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Abstract
Self-supervised learning has demonstrated state-of-the-art performance on various anomaly detection tasks. Learning effective
representations by solving a supervised pretext task with pseudo-labels generated from unlabeled data provides a promising
concept for industrial downstream tasks such as process monitoring. In this paper, we present SSMSPC a novel approach
for multivariate statistical in-process control (MSPC) based on self-supervised learning. Our motivation for SSMSPC is
to leverage the potential of unsupervised representation learning by incorporating self-supervised learning into the general
statistical process control (SPC) framework to develop a holistic approach for the detection and localization of anomalous
process behavior in discrete manufacturing processes. We propose a pretext task called Location + Transformation prediction,
where the objective is to classify both, the type and the location of a randomly applied augmentation on a given time
series input. In the downstream task, we follow the one-class classification setting and apply the Hotelling’s T 2 statistic
on the learned representations. We further propose an extension to the control chart view that combines metadata with the
learned representations to visualize the anomalous time steps in the process data which supports a machine operator in the
root cause analysis. We evaluate the effectiveness of SSMSPC with two real-world CNC-milling datasets and show that it
outperforms state-of-the-art anomaly detection approaches, achieving 100% and 99.6% AUROC, respectively. Lastly, we
deploy SSMSPC at a CNC-milling machine to demonstrate its practical applicability when used as a process monitoring tool
in a running process.

Keywords Self-supervised learning · MSPC · Anomaly Detection · Discrete Manufacturing

Introduction

SPC is a well-known concept to monitor the condition
of a process over time with the objective of detecting any
anomalous process behavior that affects the performance of
a process (Ferrer, 2007; Kourti & MacGregor, 1996; Zhang
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et al., 2015). Within the discrete manufacturing domain, the
practical application of SPC is typically based on univariate
measurements of predefined quality characteristics of man-
ufactured parts that are sampled in equidistant time intervals
from the process (Montgomery, 2009). Literature agrees that
this univariate post-process SPC-scheme is outdated, since it
ignores the large amount of available process data in today’s
data-rich manufacturing environments (Ferrer, 2014; Kourti
& MacGregor, 1996; MacGregor, 1997; Woodall, 2017).
Thus, in recent years, researchers in discrete manufactur-
ing encouraged to shift this paradigm and transcend from
univariate post-process SPC to MSPC by using sensor data
collected from the machining process that are analyzed with
machine learning (ML) methods to evaluate the process con-
dition (Biegel et al., 2022a, 2022b; Li et al., 2020; Qiu &
Xie, 2021). Figure 1 visualizes this paradigm-shift.
The general SPC framework consists of two distinct phases.
Phase I represents the offline monitoring phase, where the
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Fig. 1 Paradigm-shift in SPC. a Univariate post-process SPC: Univari-
ate measurements of predefined quality characteristics, i.e., quality data
of manufactured parts are sampled in equidistant time intervals from the
process to evaluate the process condition. bMSPC: Multivariate sensor

signals, i.e., process data, are sampled continuously from the process
and are analyzed with ML-based methods to evaluate the process con-
dition

control limits of the process are determined, based on histor-
ical normal process condition data. Phase II is the actual
process monitoring phase, where new samples are drawn
from the process and compared to the control limits to
assess the process condition (Grasso et al., 2015; Qiu &
Xie, 2021; Woodall, 2000; Woodall et al., 2004; Woodall &
Montgomery, 1999). Fromananomaly detection perspective,
the SPC framework essentially describes a semi-supervised
anomaly detection problem (Grasso et al., 2015; Wu et al.,
2021; Xie & Peihua, 2022). Semi-supervised anomaly detec-
tion assumes that the training data incorporate only normal
samples. The task is to model the normal behavior of the
data and flag samples that strongly deviate from this state as
anomalies (Chandola et al., 2009; Gu et al., 2019; Kumagai
et al., 2019; Ruff et al., 2020; Shen et al., 2021; Tax & Duin,
2004; Ye et al., 2021). Due to this analogy, we treat MSPC
in general and SSMSPC in particular as a semi-supervised
anomaly detection problem.
It is worth noting that some researchers refer to the semi-
supervised anomaly detection problem as unsupervised
anomalydetection, see, e.g.,Bergmannet al. (2019),Dehaene
et al. (2020), and Zhang et al. (2019). However, unsupervised
anomaly detection typically refers to a problem setting in
which most but not all data in the training set are assumed to

belong to the normal class (Bergman & Hoshen, 2020; Dai
& Chen, 2022; Goyal et al., 2020; Pang et al., 2021).
Research in anomaly detection is extensive, with many
papers being published in recent years that focus on both
shallow learning and deep learning approaches, see, e.g.,
Chalapathy and Chawla (2019), Chandola et al. (2009),
Gupta et al. (2014), and Pang et al. (2021) for excellent
reviews. Ruff et al. (2021), developed a unifying view for
shallow and deep anomaly detection approaches in which
they identify four main categories to which these methods
can be assigned: (1) one-class classification, (2) probabilis-
tic models, (3) reconstruction models and (4) distance-based
methods.
Recently, anomaly detection methods that rely on self-
supervised learning have shown outstanding performance on
various benchmark tasks. Self-supervised learning is a form
of unsupervised learning which aims to learn effective repre-
sentations for real-world downstream tasks from unlabeled
data by solving a supervised pretext task with automatically
generated pseudo-labels, e.g., solving jigsaw puzzles or pre-
dicting image rotations (Doersch et al., 2015; Gidaris et al.,
2018; Jing & Tian, 2020; Noroozi & Favaro, 2016; Noroozi
et al., 2018). Anomaly detection methods based on self-
supervised learning derive their anomaly score either directly
from the pretext task or by using the learned representations
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in the downstream anomaly detection task (Qiu et al., 2021;
Sohn et al., 2021). Thus, defining suitable pretext tasks is a
vital component in self-supervised learning approaches (Li
et al., 2021).
In this paper, we present SSMSPC, a novel approach for
MSPC based on self-supervised learning to detect and local-
ize anomalous process behavior in discrete manufacturing
processes. We propose a pretext task that we refer to as
Location + Transformation prediction. Given a time series
input that has been augmented by one of k predefined aug-
mentation functions in one of p equally sized windows, the
objective in this pretext task is to classify both, the augmen-
tation and the corresponding window in a multi-task fashion.
In the downstream task, we follow the conventional one-class
classification setting and compute the Hotelling’s T 2 statistic
as the anomaly score, based on the learned representations
of the pretext task. The control limits are fitted with Kernel
Density Estimation (KDE). In addition to that, we propose an
extension to the traditional control chart view that combines
metadata with the learned representations to (1) segment the
process data into the individual process steps and (2) high-
light the anomalous time steps, which supports a machine
operator in the root cause analysis.
To summarize, the contribution of this paper is threefold:

• We propose SSMSPC, a novel approach for MSPC
based on self-supervised learning to detect and localize
anomalous process behavior in discrete manufacturing
processes.

• We present a pretext task called Location + Transfor-
mation prediction for learning effective representations,
where the objective is to classify both, the type and the
location of the augmentation based on a given randomly
augmented time series input.

• We introduce an extension to the conventional control
chart view to facilitate the identification of the root cause
by segmenting a raw time series signal into the individ-
ual process steps using metadata and highlighting the
anomalous components.

The remainder of this paper is structured as follows: “Related
work” section presents the related work with respect to
recent developments in self-supervised anomaly detection
and applications of in-process monitoring in continuous pro-
cesses aswell as discretemanufacturing processes. “Problem
statement” section provides a comprehensive description of
the general problem statement that we consider for the appli-
cation of SSMSPC. In “SSMSPC” section, we introduce the
individual components of SSMSPC. This includes a detailed
explanation of the applied framework, the proposed pretext
task, the subsequent downstream task and the control chart
extension. “Experiments” section presents the experiments
based on two real-world CNC-milling datasets. We compare

SSMSPC with state-of-the-art anomaly detection baselines
and conduct a comprehensive ablation study. Our contri-
bution ends with the conclusion and an outlook for future
research.

Related work

Self-supervised anomaly detection

The amount of research related to self-supervised anomaly
detection has grown rapidly over recent years. Golan and
El-Yaniv (2018) presentedGeometricTransformations (Geo-
Trans) for anomalydetection in images.The authors designed
a pretext task, where a multiclass neural classifier is trained
to discriminate between geometric transformations that have
been applied to normal images. The detection of anomalous
images is accomplished by evaluating the softmax activa-
tions of the model when transformed images are used as an
input. In a paper by Hendrycks et al. (2019), the authors
combine rotation prediction (Gidaris et al., 2018) with geo-
metric transformation prediction in their pretext task and are
able to outperform a purely supervised approach based on
outlier exposure (Hendrycks et al., 2019) to detect anoma-
lies in images. Bergman andHoshen (2020) presentGOAD, a
self-supervised anomaly detection approach for general data,
i.e., images, tabular data etc. They extend the class of trans-
formation functions in the pretext task to include random
affine transformations to generalize to non-image data. Tack
et al. (2020) propose contrasting shifted instances (CSI),
which is based on the conventional contrastive learning
scheme for learning visual representations. They introduce
a new training method, in which a given sample is con-
trasted with distributionally-shifted augmentations of itself
as well as other instances. By incorporating this into a new
detection score, they achieve strong performance on state-
of-the-art image anomaly detection tasks. Shen et al. (2020)
propose THOC, a temporal hierarchical one-class network
for time series anomaly detection. The authors use a dilated
recurrent neural network with skip connections, and apply
multiple hyperspheres obtained from a hierarchical cluster-
ing process to develop their one-class classification objective.
They incorporate self-supervision by using a pretext task for
multi-step-ahead prediction. Qiu et al. (2021) propose neu-
ral transformation learning for anomaly detection (NeuTraL
AD) for data types beyond images. Their approach consists of
a fixed set of learnable transformations and an encoder, that
are both trained jointly on a deterministic contrastive loss
(DCL) that is also used to score new samples at test time.
Sohn et al. (2021) present a two-stage framework for deep
one-class classification. They learn self-supervised represen-
tations from one-class data and then build a conventional
one-class classifier on top of the learned representations.
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The authors present a thorough analysis of different self-
supervised representation learning algorithms under their
proposed framework. Li et al. (2021) introduce CutPaste,
a simple augmentation strategy that cuts an image patch and
pastes it at a random location. Their pretext task involves
detecting whether an image has been augmented with Cut-
Paste. They follow the two-stage framework proposed by
Sohn et al. (2021). Fu andXue (2022) introduceMAD, a self-
supervised learning task for time series anomaly detection.
The objective of their pretext task is to predict the values of
randomly masked samples of a time series input. In a paper
by Shenkar et al. (2022), the authors present a novel con-
trastive learning approach for anomaly detection in tabular
data. Given a data samplewithmasked features, the proposed
learning approach is based on the assumption that the remain-
ing features can be used to identify the masked ones.Wang et
al. (2023) proposeCOCA, a negative-sample-free contrastive
one-class anomaly detectionmethod for time series data. The
authors apply jittering and scaling augmentations to expand
the number of training samples. They consider the represen-
tation in the latent space and the reconstructed representation
of a Seq2Seq model as positive pairs.

In-process monitoring applications

Continuous processes

Process monitoring based on MSPC and ML has seen wide
application in industrial processes. Most of these applica-
tions originated in the context of continuous processes, such
as chemical, petrochemical or polymer processes. The most
basic approaches rely on Hotelling’s T 2 and Squared Pre-
diction Error (SPE) monitoring statistics that are computed
based on Principal Component Analysis (PCA) or Partial
Least Squares (PLS) (Ge & Song, 2013; Qin, 2003, 2012;
Wang et al., 2018). Throughout the years, many shallow
learning approaches have been presented and extensively
reviewed, see, e.g., Yin et al. (2014), Alauddin et al. (2018),
and Qin and Chiang (2019). Recently, research with respect
to deep learning applications has been very active, with
numerous articles being published every year (Yu & Zhang,
2023).
Yu et al. (2021) use a convolutional long short-term mem-
ory autoencoder (CLSTM-AE) for process monitoring and
compute Hotelling’s T 2 and SPE monitoring statistics in the
latent space and residual space, respectively. They validate
their approach using two industrial benchmark processes,
namely the Tenessee-Eastman process (TEP) and the contin-
uous stirred tank reactor (CSTR) and find it to outperform
conventional approaches such as PCA and LSTM-AE. In
another paper by Yu and Zhang (2020), the authors propose
a manifold regularized stacked AE (MRSAE) that relies on
Hotelling’s T 2 and SPE as monitoring statistics. Their sug-

gested approach outperforms other deep learning approaches
on the TEP and the Fed-Batch fermentation penicillin pro-
cess (FBFP) benchmark. In a paper by Cheng et al. (2019),
the authors present a novel monitoring approach based on
a variational recurrent AE (VRAE). They use the negative
variational scores as the monitoring statistic and fit the con-
trol limit with KDE. The approach is validated using the
TEP. Kong and Yan (2020) introduce the inner product-
based stacked AE (IPSAE), which adds the inner product
between the outputs of the neurons to the loss function for
regularization purposes. They compute monitoring statis-
tics in the feature space and the residual space and fit the
control limit via KDE. For evaluation purposes, the TEP
process is used and compared to PCA and stacked AE. In
Tang et al. (2020), the authors combine Gaussian mixture
models with a variational AE to monitor nonlinear pro-
cesses with multiple operating modes. They construct latent
variable and reconstruction variable indices as monitoring
statistics. The authors validate their approach on the TEP
and a hot strip mill process. Zhang et al. (2021) introduce
a hybrid deep learning model based on a 1D-CNN and a
stacked denoising AE. They demonstrate the effectiveness
of their approach using the TEP, FBFP and a real-world
industrial process for conveyor belts. Li et al. (2022) present
a slow feature analysis-aided AE (SFA-AE) which lever-
ages the extracted high-level features by the AE to learn
deep slow variation patterns. With these patterns, they com-
pute monitoring statistics based on Hotelling’s T 2 and SPE.
In addition, they incorporate a self-attention mechanism to
identify the anomalous process variables in a contribution
plot. Liu et al. (2022) introduce a novel stacked multiman-
ifold AE (S-MMAE) to predict and monitor key quality
variables in industrial processes. The authors validate their
approach using a real-world hydrocracking process. In Ai
et al. (2023), the authors present KD-SCL, a novel indus-
trial process monitoring framework based on knowledge
distillation and contrastive learning. They rely on mem-
ory queue-based negative sample augmentation and hard
negative sampling mechanisms to support the selection of
negative samples for contrastive learning. The approach is
validated using data from a lead-zinc flotation plant. Lu et al.
(2023) introduce a cascaded bagging-PCA and CNN classifi-
cation network. They define a self-supervised pretext task by
trying to discriminate between the reconstructions of bagged
and conventional PCA. The approach is validated using the
TEP. Li et al. (2023) propose a self-supervised learning
framework based on multisource heterogeneous contrastive
learning. They employ a two-stage framework, in which the
self-supervised feature learning phase is followed by a super-
vised fine-tuning step. The authors show the effectiveness of
their approach using data collected from a heavy-plate pro-
duction process.
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Discrete manufacturing processes

Regarding processmonitoring in the context of discreteman-
ufacturing processes, most of the existing research focuses
on shallow or deep anomaly detection approaches that rely
on some kind of reconstruction-based method, such as the
AE. Biegel et al. (2022b) propose a novel approach that
uses text data from machine operators to efficiently label
the normal process condition data retrieved from a real-
world CNC-milling process. Based on these data, they fit
a simple PCA-based model and monitor the process with
Hotelling’s T 2 and Squared Prediction Error (SPE) con-
trol charts. In another paper by Biegel et al. (2022a), the
authors investigate the application of deep AE-based mon-
itoring approaches and experiment with the reconstruction
error and latent representation of the input data to compute
Hotelling’s T 2 andSPEmonitoring statistics. They use a real-
world sheet metal forming process for their evaluation. In
Lindemann et al. (2019), the authors present two data-driven
self-learning approaches relying on k-means and LSTM-AE
that are used to detect anomalies within a massive forming
process. Lindemann et al. (2020) introduce a novel approach
for anomaly detection in discrete manufacturing processes
based on LSTM-AE that is evaluated on a multi-step forg-
ing process. Proteau et al. (2020) use a variational AE to
monitor the condition of a CNC-milling process from the
aerospace industry. Hahn and Mechefske (2021) present a
disentangled variational AE with a temporal CNN to mon-
itor tool wear in a self-supervised manner. They validate
their approach using data from a CNC-milling process of
small ball-valves. The authors treat the general AE scheme
as a self-supervised learning objective. Ahmad et al. (2020)
develop a hybrid model based on deep learning and SPC to
monitor manufacturing processes in the presence of image
or video data. They apply a fast region-based CNN to derive
statistical features that are then plotted in an exponentially
weighted moving average (EWMA) control chart. However,
the authors validate their approach using only a simulated
video. Lorenti et al. (2022) present CUAD-Mo, an approach
for anomaly detection in machine operations that is based
on Isolation Forest (IF) (Liu et al., 2008). The approach is
validated in a CNC-milling process. Oshida et al. (2023) pro-
pose a stacked LSTM encoder-decoder model for anomaly
detection. Their approach is evaluated on a real-world turning
process for Inconel 718 to detect tool wear based on acoustic
emission signals. In Sun et al. (2023), the authors introduce
an AE-based semi-supervised anomaly detection method for
cutting tools in machining processes. They validate the pro-
posed method on an experimental and a public cutting tool
wear dataset.
The related work presented here demonstrates that the incor-
poration of self-supervised anomaly detection methods in
process monitoring schemes for both continuous processes

and discrete manufacturing processes is still rare and has not
yet gained momentum. However, we expect that this line of
research is going to grow rapidly in the near future.

Problem statement

In this paper, we address the semi-supervised anomaly
detection problem in the context of discrete manufacturing
processes. Specifically, we consider the problem of detect-
ing and localizing anomalous process behavior using an ML
model trained exclusively on data that correspond to a nor-
mal process condition. The reason for restricting ourselves
to this problem setting is twofold: First, as pointed out in
“Introduction” section, the assumptions made in the general
SPC framework correspond to a semi-supervised anomaly
detection problem. Second, especially in discrete manufac-
turing, anomalies typically account for rare data instances
while normal data are easier to obtain and generally repre-
sent the majority of available data (Chalapathy & Chawla,
2019; Pang et al., 2021).
When we speak of a discrete manufacturing process, we
assume a machining process in which, (1) high-frequency
process data, e.g., vibrations, and cutting forces are recorded
throughout the processing cycle of a part in the form of a
multivariate time series and (2) the process data are associ-
ated with the final quality characteristics of the produced
part. Here, the second condition is of crucial importance
to ensure that the monitoring scheme is in alignment with
the economic objective of the process, which is to produce
parts that meet the quality specifications. Thus, if an anoma-
lous process condition is signaled, it should correspond to an
increased likelihood of having produced a part that is out of
specification.
With the preceding explanations, we can formalize the prob-
lem statement as follows: Let D ⊂ R

n×m be the set of all
possible process data of a machining process, where n cor-
responds to the number of time steps in a processing cycle
and m refers to the number of features, i.e., sensors used to
record the process data. Each element x ∈ D thus represents
a manufactured part in the form of a multivariate time series.
Let further X ⊂ D represent the set of all normal process
condition data.
Our overall objective is to provide a machine operator with
the informationwhether the process datax for a producedpart
correspond to a normal process condition. To achieve this,
we wish to learn a mapping h : D → R, where larger values
of h(x) indicate an increased probability that x /∈ X , i.e., x
is likely to represent an anomalous process condition. Based
on h, we require a threshold mapping bucl : R → {0, 1} such
that
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Fig. 2 Problem statement. We address the problem of anomaly detec-
tion and localization in the context of discrete manufacturing processes.
a An ML model is trained on l normal process data {x1, . . . , xl } ⊂ X ,
with xi ∈ R

n×m to learn the mappings h and bucl. This corresponds to
phase I in the SPC framework. b The trained model is used to monitor

new samples from the process. The anomaly scores h(x) are plotted in
a control chart. If an anomalous process condition has been detected,
i.e., (bucl ◦ h)(x) = 1, the model should locate the anomalous process
condition in the time series to support a machine operator in the root
cause analysis. This corresponds to phase II in the SPC framework

(bucl ◦ h)(x) =
{
1, if h(x) > ucl
0, if h(x) ≤ ucl

}
, (1)

where ucl is the corresponding threshold, i.e., the upper
control limit. Thus, process samples exceeding the ucl are
flagged as anomalies.
Once an anomalous process condition has been detected, the
MLmodel shall support a machine operator in the root cause
analysis by locating the anomalous process condition in the
time series. See Fig. 2 for a visualization of the problem
statement considered in this work.
Note that SSMSPC can be applied to any discrete manu-
facturing process that is in accordance with this problem
statement.

SSMSPC

In this section, we present SSMSPC. “Framework” sec-
tion highlights the key components of the framework that
constitutes our approach. “Pretext task” section dives into
the details of the proposed self-supervised pretext task.
“Downstream task” section explains how the learned rep-
resentations of the pretext task are used to build a one-
class classifier based on Hotelling’s T 2 statistic (Hotelling,
1947) in the corresponding downstream task. Finally, in

“Control chart extension” section, we demonstrate how the
results of our approach can be visually interpreted by a
machine operator to help identify the root cause for an
anomalous process condition by highlighting the respective
anomalous sections in the raw time series signal.

Framework

We follow the two-stage framework introduced by Sohn et
al. (2021). The rationale for relying on this two-stage frame-
work is twofold. First, self-supervised learning is inherently
a two-stage process, where the first stage corresponds to
solving the pretext task and the second stage embodies the
downstream task (Jing & Tian, 2020; Noroozi et al., 2018).
This framework thus represents a natural choice for self-
supervised anomaly detection methods. Second, the selected
framework has demonstrated its effectiveness over end-to-
end approaches in previous works, see, e.g., Li et al. (2021).
Figure 3 illustrates the aforementioned framework.
In the first stage, self-supervised learning is used to learn
meaningful representations from normal process condition
data with the help of a predefined pretext task. An encoder
network f is used to transform the input data x to a latent
representation f (x), that are then fed through a prediction
head g, which is usually represented by a simple multi-layer
perceptron (MLP) with a softmax output for the respective
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Fig. 3 Two-stage framework
based on Sohn et al. (2021). a In
the first stage, the model has to
solve a predefined pretext task
to learn effective
representations. b The second
stage embodies the conventional
one-class classification setting
based on learned representations
of the pretext task

Fig. 4 Pretext task proposed in SSMSPC. a Normal process condition
data are augmented in a randomly selected window, with a set of k pre-
defined augmentations T1, . . . , Tk . This increases the dataset size by a
factor of k. b CWT is applied to the augmented dataset to compute the

scalogram representation. c The scalograms are used as an input for a
LeNet-type encoder network that has two prediction heads attached to
it. Given a scalogram as input, the task is to correctly predict the type
and the location of the applied augmentation

classification task. The model is trained end-to-end on the
respective pretext task using backpropagation.
The second stage corresponds to the downstream task where
a one-class classifier is constructed on top of the learned rep-
resentations of the pretext task. For this stage, it is common
practice to discard the prediction head g, and only use the
pretrained encoder network f as a feature extractor, since it
has been shown that the learned representations of the layer
right before g provide better representations (Ermolov et al.,
2021; Chen et al., 2020).
It is worth mentioning that with respect to the general SPC
framework both, pretext task and downstream task are incor-
porated in the offline monitoring phase, i.e., phase I, as they
are used to fit the control limits for subsequent phase II mon-
itoring.

Pretext task

In this work, we propose a pretext task that we refer to
as Location + Transformation prediction, which is specif-
ically designed to be applied in the setting described in
“Problem statement” section.
The core intuition behind our pretext task is (1) to learnwhich
augmentationwas applied to a given time series input, and (2)
to learn where the augmentation occurred in the time series
by predicting the respective augmentation window. By train-
ing a model with this pretext task, we show that the learned
representations are highly effective for monitoring discrete
manufacturing processes. Figure 4 provides a visualization
of the individual components that constitute the proposed
Location + Transformation prediction pretext task.
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Assuming a training set X train ⊂ X we apply a set T :=
{T1, . . . , Tk | Ti : R

n×m → R
n×m} of k different aug-

mentation functions. Each Ti augments the entire set of
available normal process condition data X train. For every
x ∈ X train the augmentation is applied in a randomly chosen
windowWj for allm sensors using a set of p predefined win-
dows {W1, . . . ,Wp}. The augmented time series data Ti (x)
are consequently transformed using the continuous wavelet
transformation (CWT) to retrieve the respective scalogram
representation CWT ◦ Ti (x) ∈ R

s×n×m , where s represents
the number of different scales of the chosen wavelet. Hence,
by transforming the normal process condition data in this
way, we retrieve a representation that can be interpreted as an
m-channel image. Following this routine, the original dataset
size is increased by a factor of k. Algorithm 1 summarizes
the general augmentation procedure.
With the completion of the data preparation, the augmented
dataset is used as an input for the subsequent Location +
Transformation prediction task. The scalograms are fed into
a simple LeNet-type encoder network f (Lecun et al., 1998)
on which two prediction heads gtrans and gloc are attached for
Transformation prediction and Location prediction, respec-
tively. Theprediction heads are represented by twoequivalent
MLPs differing only in the size of the softmax output layer.
Here, gtrans outputs a softmax layer of size k to predict the
applied augmentation, whereas gloc outputs a softmax layer
of size p + 1 to predict the window in which the augmenta-
tion occurred. Note that the output of gloc is p + 1 in order
to account for the case when no augmentation was applied,
and thus no window was chosen.

Algorithm 1 General augmentation procedure
Require: T1, . . . , Tk , X train, p
1: Xaugmented ← {}
2: compute window bounds for p windows
3: for i ∈ {1, . . . , k} do
4: for x ∈ X train do
5: Randomly choose a window Wj
6: Augment x in window Wj with Ti
7: Compute scalogram CWT ◦ Ti (x)
8: Append CWT ◦ Ti (x) to Xaugmented
9: end for
10: end for
11: Shuffle Xaugmented
12: return Xaugmented

In the following, we provide further details for the indi-
vidual components of the proposed pretext task.

Data augmentations

We propose a total of k = 4 augmentations that have been
proven most useful in learning good representations during
our experiments.

Fig. 5 Example of the CutPaste augmentation with p = 5 windows. a
A random-sized segment is cut from a randomly chosen window. b The
segment is pasted to another randomly chosen window

Identity In alignment with other recently proposed research
in the field of self-supervised anomaly detection such as Tack
et al. (2020) andGolan and El-Yaniv (2018) the first augmen-
tation that we propose is simply the identity, i.e., T1(x) = x.
The reason for including the identity function is that this
translates into including the normal process condition data
X train as one of the four classes. Since the model is exposed
to the original data X train during training, it needs to be able
to distinguish the normal process condition from artificial
anomalous data to perform well on the pretext task.
CutPaste For the second augmentation class, we draw inspi-
ration from the work of Li et al. (2021) and as such refer to
it as CutPaste. However, in contrast to the authors that pro-
posed CutPaste to augment images, we transfer the idea of
CutPaste to the time series representation and adapt it for the
application in Location + Transformation prediction.
Figure 5 provides an exemplary illustration of how a time
series is augmented using CutPaste. First, a random cutting
windowWc is chosen from {W1, . . . ,Wp}.Within the bounds
of Wc, two points are randomly selected, marking the start
and end point of the cutting segment. Next, a pasting window
Wj is randomly selected from the entire set of windows. The
cutting segment is then pasted to a random location within
Wj . Note that the described augmentation is done for each
of the m features, i.e., sensors of x. Algorithm 2 provides
further details on how the CutPaste augmentation works.
MeanShift The next augmentation that we found useful to
learn effective representations is referred to as MeanShift.
For each sensor in x, this simple augmentation strategy shifts
a pre-selected time series segment by the mean of the respec-
tive time series. Figure 6 shows how the proposedMeanShift
augmentation works. The first step consists of selecting a
random windowWj from the set of windows {W1, . . . ,Wp}.
Similar to CutPaste, two points are then randomly chosen
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Algorithm 2 CutPaste
Require: X train, p,window bounds b
1: for x ∈ X train do
2: Wc ← sample cut window from U(1, p)
3: bWc

lower, b
Wc
upper ← b[Wc]

4: c1 ← sample from U(bWc
lower, b

Wc
upper)

5: c2 ← sample from U(bWc
lower, b

Wc
upper)

6: ensure c2 > c1
7: cut_snippet ← x[c1 : c2]
8: � ← c2 − c1
9: Wj ← sample paste window from U(1, p)

10: b
Wj
lower, b

Wj
upper ← b[Wj ]

11: p1 ← sample from U(b
Wj
lower, b

Wj
upper − �)

12: p2 ← p1 + �

13: x[p1 : p2] ← cut_snippet
14: end for
15: return x

Fig. 6 Example of the MeanShift augmentation with p = 5 windows.
aA random-sized segment is selected from a randomly chosen window.
bThemean is computedwith respect to the whole time series and added
to each point in the segment

within the bounds of Wj that mark the start and end point of
the segment to be augmented. For each sensor, the mean of
the respective time series is then computed and added to the
selected segment inWj . Algorithm 3 summarizes the idea of
the MeanShift augmentation.
MissingSignal The last proposed augmentation is referred
to as MissingSignal and resembles, as the name suggests, a
missing sensor signal. Figure 7 visualizes the MissingSignal
augmentation. The routine for selecting the window and the
respective segment is equivalent to the presented MeanShift
augmentation. However, as opposed to the other presented
augmentations, the selected segment in the time series is
replaced by a constant value that is equal to the first value of
the original segment. Algorithm 4 provides further details on
the proposed MissingSignal augmentation.
It is worthmentioning that the proposedCutPaste,MeanShift
and MissingSignal augmentations were designed to approx-

Algorithm 3MeanShift
Require: X train, p,window bounds b
1: for x ∈ X train do
2: Wj ← sample window from U(1, p)

3: b
Wj
lower, b

Wj
upper ← b[Wj ]

4: c1 ← sample from U(b
Wj
lower, b

Wj
upper)

5: c2 ← sample from U(b
Wj
lower, b

Wj
upper)

6: ensure c2 > c1
7: time_series_mean ← μ(x)
8: x[c1 : c2] ← x[c1 : c2] + time_series_mean
9: end for
10: return x

Fig. 7 Example of the MissingSignal augmentation with p = 5 win-
dows. a A random-sized segment is selected from a randomly chosen
window. b The signal in the segment is replaced by a constant value,
i.e., the first value of the original segment

Algorithm 4MissingSignal
Require: X train, p,window bounds b
1: for x ∈ X train do
2: Wj ← sample window from U(1, p)

3: b
Wj
lower, b

Wj
upper ← b[Wj ]

4: c1 ← sample from U(b
Wj
lower, b

Wj
upper)

5: c2 ← sample from U(b
Wj
lower, b

Wj
upper)

6: ensure c2 > c1
7: constant ← x[c1]
8: x[c1 : c2] ← constant
9: end for
10: return x

imate so-called contextual anomalies, since they represent a
common typeof anomalies present in time series data (Aggar-
wal, 2017; Chandola et al., 2009).
We tested more augmentations than the ones presented here,
especiallywith respect to other anomaly classes, such as point
outliers. However, as we will show in our ablation study in
“Ablation study” section, these augmentations led to a deteri-
oration in performance. Thus, we consider the augmentations
presented here as the basis for SSMSPC. Nevertheless, we
explicitly would like to stress the fact that, depending on the
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scenario at hand, other augmentations might be considered
as a useful addition to the ones presented here.

Continuous wavelet transformation

CWT is a powerful mathematical tool to transform a 1D sig-
nal from the time domain into a 2D representation, also called
scalogram, in the time-frequency domain. This 2D represen-
tation can be interpreted as a single channel image and thus
allows the application of state-of-the-art CNN architectures
to be used with time series data. The CWT of a signal s(t) is
defined as follows:

CWT(s(t); a, τ ) = 1√
a

∫ ∞

−∞
s(t)ψ∗

(
t − τ

a

)
dt, (2)

where a > 0 corresponds to the scaling parameter, τ repre-
sents the translational value andψ∗ is the complex conjugate
of the selected base wavelet, also called mother wavelet.
The mother wavelet is scaled and shifted in time across the
respective signal in order to compute the so-called wavelet
coefficients that represent the similarity between the wavelet
and the respective signal. Depending on the signal at hand,
there are plenty of different types of wavelets that can be
selected as the mother wavelet. A mother wavelet frequently
used is theMorletwavelet developedbyGrossmannandMor-
let (1984).
As opposed to other commonly used techniques for time-
frequency analysis, such asShort-Time-Fourier-Transformation
(STFT), CWT is particularly useful in the analysis of
non-stationary signals like those found inmanufacturing pro-
cesses (Gao & Yan, 2011). The reason for this is that CWT
allows variable window sizes with the help of the scaling
parameter a to analyze different frequency components of a
signal. In recent publications, researchers use CWT due to its
advantages over conventional STFT for process monitoring
applications such as chatter detection, grinding burn recog-
nition, etc. (Hübner et al., 2020; Liao et al., 2021; Tran et al.,
2020; Tran & Lundgren, 2020).
As shown in Fig. 4, we apply the CWT for each feature
of the time series input separately and stack the resulting
scalograms on top of each other to receive a tensor that is then
interpreted as anm-channel image and fed to the LeNet-type
encoder network.

Location + Transformation prediction

LeNet-type encoder network Inspired by Liznerski et al.
(2021), Ruff et al. (2018), and Ruff et al. (2021), we use a
LeNet-type encoder network as the default backbone archi-
tecture for SSMSPC. The main reasons for choosing this
architecture are (1) its simplicity and (2) its low capacity.
Since the amount of available data to monitor discrete man-

ufacturing processes is usually very small compared to other
domains, there is an increased risk of overfitting when using
architectures with higher capacity.
We tested different network architectures in the development
phase of SSMSPC, and found that the LeNet-type encoder
represents a reasonable choice in terms of performance, train-
ing and inference time for the considered problem statement.
It is worth noting that SSMSPC generally allows different
design choices depending on the problem at hand. Thus, if
the capacity of the LeNet-type encoder is too low, it can be
replaced with a superior CNN-based architecture.
Transformation prediction The objective in transformation
prediction is to predict the augmentation Ti ∈ {T1, . . . , Tk}
that has been applied to the time series input. To do so,
we attach an MLP prediction head gtrans to the LeNet-type
encoder f with a softmax output of size k. The loss function
used in transformation prediction is simply the cross-entropy
loss based on the softmax output of the prediction head.

Ltrans = −
∑

i∈{1,...,k}
yi log((gtrans ◦ f ◦ CWT)(x)) (3)

Note that the idea of using a classifier to predict the respective
augmentation is not new, but rather common practice in self-
supervised approaches for anomaly detection, see, e.g., the
works of Li et al. (2021), Tack et al. (2020), and Hendrycks
et al. (2019).
Location prediction Location prediction aims at predicting
the correct location, i.e., the windowWj ∈ {W1, . . . ,Wp} in
which an augmentation occurred. Similar to transformation
prediction, we attach a simpleMLP prediction head gloc with
a softmax output of size p + 1 to the encoder network. The
objective function for this task is again a simple cross-entropy
loss.

Lloc = −
∑

j∈{1,...,p+1}
y j log((gloc ◦ f ◦ CWT)(x)) (4)

Combining the idea of transformation prediction and location
prediction leads to the proposed Location + Transformation
prediction setting. The novelty here is to attach both predic-
tion heads gtrans, gloc to the same encoder network f and train
the network via backpropagation in a multi-task setting. The
loss function for Location + Transformation prediction is just
the linear combination of Ltrans and Lloc.

Lloc+trans = λ1Ltrans + λ2Lloc (5)

where λ1, λ2 are scaling factors. For the sake of simplicity,
we use λ1, λ2 = 1 for the remainder of the paper.
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Fig. 8 Downstream task proposed in SSMSPC. a Normal process con-
dition data are used as an input for b CWT to compute the scalograms.
c The scalograms are fed to the pretrained LeNet-type encoder network
from the pretext task to extract the learned representations. d Based on

the encoded normal process condition data we perform conventional
one-class classification using Hotelling’s T 2. The control limits are fit-
ted with KDE based on the resulting Hotelling’s T 2 values

Downstream task

With the completion of the pretext task, the next step in the
two-stage framework, as depicted in Fig. 3, consists in fitting
a one-class classifier on top of the learned representations of
the pretext task. In SSMSPC, we propose to use Hotelling’s
T 2 for this purpose. Figure 8 illustrates the individual com-
ponents of the downstream task.
As opposed to the pretext task, in which the normal process
condition data are augmented by a set of k different augmen-
tation functions, the downstream task uses only the normal
process condition data, as this is typical for the one-class
classification setting.
Given a process sample x ∈ X train ⊂ X , the multivariate
time series is transformed to the scalogram representation
CWT(x) =: x̃, and then fed through the pretrained LeNet-
type encoder network to retrieve the learned representations
f (̃x). Recall that the prediction heads gtrans and gloc are dis-
carded in this step, since they were only used for the pretext
task. Based on the extracted features, we apply Hotelling’s

T 2, which is defined as

T 2 := ( f (̃x) − µ̂)ᵀ�̂−1( f (̃x) − µ̂) ∈ R, (6)

where µ̂ ∈ R
r×1 and �̂−1 ∈ R

r×r represent the estimated
mean and the inverse of the estimated covariance matrix of
the learned representations f (X̃ train) ∈ R

l×r , respectively.
Consequently, for each x ∈ X train, a single T 2 value is
computed that represents the processing cycle of the cor-
responding part. In order to compute the upper control limit,
we follow the approach taken byBiegel et al. (2022a, 2022b).
First, KDE is used to estimate the probability density func-
tion φ̂T 2 based on the l computed T 2 values

φ̂T 2(T 2) = 1

lh

∑
i

K

(
T 2 − T 2

i

h

)
, (7)

whereh is the bandwidth and K (·) corresponds to the selected
kernel function, in our case aGaussian kernel.Next,we select
a significance valueα and compute the quantile function 	̂−1

T 2
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of the corresponding cumulative distribution function 	̂T 2 of
φ̂T 2 , to retrieve the upper control limit.

	̂−1
T 2 (1 − α) = ucl. (8)

Note that α corresponds to the type I error or false alarm rate.
Varying α translates into an increase or decrease of the type
II error, i.e., the false negative rate. Thus, the specific choice
of α is problem dependent. If there are no specific restrictions
regarding, e.g., the false alarm rate, a possible way is to select
the value for α that maximizes the F1-score on the validation
set. Combining all the components presented so far, we now
have a mapping to provide the anomaly score for a given
time series input x, and a corresponding threshold based on
which the decision will be made whether a sample is flagged
as normal or anomalous. Recall that this corresponds exactly
to the desired mappings h : D → R and bucl : R → {0, 1}
as stated in “Problem statement” section.

Control chart extension

Once a control chart signals an anomalous process condition,
a machine operator needs to determine the root cause of the
anomaly and decide which steps to take next (Qiu & Xie,
2021). However, by using the information provided in a con-
trol chart alone, it is not possible to infer which part of the
process is deemed anomalous and therefore requires a time-
intensive investigation of the process to find the potential
root cause. According to Jackson (1991), a good monitoring
approach needs to provide an answer to the question of what
the problem of the process is if the control chart signals an
anomalous process condition.

In order to accomplish this, it is necessary that the under-
lying model decisions are interpretable, i.e., a mechanism
is required to understand the reasoning behind the decision-
making process of the model (Ruff et al., 2021). When using
time series data, this translates into highlighting the compo-
nents of the multivariate time series that the model considers
anomalous (Abdulaal et al., 2021; Li et al., 2021).
However, with respect to the problem statement considered
in this paper, visualizing anomalies in the raw time series
signal without any additional domain context makes it very
hard for a machine operator to interpret the model decisions
correctly. A machining process usually consists of a set of
q different process modes {M1, . . . , Mq}, where each mode
corresponds to a different process step in the processing cycle
of the part. By collecting additional metadata during the pro-
cessing cycle such as theNumerical Control (NC) lines of the
machine program, it is possible to extract the start point for
each process mode and thus segment the time series accord-
ingly.
In SSMSPC, we suggest augmenting the conventional con-
trol chart perspective by an additional view in which (1) the
anomalous time steps are highlighted and (2) the time series
is segmented into the individual process modes. See Fig. 9
for an exemplary illustration of the extended control chart
view.

Highlighting anomalies

For the purpose of highlighting the anomalous time steps,
we use Gradient-weighted Class Activation Mapping (Grad-
CAM) (Selvaraju et al., 2020), which is a simple and widely
used technique to provide visual explanations for the deci-

Fig. 9 Visualization of the proposed control chart extension in SSM-
SPC. a After processing a part, the control chart signals an anomalous
process condition. b An additional view is displayed in which the mul-
tivariate time series is segmented into the individual process modes

{M1, . . . , Mq } by incorporating metadata provided by the NC lines of
the processing cycle and highlighting the anomalous time steps. Thus,
a machine operator is pointed directly to the process step in which the
model found an anomalous process condition
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sions of CNN-based models. The first step in Grad-CAM
consists of computing the gradients of h(x) with respect to
the feature map activations Aψ ∈ R

u×v of the last convo-
lutional layer of the corresponding LeNet-type encoder and
use global average pooling on these gradients to obtain the
neuron importance weights αψ

αψ = 1

uv

∑
i

∑
j

∂h(x)

∂Aψ
i, j

,∀ψ ∈ {1, . . . , �}. (9)

To retrieve the Grad-CAM heatmapH ∈ R
u×v that contains

the visual explanations, the next step involves the application
of a ReLU on top of the linear combination of the neuron
importance weights αψ and the feature map activations Aψ

H = ReLU

⎛
⎝∑

ψ

αψ Aψ

⎞
⎠ . (10)

In order to obtain the anomalous time steps, we first resize the
Grad-CAMheatmapH to H̃ ∈ R

s×n . Recall that s represents
the number of scales used when applying CWT and n stands
for the number of time steps. Next, we look for a threshold
function bδ : Rs×n → R

s×n such that

bδ(H̃) =
{
H̃i, j , if H̃i, j > δ

0, if H̃i, j ≤ δ

}
∀i, j . (11)

To find the threshold δ, we follow the exact same idea as
demonstrated in the previous section. Thus, we first compute
the probability density function φ̂H̃ using KDE. Selecting a
significance value αH̃ and evaluating the quantile function
at the respective position 	̂−1

H̃ (1 − αH̃), we find the desired

threshold δ. Lastly, we simply sum up the columns of bδ(H̃),
set all nonzero values to 1 and thus retrieve a binary value
for each time step indicating whether it is to be considered
anomalous

1bδ(H̃)i, j>0

(∑
i

bδ(H̃)i, j

)
∀ j ∈ {1, . . . , n}. (12)

Figure 10 visualizes the aforementioned steps.

Experiments

In this section, we compare the performance of SSMSPC
with state-of-the-art anomaly detection baselines using two
real-worldCNC-milling datasets. The experiments have been
conducted on an AMD Ryzen 9 3900X processor with 3.8
GHz, 12 cores and 24 threads using a GeForce RTX 2080
Ti GPU. We use TensorFlow (Abadi et al., 2015) and scikit-
learn (Pedregosa et al., 2011) for implementation purposes.

Fig. 10 Scheme for localizing anomalies via Grad-CAM. a First, we
compute the Grad-CAM heatmap H and b resize it to the initial input
dimension H̃. c Then we apply a threshold function bδ to each value in
H̃. (d) The columns of bδ(H̃) with nonzero values mark the anomalous
time steps

Bosch CNC-milling dataset

The dataset used for the first experiment is the recently
published Bosch CNC-milling dataset (Tnani et al., 2022).
This dataset contains vibration data from 3 different CNC
machines over a three-year period collected with a triaxial
accelerometer using a sampling rate of 2 kHz. The machines
produce different aluminum parts with a total of 15 different
tool operationsOP00 toOP14 that are used on all 3machines.
Here, eachOPcorresponds to adifferent toolwith uniquepro-
cess parameters. For each machine, the respective OP data
are labeled good or bad, indicating whether the data corre-
spond to a normal or an anomalous process condition. Table
1 provides an overview of the dataset structure.
Most of the process steps correspond to drilling operations
of varying length. In addition, it is observable that there is a
strong imbalance in the datasetwith normal process condition
data corresponding to ≈ 96% of the available data, which is
typical for discrete manufacturing processes. The authors of
the dataset note that the process steps have been shuffled
and some are not included in the dataset for confidentiality
purposes. Thus, the order of the process steps as displayed
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Table 1 Overview of the dataset
structure of the Bosch
CNC-milling dataset, adapted
from Tnani et al. (2022)

Process Description Duration (s) Machine 01 Machine 02 Machine 03
∑

Machines
Good Bad Good Bad Good Bad Good Bad

OP00 Step Drill ≈ 132 29 0 26 1 28 0 83 1

OP01 Step Drill ≈ 29 38 2 51 3 47 2 136 7

OP02 Drill ≈ 42 45 1 52 2 51 1 148 4

OP03 Step Drill ≈ 77 27 1 28 1 13 0 68 2

OP04 Step Drill ≈ 64 34 2 29 3 42 2 105 7

OP05 Step Drill ≈ 18 34 4 42 2 38 0 114 6

OP06 Step Drill ≈ 91 19 4 30 0 35 0 84 4

OP07 Step Drill ≈ 24 43 4 52 3 53 3 148 10

OP08 Step Drill ≈ 37 31 3 42 4 39 0 112 7

OP09 Straight Flute ≈ 102 35 1 43 0 35 0 113 1

OP10 Step Drill ≈ 45 29 4 44 2 39 1 112 7

OP11 Step Drill ≈ 59 17 4 31 2 20 0 68 6

OP12 Step Drill ≈ 46 34 3 42 2 42 0 118 5

OP13 T-Slot Cutter ≈ 32 43 0 51 0 48 0 142 0

OP14 Step Drill ≈ 34 27 1 54 2 0 0 81 3

Total 485 34 617 27 530 9 1632 70

in Table 1 does not reflect the actual process flow of the
produced parts (Tnani et al., 2022).
We investigate a setting that is in alignment with the prob-
lem statement formulated in “Problem statement” section.
As a first step, we merge the data of each individual machine
OP-wise and thus act as if the data originate from a single
imaginarymachine, see the last column of Table 1. The ratio-
nale for doing this is to enlarge the amount of available data.
In the next step, we crop the data within each OP to have
exactly the same length. This is done by cutting off all data
points that are exceeding the minimum OP length within the
respective OP class.
The scenario that we address centers around a multimodal
process, i.e., a process that contains more than one OP. Our
objective with this scenario is to demonstrate the practical
applicability of SSMSPC in a real-world setting that is rep-
resentative of a typical discrete manufacturing process. We
concatenate OP01, OP02, OP07 horizontally and cut off all
samples that exceed theminimumnumber of samples of these
three OPs. We decided to select these OPs since concatenat-
ing them results in the largest possible dataset for a process
with three modes. After following the aforementioned steps
we obtain the dataset that forms the basis for this scenario
DS ⊂ R

136084×3, with |DS| = 143. We then split the data
using a train, validation, test split of 60%, 10% and 30%,
respectively. Table 2 displays the number of samples for each
split.

Table 2 Overview of the data split size forDS including the number of
normal and anomalous samples

Split Normal Anomalous Total

Train 85 − 85

Validation 10 5 15

Test 30 13 43

Pretext task: Bosch CNC-milling dataset

As stated in “Pretext task” section, we use the normal pro-
cess condition data for the pretext task and augment them
with the presented Identity, CutPaste, MeanShift and Miss-
ingSignal augmentations using a total of 5 windows. Thus,
the initial train dataset increases by a factor of 4 to a total
of 340 samples. Following this, we apply CWT on the aug-
mented dataset using Morlet wavelets with s = 128 scales.
Then we resize the resulting scalograms down to a size of
128× 512 and apply min-max scaling. Doing this we obtain
the dataset for the pretext taskDPretext

S ⊂ R
128×512×3, where

|DPretext
S | = 340 .

Model architectureRegarding themodel architecture, we use
a LeNet-type encoder network f with two prediction heads
gloc and gtrans attached to it, as shown in Fig. 4c. Given the
small dataset size in this scenario we use a very compact
architecture to prevent overfitting.
The convolutional modules of the LeNet-type encoder net-
work consist of a simple 2D convolutional layer followed by
a batch normalization (Ioffe & Szegedy, 2015) layer, leaky
ReLU activation and a subsequent 2Dmax-pooling layer.We
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apply a total of three convolutional modules using 8×(7×7)
filters for the first module, 16× (7× 7) filters for the second
module and 32 × (7 × 7) for the third. The convolutional
modules are followed by two dense modules consisting of
a dense layer, a batch normalization layer and leaky ReLU
activation, respectively. Here, the first dense layer uses 32
neurons whereas the second uses 16.
The prediction heads are mostly equivalent in their struc-
ture, i.e., each head consists of two dense layers with 16 and
8 neurons, respectively, followed by a batch normalization
layer and leaky ReLU activation. The heads differ only in
the last dense and softmax layer, where gloc uses 6 neurons
and gtrans uses 4 neurons. Table 3 provides further insights
into the different layers used.
Model trainingWe train the model on the proposed Location
+ Transformation pretext task for 20 epochs with a batch
size of 8 and a cosine learning rate schedule (Loshchilov &
Hutter, 2017) with an initial learning rate of 10−4. We use
a leakiness of β = 10−1 for the leaky ReLU activations.
With respect to optimization, we apply the Adam optimizer
(Kingma & Ba, 2015) and use weight decay with λ = 10−3

for regularization.

Downstream task: Bosch CNC-milling dataset

With respect to the subsequent downstream task, we first
apply CWT on each split of DS using the same configura-
tion as in the pretext task. We then resize the scalograms to
128×512 and applymin-max scaling based on the train split.
Doing this, we obtain the required dataset for the downstream
taskDDownstream

S ⊂ R
128×512×3, where |DDownstream

S | = 143.
Recall from “Downstream task” section, that we use the train
split containing only normal process condition data for fitting
the Hotelling’s T 2 one-class classifier.
Model architecture As shown in Fig. 8, we discard the pre-
diction heads gloc and gtrans and keep only the pretrained
encoder f to extract the learned representations using the
output of the last dense layer. We then attach a Hotelling’s
T 2 layer to it. Table 4 shows the model architecture for the
downstream task.
Model training For the one-class classification training
phase, we pass the train data of DDownstream

S through the
frozen encoder network f and fit the required parameters
for Hotelling’s T 2, i.e., µ̂ ∈ R

16×1 and �̂−1 ∈ R
16×16 based

on the learned representations. We then use these parame-
ters to compute the Hotelling’s T 2 values for the train data.
Following this, we fit the upper control limit as described
in “Downstream task” section using a significance value of
α = 0.01, to obtain a low false alarm rate. Thus, we take the
0.99 quantile of φ̂T 2 as the upper control limit. Recall that
this step completes the offline monitoring phase, i.e., phase I
with respect to the conventional SPC framework. All hyper-
parameters, including those for pretext training, are selected

Table 3 Model architecture used for the pretext task

Layer type Output shape Parameters

f Input Layer (None, 128, 512, 3) 0

Conv2D (None, 122, 506, 8) 1184

BatchNorm (None, 122, 506, 8) 32

LeakyReLU (None, 122, 506, 8) 0

MaxPool2D (None, 61, 253, 8) 0

Conv2D (None, 55, 247, 16) 6288

BatchNorm (None, 55, 247, 16) 64

LeakyReLU (None, 55, 247, 16) 0

MaxPool2D (None, 27, 123, 16) 0

Conv2D (None, 21, 117, 32) 25120

BatchNorm (None, 21, 117, 32) 128

LeakyReLU (None, 21, 117, 32) 0

MaxPool2D (None, 10, 58, 32) 0

Flatten (None, 18560) 0

Dense (None, 32) 593952

BatchNorm (None, 32) 128

LeakyReLU (None, 32) 0

Dense (None, 16) 528

BatchNorm (None, 16) 64

LeakyReLU (None, 16) 0

gloc Dense (None, 16) 272

BatchNorm (None, 16) 64

LeakyReLU (None, 16) 0

Dense (None, 8) 136

BatchNorm (None, 8) 32

LeakyReLU (None, 8) 0

Dense (None, 6) 54

Softmax (None, 6) 0

gtrans Dense (None, 16) 272

BatchNorm (None, 16) 64

LeakyReLU (None, 16) 0

Dense (None, 8) 136

BatchNorm (None, 8) 32

LeakyReLU (None, 8) 0

Dense (None, 4) 45

Softmax (None, 4) 0

using grid search based on the performance on the validation
set in the downstream task. The final performance is reported
based on the hold out test set.

Baselines: Bosch CNC-milling dataset

We compare the performance of SSMSPC with state-of-
the-art baselines from the realms of shallow, deep and
self-supervised anomaly detection. We evaluate the base-
lines on (1)DDownstream

S , i.e., CWT features and (2) statistical
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Table 4 Model architecture used for the downstream task

Layer type Output shape Parameters

f Input Layer (None, 128, 512, 3) 0

Conv2D (None, 122, 506, 8) 1184

BatchNorm (None, 122, 506, 8) 32

LeakyReLU (None, 122, 506, 8) 0

MaxPool2D (None, 61, 253, 8) 0

Conv2D (None, 55, 247, 16) 6288

BatchNorm (None, 55, 247, 16) 64

LeakyReLU (None, 55, 247, 16) 0

MaxPool2D (None, 27, 123, 16) 0

Conv2D (None, 21, 117, 32) 25120

BatchNorm (None, 21, 117, 32) 128

LeakyReLU (None, 21, 117, 32) 0

MaxPool2D (None, 10, 58, 32) 0

Flatten (None, 18560) 0

Dense (None, 32) 593952

BatchNorm (None, 32) 128

LeakyReLU (None, 32) 0

Dense (None, 16) 528

T 2 Hotelling’s T 2 (None, 1,1) 0

features. For the statistical features, we compute root-mean
square, peak-to-peak, interquartile range, mean, standard
deviation, kurtosis, skewness and median absolute deviation
for each sensor of the raw time series data in DS . Following
this, we scale the data to have zero mean and unit variance
based on the train set. Thus, for the evaluation with statistical
features we obtain the following dataset Dstat

S ⊂ R24, where
|Dstat

S | = 143.
Shallow baselines For the shallow baselines, we choose One-
Class Support Vector Machine (OC-SVM) (Schölkopf et
al., 1999), IF, Principal Component Analysis (PCA) and
Kernel-PCA, as they are regularly used for the comparison
of anomaly detection methods.
Since the samples in DDownstream

S represent image data, we
first train a LeNet-type AE (LeNet-AE) on the train data and
then use the encoder part to transform the scalograms into the
latent representation. The shallow baselines are then applied
on top of the extracted features. This scheme is commonly
used in literature, see, e.g., Golan and El-Yaniv (2018). The
encoder of the LeNet-AE has the same architecture as the
LeNet-type encoder network that is used in SSMSPC. The
decoder is constructed symmetrically to the encoder. We just
replace convolutions with deconvolutions and max-pooling
with upsampling.
Regarding the evaluation onDstat

S , we apply the shallow base-
lines directly on top of the statistical features.
We use the scikit-learn implementation for the presented
baselines. Hyperparameters are selected using grid search

Table 5 Hyperparameters for shallow baselines

Hyperparameter DDownstream
S Dstat

S

OC-SVM kernel RBF RBF

γ 0.25 0.25

ν 0.005 0.005

IF n_estimators 10 10

max_samples 32 80

PCA n_components 12 23

Kernel-PCA n_components 15 13

kernel cosine cosine

based on the performance on the validation set. Table 5 pro-
vides an overview of the selected hyperparameters.
Deep baselines As representatives for deep anomaly detec-
tion baselines, we choose DAGMM (Zong et al., 2018),
DeepSVDD (Ruff et al., 2018), PatchCore (Roth et al.,
2022), and the LeNet-AE presented in “Baselines: Bosch
CNC-milling dataset” section.
DAGMM utilizes a deep AE and combines both, the latent
representation and the reconstruction error of the input which
is then fed to a Gaussian mixture model. The mixture model
and the AE are trained in an end-to-end fashion. DAGMM is
designed to work on tabular data and as such we evaluate it
only on Dstat

S .
DeepSVDD uses the encoder of a pretrained AE as weight
initialization to extract features from imagedata. The encoder
is then trained end-to-end on the one-class classification
objective to map the data into a minimum-volume hyper-
sphere (Ruff et al., 2018).
PatchCore is a recently published method that has achieved
state-of-the-art results on the MVTec AD (Bergmann et al.,
2019) industrial image anomaly detection benchmark. The
intriguing property of PatchCore is that it does not com-
prise an actual training phase in the sense of gradient-based
optimization, but it leverages the learned representations of
mid-level feature representations of aResNet (He et al., 2015)
architecture trained on ImageNet (Krizhevsky et al., 2012).
Specifically, given an image dataset for training that contains
only normal data, PatchCore extracts locally aware patch
features and stores them in a memory bank, by passing the
training data through the network. With this memory bank in
place, PatchCore computes the anomaly score of a given test
image based on the maximum distance score between test
patch-features in its patch collection and each corresponding
nearest neighbor in the memory bank (Roth et al., 2022). For
PatchCore, DAGMM and DeepSVDD, we use the official
implementation that has been made publicly available by the
authors with their respective publication. Table 6 presents the
selected hyperparameters.
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Table 6 Hyperparameters for deep baselines

Hyperparameter DDownstream
S Dstat

S

DAGMM batch_size – 8

learning_rate – 10−4

epochs – 1000

DeepSVDD batch_size 8 –

learning_rate 10−3 –

epochs 50 –

weight_decay 10−6 –

ν 0.005 –

PatchCore batch_size 2 –

patch_size 3 –

LeNet-AE batch_size 8 –

learning_rate 10−4 –

epochs 100 –

Self-supervised baselines Considering the self-supervised
anomaly detection baselines, we choose RotNet (Gidaris
et al., 2018), NeuTraL AD and GeoTrans. Regarding Rot-
Net, we follow two different approaches. First, we treat it
as a feature extractor and use the learned representations
from the rotation prediction pretext task as an input for
PCA, Kernel-PCA, OC-SVM and IF. Second, we follow
the scheme presented by Hendrycks et al. (2019) and use
the softmax probabilities of RotNet to determine if a sam-
ple is normal or anomalous. As with the deep baselines, we
use the publicly available implementation of the respective
self-supervised baseline to conduct the experiments. Table 7
displays the selected hyperparameters.

Results: Bosch CNC-milling dataset

In Table 8, we present the results of our experiments. We
report mean and standard deviation of the Area under the
Receiver Operating Characteristic (AUROC) curve over 10
different random seeds. The Receiver Operating Characteris-
tic (ROC) curve of a classifier is a two-dimensional graph in
which the recall is plotted over the false alarm rate for every
possible decision threshold in the test set (Fawcett, 2006).
The area under this curve represents the AUROC which is a
threshold-independent evaluation measure that (1) provides
an overall assessment of the capabilities of a classifier and
(2) allows to compare the peformance of different classifiers
(Ding et al., 2014). The AUROC value ranges from 0 to 1
(or 0% to 100%) and can be defined as the following mean
computed across all anomalous and normal data pairs in the

Table 7 Hyperparameters for self-supervised baselines

Hyperparameter DDownstream
S

RotNet batch_size 8

learning_rate 10−1

epochs 100

weight_decay 5 · 10−4

input_size 128 × 128

+ PCA n_components 5

+Kernel-PCA n_components 3

kernel cosine

+OC-SVM kernel RBF

γ 0.5

ν 0.005

+IF n_estimators 10

max_samples 64

NeuTraL AD batch_size 8

learning_rate 10−3

epochs 20

transformations 15

GeoTrans batch_size 8

learning_rate 10−3

epochs 3

input_size 128 × 128

test set (Aggarwal, 2017; Campos et al., 2016):

AUROC := mean
a∈A,n∈N

⎧⎪⎨
⎪⎩
1, if h(a) > h(n)
1
2 , if h(a) = h(n)

0, if h(a) < h(n)

(13)

where N and A represent the respective sets of normal and
anomalous data in the test set and h(·) corresponds to the
anomaly score produced by the classifier. Intuitively, the
AUROC can be interpreted as the probability that a classi-
fier ranks a randomly chosen anomalous sample higher than
a randomly chosen normal sample (Bradley, 1997; Fawcett,
2006). Due to the aforementioned properties, the AUROC
has established itself as the standard measure for comparing
the performance of anomaly detection models (Abati et al.,
2019; Carrara et al., 2020; Cheng & Vasconcelos, 2021; Hu
et al., 2020; Ruff et al., 2021; Shen et al., 2021; Wu et al.,
2021).
Focusing on the results of our experiment, we see that SSM-
SPC achieves a perfect score on the given task outperforming
all baselines except LeNet-AE and PatchCore which have
on-par performance. We can see that the shallow baselines
perform well on the statistical features, especially OC-SVM
and PCA with 91.5% and 89.7% AUROC, respectively. Per-
haps surprisingly, the performance of the shallow baselines
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Table 8 Results on the Bosch
CNC-milling dataset

Category Feature Method AUROC

Shallow Statistical OC-SVM 91.5 ± 4.4

PCA 89.7 ± 4.7

Kernel-PCA 88.0 ± 4.8

IF 79.1 ± 8.7

CWT LeNet + PCA 75.9 ± 10.3

LeNet + Kernel-PCA 78.3 ± 8.7

LeNet + OC-SVM 81.3 ± 9.8

LeNet + IF 54.3 ± 10.8

Deep Statistical DAGMM 92.8 ± 5.5

CWT DeepSVDD 99.9 ± 0.2

LeNet-AE 100.0 ± 0.0

PatchCore 100.0 ± 0.0

Self-supervised CWT NeuTraL AD 97.9 ± 3.6

GeoTrans 94.5 ± 6.7

RotNet 56.0 ± 9.9

RotNet + PCA 94.6 ± 5.6

RotNet + Kernel-PCA 84.7 ± 12.0

RotNet + OC-SVM 98.4 ± 1.6

RotNet + IF 97.6 ± 3.1

SSMSPC (ours) 100.0 ± 0.0

We report the mean and standard deviation for AUROC over 10 different random seeds. State-of-the-art
baselines are investigated using both, statistical features and CWT features. The best results are given in bold

on theCWT features ismuch lower, with IF being only barely
able to exceed the randomguessingAUROCbaseline of 50%.
In terms of the deep baselines, we see an overall strong per-
formance. Deep SVDD, LeNet-AE and PatchCore are very
competitive and perform similar to SSMSPC with 99.9%,
100.0% and 100.0% AUROC, respectively. DAGMM shows
the best performance among the baselines that are evaluated
on statistical features with 92.8% AUROC.
Regarding the self-supervised anomaly detection methods,
we can see that RotNet, when evaluated with the scheme of
Hendrycks et al. (2019), is performing close to the random
guessing AUROC baseline. However, when used as a feature
extractor we see that the performance strongly increases with
RotNet +OC-SVMachieving 98.4%AUROC.GeoTrans and
NeuTraL AD show a performance in the range of RotNet
when used as a feature extractor, with 94.5% and 97.9%
AUROC, respectively.
Even though the general evaluation in this paper is based on
AUROC, it is nonetheless necessary for practical applications
to select a fixed threshold. Thus, we include threshold-
dependent performance metrics to provide further insights
into the quality of the threshold selection scheme in SSM-
SPC. Table 9 shows the performance of SSMSPC with
respect to mean and standard deviation of Precision, Recall
and F1-Score using KDE to fit the control limits of the pro-
cess as described in “Downstream task” section. We present

Table 9 Results for Precision, Recall and F1-score of SSMSPC for
varying levels of α on the Bosch CNC-milling dataset

α Precision Recall F1-score

0.050 65.6 ± 6.6 100.0 ± 0.0 79.0 ± 5.1

0.025 72.3 ± 6.2 100.0 ± 0.0 83.8 ± 4.0

0.010 84.9 ± 4.0 100.0 ± 0.0 91.7 ± 2.2

We report mean and standard deviation over 10 different random seeds

the performance for varying choices of α. With α = 0.01,
SSMSPC achieves an average F1-Score of 91.7%, while
identifying all the anomalies present in the hold out test set
across all random seeds.

Localizing anomalies

Figure 11 presents qualitative results of the proposed control
chart extension in SSMSPC based on anomalous samples
taken from the validation set. We highlight the anomalous
process modes identified by our model and compare it to the
true labels as given in the dataset. As is shown, SSMSPC
is able to identify the anomalous process modes and thus
provides an effective support for a machine operator to find
the root cause of the anomalous process condition.
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Fig. 11 Qualitative visualization of the control chart extension pro-
posed in SSMSPC. We present samples from the validation set and
show in the tables below the true labels for each mode of the process

(anomaly = 1, normal = 0). The highlighted regions are the anomalous
components of the respective process steps that have been identified by
the model

Table 10 Effects of adding augmentations on the performance of the
downstream task

Method Augmentation AUROC

SSMSPC base 100.0 ± 0.0

+ PointOutlier 98.7 ± 1.6

+ Trend 98.3 ± 2.7

+ Gaussian 96.0 ± 3.9

We report mean and standard deviation for AUROC over 10 different
random seeds. The best results are given in bold

Ablation study

We perform an ablation study to provide further insights into
the individual components of SSMSPC. First, we analyze the
effects of adding and removing augmentations for the pretext
task. Second, we compare the performance of the proposed
Location+Transformation prediction pretext taskwithLoca-
tion prediction and Transformation prediction as individual
pretext tasks. Third, we vary the number of windows that is
used for the augmentations in the pretext task to see how this
affects performance.
Augmentations We define three additional augmentations,
which we refer to as PointOutlier, Trend and Gaussian in
order to assess whether additional augmentations have a
positive effect on the performance in the downstream task.
For the PointOutlier augmentation, we select two random
points in a window and add the maximum value of the
whole time series to these two points. Regarding the Trend
augmentation, we emulate a growing shift in the standard
deviation within a selected window. Gaussian selects a time
series segment within a window and adds random numbers
sampled from a Gaussian distribution with specified mean

Table 11 Effects of removing augmentations on the performance in the
downstream task

Method Augmentation AUROC

SSMSPC base 100.0 ± 0.0

w/o MeanShift 99.5 ± 0.7

w/o Identity 99.3 ± 1.4

w/o CutPaste 99.1 ± 1.4

w/o MissingSignal 98.7 ± 1.2

We report mean and standard deviation for AUROC over 10 different
random seeds. The best results are given in bold

and standard deviation. Table 10 displays the results. We
observe that the additional augmentations lead to a decrease
in performance. The strongest decline can be seen with the
Gaussian augmentation. In addition to adding new aug-
mentations we also investigate the effects of removing the
proposed augmentations one after another, to understand
which of the augmentations is most important for the per-
formance. The results are reported in Table 11. We observe
that the MissingSignal augmentation is the most important
component, leading to the strongest decline in performance
upon omission, followed by CutPaste. The decline observed
by removingMeanShift or Identity is less strong but nonethe-
less existing and thus justifies their inclusion into SSMSPC.
Different pretext tasks To demonstrate the meaningfulness
of the proposed Location + Transformation prediction pre-
text task and the corresponding loss function, we investigate
the performance of Location prediction and Transformation
prediction as individual pretext tasks. This is done by simply
removing one of the prediction heads and then training SSM-
SPC on the remaining pretext task. All other components of
SSMSPC are left unchanged. Table 12 shows the results. It
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Table 12 Effects of using Transformation prediction and Location pre-
diction as pretext tasks

Method Pretext task AUROC

SSMSPC Loc. + Trans. prediction 100.0 ± 0.0

Transformation prediction 99.2 ± 1.6

Location prediction 97.9 ± 1.7

We report mean and standard deviation for AUROC over 10 different
random seeds. The best results are given in bold

Table 13 Effects of varying the number ofwindows used for generating
the dataset for the pretext task

Method #Windows AUROC

SSMSPC 3 99.5 ± 0.7

5 100.0 ± 0.0

7 98.9 ± 1.5

We report mean and standard deviation for AUROC over 10 different
random seeds. The best results are given in bold

can be seen that the performance of SSMSPCdecreaseswhen
trained solely on either Location prediction or Transforma-
tion prediction as pretext task. Hence, the representations
learned by Location + Transformation prediction are more
effective.
Number of windowsWe investigate the effects of varying the
number of windows on the performance of SSMSPC. Table
13 shows the results. We see that SSMSPC is fairly robust
with respect to varying the number of windows, which is an
important feature for practical purposes.

CiP-DMD dataset

The second experiment in this paper uses parts of the Center
for industrial Productivity - Discrete Manufacturing Dataset
(CiP-DMD), which is a novel benchmark dataset for dis-
crete manufacturing processes that we are going to publish
soon. The specific dataset that we consider originates from
a CNC-milling process in which steel cylinder bottoms are
produced for pneumatic cylinders. Since this dataset is not
yet published, we provide a short introduction of the process
and give some insights into the dataset structure.

Process description

The test bed used for the development of the dataset is a
Deckel-Maho DMC-50H horizontal CNC-milling machine,
see Fig. 12.
The machining space of the DMC-50H is equipped with a
rotating tower on which special fixtures are mounted that can
hold several parts at once. Figure 13 provides a visualization
for both sides of the rotating tower.

Fig. 12 DMC-50H CNC-milling machine used as a test bed within the
CiP-DMD dataset

Fig. 13 a Front side and b back side of the rotating tower in themachin-
ing space of the DMC-50H test bed with special fixtures to hold raw
material and semi-finished parts, respectively. Thewhite circles indicate
the positions where the parts are clamped

At the beginning of amachining cycle, two distinct parts, i.e.,
a piece of raw material and a semi-finished part are clamped
to the front and back side of the rotating tower, respectively.
Upon completion of a machining cycle, the process outputs a
semi-finished part and a finished part. Note that for the sake
of simplicity regarding the creation of the dataset, we used
only one part per tower side. Since the machine processes
two distinct parts per cycle, we refer to the part at the front
side of the rotating tower as part 1 (P1) and to the part at the
back side as part 2 (P2). Figure 14 provides an illustration of
the respective production stages for P1 and P2.
Regarding the machining process itself, it is worth mention-
ing that the process for P1 consists of 9 distinct processmodes
whereas the process for P2 consists of 4. The total duration
of one machining cycle amounts to roughly 5 minutes. More
precisely, the process takes 199 seconds to complete P1 and
another 113 seconds to complete P2.
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Fig. 14 a P1 before and after processing. This corresponds to the con-
version from raw material to a semi-finished part. b P2 before and after
processing. This corresponds to the conversion from a semi-finished
part to a finished part

Fig. 15 Accelerometer used for data acquisition

Dataset structure

TheDMC-50H test bed is equippedwith a triaxial accelerom-
eter having a sampling rate of 2.5 kHz that ismounted directly
on the spindle. The sensor is connected to a data acquisition
card that is plugged into an industrial PC which is located
on top of the machine, see Fig. 15 for an illustration of the
sensor positioning. In addition to the process data, we also
recorded metadata from the machine control such as the NC
lines of the machine program with a sampling rate of 5Hz.
For the purpose of this experiment, we recorded a total of
776 machining cycles between November 2022 and March
2023. Specifically, we have 776 samples for P1 and 775 sam-
ples for P2. Note that the discrepancy in the total number of
samples between P1 and P2 stems from the fact that we have
one air cut for P2 which we did not include in the dataset.
For P1, 736 samples correspond to normal processing cycles,
whereas for P2 we have a total of 737 normal processing
cycles. The remaining cycles correspond to anomalous pro-
cess behavior.
We incorporated two realistic process anomalies which need
to be detected and located during the process. The first
anomaly targets P1 and results from a piece of raw mate-
rial that has been sawed off too short. As a consequence,
the cutting tool does not remove any chips during the face
milling process step. The result of this anomalous process is
a semi-finished part with an unprocessed surface. The sec-
ond anomaly targets P2 and corresponds to a falsely clamped

Fig. 16 Anomalies for P1 and P2. aComparison of normal P1 (left) and
anomalous P1 (right). bComparison of normal P2 (left) and anomalous
P2 (right)

Table 14 Overview of the data split size forDP1 andDP2 including the
number of available normal and anomalous samples

Split Normal Anomalous Total

DP1 Train 465 − 465

Validation 67 10 77

Test 204 30 234

DP2 Train 465 − 465

Validation 68 9 77

Test 204 29 233

part. Due to this clamping error, the facemilling step removes
more chips from one side of the semi-finished part than from
another. The finished cylinder bottom is thus crooked. Figure
16 illustrates the two anomalies.
We refer to the dataset of P1 asDP1 and to the dataset of P2 as
DP2. Given the processing time of 199 seconds for P1 and a
sampling rate of 2.5 kHz, we have a total of 497500 samples
for every axis of the sensor. Thus, DP1 ⊂ R

497500×3, with
|DP1| = 776. Conversely, for P2 with a processing time of
113 seconds, we have a total of 282500 samples per axis of
the sensor, i.e., DP2 ⊂ R

282500×3, where |DP2| = 775. We
split the data using the same train, val and test split as we did
in the first experiment, i.e., 60%, 10%, and 30%.Note that, as
before, the training data comprise only normal process data.
Table 14 shows the respective number of samples for DP1

and DP2.
As in the previous experiment, we compare the performance
of the selected baselines with statistical features and CWT
features. The statistical features are computed according to
the description in “Baselines: Bosch CNC-milling dataset”
section with respect to each sensor in the raw time series data
for DP1 and DP2. Following this, we scale the data to have
zeromean and unit variance based on the corresponding train
split. Hence, we obtain Dstat

P1 ,Dstat
P2 ⊂ R

24.
For the baselines that rely on CWT features, we fol-
low the procedure presented in “Downstream task: Bosch
CNC-milling dataset” section. Thus, for DP1 and DP2, we
compute theCWTusingMorletwaveletswith s = 128 scales
on the raw time series data, resize the resulting scalograms
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Table 15 Hyperparameters for shallow baselines

Hyperparameter DDownstream
P1 Dstat

P1

OC-SVM kernel RBF RBF

γ 2−30 2−30

ν 0.01 0.005

IF n_estimators 300 200

max_samples 4 128

PCA n_components 3 6

Kernel-PCA n_components 9 23

kernel cosine cosine

Hyperparameter DDownstream
P2 Dstat

P2

OC-SVM kernel RBF RBF

γ 4 0.5

ν 0.005 0.005

IF n_estimators 10 10

max_samples 256 64

PCA n_components 10 17

Kernel-PCA n_components 10 18

kernel cosine cosine

to 128 × 512 and apply min-max scaling based on the train
split. This leads to DDownstream

P1 ,DDownstream
P2 ⊂ R

128×512×3.
Note that each of the preceding datasets contains a total of
776 samples for P1 and 775 samples for P2.
Regarding the pretext datasets for SSMSPC, we use the
setting as presented in “Pretext task: Bosch CNC-milling
dataset” section, i.e., we augment the data using Identity,
CutPaste,MeanShift andMissingSignal augmentations with
a total of 5 windows. This is followed by CWT using Morlet
wavelets with s = 128 scales, resizing to 128×512 and sub-
sequent min-max scaling based on the training data. Thus,
we have DPretext

P1 ,DPretext
P2 ⊂ R

128×512×3, where |DPretext
P1 | =

1860 and |DPretext
P2 | = 1860. Recall that we use the respective

train split ofDP1 andDP2 as the basis for the pretext dataset
generation.

Baselines: CiP-DMD dataset

We use the baselines as presented in “Baselines: Bosch
CNC-milling dataset” section. For the deep and some of
the self-supervised baselines, we keep the hyperparame-
ters from the first experiment, as we found them to pro-
vide the best performance in terms of the corresponding
validation sets. The hyperparameters of the shallow and
the RotNet self-supervised baselines are listed in Tables
15 and 16. Regarding the architecture of SSMSPC, we
use the settings from Tables 3 and 4, respectively. For
the pretext tasks and the corresponding downstream tasks,
we follow the procedure presented in “Pretext task” and
“Downstream task” sections. In terms of the hyperparam-

Table 16 Hyperparameters for self-supervised baselines

Hyperparameter DDownstream
P1

RotNet

+PCA n_components 5

+Kernel-PCA n_components 9

kernel cosine

+OC-SVM kernel RBF

γ 2−30

ν 0.005

+IF n_estimators 50

max_samples 64

Hyperparameter DDownstream
P2

RotNet

+PCA n_components 64

+Kernel-PCA n_components 10

kernel cosine

+OC-SVM kernel RBF

γ 0.125

ν 0.005

+IF n_estimators 50

max_samples 16

eters for SSMSPC, we increase the batch size to 32 and
reduce the epochs to 10, leaving the remaining hyperparam-
eters unchanged.

Results: CiP-DMD dataset

Table 17 shows the results for the second experiment. We
follow the evaluation scheme presented in “Results: Bosch
CNC-milling dataset” section, i.e., we evaluate the perfor-
mance of each model with respect to AUROC. We included
a “Total” column that contains the average performance of
the corresponding baselines with respect to P1 and P2. Note
that we use the average performance as the final evaluation
measure, since it provides the best estimate for the overall
monitoring performance.
As we can see from the results, SSMSPC yields the high-
est AUROC score with respect to the overall performance
and beats all other baselines on P1. In contrast to the first
experiment, we make the surprising observation that the
shallow baselines relying on statistical features demonstrate
a very strong performance. Specifically, PCA outperforms
state-of-the-art deep and self-supervised anomaly detection
models such as, e.g., DeppSVDD, PatchCore and NeuTraL
AD. When evaluated solely on P2, PCA even outperforms
SSMSPC by a small margin. The shallow models relying on
CWT features are worse, showing a drop in performance of
at least 14.8% when compared to SSMSPC.
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Table 17 Results on the
CiP-DMD dataset

Category Feature Method AUROC Total
P1 P2

Shallow Statistical OC-SVM 98.3 ± 1.2 98.8 ± 0.7 98.5

PCA 99.3 ± 0.3 99.5 ± 0.4 99.4

Kernel-PCA 98.7 ± 0.7 98.4 ± 1.2 98.5

IF 98.7 ± 0.5 86.7 ± 3.9 92.7

CWT LeNet + PCA 67.4 ± 20.5 93.3 ± 3.4 80.4

LeNet + Kernel-PCA 75.7 ± 18.0 92.7 ± 4.5 84.2

LeNet + OC-SVM 71.8 ± 14.3 97.8 ± 0.8 84.8

LeNet + IF 68.0 ± 16.0 85.2 ± 5.3 76.6

Deep Statistical DAGMM 99.4 ± 0.3 95.3 ± 3.0 97.4

CWT DeepSVDD 86.3 ± 17.0 75.5 ± 15.2 80.9

LeNet-AE 61.8 ± 22.8 73.1 ± 22.9 67.4

PatchCore 99.4 ± 0.4 99.2 ± 0.4 99.3

Self-supervised CWT NeuTraL AD 99.7 ± 0.4 98.2 ± 0.7 99.0

GeoTrans 97.6 ± 1.6 59.5 ± 18.4 78.6

RotNet 79.8 ± 4.2 71.2 ± 5.9 75.5

RotNet + PCA 99.5 ± 0.4 97.7 ± 1.4 98.6

RotNet + Kernel-PCA 97.9 ± 1.3 93.4 ± 2.9 95.7

RotNet + OC-SVM 97.9 ± 1.6 97.8 ± 0.8 97.9

RotNet + IF 98.2 ± 1.1 81.6 ± 7.5 89.9

SSMSPC (ours) 99.8 ± 0.25 99.4 ± 0.3 99.6

We report the mean and standard deviation for AUROC over 5 different random seeds for P1 and P2. State-of-
the-art baselines are investigated using both, statistical features and CWT features. The best results are given
in bold

In comparison to the first experiment, we see a strong
deterioration for some of the deep baselines. Specifically,
DeepSVDD and LeNet-AE show a weak performance. In
fact, LeNet-AE yields the lowest overall score, being 32.3%
worse than SSMSPC. Conversely, PatchCore and DAGMM
show an overall strong performance.
Regarding the self-supervised baselines, we see that Neu-
TraL AD shows the best results. The learned representations
by RotNet when used as a feature extractor yield a strong
performance similar to the first experiment. In Table 18, we
display the Precision, Recall and F1-score of SSMSPC for
varying values of α to demonstrate its effects on the moni-
toring performance.
Summarizing, the results of the presented experiments pro-
vide some interesting insights. First, we can conclude that
the learned representations of SSMSPC are indeed useful for
solving tasks that are in alignment with the problem state-
ment described in “Problem statement” section. Second, we
can confirm that self-supervised learning is a very promising
concept that helps to learn effective representations in situ-
ations where the amount of available data is scarce. Third,
as we have seen in prior works such as Biegel et al. (2022a),
it seems that in certain situations in discrete manufactur-
ing the performance of conventional deep learning methods
varies strongly and is often outperformed by basic shallow

Table 18 Results for Precision, Recall and F1-score of SSMSPC for
varying levels of α on the CiP-DMD dataset

α Precision Recall F1-score

DP1 0.050 75.0 ± 0.8 98.3 ± 0.2 85.1 ± 0.4

0.025 87.3 ± 0.3 94.8 ± 2.4 91.0 ± 1.3

0.010 92.7 ± 0.6 88.0 ± 7.3 90.2 ± 4.1

DP2 0.050 74.5 ± 4.9 100.0 ± 0.0 85.3 ± 3.3

0.025 89.7 ± 3.2 90.7 ± 7.2 90.2 ± 4.6

0.010 88.1 ± 4.6 93.1 ± 3.4 90.5 ± 3.8

We report mean and standard deviation over 5 different random seeds

learning approaches. Fourth, methods like PatchCore that
do not encompass an actual training phase but leverage the
learned representations from a pretraining phase with data
from another domain show very promising performance for
future applications in discrete manufacturing.

Towards in-process control

As a final demonstration of the practical applicability for
real-world discrete manufacturing processes, we deployed
SSMSPC at the DMC-50Hmachine that we used for the cre-
ation of the CiP-DMD dataset. Specifically, we incorporated
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Fig. 17 Web interface of the deployed SSMSPC system at the DMC-
50H test bed. a Control chart view which is used for anomaly detection.
This view shows the control charts for P1 and P2 on a single page and
is used by a machine operator to assess the process condition during the

process. b Extended control chart view for P1 (top) and P2 (bottom).
Once an anomalous process condition has been detected, the control
chart extension can be used for anomaly localization purposes, to sup-
port a machine operator in the root-cause analysis

SSMSPC into a web-based Graphical User Interface (GUI)
that allows a machine operator to interact with the system,
see Fig. 17. Theweb interface consists of two separate views.
In the first view, two control charts are displayed for P1 and
P2, respectively. These control charts are updated automati-
cally, i.e., during the processing cycle of the machine. If the
system detects an anomaly, the machine operator can access
the control chart extension simply by clicking on the cor-
responding sample in the control chart. This constitutes the
second view of theweb interface. The control chart extension
presents the process data of the current part. The time series
is segmented into the corresponding processing steps using
the NC lines that are recorded from the machine control and
the anomalous time steps are highlighted. Note that the pre-
sented functionality is in alignment with the visualization of
the problem statement in Fig. 2.
The deployed systemmonitors the process data of every part,
which is equivalent to a 100% check of the running process.
As opposed to a conventional SPC scheme, in which manu-
factured parts are sampled in equidistant time intervals from
the process, the presented system can be used as a trigger
for measuring produced parts. Specifically, when the sys-
tem detects an anomalous process condition, the machine
operator can decide, whether it is necessary to measure the
corresponding part, based on the extended control chart view.

Conclusion

In this paper we introduce SSMSPC, a novel approach for
MSPC based on self-supervised learning to detect and local-
ize anomalous process behavior in discrete manufacturing
processes.
We present a pretext task that we refer to as Location +
Transformation prediction. Given a randomly augmented
time series input, the objective in this pretext task is to train
a model to classify both, the type and the location of the
augmentation. In the subsequent downstream task, we apply
Hotelling’s T 2 on top of the learned representations from the
pretext task, following the one-class classification setting.
We fit the control limits using KDE based on the computed
T 2 values in the downstream task.
In addition to the conventional control chart view,we propose
a control chart extension that facilitates the identification
of the root cause by segmenting a raw time series signal
into the individual process steps using the NC lines of the
machining program and highlighting the anomalous process
components.
We evaluate the performance of SSMSPC using two real-
world CNC-milling datasets and compare it to state-of-
the-art baselines from the realms of shallow, deep and
self-supervised anomaly detection. Our experiments show
that SSMSPC learns effective representations achieving the
highest score on the given tasks. In addition to that, we

123



Journal of Intelligent Manufacturing (2024) 35:2671–2698 2695

provide qualitative results regarding the proposed control
chart extension and show that SSMSPC correctly identifies
anomalous process sections. We perform an ablation study
to demonstrate how varying different components, such as
adding or removing augmentations, affects the performance
of SSMSPC in the respective downstream task.
Despite the strong performance of our presented approach,
it is necessary to mention that the results presented within
this paper are not without limitations. The datasets that we
used as a basis for our evaluation stem exclusively from
CNC-milling processes, which limits the expressiveness of
the conducted experiments in terms of generalizability to
other discrete manufacturing processes. However, to the best
of our knowledge, there is currently no publicly available
dataset existing that would provide a more realistic setting
for the problem statement considered in this work. This high-
lights the urgency to develop more domain-specific datasets,
especially with respect to monitoring discrete manufactur-
ing processes for benchmarking purposes, to advance the
research in this field.
The presented paper opens up several research directions
for future work. First, it would be interesting to investigate
SSMSPC in a contrastive learning setting by employing a
contrastive loss function that pulls together the augmented
versions of a given time series sample and pushes away all
other time series samples. Second, instead of highlighting
the anomalous process data across all sensors per default, it
would be beneficial to highlight only the process data of the
individual sensors that actually recorded an anomaly. Lastly,
instead of relying on Hotelling’s T 2 as the anomaly score,
it would be worthwhile to explore other shallow learning
approaches, e.g., PCA or OC-SVM in terms of detection per-
formance.
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