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Abstract
In this work, the potentials of data-driven optimization for the well-known berth 
allocation problem are studied. The aim of robust berth scheduling is to derive con-
flict-free vessel assignments at the quay of a terminal, taking into account uncer-
tainty regarding the actual vessel arrival times which may result from external 
influences as, e.g., cross wind and sea current. In order to achieve robustness, four 
different Machine Learning methods-from linear regression to an artificial neural 
network-are employed for vessel arrival time prediction in this work. The different 
Machine Learning methods are analysed and evaluated with respect to their forecast 
quality. The calculation and use of so-called dynamic time buffers (DTBs), which 
are derived from the different AIS-based forecasts and whose length depends on the 
estimated forecast reliability, in the berth scheduling model enhance the robustness 
of the resulting schedules considerably, as is shown in an extensive numerical study. 
Furthermore, the results show that also rather simple Machine Learning approaches 
are able to reach high forecast accuracy. The optimization model does not only lead 
to more robust solutions, but also to less actual waiting times for the vessels and 
hence to an enhanced service quality, as can be shown by studying the resulting 
schedules for real vessel data. Moreover, it turns out that the accuracy of the result-
ing berthing schedules, measured as the deviation of planned and actually realisable 
schedules, exceeds the accuracy of all forecasts which underlines the usefulness of 
the DTB approach.
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1  Introduction

A highly relevant issue in the planning of (maritime) supply chains and logistics 
is the uncertainty of deep sea vessel arrivals at ports, as its consequences affect 
all further stages of the supply chain (Dobrkovic et al. 2016). However, the port 
terminals are affected most: Berth allocations have to be planned in advance, i.e., 
while a vessel has not yet arrived and hence either a berth can still be occupied 
when a vessel arrives early (and the vessel cannot moor as planned) or a berth 
remains empty when a vessel is delayed. Both effects have negative economic 
consequences, for the terminal as well as for the vessel owners and, as mentioned 
above, also for the subsequent supply chain. Therefore, approaches for reducing 
uncertainty in this field are of huge importance.

As data and digitalization offer new opportunities for uncertainty reduction 
and mitigation, new approaches for terminal planning and management should 
be developed from a “data-driven perspective,“ as Heilig et al. (2020) point out, 
in order to enrich the traditional “optimization perspective”. However, currently 
these authors still identify “a lack of data-driven approaches in the context of 
container terminals.“ Moreover, they point out that data from external sources—
as, e.g., Automated Information System (AIS) data-are “under-analysed”, i.e., 
that often they are not yet fully exploited; instead, the focus is often still on 
operational optimization, without sufficient consideration of patterns in existing 
data. According to Yang et al. (2019), Data Mining-for extraction of the relevant 
information-and vessel behaviour analysis-in order to find patterns of maritime 
traffic-are of high importance for future research in the field, as, e.g., causality 
analysis builds up on it. They point out that there is only little work in Operations 
Research (OR) yet which makes use of AIS data and that berth allocation might 
be one field which could strongly benefit from their exploitation in the future.

Therefore, this work is aimed at filling this gap with respect to a specific prob-
lem by developing and presenting a new machine-learning-based approach for 
forecasting vessel arrival times. The results are then used in a berth allocation 
approach, in order to improve the “traditional” berth allocation problem (BAP) 
optimization procedure by an appropriate use of existing data. The forecasting 
approach makes use of AIS data which are broadcast by vessels and, among other 
information, provide the current position of a vessel on a regular basis. Following 
Dobrkovic et al. (2016), data from 48 h before the actual vessel arrivals are used 
for forecasting, as this is the time frame within which vessel arrivals are usually 
announced to the respective seaport container terminal.

Through the use of real AIS data from the past on which the forecasts are 
based, but for which the actual vessel arrival times are already known as well, 
the approach taken in this work allows an evaluation of the forecast quality of 
the different forecasting methods. In the forecasting, methods from the field of 
machine learning (ML) are used, namely linear regression (LR), k-nearest neigh-
bour (kNN), decision tree regressor (DTR) and artificial neural networks (ANN).

A berthing schedule is called (feasibility-)robust, when it remains stable at 
least for smaller deviations from the originally assumed vessel arrival times, i.e., 
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when the schedule stays feasible (Scholl 2001). To derive a robust berth allo-
cation based on the forecasts, the concepts of conflicts (Liu et  al. 2017) and of 
dynamic time buffers (DTBs) are used (Kolley et  al. 2021) and further refined. 
More specifically, Liu et al. (2017) define and measure robustness as a function 
of the service level that is achieved, where the service level in turn is defined as 
the number (or percentage) of vessels which-in the planned berth allocation-are 
not in conflict with other vessels. In this work, this customer-oriented concept is 
extended by the integration of time buffers which help to better prevent conflicts 
even if actual vessel arrival times deviate from scheduled berthing times. Hence, 
a robust schedule is defined as a schedule with as little conflicts as possible which 
remains valid under changing arrival times.

The purpose of the approach taken in this work is to reduce uncertainty and thus, 
increase robustness by means of using different forecasts-resulting from different ML 
methods as mentioned above-jointly in the berth scheduling. The forecasts are inter-
preted as possible future arrival times which are equally likely, hence uncertainty is 
transformed into risk. The DTBs are then constructed based on the resulting “forecast 
distributions”. The more the forecasts differ, i.e., the more spread there is in the dis-
tribution, the higher is the uncertainty with respect to the respective arrival time and 
hence, a larger buffer is needed for mitigating this uncertainty. On the contrary, with 
very similar forecasts, uncertainty can be assumed to be low (which is why all methods 
lead to similar results), there is little spread and hence, only a small buffer is necessary. 
The aim of the BAP approach then is to avoid conflicts, i.e., overlaps, not only for the 
planned berths, but also with respect to the time buffers, in order to enhance the sched-
ule’s robustness.

For this purpose, the BAP model using DTBs from Kolley et al. (2021) is further 
modified and improved in this work. It is then applied to the forecast data. As the 
respective model builds up on the model of Liu et al. (2017), on their scenario-based 
approach and their robustness definition, the berth allocations which are derived using 
the model presented below are compared to the results from Liu et al.’s model in order 
to study the impact of the DTBs and the other changes made. The differences of the 
models are discussed in detail in Sect. 4.3.

The approach chosen in this work-the combination of AIS data exploration for fore-
casting, the subsequent use of an optimization approach which is based on the respec-
tive forecasts and the judgement of the quality of the results based on actual vessel 
arrivals-is, to the authors’ knowledge, unique, even if some publications use AIS data 
for forecasting. The contributions of this work hence are manifold:

a)	 It is discussed and shown how AIS data can be used for arrival time forecasting 
and how the data sets can be cleaned and prepared beforehand. As Heilig et al. 
(2020) point out, such “methodological insights regarding data preparation (e.g., 
data cleansing, feature selection) […] and model evaluation, are not discussed in 
great detail in literature”; hence, this fills an important gap.

b)	 The different ML methods which are applied in this work are studied with respect 
to their forecast quality in order to judge which of them might be most appropriate 
for vessel arrival time prediction.
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c)	 It is shown how the forecast data can be used to derive more robust berth alloca-
tions by applying the concept of DTBs.

d)	 Moreover, the BAP model from Kolley et al. (2021) is further refined such that 
the solutions are of more practical use and relevance. This is shown by comparing 
and benchmarking the resulting solutions with the model of Liu et al. (2017). The 
latter model is used as a benchmark as its robustness concept, which concentrates 
on the service level achieved in terms of vessels that can be served without con-
flict, is the concept which, with further refinements, is also used in this work.

e)	 The use of real data moreover allows for studying the true service level, i.e., the 
resulting service level considering the real – not only the predicted – arrival times 
of the vessels. Hence, the evaluation of the BAP models has high practical (and 
not only theoretical) relevance.

In summary, the aim of this study is therefore to develop and examine a new 
procedure that generates robust berthing plans by predicting vessel arrival times by 
combining ML and OR methods. However, it has to be noted that increased robust-
ness can lead to losses in efficiency, as these two objectives are in conflict: More 
robustness can be achieved by reserving more time for each vessel, but then the 
quay’s capacity might not be fully exploited and there will be idle times, impeding 
efficiency.

The remainder of this paper is structured as follows: Literature on trajectory fore 
casting with ML in maritime logistics as well as on the BAP is reviewed in Sect. 2. 
Data pre-processing and the results of the ML algorithms are discussed in Sect. 3. In 
Sect. 4, the mathematical model for the robust continuous berth allocation problem 
with dynamic time buffers (ro-DTB-BAPc) is presented. The results of the numeri-
cal experiments are given and evaluated in Sect. 5. Finally, the paper is concluded 
by a critical discussion of the results, a summary and an outlook in Sect. 6.

2 � Literature review

2.1 � AIS Data and machine learning in maritime logistics

AIS was developed in the 1990´s in order to improve maritime safety. Vessels 
regularly broadcast information via AIS, which can be split into the categories of 
static (e.g., vessel identity and size), dynamic (vessel’s position, speed etc.) and 
voyage-related information (destination port and ETA), see Yang et al. (2019).

Yang et al. (2019) give an overview on maritime problems in which AIS data 
are relevant and they review different AIS data applications. In their review, Yang 
et al. state that AIS data were first mostly used in trajectory extraction and cluster-
ing for studies on navigation safety and the avoidance of vessel collisions, which 
they call “basic applications”, but over time also “extended” and “advanced” 
applications in other areas of maritime research were developed. In their litera-
ture review, the authors find a strongly increasing number of publications on such 
AIS data applications in particular in the more recent past, i.e., since 2015.
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More involved (extended) problem fields in which AIS data were successfully 
used are vessel behaviour analysis, e.g., with respect to fishing or to investigate 
navigation patterns or travel times and environmental evaluations, e.g., the analy-
sis of emissions and, subsequently, the optimization of sailing speed in order to 
reduce such emissions.

AIS data are also used to analyse, in particular, activities at and near ports. For 
example, Wu et al. (2020) discuss quality issues of AIS data and in particular the 
problems these data can present with respect to identifying ports, i.e., how a “port 
event” and the fact if a vessel is actually at a port can be identified from AIS data. 
Feng et  al. (2020) also use AIS data to derive trajectories in ports, while Chen 
et al. (2020) exploit AIS data to identify the services and analyse the characteris-
tics of tugboat activities in ports. Franzkeit et al. (2020) investigate vessel waiting 
times at ports based on AIS data.

ML recently has been applied in Maritime Logistics in very different ways and 
to different planning problems. A structured review of the literature in this field is 
given by Dornemann et  al. (2020); these authors also present an in-depth discus-
sion of the combination of OR and ML methods. Moreover, Filom et al. (2022) pre-
sent an extensive review of ML applications in ports. Therefore, just a few selected 
recent examples on work relating to berthing and the BAP are given below:

Li and He (2020, 2021) predict liner berthing times using deep learning. While 
Li and He (2020) present a more basic discussion of their approach, the data pre-
processing and some preliminary results, their procedure is refined in the 2021 paper 
where it is shown that feature extraction has a huge impact on prediction results. The 
use of Deep Learning and an ANN for automatic berthing systems are suggested by 
Lee et al. (2020), who combine AIS data with actual ML. The authors use nine dif-
ferent supervised ML methods for “predicting the risk range of an unsafe berthing 
velocity when a ship approaches a port”, i.e., they study a very specific problem.

De Leon et  al. (2017) employ ML for algorithm selection, i.e., for a meta-
learning problem, to solve the Bulk Carrier BAP. By their approach, the best 
algorithm for the problem setting at hand can be determined, after the meta-algo-
rithm has been trained on different problem settings and the relevant features hav-
ing an influence on algorithm performance have been found. In contrast, Chei-
manoff et al. (2021) use ML for parameter tuning of the hyper-parameters that are 
used in meta-heuristics for the Bulk Carrier BAP.

With respect to the topic of this work, it should be mentioned that De Leon et al. 
(2017) as well as Cheimanoff et al. (2021) and many other authors in the field use 
randomly generated vessel arrival times in their computational studies, i.e., no real 
data are used and no arrival time prediction is employed, even in the most recent 
publications. Consequently, no comparison with actual vessel arrival times can be 
made, as it is the case in this work.

2.2 � Trajectory forecasting

Many studies in the field of maritime logistics estimate the time needed for given 
routes under the assumption that the vessels sail at a known and given speed (Grida 
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and Lee 2018). However, there are also studies using more involved approaches; 
many of them are based on the development of trajectories. Trajectories consist of a 
geospatial coordinate set and a time stamp. Zheng (2015) gives a broad overview on 
trajectory data mining in general and on the aspects of trajectory uncertainty, trajec-
tory pattern mining, trajectory classification and trajectory outlier detection.

Dobrkovic et al. (2016) present a literature review on trajectory and arrival time 
prediction for deep sea vessels. In their work, they categorise the relevant publica-
tions into two groups, namely short-term predictions (up to 1  h) which are often 
made for collision avoidance and long-term predictions (more than 1 h) as they are 
required for the purposes of this work. It turns out that in the latter case, usually 
route extraction is applied, i.e., the vessels’ “typical” sea lanes are determined and 
then each vessel under consideration is assigned a probability that the respective 
route is used. By this approach, anomalies (i.e., deviations from “normal” routes) 
can be detected. However, none of the approaches discussed in this review actually 
derives arrival time predictions.

Dobrkovic et al. also raise the issue of missing or erroneous data and they mention 
the importance of weather data, as due to different weather conditions, vessels often 
have to use different routes. However, Parolas (2016) finds in his study on AIS- and 
weather-data-based arrival time forecasting that the inclusion of weather data “was 
not of significant importance for estimating the time of vessel arrivals at the port.”

In their subsequent work, Dobrkovic et al. (2018) focus on trajectory and arrival 
time prediction based on maritime pattern extraction. Their approach is based on 
sequential waypoint discovery, i.e., points through which many vessels travel, from 
which lanes / trajectories are derived, using a genetic, i.e., a “learning”, algorithm.

The work of the above-mentioned authors is based on Pallotta et al. (2013) who 
use an unsupervised learning approach for detecting maritime traffic routes (trajec-
tories) and travel patterns, for the determination of anomalies and for route predic-
tion from AIS data. Also Kwun and Bae (2021) use AIS data to predict vessel travel 
paths and they also explicitly derive arrival time predictions. Their method uses a 
modified shortest path procedure, the A*-procedure, which is carried out on a grid 
structure. Based on the optimal path, the expected travel time and, hence, arrival 
time at a port can be calculated. Park et al. (2021) employ a similar approach.

Course pattern extraction from AIS data is also done by Fujino et al. (2018) who 
use a topic model which is usually applied in language processing and recognition. 
Their main purpose is to find anomalies and to detect off-course situations. Arguedas 
et al. (2018) use AIS data to develop maritime traffic networks, i.e., networks of ship-
ping lanes, in order to enable the monitoring of vessel traffic, while Xiao et al. (2017) 
develop a maritime traffic forecasting methodology for short-term predictions by ana-
lysing past patterns of vessels’ waterways and motion behaviour using AIS data.

2.3 � Arrival time prediction without trajectories

Parolas (2016) is one of the few contributions which, without calculating trajecto-
ries, develops arrival time predictions. His work concentrates on the Asia-Rotterdam 
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route and uses two ML approaches for prediction, namely ANNs and support vector 
machines. Parolas states that “One of the most important findings […] was that the 
AIS data alone are enough for making ETA predictions for the route and time-hori-
zon examined.” Predictions could be significantly improved by ML, compared to the 
approaches which were used at Rotterdam port at the time.

Mestl and Dausendschön (2016) do not only predict ETAs, but also the port that 
a vessel is heading to, based on probabilities regarding vessels’ routes which they 
derive from AIS data-based knowledge about the routes other (similar) vessels took 
before and the ports they headed for from a certain position. The information is 
gained from AIS data which, according to the authors, often do not contain the cor-
rect entry of the next destination port.

Grida and Lee (2018) estimate sailing and berthing times based on AIS data. 
First, the AIS data are pre-processed, then the estimation is done by multi-linear 
regression. Variables used in the linear regression for travel time estimation are, 
among others, distance to port and size of vessel. They achieve very good results in 
terms of R2 values reached and hence, their approach seems to be particularly prom-
ising. Therefore, linear regression is one of the approaches that will be also used in 
this work.

Fancello et al. (2011) use ANNs to forecast vessel arrival times and subsequently 
optimize the allocation of workers to shifts at the respective port based on the pre-
dictions. As they point out, it was shown by Zhang et al. (1998) that ANNs perform 
better in forecasting than traditional classical methods when time series are rather 
irregular; hence they are suited well for the situation at hand. By testing different 
network configurations, the authors are able to reduce the uncertainty interval of 
arrival times considerably (from about 8 to about 6 h); this is useful for the subse-
quent shift planning at the terminal. However, a range of about 6 h within which a 
vessel is expected to arrive still makes the berth allocation planning rather difficult. 
Hence, the predictions need to be further improved and uncertainty intervals need to 
be further reduced for the purpose of this work.

Pani et al. (2014) use Data Mining and, in particular, a classification and regres-
sion tree model in order to forecast vessel delays for the harbour of Cagliari within a 
short time horizon; these authors achieve promising results by their vessel classifica-
tion method with a mean error of about 1.5 h for delay prediction.

Pani et al. (2015) employ different ML approaches for predicting if vessels will 
arrive early or will be delayed. As Pani et al. (2014), they do not base their predic-
tions on AIS position data, but on features which classify the vessels like, e.g., their 
length; moreover, they also include weather data. According to these authors, both 
these aspects turn out to have a relevant influence on delays.

It can be concluded from this literature review that the approaches taken so far 
in the literature are in many cases based on trajectory or lane prediction from which 
then an arrival time can be deduced, with Parolas (2016) and Grida and Lee (2018) 
being notable exceptions who base their predictions on AIS data. Building up on 
their work, the approach suggested in this paper is the application of different ML 
methods to AIS data in order to directly derive arrival time predictions from them.
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2.4 � Berth allocation planning under uncertainty

There is a vast body of literature on the BAP and its different variants. Literature 
reviews, a classification scheme and many details on the BAP can be found in, e.g., 
Bierwirth and Meisel (2010, 2015) and Carlo et al. (2015).

In this work, the dynamic BAP with a continuous quay and deterministic (fixed) 
handling times, but with uncertain vessel arrival times is studied. Thus, the follow-
ing review puts the focus on the BAP under uncertainty and more specifically on 
proactive approaches for these problems and the use of time buffers. A structured 
overview of relevant literature on the BAP under uncertainty can be found in Liu 
et al. (2020).

A concept which is suggested by many authors for handling uncertainty in the 
BAP is the scenario-based approach. It is chosen, e.g., by Hendriks et  al. (2010), 
Xiang et  al. (2017) and Liu et  al. (2017). All these publications take a proactive 
approach. While the latter two take uncertain travel times and uncertainty in han-
dling times into account, Hendricks et  al. (2010), who study a strategic problem, 
only consider uncertainty in handling times.

A two-stage proactive–reactive solution approach is taken by Zhen et al. (2011) 
and also by Liu et  al. (2020). In addition to a proactive and scenario-based first-
stage, they consider possible disruptions and recovery operations on the reactive 
second model stage. In particular, Liu et al. (2020) point out that usually the prob-
abilities needed in a scenario-based approach are not known and hard to derive; 
hence, a robust approach for handling uncertainty is preferable.

Such a robust approach can be developed using time buffers. The concept of time 
buffers for mitigating uncertainty and in order to achieve robust BAP schedules was 
first suggested by Xu et  al. (2012), who consider uncertain arrival and handling 
times. (The use of buffers is well known from other areas, as, e.g., flight scheduling 
(Baumgarten et  al. 2014) or production management (Leus and Herroelen 2007), 
where the buffers help in deriving robust schedules as well.) In contrast, Wu and 
Miao (2020) do not use time buffers but space buffers, i.e., they do not determine a 
fixed position for each vessel but add some “slack” to the planned berths and hence 
aim for robustness by enhancing flexibility in terms of space. While they can show 
that this leads to a reduction in expected waiting times and, therefore, expected 
costs, this may impede efficiency when too much space and capacity is reserved for 
each vessel.

The Berth Allocation and Quay Crane Assignment Problem (BQCAP) with 
uncertain arrival times is studied, e.g., by Wang and Guo (2018). They proactively 
consider uncertain arrival times and aim at a robust schedule for berths and quay 
cranes. Rodriguez-Molins et  al. (2014a, 2014b) consider uncertain handling times 
and use variable time buffers in their approach for the BQCAP, while Li et al. (2019) 
suggest a proactive scenario-based approach for this problem. Both uncertain arrival 
and handling times in the BQCAP are studied by Zhang et al. (2014) who proac-
tively assign time buffers to vessels; however, the time buffer for all vessels is identi-
cal in their approach.

It can be concluded that proactive approaches are useful to handle uncertain-
ties in the dynamic BAP and time buffers can be employed to proactively increase 



37

1 3

Robust berth scheduling using machine learning for vessel…

a schedule’s robustness. These features will be exploited in the approach taken in 
this work which is aimed at allocating individual time buffers to the different ves-
sels, depending on the degree of uncertainty of their arrival time. This approach is 
described in Sect. 4, while Sect. 3 is dedicated to data and forecasting.

3 � Data pre‑processing

3.1 � Data selection and preparation

The AIS data which is used in this work is provided by the US National Oceanic 
and Atmospheric Administration (NOAA) and already reduced to one AIS message 
per minute. The chronological sequence of the AIS messages is given by the current 
time stamp (BaseDateTime). Each AIS message contains several pieces of informa-
tion: The Maritime Mobile Service Identity (MMSI) is a unique identification num-
ber of nine digits where the first three digits represent the Maritime Identification 
Digits (MID) (see Article 19.108A §41 in the Radio Regulations1) of the admin-
istration (e.g., a country`s government) at which the corresponding vessel is regis-
tered. For the purpose of berth assignment, the MID is limited to the range from 201 
to 775 (cf. the Table of Maritime Identification Digits2) to exclude groups of vessels 
broadcasting together or other devices, e.g., coast stations. The subsequent six digits 
identify the specific vessel registered to the respective administration.

Historic AIS data Data selection

Da
ta

 c
le

an
sin

g 

AIS data from relevant vessels

Identify moored vessels at 
designated terminal

Determine additional attributes

Extract routes

Machine learning algorithmAIS live broadcast Arrival time prediction

Fig. 1   Process of data pre-processing

1  International Telecommunication Union (2020): Radio Regulations.
  URL: https://​www.​itu.​int/​pub/R-​REG-​RR-​2020
2  International Telecommunication Union (2017): Table of Maritime Identification Digits.
  URL: https://​www.​itu.​int/​glada​pp/​Alloc​ation/​MIDs

https://www.itu.int/pub/R-REG-RR-2020
https://www.itu.int/gladapp/Allocation/MIDs
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Each AIS message includes the current position in the form of latitudinal and lon-
gitudinal coordinates (LAT and LON). Additionally, the current speed over ground 
(SOG) is broadcasted. The course over ground (COG) is the direction in which the 
vessel moves whereas the heading is the direction in which the bow points (these 
may be different). With the attributes VesselType and Cargo, the precise type of the 
vessel and (if available) the kind of freight is specified. The status attribute indicates 
the current operational status of the vessel, i.e., whether it is, e.g., underway, under-
takes fishing operation, or is moored at the quay. A vessel´s dimensions are specified 
in terms of its length, width and draft.3

The overall process of deriving forecasts for vessel arrival times from past data is 
shown in Fig. 1. As Heilig et al. (2020) point out, the steps of selecting, pre-process-
ing and transforming the relevant data-i.e., the data cleansing-are important before 
patterns in the data are to be extracted. In terms of data selection, it is recommenda-
ble to consider only recent entries from the available historic AIS data, as the overall 
world fleet’s characteristics may change over time, e.g., due to a larger proportion of 
vessels with higher transport capacities. Hence, AIS data from 2018 on are used in 
this study. Moreover, only those data are relevant which concern trips ending at the 
respective port terminal.

The data cleansing is critical to the accuracy of the resulting forecasts, because 
the ML algorithm can only learn from the information included. Therefore, provid-
ing good data quality is the first step whenever ML is to be applied and it is particu-
larly important for ANN as pointed out by Fancello et al. (2011).

Therefore, the data cleansing for this application is carried out as follows: Firstly, 
in order to identify the relevant AIS data, the data is reduced to a suitable geographi-
cal area, the relevant types of vessel and cargo are set and empty or false entries are 
removed. In particular, AIS messages that do not include the values for all relevant 
attributes are deleted. The allowed ranges and error codes for the considered attrib-
utes are presented in Table 1. The error codes mark incomplete or missing entries by 
broadcasting a default value; in this case, the data is to be excluded.

Table 1   Value ranges and error 
codes of the relevant attributes

Attribute Allowed ranges Error code

MMSI 201,000,000–775,000,000 None
LAT N 0° to N 50° None
LON E−140° to E−110° None
SOG 0–102 knots 102.2 knots
COG 0°–359° 360°
Heading 0°–359° 511°
Vessel type 70–79 None
Status 0, 1 and 5 15

3  Navigation Center (2021): Class A AIS Position Report.
  URL: https://​www.​navcen.​uscg.​gov/?​pageN​ame=​AISMe​ssage​sA

https://www.navcen.uscg.gov/?pageName=AISMessagesA
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The classification of the vessel type in the AIS data is not strict enough to clearly 
identify container vessels. The vessel types 70 to 79 describe general cargo vessels 
including container vessels, but are not limited to those.4 Therefore, without addi-
tional information, container vessels can only be identified based on the fact that a 
certain vessel moors at a container terminal’s quay. Thus, the second task in the data 
cleansing is to extract those vessels that have moored at the designated container 
terminal already in the past.

The terminal’s quay area is represented by a polygon. All AIS messages broad-
casted with a current position inside the quay area and moreover with the status “5”, 
corresponding to a vessel moored at the quay, are considered to be vessels arriving 
at the designated container terminal, i.e., a “port event”. The first AIS message of 
each trajectory from inside the quay area ending at the designated container terminal 
is used to determine the arrival time of that vessel at the port. All other AIS mes-
sages also sending the status moored (“5”), but not located at the quay area, are 
deleted.

In order to enhance the prediction accuracy, AIS data describing the manoeu-
vring at the port, e.g., tug boat rides and mooring activities, within a distance of 6 
nautical miles are excluded and the data is reduced to a maximum of 48 h of journey 
to the port.

Fig. 2   Heatmap of port calls to Miami (Map data by © OpenStreetMap, under ODbL.)

4  Digital Coast (2018): AIS Vessel Type and Group Code.
  URL: https://​coast.​noaa.​gov/​data/​marin​ecada​stre/​ais/​Vesse​lType​Codes​2018.​pdf

https://coast.noaa.gov/data/marinecadastre/ais/VesselTypeCodes2018.pdf
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Knowing the actual arrival times of all calling vessels from the past data, the 
actual remaining travel time can be calculated for each AIS message from the ves-
sels’ port approach. To do so, the AIS messages of a specific vessel are brought 
into reverse chronological order and subsequently changes in the status attribute are 
analysed. As only instances from the quay area of the designated terminal can hold 
the status “moored”, whenever the status changes from “moored” (“5”) to “under 
way using engine” (“0”), this marks the end of the vessels approach to the port, i.e., 
the vessel’s arrival at the terminal. From there, the AIS messages in a trajectory can 
be followed backwards until a disruption of more than two hours occurs in the data. 
As such disruptions signify the entrance into the area which is covered by shore 
AIS stations, a longer period of missing AIS messages or time that this vessel spent 
in other ports or at anchorage, then the trajectory ends. For arrival time prediction, 
the respective last (i.e., earliest) AIS message marks the beginning of the terminal 
approach. All other AIS messages not related to the vessel’s approach are deleted. 
In addition to the remaining Euclidian distance to the designated terminal, also the 
attribute “drift”, describing the discrepancy between COG and heading (Kolley 
et al. 2021), is derived from the AIS messages.

To illustrate the process, the relevant AIS messages for the Port of Miami from 
2018 to 2020 are plotted on a map in Fig. 2.5 Obviously, vessels approach the Port 
of Miami from many origins. In the east and south of Florida, vessels operate in a 
rather wide area and are able to overtake each other. Thus, each vessel can operate 
at individual speed without considering other vessels, i.e., congestions are avoided. 
The trajectories show that the majority of the port approaches are from the north 
and east, while trajectories from the west are narrow and light in colour due to less 
approaches and therefore lower density of AIS messages. The more complex learn-
ing algorithms might exploit such properties, based on the vessels’ coordinates.

Furthermore, approaches at other ports’ terminals are visible that could not be 
identified and hence were not eliminated in the data cleansing. This is due to the low 
reliability of the AIS data (especially in the dynamic attributes) when the AIS sta-
tus of these vessels was not set to “moored” (“5”) at the respective ports. In Fig. 2, 
this effect can be seen at many different ports on the Atlantic coast and the Gulf of 
Mexico where the sequence of AIS messages begins at the sea, reaches a port, leaves 
the port again and eventually approaches the designated terminal. In order to rectify 
this effect, the other ports could be represented through polygons and AIS messages 
send from inside those polygons then could be deleted.

In this work, no additional data, e.g., weather data, is considered. However, 
external factors, i.e., sea current and crosswind, can influence the vessels speed and 
therefore the remaining travel time to the designated terminal (Pani et al. 2014). This 
effect is taken into account through the additional attribute “drift”.

The processed data (Kolley et al. 2022) is split into a training dataset from Janu-
ary 1st 2018 until December 31st 2019. Hence, the training data consists of two 

5  The raw data is available on: https://​marin​ecada​stre.​gov/​ais/.
  A refined dataset is available on the TU Hamburg Open Research (TORE) repository under the follow-
ing https://​doi.​org/​10.​15480/​336.​4471.

https://marinecadastre.gov/ais/
https://doi.org/10.15480/336.4471
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complete years, each including all four seasons. Therefore, the ML algorithms can 
learn the differing weather conditions throughout the years and the forecasts are not 
restricted to specific seasons. The remaining data from 2020 is again split into a 
validation dataset including January to June 2020 and a test data set from July to 
December 2020.

The ML models can be used to predict possible arrival times for these and other 
(unknown) AIS test data. They also could be used on a live feed of broadcasted AIS 
messages. When the currently approaching vessels arrive at the designated terminal, 
their AIS data can feed into the historic AIS database, such that it is used in future 
predictions (see Fig. 1).

3.2 � Selection of ML methods for forecasting remaining travel time

When creating a berthing schedule, the time of arrival needs to be estimated for 
each vessel that will arrive during the planning horizon. This can be realized by 
using the current time as a base point in time and then treating the remaining travel 
time to the designated port as a regression problem (Jahn and Scheidweiler 2018). 
Thus, any regression method that can estimate the remaining travel time based on 
the available AIS data, is permissible. Over the last decades, a wide range of statisti-
cal models and ML algorithms have emerged that can be applied to the regression 
problem at hand. In the following, it is explained how the methods used in this work 
were selected.

As a baseline method, an LR model is chosen (see, e.g., Frochte 2019; Géron 
2018). When predicting the remaining travel time, the distance of the vessel to the 
port is a major influencing factor. Further vessel-related and journey-related attrib-
utes from the AIS data can be additionally exploited to modify this estimation. 
When a vessel approaches a container terminal, its feature vector can be inserted 
into the fitted equation to obtain the prediction.

The kNN algorithm is used as the second method. This learning algorithm has 
been previously described by Langley and Simon (1995) and it is suitable for noisy 
real-life data, as it only considers those data which are close to a certain feature vec-
tor. It has been applied to AIS data before in the context of emission monitoring by 
Virjonen et al. (2018) in order to predict the future location of vessels in the Gulf of 
Finland. Compared to LR, the kNN algorithm takes a completely different approach. 
Instead of creating a model of the world (by, e.g., assuming a linear relationship 
between variables), this instance-based approach keeps historic data in memory. To 
predict the remaining travel time of a vessel, similar entries of past port approaches 
in the database are scanned. The similarity of two neighbours (i.e., vectors of attrib-
utes) is measured by the Euclidean distance and only the k most similar entries are 
taken into further consideration. The predicted remaining travel time is computed by 
averaging the remaining travel times of the k considered neighbours. While averag-
ing, each of the neighbours can either be weighted uniformly or by the inverse of 
their distance to the point for which the prediction is run.

As a more sophisticated ML method, a DTR is chosen. Decision trees generally 
decide in each node with respect to which attribute the training data is to be divided. 
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This decision is made according to its features’ characteristics in order to achieve the 
highest information gain regarding the estimation of the respective label, e.g., the 
remaining travel time. The leaves consist of data for which a further split will not 
generate any additional information for the prediction of the respective label (Bose 
and Mahapatra 2001; Frochte 2019; Yu et al. 2018). The DTR is a specialised type 
of the decision tree especially suitable for regression tasks. Using an LR model, the 
relation between features and labels is represented for the data in each leaf sepa-
rately (Frochte 2019). The suitability of DTR for short-term arrival time prediction 
is shown by Pani et al. (2014).

In the last decades, major progress has been made in the research regarding 
ANNs (e.g., Géron 2018; Belousov et al. 2021). In this work, feed-forward ANNs 
are used (see e.g., Géron 2018). Such a ANN consists of one input layer, a chosen 
number of hidden layers and one output layer while each of the layers consists of a 
certain number of nodes. The number of neurons for the input layer is determined by 
the number of considered attributes, the number of hidden layers and the number of 
neurons for each of the hidden layers are chosen by the modeller and for regression 
problems exactly one neuron exists in the output layer. Each hidden layer is fully 
connected with its preceding and successive layer and each neuron is described by 
the formula f (x) = a

(
bx1 + w2x2 +⋯ + wnxn

)
 , for which n refers to the number of 

neurons in the preceding layer, b and wi are parameters that are fitted to the training 
data and a denotes the activation function.

The activation function is also chosen by the modeller prior to fitting the model 
to the data. In this work, all activation functions supported by scikit-learn6 are 
considered: the identity function a (x) = x , the rectified linear unit (ReLU) with 
a(x) = max (0, x) , the hyperbolic tangent function a(x) = tanh (x) and the logistic 
function a(x) = (1 + exp (−x))−1 . For the trivial case where no hidden layer exists 
and the identity function is selected as the activation function, the ANN corresponds 
to the LR. By adding hidden layers and choosing a slightly more complex activation 
function, such as ReLU, non-linear relationships between the different variables can 
be modelled as well (Schmidt-Hieber 2020). Furthermore, the two alternative solv-
ers adam (Kingma and Ba 2015) and lbfgs (Liu and Nocedal 1989) are employed for 
tuning the weights of the neurons during the learning phase.

ANNs have been previously applied to the remaining travel time estimation prob-
lem with good results (e.g., Fancello et al. 2011; Jahn and Scheidweiler 2018). Fan-
cello et al. (2011) further state that determining the hyper-parameters (e.g., the num-
ber of hidden layers, number of neurons for each hidden layer and the activation 
function) was the greatest challenge and that a trial-and-error procedure was fol-
lowed in their work. The respective issue is tackled in this work by adding a second 
iterative layer around the ML phase to systematically optimize the hyper-parameters.

6  scikit-learn (2021): Machine Learning in Python. URL: https://​scikit-​learn.​org/

https://scikit-learn.org/
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3.3 � Hyper‑parameter optimization for ML methods

Generally, there are many design decisions to be made when employing ML meth-
ods. This also applies to the problem of forecasting remaining travel times. Except 
for LR, all learning algorithms that are used in this work are configurable, i.e., 
they use hyper-parameters which are chosen before training and which influence 
the resulting forecast quality. The selection of configuration options cannot be re-
adjusted during the learning phase, as this would undermine the procedure.

As pointed out by different authors, the selection of appropriate hyper-parame-
ters is a non-trivial problem (Bergstra et al. 2011; Bergstra and Bengio 2012; Egg-
ensperger et  al. 2013). Fancello et  al. (2011) highlight the importance of variable 
normalisation, the choice of an appropriate learning algorithm and of its related 
hyper-parameters when forecasting the arrival times of vessels. In addition, they 
point out that using more attributes does not automatically lead to better results, a 
fact also known as the feature subset selection problem (Shukla et al. 2019; Takano 
and Miyashiro 2020).

The feature subset selection process and the choice of variable normalization 
are carried out as follows. Instead of covering all possible options, four feature sets 
have been defined which are named ‘unscaled_reduced’, ‘unscaled_full’, ‘scaled_
reduced’ and ‘scaled_full’. Each reduced feature set contains the attributes LAT, 
LON, SOG, i.e., position, speed and the distance to the port. Each full feature set 
additionally includes the heading, drift, vessel length and its width. An unscaled 
feature set contains the respective information in its original units, i.e., time spans 
are reported in minutes, distances in nautical miles and coordinates in degrees. 

Table 3   Hyper-parameters leading to the highest R2 values for the validation set, as identified by the TPE 
heuristic

Learning 
algorithm

Hyper-parameter Selected value R2 validation set

LR Feature set Unscaled_reduced 0.61
kNN Feature set Unscaled_reduced 0.7

Number of neighbours 500
Weights Distance_based

DTR Feature set Unscaled_reduced 0.67
Maximum depth 15
Maximum number of features 3
Minimum number of samples at a leaf 2221
Minimum number of samples at a split 136

ANN Feature set Unscaled_reduced 0.71
Number of neurons in first hidden layer 22
Number of neurons in second hidden layer 63
Activation function tanh
Solver adam
Learning rate 2.43 × 10−4
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In a scaled set, each attribute is scaled with a standard scaler. A vector of the true 
remaining travel times in unscaled format is maintained separately.

The four different options for the features to be used as well as the hyper-parame-
ters that are varied are shown in Table 2. For the sake of simplicity, both are jointly 
referred to as “hyper-parameters” here. The number of possible combinations of 
hyper-parameters in Table 2 exceeds what can be reasonably evaluated: Even if the 
learning rate is neglected, the number of possible combinations exceeds 2.9e11 for 
the ANN alone. Thus, a reasonable subset of experiments must be selected. Berg-
stra and Bengio (2012) argue that this should not be done manually because even a 
random sampler outperforms researchers who use their intuition. However, the tree-
structured Parzen estimator (TPE) has been shown to outperform a random sampling 
process (Bergstra et al. 2011; Eggensperger et al. 2013). This approach has first been 
presented by Bergstra et al. (2011) and is employed in this work. It uses Bayesian 
statistics to update distributions and the expected improvement to identify promising 
new hyper-parameters for each iteration. Each hyper-parameter is modelled indepen-
dently of each other; thus, all hyper-parameters are varied concurrently. To further 
steer the exploration process, some variables are first log-transformed. Such a trans-
formation is indicated in the column “scale” in Table 2. For each hyper-parameter, 
initially a uniform distribution is assumed and a parameter realization is drawn ran-
domly from this distribution.

For each learning algorithm, its scikit-learn implementation for Python is 
employed, using the default values of that library unless indicated otherwise. In 
the hyper-parameter optimization, the TPE implementation of the optuna library 
for Python is used (Akiba et al. 2019). Each ML method is given 100 iterations to 
maximize the R2 value on the validation set; this turned out to be sufficient, as a pre-
study with 1000 iterations showed no improvement at all for kNN and only minor 
improvements at the third decimal place for DTR and ANN. For each ML method, 
the hyper-parameters that lead to the highest R2 value are then used for creating the 
vessel arrival time forecasts for the validation set.

The results of the hyper-parameter optimization process are presented in Table 3. 
In all cases, the best observed value for the feature set was ‘unscaled_reduced’. For 
ANNs, this contradicts the previous findings of Fancello et al. (2011) as well as the 

Fig. 3   Hyper-parameter selection process for kNN
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general guidelines of scikit-learn7 regarding scaling, while the result with respect 
to the feature set-the reduced set being preferable-is in accordance with their results 
and results regarding feature selection from other areas, e.g., for predictions in the 
field of renewable energy applications, esp. wind speed prediction (Salcedo-Sanz 
et al. 2018), while the situation is somewhat different in disease prediction where 
only “simple” diseases can be predicted using a small number of features (Chen 
et al. 2017).

Furthermore, kNN outperforms DTR and performs very close to ANN on the val-
idation set, indicating that kNN as an instance-based learner is a suitable approach 
for estimating the remaining travel time.

It should be noted, however, that in some cases different constellations of hyper-
parameters led to the same results, i.e. the “best” combination as presented in 
Table 3 is not unique. In particular, often the unscaled and scaled variant performed 
equally well, e.g., for LR. Moreover, the resulting hyper-parameters for ANN 
depend not only on the data used, but also, e.g., on the order in which the data are 
“fed” to the neural network. Hence, care must be taken with respect to generalizing 
the results.

For kNN, the hyper-parameter search process is discussed here in more detail to 
illustrate the procedure. Note that, however, the respective evaluations were carried 
out for all four methods.

In Fig.  3, for each hyper-parameter value its corresponding R2 values are plot-
ted as a slice plot. This visualization neglects the interactions of the hyper-parame-
ters, but shows more clearly the influence of the individual parameter choices. Each 
marker indicates the selection of a value for the respective hyper-parameter. The 
colour bar indicates at which stage during the heuristic hyper-parameter optimiza-
tion process the respective value was evaluated. For the first iteration (in dark red), 
the values were sampled randomly. As the colour turns into blue, more and more 
already probed hyper-parameter values are incorporated in the probabilistic model 
used by TPE, thus steering the process towards more promising hyper-parameter 
settings.

Table 4   Error distribution and regression metrics of the ML algorithms for all test data

The best value for each column is set in bold

n = 96.217 Sd (min) Median (min) MAPE (%) MAE (min) RMSE (min) R2

LR 193.5 96.5 40.9 154.6 204.6 0.69
kNN 180.6 71.9 29.0 131.4 186.9 0.74
DTR 190.6 64.8 30.4 139.5 197.2 0.71
ANN 175.3 76.5 29.7 132.0 182.8 0.75

7  scikit-learn (2021): Neural network models.
  URL: https://​scikit-​learn.​org/​stable/​modul​es/​neural_​netwo​rks_​super​vised.​html#​tips-​on-​pract​ical-​use

https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use


47

1 3

Robust berth scheduling using machine learning for vessel…

For the feature set selection, a clear preference for the unscaled reduced variant 
can be observed. The wide range between the lowest and highest R2 values in the 
left-most dataset subplot indicates that (at least) one additional influencing factor is 
present beside the feature set selection. When the number of neighbours for each of 
the 100 iterations is plotted against the R2 value in the second subplot, a curve-like 
shape is observed for each case, showing the relevance of this factor. In the value 
range under consideration, more neighbours result in better (or at least not worse) 
predictions. This indicates that the data is noisy, as more data points have to be aver-
aged to achieve higher R2 values. For the hyper-parameter ‘weight’, the last subplot 
is less obvious to interpret, but there seems to be a slight advantage of distance-
based weighting.

In summary, the plots highlight the importance of proper feature selection and 
feature pre-processing as well as hyper-parameter optimization.

3.4 � Results of the different ML methods

After the settings for the hyper-parameters have been determined using the valida-
tion set, next the performance of these hyper-parameter settings on the test data set 
is evaluated. In this work, only port approaches within the next 24 h, i.e., 1440 min, 
are considered. For all predictions on the test data, the error, i.e., the difference 
between the actual and the forecasted remaining travel time, is further examined. As 
a summary of the error distributions, the metrics Mean Absolute Percentage Error 
(MAPE), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are 
reported and the R2 values are given in Table 4.

LR shows the worst performance over all four metrics, followed by DTR. The 
two approaches kNN and ANN perform best and are head-to-head with very small 
differences in their error metrics.

To analyse how prediction accuracy of the learned models depends on the ves-
sels’ remaining travel time to the designated terminal at the port, in Fig. 4 the MAE 
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is shown for time intervals of 4 h for each ML approach. The methods kNN, DTR 
and ANN perform similarly in the considered time horizon of 24 h. Thus, the analy-
sis of the three approaches’ accuracy for different time intervals confirms the overall 
results in Table 4. Moreover, kNN and ANN show a constantly increasing MAE for 
increasing travel times from 4 to 8 h on. DTR shows the same behaviour already 
from the beginning. This is in line with the expectation that prediction accuracy 
increases with decreasing remaining travel time to the designated terminal. When 
a vessel is close to the terminal, many different factors influence the time it takes to 
actually get to the final berthing position, therefore the relative deviations in the data 
are bigger and forecast quality deteriorates again, leading to worse values for the 
0-4 h interval.

However, as can be seen in Fig. 4, the LR method deviates from the behaviour of 
the other approaches. While for 0–4 h, 4–8 h and 20–24 h the MAE is much higher 
than for all other approaches, between 8 and 20 h remaining travel time to the ter-
minal LR performs unexpectedly well. Obviously, in this range of travel times, the 
arrival time can be forecast best as a linear function of the vessel’s position, distance 
to the terminal and speed, whereas this is not possible when a vessel is rather close 
to or still quite far from the terminal.

4 � Robust berth scheduling

4.1 � Dynamic time buffers

The model presented below considers dynamic vessel arrivals at a continuous quay 
with fixed handling times, with the goal to assign each incoming vessel to a specific 
berthing time and position and to achieve high service quality in order to satisfy the 
terminal’s customers. The continuous quay layout allows the mooring of vessels at 
any position, but the quay’s capacity is limited by the quay length and the considered 
planning horizon. If there is not enough quay space available at a specific time for a 
vessel to be moored, it cannot be assigned without conflicting with other vessels, or 
it needs to be postponed. The proportion of vessels that can be served without con-
flict is regarded as the achieved service level (following Liu et al. 2017) which is to 
be maximized. Moreover, further service quality measures are considered, e.g., the 
vessels’ waiting times for their berths.

A vessel’s arrival time is uncertain until the vessel actually arrives. However, the 
berth scheduling has to be conducted beforehand, when only estimations of arrival 
times can be considered. Therefore, the stability of the schedule is enhanced by add-
ing time buffers between any two vessels, compensating for possible vessel delays. 
Consequently, the quay remains idle for that time, as the buffer blocks additional 
capacity for the related vessel. The more idle time is assigned, the higher is the 
robustness of the schedule, but the lower the quay’s efficiency is expected to be. 
Among others, Xu et al. (2012) assign time buffers of the same length to all vessels, 
but the uncertainty in the arrival times is not necessarily identical. Hence, in their 
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approach a long idle time may also be assigned when uncertainty for a specific ves-
sel in fact is low.

Therefore, aiming for a robust and efficient schedule, in this work this issue is 
addressed by defining individual time buffers which reflect the uncertainty in the 
arrival time of a specific vessel. Thus, less unnecessary idle time is assigned and 
efficiency can be maintained.

To predict possible arrival times for future incoming vessels, the ML algorithms 
presented in Sect. 3.2 are applied to derive forecasts based on knowledge from past 
AIS data. Due to the lack of certain information about the actual arrival time, the 
overall accuracy of the forecasts is unknown beforehand, i.e., when the scheduling is 
conducted. Thus, each forecast is interpreted as one possible future scenario and the 
scenarios are assumed to be equally likely.

Obviously, the ML algorithms can only learn information that is included in the 
training data. Therefore, the resulting prediction is expected to be more accurate for 
instances similar to the training data, i.e., in cases where the uncertainty is low; then, 
only a short time buffer is necessary. However, for new instances that behave differ-
ently, i.e., when uncertainty is high (e.g., when a vessel has to avoid bad weather 
and hence takes a detour), the forecast cannot be that precise. To ensure that the 
schedule is stable (and hence robust), in this case a longer time buffer is recom-
mendable. The concept of DTBs (Kolley et al. 2021) for conflict avoidance in berth 
scheduling is based on these ideas. A DTB consists of the period of time between 
the earliest predicted arrival time and the latest predicted departure time, i.e., the 
latest predicted arrival time plus handling time, where the different predictions are 
made by the different ML methods applied. That way the uncertainty is considered-
following a proactive approach-through a set of predicted arrival times per vessel. 
While the DTBs of two vessels may overlap, to avoid conflicts between vessels, the 
berth of one robustly scheduled vessel may not overlap with the DTB or the berth of 
another vessel.

In order to provide high service quality, vessels’ waiting times should be mini-
mized. Therefore, each vessel’s berthing time should be scheduled as early as pos-
sible. As a vessel cannot be berthed before it arrives at a port, it would be inefficient 
to allow a berthing time for any vessel prior to its earliest predicted arrival time. 
Likewise, it is contrary to the planning objective to berth a vessel much later than its 
latest predicted arrival time (as long as enough capacity is available), as that would 
lead to a long potential waiting time. Therefore, the earliest and latest arrival time 
predictions are used as bounds for the planned berthing time. Note that non-robust 
scheduling and postponement of vessels are also possible in the approach taken in 
this work, but only if a robust assignment, i.e., an assignment which respects the 
upper bound, is not possible. This is explained in more detail in Sect. 4.2.

The berthing schedule’s robustness is evaluated ex post, i.e., after the optimi-
zation, when, based on the knowledge of the actual arrival times, actual conflicts 
can be identified. These arise from the deviation of the actual arrival time from the 
predictions and lead to infeasibility of the berthing schedule. The proportion of the 
assigned vessels that can be served without conflicts according to the actual ves-
sel arrival times is defined as the true service level (Kolley et al. 2021). While the 
value of this measure is only known ex post, it is the best measure for evaluating 
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and comparing the actual quality of different berthing schedules when real data is 
considered.

4.2 � Robust BAP model with DTBs: model ro‑DTB‑BAPc

The robust model with DTB for the BAP with continuous quay (ro-DTB-BAPc) 
which is presented below is based on the “Model 1” by Liu et al. (2017) who, as 
stated above, also aim at a robust berth allocation, taking uncertainty regarding 
vessel arrival and handling times into account through a scenario-based approach. 
In this work, a special kind of scenarios is used; for all relevant vessels the arrival 
times are predicted by each of the four ML methods, i.e. by LR, kNN, DTR and 
ANN, as described in Sect.  3, such that four different scenarios result which are 
simultaneously considered in the ro-DTB-BAPc. Hence, in the approach taken here, 
ML-for arrival time prediction and scenario development-and optimization-for berth 
allocation-are combined. The model’s further modifications and enhancements, 
which were made to improve the robustness of the resultant berthing schedules, are 
explained in more detail below; among others, they consist of the assignment of a 
berth to each arriving vessel (no rejections as in “Model 1”) and the consideration 
of the DTBs which do not exist in “Model 1” by Liu et al. (2017). Additionally, the 
service level is to be maximized in this work, whereas in the “Model 1” the service 
level is restricted by a lower bound, i.e. at least a certain degree of robustness is to 
be achieved. Both models were implemented in Gurobi for Python and solved by the 
respective standard solver (for the results, see Sect. 5); so both models are used as 
solution models in this study and no specific solution procedures are developed as 
part of this work.

The ro-DTB-BAPc allocates a known set of vessels V  to the available quay space, 
considering a set of forecasts Ω to predict the respective vessels ‘ arrival times. Each 
forecast � ∈ Ω provides a predicted arrival time ai(�) for each incoming vessel 
i ∈ V  . The weights for each forecast � ∈ Ω are set to identical values, p(�) = 1

|Ω|.
The available capacity for assigning the N = |V| vessels is defined by the quay’s 

length L and the planning horizon T  . A berth for a vessel i ∈ V  is assigned accord-
ing to the predicted arrival times ai(�) for that vessel and the pre-scheduled berthing 
position bi . The latter is planned in the pre-scheduling step, where a baseline sched-
ule is developed; this can be any feasible solution of the BAP (Umang et al. 2017).

The presented model aims at maximizing customer satisfaction. Therefore, three 
aspects of the service quality provided are considered: (1) the vessel waiting time, 
(2) the deviation from the pre-scheduled berthing position and (3) the non-robust 
assignments and postponement of vessels, i.e., a high service level. For each of these 
aspects, service quality penalty costs arise, where the cost rates c1

i
 and c2

i
 indicate the 

penalties per minute vessel i ∈ V  potentially has to wait for its berth according to the 
forecasts and per meter of distance between the berth and vessel i ’s pre-scheduled 
berthing position bi.

A vessel is to be assigned non-robustly whenever, due to a lack of capacity, it 
cannot be assigned according to its predicted arrival times (hence the DTB is not 
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considered) and therefore has to wait, e.g., lying on the roadstead, until a berth is 
available at a later time.

Moreover, when the vessel is to be assigned to a berth such that the container 
handling process ends later than the planning horizon T  , the vessel is called post-
poned. This means that the berth is shifted to the right in the time–space diagram 
(see Fig. 10). In both cases, i.e., for non-robust assignments as well as for postponed 
vessels, high penalty costs c3

i
 arise. Thus, for a vessel that cannot be served robustly 

due to a lack of capacity at the time it is expected to arrive, penalty costs have to be 
incurred for each minute of vessel waiting time and additionally for being postponed 
to a much later berth.

The sizes of the different penalty cost rates should be chosen such that they model 
the relations between the degrees of importance of the three aspects of service qual-
ity. In particular, in order to avoid a large number of vessels being postponed, the 
related penalty cost c3

i
 has to be significantly higher than the other two cost rates.

It should be noted that aiming at the maximization of the terminal’s profit and 
therefore considering revenue in the objective function, would not influence the 
solution of the model, as all vessels are to be assigned and hence the revenue from 
serving the vessels is predetermined. Moreover, only penalty costs are considered, 
while for profit maximization, e.g., handling costs would have to be taken into 
account as well.

The possibility of postponing vessels exceeds the capabilities of the original 
“Model 1” by Liu et al. (2017) where this option is not given; instead, in their model 
vessels are “rejected” when they cannot not be scheduled without conflict. As an 
actual rejection is not realistic for a container terminal, this can be interpreted as a 
postponement to a later, yet unknown point in time. On the long-term all vessels are 
assigned, even the rejected ones and hence the resulting revenue is predetermined 
also for their approach. If vessels have to be rejected, these vessels are virtually 
“stacked” by the “Model 1”. Formally, they are all assigned to a similar time and 
position within the planning horizon in order to safe quay capacity; this effect is 
shown in Fig.  9 and explained in more detail below. In contrast, in the approach 
taken in this work, a conflict-free berthing time and position is assigned to each ves-
sel. Therefore, also postponed vessels occupy capacity, which is not the case in Liu 
et al.’s virtual “stacking” approach and also is a refinement of the approach devel-
oped by Kolley et al. (2021).

quay

time

assignment 
vessel 

Fig. 5   Illustration of relevant deviation variables
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The allocation of a berth to vessel i ∈ V  is modelled with the decision variables 
(start of) berthing time xi and berthing position yi , defining the location of the quay 
at which the bow of the vessel is placed. The berthing time of vessel i ∈ V  can be 
assigned earlier or later than the predicted arrival time ai(�) (see Fig. 5). Therefore, 
a potential waiting time mi(�)

+ occurs according to the forecast � ∈ Ω , whenever 
the assigned berthing time starts later than the predicted arrival time. Vice versa, a 
potential delay mi(�)

− occurs according to the forecast � ∈ Ω , when the berthing 
time that is assigned starts earlier than the predicted arrival time. The variables n+

i
 

( n−
i
 ) contain the positive (negative) deviation of the berthing position yi from the 

pre-scheduled berthing position bi of vessel i ∈ V  in meters. ti describes the handling 
time of vessel i ∈ V  . It is assumed that all vessels arrive early enough such that the 
container handling could be finished before the end of the planning horizon T  , given 
that there is enough capacity.

Different binary variables are used to model (and avoid) a possible overlap 
between the berths of two vessels i, j ∈ V  in the time dimension, �x

ij
 and in the quay 

space dimension, �y
ij
 . These variables take value 1, if the two vessels do not overlap 

in the respective dimension and they take value 0, if they do. For further details on 
these variables and their mode of operation see, e.g., Liu et al. (2017).

In the model presented below, conflicts are not only avoided between every two 
vessels, but also between each vessel and the DTBs of the N − 1 other vessels. The 
binary robust berthing decision variable wi takes value 1 whenever the DTB of ves-
sel i is respected in the berth scheduling, the vessel is served in the planning horizon 
and, due to the time buffers, the schedule’s stability is enhanced. When a vessel is 
non-robustly assigned or postponed, the binary robust berthing decision variable wi 
takes value 0.

Now the model formulation of the ro-DTB-BAPc can be presented using the nota-
tion introduced above:

subject to

(1)min
∑

�∈Ω

∑

i∈V

p(�) ⋅ c1
i
mi(�)

+ +
∑

i∈V

c2
i
⋅

(
n+
i
+ n−

i

)
+
∑

i∈V

c3
i
⋅

(
1 − wi

)

(2)xi + ti ≤ T + T ⋅

(
1 − wi

)
∀ i ∈ V

(3)yi + li ≤ L ∀ i ∈ V

(4)xi ≥ min
�

ai(�) ∀ i ∈ V

(5)xi + ti ≤ xj + 2 ⋅ T ⋅

(
1 − �

x
ij

)
∀ i, j ∈ V , i ≠ j

(6)ai(�) + ti ≤ xj + 2 ⋅ T ⋅

(
2 − �

x
ij
− wi

)
∀ i, j ∈ V ,� ∈ Ω, i ≠ j
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The objective (1) is to minimize all penalty costs resulting from the three aspects 
of service quality: The potential waiting time, the spatial deviation from the pre-
scheduled berthing position and the non-robust assignments or postponement of ves-
sels. For each vessel i , the cost rates are set individually such that priorities between 
vessels can be captured as well.

Constraint set (2) restricts the current planning horizon to which vessels can be 
assigned. If the end of the scheduled container handling 

(
xi + ti

)
 of a vessel i exceeds 

the current planning horizon T  , the respective vessel will be postponed to the suc-
ceeding planning horizon. Constraints (3) limit the berth assignment to the quay 
range, where the end of a berth yi + li may not exceed the quay’s length L . A vessel 
i’s berthing time xi cannot be assigned earlier than its earliest predicted arrival time 
min
�

ai(�) ; this is ensured by constraint set (4).
The constraint sets (5)–(7) prevent the berths of vessel i and j from overlapping 

in terms of time. Constraints (5) state that the berth of a succeeding vessel j does 
not overlap with the berth of vessel i , when its berthing time xj is later than the 
departure time xi + ti of the preceding vessel i . Postponed vessels may be assigned 
in twice the planning horizon (constraints (2)) and hence the maximum time span 

(7)xi + ti ≤ aj(�) + 2 ⋅ T ⋅

(
2 − �

x
ij
− wj

)
∀ i, j ∈ V ,� ∈ Ω, i ≠ j

(8)yi + li ≤ yj + L ⋅

(
1 − �

y

ij

)
∀ i, j ∈ V , i ≠ j

(9)�
x
ij
+ �

x
ji
+ �

y

ij
+ �

y

ji
≥ 1 ∀ i, j ∈ V , i ≠ j

(10)xi − ai(�) = mi(�)
+ − mi(�)

− ∀ i ∈ V ,� ∈ Ω

(11)yi − bi = n+
i
− n−

i
∀ i ∈ V

(12)
mi(�)

+
,mi(�)

−
, n+

i
, n−

i
, xi, yi ≥ 0,

�
x
ij
, �

y

ij
, uij,wi ∈ {0, 1} ∀i, j ∈ V , i ≠ j,� ∈ Ω

quay

time

assignment 
vessel i

assignment 
vessel k

assignment 
vessel j

Fig. 6   Robust and non-robust assignments in the berthing schedule
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allowed between two vessels’ berths is to be set to 2 ⋅ T  as well. Moreover, con-
straint sets (6) and (7) avoid an overlap of the berth of a vessel with the DTB of 
another vessel and therefore address the stability of the resulting berthing schedule. 
If vessel i is scheduled according to its DTB ( wi = 1 ), constraints (6) state that the 
berthing time xj of a succeeding vessel j cannot be assigned earlier than the latest 
predicted departure time of a preceding vessel i (see Fig. 6). Thus vessel j may not 
overlap with the DTB of vessel i in terms of time. In Fig. 6 it can be seen that the 
DTB of vessel j cannot be considered in the berth scheduling (illustrated by only 
the upper half of the rectangle), as it would overlap with the berth assignments of 
vessel i and k . Thus, vessel j is to be assigned non-robustly and the berthing time xk 
of vessel k can be scheduled without considering the latest predicted departure time 
of vessel j . Likewise, constraints (7) ensure that, without overlapping with vessel 
j ’s DTB, the planned departure time of a vessel i , given by its berthing time xi plus 
the handling time ti , cannot be assigned later than the predicted arrival times aj(�) 
according to each forecast � of the succeeding vessel j (and hence not later than the 
earliest predicted arrival time), if the vessel j will be scheduled according to its DTB 
( wj = 1).

Note that in Fig. 6 the assignment of vessel j is non-robust and hence its DTB 
is not respected here. However, in the berth scheduling of vessel j the DTB of ves-
sel i is considered-vessel j is scheduled outside the DTB of vessel i –, as vessel i is 
robustly scheduled 

(
wi = 1

)
.

Constraint set (8) states that the berths of two vessels i and j do not overlap in 
terms of space if the berth of vessel i ends on a lower position 

(
yi + li

)
 than the 

berthing position yj of vessel j . No conflict arises between two vessels i and j , if 
their berths do not overlap in at least one dimension, i.e., at least one of the binary 
variables �x

ij
, �x

ji
, �

y

ij
 or �y

ji
 takes value 1 and constraints (9) ensure that this is true for 

all vessels.
The potential waiting times (or delays) according to the related forecasts � are 

determined in constraints (10). Similarly, constraints (11) measure the distance 
between the assigned berthing position yi and the pre-scheduled berthing position 
bi of a vessel i . Non-negativity and binary conditions for the variables are given in 
(12).

4.3 � Comparison of ro‑DTB‑BAPc and “model 1” by Liu et al. (2017)

As the “Model 1” proposed by Liu et al. (2017) serves as a basis and a benchmark 
for the ro-DTB-BAPc model, the major differences between the two models are 
explained in the following.

“Model 1” contains additional decision variables uij stating whether two vessels i 
and j are in conflict ( uij = 0 ), i.e., if their berths overlap or not. Using these decision 
variables, in “Model 1” the decision is made whether vessels are assigned without 
conflicts with other vessels. Vessels which are in conflict are virtually “stacked” at 
a certain berth position and time, i.e., they are assigned to similar berths which nec-
essarily overlap. This effect is due to the fact that the aim of the “Model 1” is the 
minimization of penalties for waiting times and position deviations, while there is 
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no penalty for vessels which cannot be assigned without conflict as it is the case in 
the ro-DTB-BAPc. Instead, in “Model 1” an additional constraint requires fulfilment 
of a certain service level; this is given by a predefined proportion of vessels which 
have to receive a conflict-free assignment, e.g., 80% of all vessels. Thus, the robust-
ness, measured through the service level, is already specified in the model’s param-
eters. Hence, in contrast to the model presented above, “Model 1” does not aim at 
maximizing the berthing schedules robustness, but it only achieves and guarantees a 
predefined service level.

In the ro-DTB-BAPc, conflicting assignments are not allowed and hence it is 
ensured by constraints (9) that all vessels are scheduled without conflict. Moreover, 
the DTBs are taken into account, which are not considered by Liu et  al. and it is 
decided if a vessel is robustly assigned; this is modelled by the variables wi , while 
the decision variables uij are not necessary in the ro-DTB-BAPc. The DTB approach 
is modelled in constraints (6) and (7) which do not exist in “Model 1”; the integra-
tion of these individual buffers for increased schedule robustness (see Sect. 4.1) is 
a major change compared to the original model, where combinations “across sce-
narios”, as they are defined by the DTBs, are not considered.

Moreover, Liu et al.´s “Model 1” only allows vessels to be assigned in the plan-
ning horizon T  . Hence, the option of postponing vessels (if necessary) as imple-
mented by constraints (2) is a further important new aspect of the ro-DTB-BAPc, 
also in comparison to the model presented by Kolley et al. (2021).

Constraint sets (3), (4), (10) and (11) are identical to Liu et al.’s model. The same 
is true for (5) and (8), despite the fact that ti , �xij and �y

ij
 depend on the respective sce-

nario � ∈ Ω in their approach.
Finally, in the benchmark model not only the estimated arrival times, but also the 

handling times depend on the respective scenario � ∈ Ω . Therefore, in “Model 1”, 
the binary variables �x

ij
 and �y

ij
 are also defined for each scenario. However, as the 

focus in this work is on the uncertainty in the arrival times, the vessels’ handling 
times are assumed to be identical across all scenarios here.

To summarise, in the original model by Liu et al. (2017), vessels which cannot be 
scheduled without conflict are virtually “stacked” in one position because, when the 
required service level is fulfilled by conflict-free scheduled vessels, no actual, viable 
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berthing positions are required (and, hence, determined) for the remaining vessels. 
In contrast, in the ro-DTB-BAPc non-robustly assigned or postponed vessels are 
included in the berthing schedule and are allocated to actual, feasible berthing posi-
tions. This leads to berthing schedules which are of more practical usefulness as 
they can be directly implemented in reality.

5 � Numerical experiments

5.1 � Selection and generation of data

In this section, the set-up of the numerical experiments as well as their results are 
presented. The major purpose of the numerical studies presented below is to evalu-
ate the quality of the solutions resulting from the ro-DTB-BAPc. In order to do this, 
the results are compared to those achieved by the “Model 1” proposed by Liu et al. 
(2017) which, as pointed out above, served as a basis for the ro-DTB-BAPc.

The overall process carried out in the numerical study is shown in Fig.  7. For 
each vessel, 100 different AIS messages in the time during a port approach are sam-
pled. Arrival time predictions are made by all four ML algorithms and are jointly 
used as a set of possible arrival times for each individual vessel. Based on these 
predictions which serve as the different scenarios, the vessels’ DTBs are determined 
and exploited by the optimization model as explained in Sect.  4.1. However, first 
a pre-schedule phase is conducted to derive the pre-scheduled berthing positions 
used in both models and only then the ro-DTB-BAPc is solved. The number of ves-
sels that are assigned to a robust berthing position by the ro-DTB-BAPc, i.e., that 
are scheduled according to their DTB, then is used as the desired minimum service 
level for the benchmark model by Liu et al. (2017). The resulting berthing schedules 
of both models are finally evaluated and compared regarding the true service level 
using the actual (known) vessel arrival times. The less conflicts occur in a berthing 
schedule with respect to the actual arrival times of the vessels, the more robust is the 
respective solution.

In the following analysis, the South Florida Container Terminal SFCT at the 
Port of Miami is considered for the berth scheduling of incoming container vessels. 
Overall, a quay length of 1509  m is available, where only the eastern part of the 
quay (berth 99 to 140) is considered as it is straight and therefore perfectly matches 
the assumption of a continuous quay layout. The planning horizon T  is set to five 
work days (7.200 min) in order to plan the activities for a whole week.

The set of vessels that are to be assigned in the planning horizon is randomly 
created from all vessels in the AIS test data set from 1st of July to December 31st, 
2020. One AIS message per vessel is randomly chosen from all port approaches 
included in the test data. An arrival time prediction is made by each of the four ML 
algorithms for the respective message, such that four predictions are available per 
vessel.

From the vessels’ AIS data, also the vessels’ lengths are used in the optimization 
as the vessel´s length represents the demand for quay space during the container 
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handling. As the actual handling times are not known, based on a vessel’s length, its 
handling time is generated using normally distributed random variables according to 
data from the Port of Hamburg8 and hence set to realistic values:

For l < 200m ∶ N(9, 6) , for 200m ≤ l < 300m ∶ N(21, 9) , for l ≥ 300m ∶ N(32, 8).
As the forecasts are originally designed for a period of 24 h ahead, a random off-

set is added to the predicted arrival time in order to generate a data set with arrival 
times equally distributed over a five-day period. It is assumed that all vessels arrive 
at least by the duration of their handling time before the end of the planning hori-
zon, i.e., before the end of the fifth day. Therefore, the offset is chosen such that 
all vessels could be served within the planning horizon if capacity was available. 
Note that the actual arrival time with the respective off-set is only used for the ret-
rospective analysis of the berthing schedule; it has no influence on the results of the 
optimization.

The cost rates for the optimization models depend on the vessels’ lengths as well. 
Hence, bigger deep-sea vessels are prioritised higher than smaller feeder vessels. 
Because these cost rates are fictional, the actual values are less important than the 
relation between them to ensure that a postponement of any vessel only takes place 
when unavoidable ( c2

i
= 0.2 ⋅ c1

i
 , c3

i
= c1

i
⋅ 106).

As the quay’s capacity is limited in the planning horizon, the number of ves-
sels that can be assigned to feasible berthing positions is finite as well. Thus, a pre-
liminary test series was conducted to determine a reasonable number of vessels to 
assign. Three datasets consisting of 20 vessels were created and, starting with a sin-
gle vessel, in each run one vessel was added to the set of vessels to be scheduled. 
The solution of the respective ro-DTB-BAPc then gave the planned service level 
which the benchmark model from Liu et al. (2017) subsequently had to fulfil.
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8  HHLA (2021): Report Schiffsabfertigung: Segelliste.
  URL: https://​coast.​hhla.​de/​report?​id=​Stand​ard-​Report-​Segel​liste
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When considering eleven vessels, in all three datasets at least one vessel was 
postponed. Hence, not all vessels could be robustly assigned to a berth. However, for 
one dataset containing twelve vessels, all vessels were assigned robustly. As a suit-
able dataset size for the available capacity, therefore a maximum number of twelve 
vessels was chosen according to this preliminary test.

5.2 � Solution times and robustness of berth allocation plans

Based on the results from the preliminary test series, for the numerical experiments 
1000 datasets were created by randomly choosing twelve vessels per dataset to be 
scheduled by both models, the ro-DTB-BAPc and the “Model 1” (Liu et al. 2017). 
The Gurobi library and solver for Python were used for the implementation and 
the optimization of both models was carried out on a 3.90 GHz 16-core CPU with 
64 GB RAM.

The ML forecasting methods used in this work predict the vessels’ arrival times 
up to 24  h in advance. However, some vessels are much closer to the designated 
terminal and little time is left until the vessel’s arrival. Thus, the optimization of 
the berthing schedule is to be conducted in limited time and hence a time limit of 
three hours is set for solving each model. As shown in Fig. 8, the ro-DTB-BAPc 
generally takes more computational effort to be solved. However, while “Model 1” 
determines a schedule and decides which vessels are to be rejected, the ro-DTB-
BAPc also makes the decision whether a vessel is robustly assigned according to the 
DTBs and determines viable berths for the non-robustly scheduled vessels. So, the 
problem that is solved is more complex, hence solution times should be expected to 
be longer.

On average, solving the ro-DTB-BAPc with twelve vessels takes 346.57  s, 
whereas the benchmark model can be solved in 4.71 s on average. The computation 
time of the ro-DTB-BAPc model increases with a decreasing number of robustly 

quay [m]

time [min]

Planned berth
Conflicting berth
Actual berth

Fig. 9   Resulting berthing schedule from “Model 1”
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assigned vessels, i.e., when it is difficult to adhere to the vessels’ DTBs, leading to 
a lower planned service level and more non-robust assignments. For datasets where 
only six vessels are robustly assigned (service level of 50%), the ro-DTB-BAPc was 
never able to be solved within the pre-set time limit. Moreover, when seven vessels 
are robustly assigned, for some datasets the ro-DTB-BAPc reached the time limit as 
well.

A large number of non-robust assignments results from a lack of capacity at 
the quay. Thus, in those cases more (or larger) vessels request service at the con-
tainer terminal than actually can be handled at a time, i.e., the demand significantly 
exceeds the capacity. On the other hand, when only few vessels are to be assigned 
non-robustly (here: not more than two vessels, as shown in Fig. 8), the models’ com-
putation times differ less.

In the following, the measures of service quality are analysed. The ro-DTB-
BAPc only creates about 44 min in potential waiting time per schedule on average 
for the robust assignments according to the predicted arrival times and it creates a 
total average spatial deviation of about 2006 m per schedule for all assigned vessels. 
“Model 1” leads to an average potential waiting time of about 375 min for the sched-
uled vessels (per schedule) and to a total average spatial deviation of about 1451 m. 
Hence, the ro-DTB-BAPc tends to assign vessels earlier than the benchmark model, 
but it accepts higher spatial deviations instead. Note that only robustly assigned ves-
sels are compared, as the “Model 1”’s stacking approach does not allow for reason-
able evaluation of the non-robustly scheduled vessels.

The ro-DTB-BAPc determines the minimum service level that is to be fulfilled by 
the “Model 1”. Therefore, there is no difference between the solutions concerning 
the planned service level. On average, the planned service level is 84.74%, repre-
senting 10.17 robustly assigned vessels.

It is worth noting that the “Model 1” by Liu et al. (2017) rejects vessels which 
cannot be assigned. As explained above, these rejected vessels can be virtually 

time [min]

Planned berth
DTB
Non-robust assignment or
postponed vessels
Actual berth

quay [m]

Fig. 10   Resulting berthing schedule from the ro-DTB-BAPc
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“stacked” in order to reduce the resulting penalty costs. An example is given below 
in Fig.  9, where the rejected vessels are indicated as light blue rectangles in the 
upper left-hand-side corner. The other blue rectangles show the non-rejected ves-
sels’ planned berthing positions and the red frames show their actual arrival and 
berthing times. Hence, the schedule also shows two conflicts resulting from the 
actual vessel arrivals at the bottom left (red areas).

In contrast to “Model 1”, the ro-DTB-BAPc differentiates between robustly 
scheduled vessels and non-robust assignments and postponed vessels. These vessels 
are actually scheduled (just at a later time) as well and receive a berthing time and 
position (see light blue berth assignments in Fig. 10). For the same data as above, 
the ro-DTB-BAPc results in only one conflict between a robustly scheduled vessel 
and a postponed vessel (at the top right corner, marked in red).

Apart from the optimization of the planned service quality, a major goal of the 
presented approach is to enhance the actual service quality. This can only be eval-
uated retrospectively, i.e., when the actual arrival times of the vessels are known. 
Then the actual waiting time measures the period of time by which the vessels arrive 
earlier than their scheduled berthing time and hence have to wait for their berth.

The ro-DTB-BAPc reaches an average actual waiting time of about 566 min per 
berthing schedule considering the robustly scheduled vessels, whereas the “Model 
1” leads to an actual waiting time of about 902  min on average according to the 
vessels’ actual arrival times. Thus, both the amount of potential and actual wait-
ing times are significantly lower for the ro-DTB-BAPc than the respective values 
achieved by the benchmark model. Especially the lower actual waiting time means 
that the customers actually have to wait less for their berths and hence experience a 
better service quality.

The feasibility of the resulting berthing schedule depends on how well the respec-
tive model handles the uncertainty in the vessels’ arrival times. Therefore, the true 
service level is considered, which is the ratio of robustly scheduled vessels that can 
be served without conflict according to their actual arrival time. For the benchmark 
model solely conflicts between assigned vessels can be evaluated. However, for the 
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ro-DTB-BAPc conflicts are analysed between all vessels, as all vessels receive a 
berth and can be evaluated regarding their actual arrival time.

The ro-DTB-BAPc leads to fully robust berthing schedules in 365 of the 1000 
cases and to at most one conflict in 72.6% of the cases (see Fig. 11). Over all 1000 
datasets, the ro-DTB-BAPc leads to an average of one conflict per case according 
to the vessels’ actual arrival times. The resulting true service level is 78.88% on 
average of the robustly scheduled vessels, considering also conflicts between the 
robustly scheduled vessels and the non-robust assignments or postponed vessels.

In contrast, the benchmark model from Liu et al. (2017) gives a berthing schedule 
without conflict in only 122 cases and in 45.6% of the cases at most one conflict 
arises. On average, “Model 1” results in about 1.7 conflicts per case. Hence, overall 
the “Model 1” leads to significantly more conflicts per case than the ro-DTB-BAPc 
with respect to the actual arrival times, providing an average true service level of 
65.49% only considering conflicts between the scheduled vessels. Overall, the ro-
DTB-BAPc results in an at least equally robust or in an even better (more robust) 
berthing schedule than “Model 1” in about 85% of the cases.

5.3 � Sensitivity analysis for penalty cost parameter c3
i

A variation of the penalty costs parameter for non-robust assignments and post-
poned vessels c3

i
 is conducted to determine the influence of the parameter’s value 

on the resulting berthing schedule. Thus, for a specific dataset the value of c3
i
 is 

varied in the interval 
[
c1
i
⋅ 101, c1

i
⋅ 108

]
 , as shown in Fig. 12. For c3

i
≥ c1

i
⋅ 103 , the 

solution remains the same and higher penalty costs have no influence on the result-
ing berthing schedule, as a planned service level of 75% cannot be exceeded for 
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capacity reasons. Decreasing the penalty costs c3
i
 leads to less robust assignments. 

For the lowest penalty costs considered, only 25% of the vessels are robustly 
assigned, as can be seen from the graph for the planned service level (black) in 
Fig. 12 for c3

i
< c1

i
⋅ 103 . Since the aim of the penalty costs c3

i
 is to assure that as 

many vessels are robustly assigned as capacity is available, c3
i
 should be set to 

at least c1
i
⋅ 103 . This makes sense, as the lower the penalty costs for non-robust 

assignments and postponed vessels are, the less is the incentive to assign vessels 
robustly. On the other hand, with high penalty costs c3

i
 , more potential waiting 

time and deviation from the pre-scheduled berthing position are accepted in order 
to assign an additional vessel robustly instead of making a non-robust assignment. 
This is the case for both models, but the effect is more intense for the “Model 
1”. However, with respect to the spatial deviation from the pre-scheduled berthing 
positions, the ro-DTB-BAPc does behave differently from the benchmark “Model 
1”. For the dataset at hand, the spatial deviation increases with a decreasing ser-
vice level due to the fact that vessels are not rejected (as in “Model 1”) but are 
non-robustly assigned, often to positions which deviate significantly from the 
preschedule.

It is worth noting that the variation of the penalty cost parameter c3
i
 does 

not directly influence the solution of the “Model 1”. But by variation of c3
i
 

the planned service level resulting from the ro-DTB-BAPc solution may vary 
and hence the minimum service level to be fulfilled by the “Model 1” changes 
accordingly. Thus, there is only an indirect relation between the penalty cost 
parameter c3

i
 and the solution of the benchmark model.

From the variation of the penalty costs for non-robust assignments and post-
poned vessels, c3

i
 , it can be concluded that a sufficient size of the parameter is 

required to assure a high planned service level. When maximizing the service 
level and, hence, schedule robustness, is not the main objective and more effi-
cient solutions are searched for, the penalty cost parameter can be reduced. 
However, for the ro-DTB-BAPc the potential waiting time is already low either 
way and the spatial deviation from the pre-scheduled berthing position decreases 
with increasing service level, until the maximum service level is reached. Hence, 
at least for the data considered in this work, sufficiently high penalty costs c3

i
 

result in an advantageous solution with respect to all three aspects of service 
quality.

Table 5   Deviation of the 
berthing time from the actual 
arrival time per schedule

Average of total … per schedule ro-DTB-BAPc Model 1 
(Liu et al. 
2017)

Actual waiting time [min] 565.71 902.47
Actual delay [min] 707.40 611.67
Sum of deviations [min] 1,273.11 1,514.14
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5.4 � Influence of the prediction accuracy on the berthing schedule

Similar to the actual waiting time, the actual delay marks the period of time by 
which the robustly scheduled vessels arrive later than their planned berthing time. 
Each individual vessel increases the actual total waiting time when it arrives ear-
lier and the actual delay when it arrives later than expected. The overall deviation 
of the actual arrival times from the berthing times of all vessels is the sum of 
both, the absolute actual waiting time and the absolute actual delay per schedule 
(see Table 5).

It can be seen that the ro-DTB-BAPc tends to assign vessels earlier than the 
“Model 1”, as the actual total waiting time is lower, but the actual total delay is 
higher. This coincides with the lower potential waiting time discussed above. On 
average, the ro-DTB-BAPc results in about 240 min less deviation of the planned 
berthing times from the actual arrival times than the benchmark model.

The share of the deviation is 125.18  min per robustly scheduled vessel for 
ro-DTB-BAPc, while the corresponding share of the deviation per vessel of 
the “Model 1” is 148.88  min. The meaning of these numbers is equivalent to 
the MAE from the ML evaluation in Sect. 3.4, stating the mean of the absolute 
deviations of the forecasts (here the berthing times) from the actual arrival times. 
Hence, the ro-DTB-BAPc benefits more from the use of the different predictions. 
Moreover, the accuracy of the resulting berthing schedules exceeds the accuracy 
of each individual forecast (see MAE entries Table  4), whereas the “Model 1” 
results in a higher error than the forecasts, except for the LR forecast. It can be 
concluded that the ro-DTB-BAPc can successfully exploit the information on 
arrival time uncertainty from the arrival time predictions.

Although time buffers are assigned by the ro-DTB-BAPc, increasing the quay’s 
idle time, the benchmark “Model 1” nevertheless results on average in a higher 
sum of the deviations of the actual arrival time from the planned berthing time. 
In particular, the actual waiting time is much higher than for the ro-DTB-BAPc, 
indicating that the vessels often are assigned too late in planning horizon such 
that the “Model 1” results in a more conservative berthing schedule. This leads 
to a loss in efficiency, as the available time and space at the quay are not fully 
exploited. So the ro-DTB-BAPc has a clear advantage in this respect.

Therefore, even though it might be suspected that adding time buffers to the 
berthing schedule to tackle the uncertainty would result in more conservative and 
less efficient solutions, the numerical experiments show that the concept of the DTB 
leads to less actual waiting times and, hence, to an increase in efficiency.

6 � Conclusion and outlook

Container terminals connect maritime ports and the hinterland and therefore are 
essential for global supply chains. However, the use of AIS data and ML tech-
niques is not yet widely established in container terminal optimization, especially 
not in combination with OR methods. To the best of the authors’ knowledge, the 
approach presented in this work-to develop an AIS data based forecast using ML 
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methods for vessel arrival time prediction at a designated container terminal, 
which is subsequently used in an optimization model for the robust berth alloca-
tion problem, the ro-DTB-BAPc-is unique and fills part of the research gap on 
data-driven decision making for container terminals as identified by Heilig et al. 
(2020).

For the ML approach taken in this work, the necessary data pre-processing and 
the selection of reasonable ML algorithms are discussed; then, an optimization 
of the algorithms’ hyper-parameters is carried out. The results of the different 
forecasting methods show that rather simple approaches, e.g., the kNN algorithm, 
are able to reach high forecast accuracy in this context. Moreover, in most of the 
error metrics kNN even outperforms the usually very adaptive ANN algorithm. 
Hence, it can be concluded that more complex ML methods do not necessarily 
result in higher prediction accuracy.

It should be noted, however, that the data cleansing procedure was not able to 
eliminate all of the irrelevant data, e.g., when the AIS status is not correctly set to 
“moored” while a vessel is stationary at another port, this was not identified.

In order to further enhance prediction accuracy, more detailed information 
about the port can be considered in the ML, e.g., the pilot guiding process, tug 
boat activities and the position of roadsteads. Moreover, the current weather con-
ditions influence the vessels’ trajectories and speed through crosswinds and sea 
current. Thus, considering weather data might enhance the accuracy of the fore-
casts, although this was not found to be the case by Parolas (2016). To overcome 
the influence of missing and faulty entries in the AIS messages, additional data-
bases on vessel data might be considered.

The ML study further identified that the feature subset ‘unscaled_reduced’ 
outperformed the larger feature sets for all ML algorithms. This raises the ques-
tion if even better feature subsets exist, i.e., if a different combination of features 
could be found that leads to higher R2 values. Future research in this respect 
could be paired with exploring a wider set of regression methods and for each 
of these methods a wider range of hyper-parameters might be studied. Further 
in-depth analyses of the resulting forecasts could deepen the understanding of the 
importance of features and their interaction. This could also be extended to stud-
ies of the effect forecast quality has on the resulting berthing schedules and their 
robustness.

In order to enhance the berthing schedules’ stability and robustness, the con-
cept of DTBs is presented and it is shown how more robust berth allocations can 
be derived by applying the ro-DTB-BAPc model. The ro-DTB-BAPc is compared 
to the “Model 1” from Liu et  al. (2017) regarding the resulting service quality 
and the true service level reached in a study consisting of 1000 data sets gener-
ated from real vessel data. It turns out that the ro-DTB-BAPc model does not 
only lead to equally or more robust solutions in 85% of the cases, but also to 
less potential and actual waiting times for the vessels, indicating a higher service 
quality. However, this comes at the disadvantages of a larger spatial deviation 
from the pre-scheduled berthing positions, which is approximately 38% higher 
than for the benchmark model.
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Moreover, all vessels are assigned by the ro-DTB-BAPc model; instead of reject-
ing vessels which cannot be served without conflict within the planning horizon, 
as it is the case in the benchmark model, vessels can be either postponed or, if nec-
essary, so-called non-robust assignments are possible. When communicating the 
planned berthing time to the vessels, for vessels which are to be postponed this can 
be viewed as an incentive for slow steaming, as they are assigned much later than 
the predicted arrival times and hence would have to wait for their berth when pro-
ceeding at the current speed. Hence, using the proposed method also might enable 
improvements in energy efficiency.

For future research, deep-learning ML approaches might be employed for the 
forecasting; as the simpler ML methods led to better results in the studies presented 
in this work, it would be interesting to see if deep-learning still has an advantage 
here. Moreover, uncertainty in the vessel handling times could be considered as 
well. It is to be analysed whether the handling times can be forecasted using ML 
techniques and the influence on the robustness of the resulting berthing schedules 
is to be studied. Moreover, the different ML-based forecasts are equally weighted in 
the optimization model in this work. In the future, it can be evaluated if the accuracy 
of the vessel arrival time prediction for past data is a good predictor of the future 
accuracy and hence if more specific weights-i.e., the more successful the method, 
the larger the weight of the respective forecast-lead to even better results. Finally, 
instead of solving the models by applying a standard solver as Gurobi, specific (heu-
ristic) solution procedures might be developed in order to enable faster solutions of 
even bigger problem settings.
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