2.04%. The market correction 
in 2009 leads to a spike in the VIX Index, and to a spike in the truncation error lev-
els. In the period after 2010, the truncation error remains mostly below its overall 
average, even as the VIX Index spikes.

The VVIX Index was introduced in 2012 (CBOE, 2012), but options on the VIX 
Index begin to be available from 2006, which extends the period for analysis. In the 
period shortly after introduction of VIX options to the market in 2006, a relatively 
large truncation error hints at a not-yet-developed market for VIX options.

In general, several patterns emerge from the analysis. For both equity indices, low 
levels of their volatility indices coincide with higher truncation errors than average. 
This is consistent for both the SPX Index and the DJIA Index, as well as over time. 
A possible explanation for this is that the width of the strike price grid with suffi-
cient liquidity shrinks as volatility contracts. This implies that options are becoming 
cheaper and market participants can afford to purchase protection with higher delta. 
Another pattern which is consistent for both equity indices is that the truncation 
error sharply increases during market corrections. This can be explained by the spot 
price moving beyond the liquid strike grid, which creates large single-sided trunca-
tion errors on the left side. The truncation error of the VIX Index behaves com-
pletely different. This is fundamentally caused by the different stochastic processes 
that rule the underlying dynamics.
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6  Conclusion

This paper examines the methodology behind the VIX Index and finds that it structur-
ally underestimates MFIV because it ignores the unobservable tails of the volatility 
surface. Insights by Lee (2004) into the behaviour of the volatility surface at extreme 
strikes enable us to derive a compensation term that can correct the structural under-
estimation in the VIX Index. Historical analysis shows that the underestimation due 
to truncation fluctuates over time, as option trading activity in the tails varies.

Our approach does not require any assumptions about the underlying process, 
beyond those laid out by Lee (2004). The estimation of the extrapolation parameter 
� for each tail does however add an additional layer of uncertainty to the calculation. 
It is ultimately the shape of the volatility smile which determines the point where 
the �-parameters stabilize. Therefore, underlying dynamics and data availability 
must both be considered carefully when choosing a minimum strike grid width. It 
is straightforward to extend the suggested approach to incorporate specific model 
assumptions in scenarios with little available data or long maturities.

Fig. 5  Observable option strikes and the effect on the truncation error over time. Top panel shows the 
VIX Index level and the outermost observable strikes, subject to liquidity requirements. Middle panel 
shows the VVIX Index and the VVIX Index after adding the correction. Bottom panel shows the total 
truncation error and its 25-day rolling mean
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Analysis of historical truncation errors has revealed consistent patterns, where 
the truncation error grows in calm market phases. This implies that volatility indices 
underestimate forward volatility in calm market phases.

Analysing risk aversion in the market should account for these patterns, as risk 
appetite of market participants might be overestimated otherwise. The analysis of 
the term structure of variance can also be improved by this approach. Option chains 
tend do become less liquid with longer expirations, implying a possible systematic 
downward bias. The behaviour of the extrapolation factors �Left and �Right as time-to-
maturity is increased must therefore be carefully considered.

VIX-like single-stock indices, such as introduced by CBOE (2011), can be based 
on underlyings with significantly less option trading activity. Compensating for 
this makes MFIV-estimates comparable between indices and stocks, independently 
of market conditions. The different market conditions, especially in the single-
stock option market, also require further investigation. As strike grid width can be 
expected to be narrower, the validity of asymptotic extrapolation on heavily trun-
cated volatility surfaces should be examined closely.

Appendix 1: Calculation of the VIX index

CBOE (2018) lays out the methodology of the VIX Index in detail. It fundamentally 
consists of the following steps: 

1. The two maturities closest to the 30 days-to-expiration mark are selected and all 
relevant options are chosen.

2. Of those options, options with zero-bids are removed; If two options with adjacent 
strikes have zero-bids, all options further from the money are removed as well.

3. The MFIV is computed for both maturities.
4. The two resulting volatility estimates are linearly interpolated to match the desired 

time-to-expiration of 30 days.

Appendix 2: MFIV in terms of log‑forward moneyness

We begin with the definition by Britten-Jones and Neuberger (2000), Eq. 2 as

By definition, we have

(23)𝔼
ℚ

0

[

∫
T

0

(
dFt

Ft

)2
]
= 2∫

∞

0

C(K, �, �K) − max(F0 − K, 0)

K2
dK.

(24)k = log

(
K

F0

)
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and thus �K = �k to shorten notation.
The price of an option in log-forward moneyness is quoted in relative terms, thus

Substitute and simplify to

Appendix 3: Derivation of the extrapolated Black‑Scholes call price

In the standard Black-Scholes model, the price of a call option is given by

where � is the normal cumulative distribution function (CDF).
By Lee (2004), as k ⟶ ±∞ , �BSIV ⟶

√
�

�
|k| , where � ∈ [0, 2] being specific 

to either the left or right wing. To extrapolate c in the tails, compute � from the out-
ermost option price, then substitute � to get the price of a far-out-of-the-money call 
option in line with no-arbitrage limits as

(25)⇔ K = F0e
k

(26)C(K, �, �K) = F0c(k, �, �k).

(27)MFIV = 2∫
∞

−∞

F0c(k, �, �k) − max(F0 − F0e
k, 0)

(F0e
k)2

F0e
kdk

(28)= 2∫
∞

−∞

c(k, �, �k) − max(1 − ek, 0)

ek
dk.

(29)c(k, �, �) = � (d1(k, �, �)) − ek� (d2(k, �, �)),

(30)d1(k, �, �) = −
k

�
√
�
+

1

2
�
√
�, and

(31)d2(k, �, �) = d1(k, �, �) − �
√
�,

(32)c̃(k, 𝜏, 𝛽) = c

(
k, 𝜏,

√
𝛽

𝜏
|k|

)

(33)= 𝛹 (d̃1(k, 𝜏)) − ek𝛹 (d̃2(k, 𝜏)),

(34)d̃1(k, 𝜏, 𝛽) = d1

(
k, 𝜏,

√
𝛽

𝜏
|k|

)
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Repeat for the price of a put option.

Appendix 4: Dynamics of Lee (2004)’s tail parameter

Figure 6 shows the �-curves for six different models to illustrate the general stabil-
ity of the tail parameter dynamics. With short time-to-expiration, the tail parameters 
level out quickly. For longer time-to-expiration the specific model properties and 
parameters become more important.

(35)= −
k

√
��k�

+
1

2

√
��k�, and

(36)d̃2(k, 𝜏, 𝛽) = d2

(
k, 𝜏,

√
𝛽

𝜏
|k|

)

(37)= d̃1(k, 𝜏, 𝛽) −
√
𝛽�k�.

Fig. 6  �-curves in comparison. The top row shows the results for the Merton-model with 
�Merton1 = {� = 0.2, � = 0.5, � = 0.5, � = 0.02} and �Merton2 = {� = 0.2, � = 0.3, � = 0.7, � = 0.04} . The middle row shows 
the results for the Heston-model with 𝛺Heston1 = {v0 = 0.0225, v̄ = 0.0225, 𝜅 = 3, 𝜂 = 0.25, 𝜌 = 0} and 
𝛺Heston2 = {v0 = 0.09, v̄ = 0.09, 𝜅 = 3, 𝜂 = 0.25, 𝜌 = 0} . The bottom row shows the results for the Stochas-
tic Volatility with Jumps (SVJ)-model with �Svj1 = {�Merton1,�Heston1} and �Svj2 = {�Merton2,�Heston2}
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Appendix 5: Truncation error under different cutoff strikes

Figure 7 provides the bottom plot of Fig. 3 for the minimum cutoff strikes ±0.05 , 
±0.075 , and ±0.1 . While there are some visible differences, the general result 
appears to hold.

Fig. 7  Comparison of truncation error for the minimum cutoff strikes ±0.05 , ±0.075 , and ±0.1
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