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Abstract
Application problems can often not be solved adequately by numerical algorithms
as several difficulties might arise at the same time. When developing and improving
algorithms which hopefully allow to handle those difficulties in the future, good test
instances are required. These can then be used to detect the strengths andweaknesses of
different algorithmic approaches. In this paper we present a generator for test instances
to evaluate solvers for multiobjective mixed-integer linear and nonlinear optimization
problems. Based on test instances for purely continuous and purely integer problems
with known efficient solutions and known nondominated points, suitable multiobjec-
tive mixed-integer test instances can be generated. The special structure allows to
construct instances scalable in the number of variables and objective functions. More-
over, it allows to control the resulting efficient and nondominated sets as well as the
number of efficient integer assignments.
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1 Introduction

Optimization problems that arise within practical applications often turn out to be
very challenging for solution algorithms from a numerical point of view. Thereby,
the challenges can be caused, for instance, by a high number of variables or objec-
tive functions as well as certain properties of the objective and constraint functions
including nonlinearity or nonconvexity. Hence, there is a need to evaluate the strengths
and weaknesses of different solution algorithms. This is important to decide which
of them might perform best for a specific type of optimization problems or how the
algorithm can be improved to do so in the future. This is typically done by evaluating
the performance of an algorithm on a set of certain test instances that cover the above
mentioned challenges. In this paper we present a generator for such test instances that
yields multiobjective mixed-integer optimization problems. This means that multiple
objective functions have to be optimized at the same time and that some of the variables
are continuous while others are only allowed to take integer values.

When it comes to multiobjective mixed-integer optimization, most of the liter-
ature focuses on multiobjective mixed-integer linear optimization problems. This
includes, for instance, the Triangle Splitting Method from Boland et al. (2015) and
the Boxed Line Method from Perini et al. (2019) for the biobjective setting, as well
as the GoNDEF algorithm from Rasmi and Türkay (2019) for an arbitrary number of
objective functions. For a comprehensive overview of algorithmic approaches to solve
multiobjectivemixed-integer linear optimization problemswe refer toHalffmann et al.
(2022). To the best of our knowledge, the first deterministic solution method for mul-
tiobjective mixed-integer convex optimization problems is given in De Santis et al.
(2020). Only recently, also a solution approach for multiobjective mixed-integer non-
convex optimization problems has been presented in Eichfelder et al. (2022). Further
solution methods can be found for multiobjective mixed-integer convex optimization
problems in Eichfelder and Warnow (2021a, 2023), for biobjective mixed-integer
convex optimization problems in Cabrera-Guerrero et al. (2022), Diessel (2022), for
biobjective mixed-integer quadratic optimization problems in Jayasekara Merenchige
and Wiecek (2022), and for multiobjective mixed-integer nonconvex optimization
problems in Link and Volkwein (2022), respectively.

While a relatively large number of (even scalable) test instances exists for mul-
tiobjective continuous optimization (e.g. Brockhoff et al. 2022; Cheng et al. 2017;
Deb et al. 2005; Fonseca and Fleming 1995; Fonseca et al. 2020; Huband et al. 2006;
Schaffer 1985), so far only a limited number of test instances formultiobjectivemixed-
integer optimization problems was introduced and used for numerical testing. Such
instances can be found for the convex case in De Santis et al. (2020), Eichfelder and
Warnow (2021a, b, 2023), Jayasekara Merenchige and Wiecek (2022), Papalexandri
and Dimkou (1998) and for the nonconvex case in Cabrera-Guerrero et al. (2022),
Eichfelder et al. (2022); Eichfelder and Warnow (2023), Link and Volkwein (2022),
Mela et al. (2007), respectively. Note that these test instances consist of 16 biobjective
and four triobjective mixed-integer problems. Only one test problem is scalable in the
number of objective functions (by using the identity for the continuous variables). We
refer to Eichfelder et al. (2023) for a more in-depth discussion and classification of
these existing test instances.
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However, for a systematic evaluation of the strengths and weaknesses of solution
algorithms formultiobjectivemixed-integer optimization problemsmore test instances
are needed. For instance, there is a demand for test instances that allow to investigate
the influence of the number of continuous and integer variables on the performance of
the solver, i.e., test instances scalable in the number of variables. This property is espe-
cially useful to evaluate the performance of decision space based solution approaches
and to compare them with criterion space based solution approaches. Typically, one
would expect that decision space based approaches are more influenced by the size of
the decision space than criterion space based approaches. In this regard it should be
noted that only six of the abovementioned test instances from the literature are scalable
in the number of integer variables, and only four of them are additionally scalable in
the number of continuous variables. Further important properties of test instances to
evaluate the performance of different solution algorithms are for instance the number
of so called feasible integer assignments and of efficient integer assignments. These are
fixings of the integer variables in such away that there also exists a fixing of the contin-
uous variables which together yield a feasible or efficient solution of the optimization
problem. Especially for algorithms that decompose the mixed-integer optimization
problem into a family of purely continuous optimization problems obtained for cer-
tain fixings of the integer variables (see also the forthcoming Remark 2.1) these are
of high importance.

Taking all of this into account, the new generator for test instances allows to vary
the numbers of variables as well as the number of objective functions depending on its
input. The proposedmethod generates test instances that possess a separable structure.
This is also the case for several of the known test instances for multiobjective mixed-
integer optimization problems from the literature. Thereby, separable means that these
test instances can be decomposed into amultiobjective continuous subproblemand into
a multiobjective integer subproblem.Wewill show that under certain assumptions this
provides us with full control over the resulting efficient and nondominated sets of the
test instances, as well as their number of efficient integer assignments. This allows to
verify the correctness of the results froma solution algorithm formultiobjectivemixed-
integer optimization problems and to evaluate the quality of its output. Especially for
the evaluation of nondeterministic or heuristic approaches this is an important feature.

The remaining paper is structured as follows. In Sect. 2 we briefly present the
notations and definitions that are used within this paper. We then analyze separa-
ble multiobjective mixed-integer optimization problems in Sect. 3. Based on this,
in Sect. 4, we provide the test instance generator for multiobjective mixed-integer
optimization problems. Some (scalable) multiobjective continuous and integer opti-
mization problems as possible inputs for the generator are listed and discussed in Sect.
4.1 and Sect. 4.2, respectively. Finally, we provide an outlook for future research in
Sect. 5.

2 Notations and definitions

For a positive integer p ∈ N and real numbers a, b ∈ R with a ≤ b we use the
notations [p] := {1, . . . , p}, [a, b] := {x ∈ R | a ≤ x ≤ b}, and ]a, b] := {x ∈
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388 G. Eichfelder et al.

R | a < x ≤ b}. Moreover, the inequalities ≤ and < between vectors are understood
componentwise, i.e., for x, x ′ ∈ R

p it holds x ≤ x ′ or x < x ′ if and only if xi ≤ x ′
i

or xi < x ′
i is fulfilled for all i ∈ [p], respectively. Based on this we denote for

l, u ∈ R
p with l ≤ u by [l, u] := {y ∈ R

p | l ≤ y ≤ u} the box with lower
bound l and upper bound u. Throughout the paper the addition of functions is defined
pointwise, i.e., for two functions g, h : R

n → R
p we define g + h : R

n → R
p by

(g + h)(x) := g(x) + h(x) for all x ∈ R
n , and the addition of two sets is defined in

the Minkowski-sense. For two sets A, B the Cartesian product is defined as A× B :=
{(a, b) | a ∈ A, b ∈ B}. For two vectors x, x ′ ∈ R

p their Hadamard product is
defined by x ◦ x ′ := (x1x ′

1, . . . , xpx
′
p). Finally, for a nonempty set� ⊆ R

p we denote
its cardinality by |�| and its convex hull by conv(�).

In the following, we consider multiobjective mixed-integer optimization problems,
i.e., multiobjective optimization problems defined by

min
x

f (x)

s.t. g(x) ≤ 0q ,

x ∈ X := XC × XI .

(MOMIP)

Thereby, let n,m ∈ N0 with n ≥ 1 or m ≥ 1 and let fi : R
n+m → R,

i ∈ [p], p ≥ 2, g j : R
n+m → R, j ∈ [q] be continuous functions, where

f = ( f1, . . . , f p) : R
n+m → R

p, g = (g1, . . . , gq) : R
n+m → R

q , and 0q := 0Rq .
Moreover, let XC := [lC , uC ] ⊆ R

n be a boxwith lC , uC ∈ R
n , let XI := [lI , uI ]∩Z

m

be a finite subset of Z
m with lI , uI ∈ Z

m and let the feasible set S := {x ∈ R
n+m |

g(x) ≤ 0q , x ∈ X} of (MOMIP) be nonempty.
For the variables x ∈ X of (MOMIP), we will write in the following x = (xC , xI )

with xC ∈ XC and xI ∈ XI to distinguish between the continuous and the integer vari-
ables. We call (MOMIP) a multiobjective mixed-integer convex optimization problem
if all involved functions fi , i ∈ [p] and g j , j ∈ [q] are convex. Otherwise, we call it
a multiobjective mixed-integer nonconvex optimization problem.

Obviously, form = 0 and for n = 0 the special cases of amultiobjective continuous
optimization problem (MOP) given by

min
x

f (x)

s.t. g(x) ≤ 0q ,

x ∈ XC

(MOP)

and of a multiobjective integer optimization problem (MOIP) given by

min
x

f (x)

s.t. g(x) ≤ 0q ,

x ∈ XI

(MOIP)

are included in (MOMIP).
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A test instance generator for MOMIPs 389

Recall that a feasible point x̄ ∈ S is called an efficient solution of (MOMIP) if there
exists no x ∈ S with f (x) ≤ f (x̄) and f (x) 
= f (x̄). Moreover, a point ȳ = f (x̄)
with x̄ ∈ S is called a nondominated point of (MOMIP) if x̄ is an efficient solution.
The set E ⊆ S denotes the set of all efficient solutions (also called the efficient set)
and the set N ⊆ f (S) denotes the set of all nondominated points (also called the
nondominated set) of (MOMIP). If for all x ∈ S there exists an x̄ ∈ E such that
f (x̄) ≤ f (x), then the multiobjective optimization problem is said to satisfy the so
called domination property. Note that by the continuity of the objective and constraint
functions and the box constraints (MOMIP), and thus also the special cases (MOP)
and (MOIP), fulfill the domination property and it holds E 
= ∅ and N 
= ∅.

For the multiobjective mixed-integer optimization problem (MOMIP) we call xI ∈
XI a feasible integer assignment if there exists xC ∈ XC such that (xC , xI ) is feasible
for (MOMIP). Analogously, we call xI ∈ XI an efficient integer assignment if there
exists xC ∈ XC such that (xC , xI ) ∈ E , i.e., (xC , xI ) is an efficient solution of
(MOMIP). We denote by SI the set of all feasible integer assignments and by EI the
set of all efficient integer assignments of (MOMIP).

Remark 2.1 The absolute number (and the percentage) of efficient integer assignments
within the set of feasible integer assignments is an important characteristic of a multi-
objectivemixed-integer optimization problem. It might also influence the performance
of numerical algorithms depending on how they are constructed. Note that this is a
significant difference to the singleobjective setting: in singleobjective mixed-integer
optimization the optimal value is unique and hence it is enough to find one optimal
integer assignment. For p ≥ 2 there are in general infinitely many nondominated
points. As a consequence, there can be instances with a large number of efficient
integer assignments which lead to different nondominated points. Even all feasible
integer assignments can be efficient. Hence, algorithms that decompose (MOMIP)
into a family of purely continuous problems may be forced to a full enumeration in
that case.

3 Separable multiobjective mixed-integer optimization problems

Many of the known test instances for multiobjective mixed-integer (nonlinear) opti-
mization have a common structure, which we will formalize and study in this section.
The results form the basis for our approach regarding the test instance generator.

A multiobjective mixed-integer optimization problem (MOMIP) which can be for-
mulated by a decomposition

min
x=(xC ,xI )

fC (xC ) + f I (xI )

s.t. gC (xC ) ≤ 0qC ,

gI (xI ) ≤ 0qI ,

x ∈ X = XC × XI

(sMOMIP)
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390 G. Eichfelder et al.

with continuous objective functions fC : R
n → R

p, f I : R
m → R

p with n,m ∈ N,
and continuous constraint functions gC : R

n → R
qC , gI : R

m → R
qI is called separa-

ble. To the separable multiobjective mixed-integer optimization problem (sMOMIP)
we formulate the following two subproblems: the multiobjective continuous subprob-
lem

min
xC

fC (xC )

s.t. gC (xC ) ≤ 0qC ,

xC ∈ XC

(sMOMIPC )

and the multiobjective integer subproblem

min
xI

f I (xI )

s.t. gI (xI ) ≤ 0qI ,

xI ∈ XI .

(sMOMIPI )

The efficient solutions and the nondominatedpoints of the subproblems andof the orig-
inal separable problem are related to what we discuss next. We denote by SsC /E s

C /N s
C

and by SsI /E s
I /N s

I the feasible set/the set of all efficient solutions/the set of all nondom-
inated points of (sMOMIPC ) and of (sMOMIPI ), respectively. It is easy to see that
for a separable multiobjective mixed-integer optimization problem (sMOMIP) and the
corresponding subproblems (sMOMIPC ) and (sMOMIPI ) it holds S = SsC × SsI and
SI = SsI . Here, S denotes the feasible set and SI denotes the set of all feasible inte-
ger assignments of (sMOMIP). Note that under our assumptions it holds SsC 
= ∅ and
SsI 
= ∅, and both subproblems fulfill the domination property. Hence, it holds E s

C 
= ∅,
E s
I 
= ∅, N s

C 
= ∅, and N s
I 
= ∅. We illustrate such a decomposable mixed-integer

optimization problem with the following example.

Example 3.1 The separable biobjective mixed-integer nonconvex optimization prob-
lem given by

min
x

⎛
⎜⎜⎝
1 − exp

(
−

n∑
i=1

(
xi − 1√

n

)2) + xn+1 + xn+2

1 − exp

(
−

n∑
i=1

(
xi + 1√

n

)2) − xn+1 − xn+2

⎞
⎟⎟⎠

s.t. x ∈ X = [−4, 4]n × ([−1, 1]2 ∩ Z
2).

(3.1)

can be decomposed into the (well known) biobjective continuous subproblem

min
x

⎛
⎜⎜⎝
1 − exp

(
−

n∑
i=1

(
xi − 1√

n

)2)

1 − exp

(
−

n∑
i=1

(
xi + 1√

n

)2)

⎞
⎟⎟⎠

s.t. x ∈ XC = [−4, 4]n
(3.2)
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Fig. 1 Nondominated set N of
the separable optimization
problem (3.1) and nondominated
setN s

I of the integer subproblem
(3.3) from Example 3.1

introduced in Fonseca and Fleming (1995) and into the biobjective integer linear
subproblem given by

min
x

(
x1 + x2

−x1 − x2

)

s.t. x ∈ XI = {−1, 0, 1}2.
(3.3)

The efficient and nondominated sets of the subproblems are given by

E s
C =

{
x ∈ XC | x1 = x2 = . . . = xn ∈

[
− 1√

n
,

1√
n

]}
,

N s
C = {(

1 − exp(−4(t − 1)2), 1 − exp(−4t2)
) | t ∈ [0, 1]} ,

E s
I = XI = {−1, 0, 1}2,

N s
I = {(δ,−δ) | δ ∈ {−2,−1, 0, 1, 2}} = {(−2, 2), (−1, 1), (0, 0), (1,−1), (2,−2)}.

For further explanations regarding the corresponding sets E , N , and EI we refer to
Example 4.8 (i). For an illustration of the nondominated sets N s

I and N see Fig. 1.

With the following lemma we start the examination of the relations between the
efficient solutions and the nondominated points regarding the subproblems and the
original separable problem.

Lemma 3.2 Let E denote the set of all efficient solutions,N the set of all nondominated
points, and EI the set of all efficient integer assignments of (sMOMIP). Then for the
corresponding subproblems (sMOMIPC ) and (sMOMIPI ) it holds:

(i) E ⊆ E s
C × E s

I .
(ii) N ⊆ N s

C + N s
I .
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392 G. Eichfelder et al.

(iii) EI ⊆ E s
I .

Proof The relations (i i) and (i i i) follow immediately by (i). For the proof of (i) let
x̄ = (x̄C , x̄ I ) ∈ E ⊆ S = SsC × SsI and assume that x̄C /∈ E s

C . Then there exists
x̂C ∈ SsC such that fC (x̂C ) ≤ fC (x̄C ) and fC (x̂C ) 
= fC (x̄C ). Thus we obtain for
x = (x̂C , x̄ I ) ∈ SsC × SsI = S that

f (x) = fC (x̂C ) + f I (x̄ I ) ≤ fC (x̄C ) + f I (x̄ I ) = f (x̄) and f (x) 
= f (x̄),

which contradicts x̄ ∈ E . The proof for x̄ I ∈ E s
I is analogous. �

Note that equality for (i), (i i) and (i i i) from Lemma 3.2 is trivially fulfilled in the
scalar-valued setting p = 1. In the vector-valued case p ≥ 2 these equalities do, in
general, not hold as the following example shows.

Example 3.3 We consider the separable biobjective mixed-integer optimization prob-
lem

min
x

(
x1 + x2 + 0.75x3

−x1 − x2 − 0.25x3

)

s.t. x ∈ X = [0, 1] × ([−1, 1] × [0, 1]) ∩ Z
2.

(3.4)

It can be decomposed into the biobjective continuous subproblem

min
x

(
x

−x

)

s.t. x ∈ XC = [0, 1]
(3.5)

and the biobjective integer subproblem

min
x

(
x1 + 0.75x2

−x1 − 0.25x2

)

s.t. x ∈ XI = {−1, 0, 1} × {0, 1}.
(3.6)

The efficient and nondominated sets of (3.4), (3.5) and (3.6) are given by

Es
C = XC ,

E s
I = XI ,

E = ([0, 1] × {(−1, 0), (0, 0), (1, 0)}) ∪ (]3
4
, 1] × (1, 1)

)
,

N s
C = conv{(0, 0), (1,−1)},

N s
I =

{
(−1, 1), (0, 0), (1,−1),

(
−1

4
,
3

4

)
,

(
3

4
,−1

4

)
,

(
7

4
,−5

4

)}
, and

N = (
conv{(0, 0), (1,−1)} + {(−1, 1), (0, 0), (1,−1)})

∪
((

conv

{(
3

4
,−3

4

)
, (1,−1)

}
\

{(
3

4
,−3

4

)})
+

{(
7

4
,−5

4

)})
.
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Fig. 2 Nondominated set N of
the separable optimization
problem (3.4) and nondominated
setN s

I of the integer subproblem
(3.6) from Example 3.3

Hence, we obtain EI = {(−1, 0), (0, 0), (1, 0), (1, 1)} � Es
I and N � N s

C + N s
I . In

Fig. 2 we provide an illustration of the nondominated sets N and N s
I .

For the test instance generator in the forthcoming Sect. 4 we intend to have (as
much as possible) control over the efficient sets and over the nondominated sets of the
resulting test instances. Hence, we are interested in additional assumptions to ensure
equality for the statements of Lemma 3.2. The following theorem provides a sufficient
condition for that.

Theorem 3.4 Let (sMOMIP) be given and let �C ∈ R
p,�I ∈ (R ∪ {∞})p be the

vectors defined by

�C,i := sup{yi − ŷi | y, ŷ ∈ N s
C },

�I ,i := inf{|yi − ŷi | | y, ŷ ∈ N s
I , yi 
= ŷi }

for all i ∈ [p]. If �C < �I , then it holds:

(i) E = E s
C × E s

I .
(ii) N = N s

C + N s
I .

(iii) EI = E s
I .

Proof The equalities (i i) and (i i i) follow immediately by (i). Moreover, for the proof
of (i), byLemma3.2 (i), it only remains to show thatEs

C×E s
I ⊆ E .Hence, let�C < �I

and assume that there exist x̂C ∈ E s
C and x̂ I ∈ E s

I such that x̂ = (x̂C , x̂ I ) /∈ E . Then
it holds fC (x̂C ) ∈ N s

C , f I (x̂ I ) ∈ N s
I and x̂ ∈ S\E . Thus, by the domination property

and Lemma 3.2 (i), there exists x̄ = (x̄C , x̄ I ) ∈ E ⊆ E s
C ×E s

I such that fC (x̄C ) ∈ N s
C ,

f I (x̄ I ) ∈ N s
I and

fC (x̄C ) + f I (x̄ I ) = f (x̄) ≤ f (x̂) = fC (x̂C ) + f I (x̂ I ) and f (x̄) 
= f (x̂). (3.7)
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394 G. Eichfelder et al.

Hence, we obtain by the definition of �C ∈ R
p that

f I ,i (x̄ I ) − f I ,i (x̂ I ) ≤ fC,i (x̂C ) − fC,i (x̄C ) ≤ �C,i < �I ,i (3.8)

for all i ∈ [p]. Assume now that there exists i ∈ [p] such that f I ,i (x̄ I ) > f I ,i (x̂ I ) (and
thus f I (x̄ I ) 
= f I (x̂ I ) and �I ,i ∈ R). Then it follows by (3.8) and by the definition
of �I ,i that

0 < f I ,i (x̄ I ) − f I ,i (x̂ I ) < �I ,i ≤ | f I ,i (x̄ I ) − f I ,i (x̂ I )|= f I ,i (x̄ I ) − f I ,i (x̂ I ),

which is obviously a contradiction. Hence, we obtain f I (x̄ I ) ≤ f I (x̂ I ) and by x̂ I ∈ E s
I

this implies f I (x̄ I ) = f I (x̂ I ). Thus, by (3.7) it follows fC (x̄C ) ≤ fC (x̂C ) and by
x̂C ∈ E s

C we conclude fC (x̄C ) = fC (x̂C ). As a result, we get f (x̄) = f (x̂), which
contradicts (3.7), and (i) is proven. �

In Example 3.3 the sufficient condition to ensure equality by Theorem 3.4 is not
fulfilled since �C,1 = �C,2 = 1 and �I ,1 = �I ,2 = 0.25.

Remark 3.5 We remark that the infimum (instead of the minimum) in the definition of
the components of �I in Theorem 3.4 is only necessary since it could be the case that
for some index i ∈ [p] all nondominated points of (sMOMIPI ) share the same value.
In that case the set {|yi − ŷi | | y, ŷ ∈ N s

I , yi 
= ŷi } is empty. We then follow the
standard convention that inf(∅) := +∞. However, as long as there exist y, ŷ ∈ N s

I
such that yi 
= ŷi the finiteness of the feasible set SsI ⊆ Z

m , in particular due to the
box constraints xI ∈ XI , immediately implies that the infimum is actually a minimum
and �I ,i = min{|yi − ŷi | | y, ŷ ∈ N s

I , yi 
= ŷi } ∈ R.

For the third equality from Theorem 3.4, i.e. EI = E s
I , it is actually sufficient that

�C,i < �I ,i holds for p − 1 indices i ∈ [p] only. In particular, this means that for
biobjective optimization problems (sMOMIP) the inequality �C,i < �I ,i needs to
hold for only one index i ∈ {1, 2}. This is particularly useful for such algorithms as
the one from Cabrera-Guerrero et al. (2022) that assume prior knowledge of the set
SI of feasible integer assignments and hence would highly benefit if even the set EI
of efficient integer assignments would be known.

Lemma 3.6 Let (sMOMIP) be given, let the vectors �C ,�I be defined as in Theo-
rem 3.4, and let j ∈ [p] be an arbitrary index. If �C,i < �I ,i is fulfilled for all
i ∈ [p] \ { j}, then it holds EI = E s

I .

Proof By Lemma 3.2 (i i i) it only remains to prove that E s
I ⊆ EI . Hence, let �C,i <

�I ,i for all i ∈ [p] \ { j} and assume that there exists x̂ I ∈ E s
I \ EI . Moreover, let

x̂C ∈ argmin{ fC, j (xC ) | xC ∈ SsC } ∩ E s
C . (3.9)

Such a point x̂C ∈ SsC always exists since fC, j is continuous, SsC is compact, and
the domination property holds for (sMOMIPC ). Since x̂ = (x̂C , x̂ I ) ∈ S \ E and the
domination property holds for (sMOMIP), there exists x̄ = (x̄C , x̄ I ) ∈ E such that
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(3.7) holds. Further, by Lemma 3.2 (i) we have that (x̄C , x̄ I ) ∈ E s
C × E s

I and with the
same reasoning as in the proof of Theorem 3.4 it holds (3.8) and f I ,i (x̄ I ) ≤ f I ,i (x̂ I )
but only for all i ∈ [p]\{ j}. Assume now that also for j-th component it holds
f I , j (x̄ I ) ≤ f I , j (x̂ I ). Then we obtain f I (x̄ I ) ≤ f I (x̂ I ) and since x̂ I ∈ E s

I this implies
f I (x̄ I ) = f I (x̂ I ). Again, with the same reasoning as in the proof of Theorem 3.4, we
get fC (x̄C ) = fC (x̂C ) and thus f (x̄) = f (x̂) which contradicts (3.7). Hence, it holds
that f I , j (x̄ I ) > f I , j (x̂ I ) and by (3.7) it follows

0 < f I , j (x̄ I ) − f I , j (x̂ I ) ≤ fC, j (x̂C ) − fC, j (x̄C ).

This leads to fC, j (x̄C ) < fC, j (x̂C ) which contradicts the choice of x̂C by (3.9). �
The biobjective optimization problem in the following Example 3.7 is a slight

modification of the optimization problem (3.4) from Example 3.3 with �C,2 < �I ,2
but�C,1 
< �I ,1. While the equality EI = E s

I holds in that case due to Lemma 3.6, the
example also shows that none of the other equalities E = Es

C ×E s
I andN = N s

C +N s
I

from Theorem 3.4 holds in that scenario. Hence, for those equalities only the stronger
assumption �C,i < �I ,i for all i ∈ [p] (without any exception for an index j ∈ [p])
is sufficient.

Example 3.7 Weconsider the following slightmodification of the separable biobjective
mixed-integer optimization problem from Example 3.3 given by

min
x

(
x1 + x2 + 0.75x3

−0.2x1 − x2 − 0.25x3

)

s.t. x ∈ X = [0, 1] × ([−1, 1] × [0, 1]) ∩ Z
2.

(3.10)

While the biobjective integer subproblem remains unchanged and is again given by
(3.6), we use here the biobjective continuous subproblem

min
x

(
x

−0.2x

)

s.t. x ∈ XC = [0, 1]

with E s
C = XC andN s

C = conv{(0, 0), (1,−0.2)}. Then it holds �C,1 = 1 > 0.25 =
�I ,1 and�C,2 = 0.2 < 0.25 = �I ,2. Thus the sufficient condition to ensure EI = E s

I
in Lemma 3.6 is fulfilled. For the efficient and for the nondominated set of (3.10) it
holds that

E = ([0, 3
4
[×{(−1, 0), (0, 0), (1, 0)}) ∪ ([0, 1

4
[×{(−1, 1), (0, 1)}) ∪ ([0, 1] × {(1, 1)}),

N =
((

conv

{
(0, 0),

(
3

4
,− 3

20

)}
\

{(
3

4
,− 3

20

)})
+ {(−1, 1), (0, 0), (1,−1)}

)

∪
((

conv

{
(0, 0),

(
1

4
,− 1

20

)}
\

{(
1

4
,− 1

20

)})
+

{(
−1

4
,
3

4

)
,

(
3

4
,−1

4

)})

∪
(
conv

{
(0, 0),

(
1,−1

5

)}
+

{(
7

4
,−5

4

)})
.
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Fig. 3 Nondominated set N of
the separable optimization
problem (3.10) and
nondominated set N s

I of the
integer subproblem (3.6) from
Example 3.7

f1

f2

-2 -1 1 2 3 4

-3

-2

-1

1

2 N s
I

N

We obtain EI = E s
I = XI = {−1, 0, 1} × {0, 1}, but also E � Es

C × E s
I and N �

N s
C + N s

I . We provide an illustration of the nondominated sets N and N s
I in Fig. 3.

4 A test instance generator for multiobjectivemixed-integer
optimization problems

Based on the results of the previous section we are now able to formulate the test
instance generator for multiobjective mixed-integer optimization problems. As Input
it requires two optimization problems:

� A multiobjective continuous optimization problem

min
xC

fC (xC )

s.t. gC (xC ) ≤ 0qC ,

xC ∈ XC ,

(4.1)

with a continuous objective function fC : R
n → R

p, a continuous constraint func-
tion gC : R

n → R
qC , bounds on the variables defined by a box XC := [lC , uC ] ⊆

R
n , known efficient set E s

C and known nondominated set N s
C 
= ∅, and a vector

�C ∈ R
p for which it holds �C ≤ �C (i.e., an upper bound is sufficient). Here

�C is defined as in Theorem 3.4, i.e., it holds

�C,i ≥ �C,i = sup{yi − ŷi | y, ŷ ∈ N s
C }

for all i ∈ [p].
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� A multiobjective integer optimization problem

min
xI

f I (xI )

s.t. gI (xI ) ≤ 0qI ,

xI ∈ XI ,

(4.2)

with a continuous objective function f I : R
m → R

p, a continuous constraint
function gI : R

m → R
qI , bounds on the variables defined by a box XI := [lI , uI ]∩

Z
m , known efficient set E s

I and known nondominated set N s
I , and a vector �I ∈

(R ∪ {∞})p for which it holds 0p < �I ≤ �I (i.e., a positive lower bound is
sufficient). Here �I is defined as in Theorem 3.4, i.e., it holds

0 < �I ,i ≤ �I ,i = inf{|yi − ŷi | | y, ŷ ∈ N s
I , yi 
= ŷi }

for all i ∈ [p].
Further, one needs to provide scaling factors αi > 0 for all i ∈ [p], such that for the
vector α ∈ R

p it holds

α ◦ �C < �I .

Finally, the Output of the generator is the separable multiobjective mixed-integer
optimization problem defined by

min
x=(xC ,xI )

α ◦ fC (xC ) + f I (xI )

s.t. gC (xC ) ≤ 0qC ,

gI (xI ) ≤ 0qI ,

x ∈ X = XC × XI ,

such that the assumptions of Theorem 3.4 are fulfilled. As a consequence, it holds
E = E s

C × E s
I , N = {α ◦ y | y ∈ N s

C } + N s
I and EI = E s

I .
We continue with a first example for the application of the generator using the

subproblems given in Example 3.3.

Example 4.1 We choose as input for the proposed test instance generator for the
multiobjective continuous optimization problem and for the multiobjective integer
optimization problem the biobjective subproblems (3.5) and (3.6) of Example 3.3.
Then, as already mentioned above Remark 3.5, it holds �C,1 = �C,2 = 1 and
�I ,1 = �I ,2 = 0.25. Further, we choose �C := �C and �I := �I . To ensure
α ◦ �C < �I , we set α := (0.2, 0.2). Then we obtain as output the separable biob-
jective mixed-integer optimization problem given by

min
x

(
0.2x1 + x2 + 0.75x3

−0.2x1 − x2 − 0.25x3

)

s.t. x ∈ X = [0, 1] × ([−1, 1] × [0, 1]) ∩ Z
2.

(4.3)
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Fig. 4 Nondominated set N of
the separable optimization
problem (4.3) and nondominated
setN s

I of the integer subproblem
(3.6) from Example 4.1

f1

f2

-2 -1 1 2 3 4

-3

-2

-1

1

2 N s
I

N

We derive

E = [0, 1] × {(−1, 0), (0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)},
N = conv

{
(0, 0),

(
1

5
,−1

5

)}

+
{
(−1, 1), (0, 0), (1,−1),

(
−1

4
,
3

4

)
,

(
3

4
,−1

4

)
,

(
7

4
,−5

4

)}
,

EI = {(−1, 0), (0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)}.

We provide an illustration of the nondominated sets N and N s
I in Fig. 4.

If for the chosen input problems (4.1) and (4.2) the exact values of �C ∈ R
p and

of �I ∈ (R∪{∞})p are not known, then the determination of some vectors �C ∈ R
p

and �I ∈ (R ∪ {∞})p with �C ≤ �C and 0p < �I ≤ �I is of great importance in
terms of applicability of the formulated test instance generator. If, for instance, a set
M ⊇ E s

C with known ideal point idealC of fC over M defined by

idealC,i := inf
xC∈M fC,i (xC ) = inf

y∈ fC (M)
yi for all i ∈ [p]

and known anti-ideal point a-idealC of fC over M defined by

a-idealC,i := sup
xC∈M

fC,i (xC ) = sup
y∈ fC (M)

yi for all i ∈ [p],

is given, then every �C with �C ≥ a-idealC − idealC is an upper bound of �C .
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Example 4.2 If we choose in the test instance generator for the multiobjective contin-
uous optimization problem (4.1) the optimization problem

min
x

⎛
⎝

(1 + x3)(x31 x
2
2 − 10x1 − 4x2)

(1 + x3)(x31 x
2
2 − 10x1 + 4x2)

3(1 + x3)x21

⎞
⎠

s.t. x ∈ XC = [1, 3.5] × [−2, 2] × [0, 1]

as introduced in Deb et al. (2005), then it holds

E s
C ⊆

{
x ∈ R

3 | 1 ≤ x1 ≤ 3.5, −2 ≤ x31 x2 ≤ 2, −2 ≤ x2 ≤ 2, x3 = 0
}

=: M .

By simple calculations we obtain (−47,−47, 3) ≤ idealC and a-idealC ≤ (2, 2, 37).
Thus every �C ∈ R

3 with �C ≥ (49, 49, 34) ≥ a-idealC − idealC is an upper bound
of �C .

A possibility for the determination of a lower bound �I of �I is to use the finite
cardinality of the set XI = [lI , uI ] ∩ Z

m . Moreover, to ensure that �I > 0p and
thus �I ≤ �I can be chosen such that �I > 0p we can use the following property
introduced and examined in De Santis et al. (2022, 2020).

Definition 4.3 (De Santis et al. 2022, Definition 2.3) Let X ⊆ R
m and γ > 0. A

function g : X → R is called a positive γ -function over X ∩ Z
m if it holds |g(x) −

g(x ′)| ≥ γ for all x, x ′ ∈ X ∩ Z
m with g(x) 
= g(x ′).

For instance, every quadratic function g : X → R with g(x) := x�Qx + c�x for
all x ∈ X with Q ∈ Z

m×m, c ∈ Z
m is a positive γ -function over X ∩ Z

m with γ = 1.
For more classes of positive γ -functions and the corresponding values of γ we refer
to (De Santis et al. 2020, Section 4.3).

If now f I ,i , i ∈ [p] is a positive γi -function over XI = [lI , uI ] ∩ Z
m , then we

obtain

�I ,i = inf{|yi − ŷi | | y, ŷ ∈ N s
I , yi 
= ŷi }

= inf{| f I ,i (x) − f I ,i (x
′)| | x, x ′ ∈ E s

I , f I ,i (x) 
= f I ,i (x
′)}

≥ inf{| f I ,i (x) − f I ,i (x
′)| | x, x ′ ∈ XI , f I ,i (x) 
= f I ,i (x

′)}
≥ γi > 0.

Hence, if there exists some γ ∈ R
p such that γi > 0 and f I ,i is a positive γi -function

over XI for all i ∈ [p], then every �I with 0p < �I ≤ γ is a lower bound of �I .
In the followingwe provide somemultiobjective continuous optimization problems

and somemultiobjective integer optimization problems that can be used as input for the
formulated test instance generator. What is more, all of these optimization problems
are scalable in the number of decision variables.
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4.1 Scalable multiobjective continuous problems

The major advantage of Theorem 3.4 is that we can generate test instances for which
the efficient set, the nondominated set, and the set of efficient integer assignments
are known as long as the nondominated and the efficient sets of the input problems
(4.1) and (4.2) are known. Regarding a listing of suitable inputs for the test instance
generator we start with two biobjective continuous optimization problems scalable in
the number of variables. This scalability is a useful property in order to evaluate and
compare the performance of (especially decision space based) solution algorithms.

The following simple convex optimization problem is based on a well known uni-
variate biobjective test instance introduced in Schaffer (1985):

min
x

⎛
⎜⎜⎝

1
n

n∑
i=1

x2i

1
n

n∑
i=1

(xi − 2)2

⎞
⎟⎟⎠

s.t. x ∈ XC = [0, 2]n .

(4.4)

Besides the efficient and nondominated sets also the vector �C ∈ R
2 is known for

this optimization problems. More precisely, we have that

E = {x ∈ XC | x1 = x2 = . . . = xn } ,

N =
{(

t2, (t − 2)2
)∣∣∣ t ∈ [0, 2]

}
, and

�C,i = 4 for all i ∈ [2].
(4.5)

Another possible choice for (4.1) is the biobjective continuous nonconvex opti-
mization problem introduced in Fonseca and Fleming (1995):

min
x

⎛
⎜⎜⎝
1 − exp

(
−

n∑
i=1

(
xi − 1√

n

)2)

1 − exp

(
−

n∑
i=1

(
xi + 1√

n

)2)

⎞
⎟⎟⎠

s.t. x ∈ XC = [−4, 4]n .

(4.6)

For the efficient set, the nondominated set, and �C ∈ R
2 we obtain

E =
{
x ∈ XC

∣∣∣∣ x1 = x2 = . . . = xn ∈
[
− 1√

n
,

1√
n

]}
,

N =
{(

1 − exp(−4(t − 1)2), 1 − exp(−4t2)
)∣∣∣ t ∈ [0, 1]

}
, and

�C,i = 1 − exp(−4) for all i ∈ [2].

(4.7)

One well-known method to generate other input problems where E ,N and also an
overestimator �C of �C are known is presented in (Deb et al. 2005, Section 6.4). The
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main idea of this approach is to start with a parametric description of the nondominated
set (for instance a part of the unit sphere in the forthcoming optimization problem (4.9))
and then to extend this in order to obtain an optimization problem. What is more, all
of the multiobjective continuous optimization problems that are generated with that
technique are scalable in the number of variables. Besides that, one can also generate
problems that are scalable in the number of objective functions. Again, this is a useful
property when generating a collection of test instances to evaluate and compare the
performance of different (especially criterion space based) solution algorithms.

In the following, we present two examples of continuous optimization problems
from Deb et al. (2005) that are scalable in both the number n ∈ N of (continuous)
variables and p ∈ N of objective functions. The first one is test problem DTLZ1 given
by

min
x

f (x)

s.t. g(x) ≤ 0,

x ∈ XC = [0, 1]n
(4.8)

where n > p. The objective functions fi : R
n → R, i ∈ [p] are defined as

f1(x) := 0.5(1 − g(x))x1x2 · · · xp−1,

fi (x) := 0.5(1 − g(x))x1x2 · · · xp−i (1 − xp−i+1) for all i ∈ ([p] \ {1, p}),
f p(x) := 0.5(1 − g(x))(1 − x1)

and g : R
n → R only depends on the last n− p variables, i.e., there exists h : R

n−p →
R such that g(x) = h(xp+1, . . . , xn) for all x ∈ [0, 1]n . Further, we assume that there
exists some x ′ ∈ [0, 1]n such that g(x ′) = 0. It then holds for (4.8) that

E = {x ∈ [0, 1]n | g(x) = 0},
N = {y ∈ [0, 1]p | ‖y‖1 = 0.5}, and

�C,i = 0.5 for all i ∈ [p].

The next optimization problem can be found as (6.7) in Deb et al. (2005) and is
given by

min
x

f (x)

s.t. g(x) ≤ 0,

x ∈ XC = [0, π/2]n
(4.9)

where n > p, the objective functions fi : R
n → R, i ∈ [p] are defined as

f1(x) := (1 − g(x)) cos(x1) cos(x2) · · · cos(xp−1),

fi (x) := (1 − g(x)) cos(x1) cos(x2) · · · cos(xp−i ) sin(xp−i+1) for all i ∈ ([p] \ {1, p}),
f p(x) := (1 − g(x)) sin(x1)
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and g : R
n → R only depends on the last n− p variables. Again, we assume that there

exists some x ′ ∈ [0, π/2]n such that g(x ′) = 0. Then it holds for (4.9) that

E = {x ∈ [0, π/2]n | g(x) = 0},
N = {y ∈ [0, 1]p | ‖y‖2 = 1}, and

�C,i = 1 for all i ∈ [p].

We remark that for the specific choice of g(x) := ∑n
i=p+1(xi −π/4)2, x ∈ [0, π/2]n

this leads to the test problem DTLZ2 from Deb et al. (2005).

4.2 Scalable multiobjective integer problems

Besides the continuous subproblems we also need suitable integer subproblems. In
the following we present two such problems that are not only scalable in the number
of variables, but for which we are also able to control the number of efficient solutions
and nondominated points.

Lemma 4.4 Let J � [m]. Then for the scalable biobjective integer linear optimization
problem

min
x

⎛
⎜⎝

∑
i∈J

xi + ∑
i∈[m]\J

xi
∑
i∈J

xi − ∑
i∈[m]\J

xi

⎞
⎟⎠

s.t. x ∈ XI = [−1, 1]m ∩ Z
m

(4.10)

it holds:

(i) E = {x ∈ XI | xi = −1 for all i ∈ J }.
(ii) |E | = 3m−|J |.
(iii) N = {(−m + δ,m − 2|J | − δ) ∈ Z

2 | δ ∈ {0} ∪ [2(m − |J |)]}.
(iv) |N | = 2(m − |J |) + 1.
(v) �I ,i = 1 for all i ∈ [2].

Proof Statement (i i) follows by (i), and the statements (iv) and (v) follow by (i i i).
We start with the proof of (i). Here, for every x̄ ∈ E ⊆ XI it obviously holds that
x̄i = −1 for all i ∈ J and we obtain E ⊆ {x ∈ XI | xi = −1 for all i ∈ J }. Let now
x̄ ∈ {x ∈ XI | xi = −1 for all i ∈ J } and assume that x̄ /∈ E . Then by the domination
property there exists x ∈ E with

⎛
⎜⎝

∑
i∈J

xi + ∑
i∈[m]\J

xi
∑
i∈J

xi − ∑
i∈[m]\J

xi

⎞
⎟⎠ ≤

⎛
⎜⎝

∑
i∈J

x̄i + ∑
i∈[m]\J

x̄i
∑
i∈J

x̄i − ∑
i∈[m]\J

x̄i

⎞
⎟⎠
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and with strict inequality in one component. By componentwise addition of the
inequalities it follows

2
∑
i∈J

xi < 2
∑
i∈J

x̄i .

In case J 
= ∅ this contradicts x ∈ E ⊆ XI and x̄i = −1 for all i ∈ J . In case J = ∅we
obtain 0 < 0. Hence, it holds x̄ ∈ E and thus also {x ∈ XI | xi = −1 for all i ∈ J } ⊆
E .

For the proof of (i i i) let at first ȳ ∈ N . Then by definition there exists x̄ ∈ E such
that f (x̄) = ȳ, and by (i) it holds x̄i = −1 for all i ∈ J . Moreover, let J̄−1 := {i ∈
[m] \ J | x̄i = −1}, J̄ 0 := {i ∈ [m] \ J | x̄i = 0} and J̄ 1 := {i ∈ [m] \ J | x̄i = 1}.
Then we obtain that

ȳ1 = f1(x̄) =
∑
i∈J

xi +
∑

i∈ J̄−1

xi +
∑

i∈ J̄ 1

xi

= −|J | − | J̄−1| + | J̄ 1|
= −|J | − | J̄−1| − | J̄ 0| − | J̄ 1| + | J̄ 0| + 2| J̄ 1|
= −|J | − (m − |J |) + | J̄ 0| + 2| J̄ 1|
= −m + | J̄ 0| + 2| J̄ 1|

and similarly ȳ2 = m−2|J |−(| J̄ 0| + 2| J̄ 1|). Thus, we derive for δ := | J̄ 0|+2| J̄ 1| ≥
0 that

δ = | J̄ 0| + 2| J̄ 1|
= | J̄−1| + | J̄ 0| + | J̄ 1| − | J̄−1| + | J̄ 1|
= m − |J | − | J̄−1| + | J̄ 1|
≤ m − |J | + | J̄ 1|
≤ 2(m − |J |),

and consequently N ⊆ {(−m + δ,m − 2|J | − δ) ∈ Z
2 | δ ∈ {0} ∪ [2(m − |J |)]}.

Let now δ ∈ N0 with 0 ≤ δ ≤ 2(m − |J |) and let ȳ ∈ R
2 with ȳ1 := −m + δ and

ȳ2 := m − 2|J | − δ. Further, let J̄−1, J̄ 1 ⊆ [m] \ J with

∣∣∣ J̄−1
∣∣∣ = max{m − |J | − δ, 0} and

∣∣∣ J̄ 1
∣∣∣ = max{δ − (m − |J |), 0}.

Then at least one of the sets J̄−1 or J̄ 1 is empty (as at least m − |J | − δ ≤ 0 or
δ − (m − |J |) ≤ 0). Moreover,

∣∣J ∪ J̄−1 ∪ J̄ 1
∣∣ ≤ m. Define x̄ ∈ XI by x̄i = −1 for

all i ∈ J ∪ J̄−1, x̄i = 1 for all i ∈ J̄ 1, and x̄i = 0 for all i ∈ m \ (J ∪ J̄−1 ∪ J̄ 1).
Then we obtain x̄ ∈ E by (i). Moreover, one can verify that f1(x̄) = −m + δ = ȳ1,
f2(x̄) = m − 2|J | − δ = ȳ2, and thus {(−m + δ,m − 2|J | − δ) ∈ Z

2 | δ ∈
{0} ∪ [2(m − |J |)]} ⊆ N , which concludes the proof. �
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The structure of the nondominated set of (4.10) is quite simple, since all nondom-
inated points are located on a line. In particular, all of the nondominated points are
so-called supported nondominated points. This means that they can be found by solv-
ing a weighted sum scalarization of (4.10). For this reason, we also present a slight
modification of this problem, see (4.11), for which only nearly half of the nondom-
inated set consists of supported nondominated points. The proof of Lemma 4.5 is
similar to the proof of Lemma 4.4 and thus omitted.

Lemma 4.5 Let J � [m − 1]. Then for the scalable biobjective integer linear opti-
mization problem

min
x

⎛
⎜⎝

∑
i∈J

xi + ∑
i∈[m−1]\J

xi + 0.75xm
∑
i∈J

xi − ∑
i∈[m−1]\J

xi − 0.25xm

⎞
⎟⎠

s.t. x ∈ XI = ([−1, 1]m−1 × [0, 1]) ∩ Z
m

(4.11)

it holds:

(i) E = {x ∈ XI | xi = −1 for all i ∈ J }.
(ii) |E | = 2 · 3m−1−|J |.
(iii) N = N1 ∪ N2 with

N1 := {(−(m − 1) + δ,m − 1 − 2|J | − δ) ∈ Z
2 | δ ∈ �},

N2 :=
{
(−(m − 1) + 0.75 + δ,m − 1 − 2|J | − 0.25 − δ) ∈ Z

2
∣∣∣ δ ∈ �

}
,

� := {0} ∪ [2(m − 1 − |J |)].
(iv) |N | = 4(m − 1 − |J |) + 2.
(v) �I ,i = 0.25 for all i ∈ [2].
Remark 4.6 Note that for the optimization problems (4.10) in Lemma 4.4 and (4.11)
in Lemma 4.5 not only the absolute number of efficient solutions but also their share
in relation to the feasible set XI can be controlled by the choice of the set J . We obtain
in both cases |E |

|XI | = 3−|J |. This equals the percentage of efficient integer assignments
within the set of feasible integer assignments if one of these problems is chosen as
input for the test instance generator.

Further examples for an integer optimization problem (sMOMIPI ) can be obtained
from (4.10) and (4.11) and basically any other multiobjective integer optimization
problem by replacing the decision variables x ∈ XI by functions x̃ : R

k → R
m, k ∈ N

such that for some box X̃ ⊆ R
k it holds that x̃(X̃ ∩ Z

k) = XI . The following lemma
presents onepossible realizationof such a replacement of the decisionvariables x ∈ XI

for (4.10) and (4.11).

Lemma 4.7 Let u1, u2, u3, u4 ∈ N0 with u := u1 + u2 + u3 + u4 ≥ 1, u odd, and let
x ∈ {−1, 0, 1}. Then it holds

x =
[
xu1

]
·
[
sinu2

(
x · π

2

)] ·
[
cosu3

(
(x − 1) · π

2

)] ·
[
tanu4

(
x · π

4

)]
.
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The idea of replacing decision variables by functions is also mentioned in Deb et al.
(2005) as one possibility to obtain new optimization problems out of an existing one
for which the nondominated set is already known.

Moreover, while in Deb et al. (2005) the authors focus on purely continuous opti-
mization problems, their approach to generate (scalable) test problems works in the
purely integer case as well. Hence, we can use the exact same approach to also obtain
multiobjective integer optimization problems (4.2). In fact, we can even reuse the
presented test problem. More precisely, we can modify (4.8) and reduce it to the
multiobjective binary optimization problem

min
x

f (x)

s.t. g(x) ≤ 0,

x ∈ XI = {0, 1}n
(4.12)

with the same assumptions, objective functions fi : R
n → R, i ∈ [p] and constraint

function g : R
n → R. Then it holds for (4.12) that

E = {x ∈ {0, 1}n | g(x) = 0},
N = {y ∈ {0, 0.5}p | ‖y‖1 = 0.5}, and

�I ,i = 0.5 for all i ∈ [p].
However, one should keep in mind that for the construction of a test instance with

the methods from Deb et al. (2005) a parametric description of the nondominated set
is needed as a starting point. While this is often possible in continuous optimization,
for the discrete nondominated set of multiobjective integer optimization problems this
is usually much harder or leads to nondominated sets of a very simple structure as in
the example above. For the same reason the approach from Deb et al. (2005) is not
well suited in order to directly obtain test instances for multiobjective mixed-integer
optimization problems. However, if there was some (nontrivial) nondominated set that
has a parametric description consisting of both continuous and integer parameters then
such a construction of test instances would be possible.

To conclude this section, we present some examples for multiobjective mixed-
integer optimization problems that are obtained by the proposed test instance generator
when using the continuous and integer subproblems from the previous subsections as
input.

Example 4.8 (i) We choose as input for the multiobjective continuous optimization
problem the biobjective subproblem (4.6) and for the multiobjective integer opti-
mization problem the biobjective subproblem (4.10) with J = ∅ andm = 2. Then
we obtain by (4.7) and Lemma 4.4 (v) that�C,i = 1−exp(−4) < 1 = �I ,i for all
i ∈ [2]. Thus, we can set�C := �C ,�I := �I , and α := (1, 1). The output of the
test instance generator then is the separable biobjective mixed-integer nonconvex
optimization problem (3.1) of Example 3.1 with

E =
{
x ∈ [−4, 4]n

∣∣∣∣ x1 = x2 = . . . = xn ∈
[
− 1√

n
,

1√
n

]}
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×{−1, 0, 1}2,
N =

{(
1 − exp(−4(t − 1)2), 1 − exp(−4t2)

)∣∣∣ t ∈ [0, 1]
}

+{(δ,−δ) | δ ∈ {−2,−1, 0, 1, 2}}, and

EI = {−1, 0, 1}2.

(ii) Let (4.4) be the input for the multiobjective continuous subproblem and (4.10) the
input for the multiobjective integer subproblem. Then by (4.5) and Lemma 4.4 (v)

it holds �C,i = 4 > 1 = �I ,i for all i ∈ [2]. Thus, we can use �C := �C ,
�I := �I , and 0 < αi < 0.25 for all i ∈ [2]. The resulting test instance is the
scalable separable biobjective mixed-integer convex optimization problem given
by

min
x

⎛
⎜⎜⎝

α1
n

n∑
i=1

x2i + ∑
i∈J

xi + ∑
i∈{n+1,...,n+m}\J

xi

α2
n

n∑
i=1

(xi − 2)2 + ∑
i∈J

xi − ∑
i∈{n+1,...,n+m}\J

xi

⎞
⎟⎟⎠

s.t. x ∈ X = [0, 2]n × ([−1, 1]m ∩ Z
m)

(4.13)

with J � {n + 1, . . . , n +m}. For the efficient set, the nondominated set, and the
set of efficient integer assignments we derive

E = {
x ∈ [0, 2]n | x1 = x2 = . . . = xn

}

× {
x ∈ [−1, 1]m ∩ Z

m | xi = −1 for all i + n ∈ J
}
,

N =
{(

α1t
2, α2(t − 2)2

)∣∣∣ t ∈ [0, 2]
}

+ {(−m + δ,m − 2|J | − δ) ∈ Z
2 | δ ∈ {0} ∪ [2(m − |J |)]}, and

EI = {
x ∈ [−1, 1]m ∩ Z

m | xi = −1 for all i + n ∈ J
}
.

For an illustration of the nondominated set N see Fig. 5.
(iii) If (4.6) and (4.11) are chosen as input, then it holds �C,i = 1 − exp(−4) >

0.25 = �I ,i for all i ∈ [2] by (4.7) and Lemma 4.5 (v). Thus, we can again
choose �C := �C and �I := �I . For any choice 0 < αi < 1

4·(1−exp(−4)) for all
i ∈ [2]we then obtain the scalable separable biobjective mixed-integer nonconvex
optimization problem
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Fig. 5 Nondominated set N of
the separable optimization
problem (4.13) and
nondominated set N s

I of the
corresponding integer
subproblem (4.10) from
Example 4.8 (i i) for
J = {n + 1}, m = 3, and
α1 = α2 = 0.2

f1

f2

-3 -2 1 2

-3

-2

1

2
N s

I

N

min
x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1

(
1 − exp

(
−

n∑
i=1

(
xi − 1√

n

)2))

+ ∑
i∈J

xi + ∑
i∈{n+1,...,n+m−1}\J

xi + 0.75xm+n

α2

(
1 − exp

(
−

n∑
i=1

(
xi + 1√

n

)2))

+ ∑
i∈J

xi − ∑
i∈{n+1,...,n+m−1}\J

xi − 0.25xm+n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s.t. x ∈ X = [−4, 4]n ×
(
([−1, 1]m−1 × [0, 1]) ∩ Z

m
)

(4.14)

with J � {n + 1, . . . , n + m − 1}. This leads to the efficient set, nondominated
set, and set of efficient integer assignments given by

E =
{
x ∈ [−4, 4]n

∣∣∣∣ x1 = x2 = . . . = xn ∈
[
− 1√

n
,

1√
n

]}

× {
x ∈ ([−1, 1]m−1 × [0, 1]) ∩ Z

m | xi = −1 for all i + n ∈ J
}
,

N = { (
α1(1 − exp(−4(t − 1)2)), α2(1 − exp(−4t2))

)∣∣ t ∈ [0, 1]} + (N1 ∪ N2) ,

N1 = {(−(m − 1) + δ,m − 1 − 2|J | − δ) ∈ Z
2 | δ ∈ �},

N2 = {
(−(m − 1) + 0.75 + δ,m − 1 − 2|J | − 0.25 − δ) ∈ Z

2
∣∣ δ ∈ �

}
,

� = {0} ∪ [2(m − 1 − |J |)], and

EI = {
x ∈ ([−1, 1]m−1 × [0, 1]) ∩ Z

m | xi = −1 for all i + n ∈ J
}
.

For an illustration of the nondominated set N see Fig. 6.

123



408 G. Eichfelder et al.

Fig. 6 Nondominated set N of
the separable optimization
problem (4.14) and
nondominated set N s

I of the
corresponding integer
subproblem (4.11) from
Example 4.8 (i i i) for
J = {n + 1}, m = 4, and
α1 = α2 = 0.2
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f2

-3 -2 1 2

-3

-2

1

2
N s

I

N

5 Outlook

In this paper, we presented a test instance generator for multiobjective mixed-integer
optimization problems based on test instances for purely continuous and purely integer
subproblems. By using the special separable structure, we were able to control the
resulting efficient and nondominated sets as well as the number of efficient integer
assignments. In this final section, we provide a brief outlook for three topics for further
research.

A first direction to follow is the collection and development of continuous and
integer subproblems for the test instance generator. In particular, there is a need for
subproblems with more than two or even a scalable number of objective functions.
With regard to the purely integer subproblems (sMOMIPI ), it would also be interesting
to find examples that allow even more control over the efficient and nondominated
set than (4.11). For instance, one could think of subproblems where the portion of
supported nondominated points, i.e, nondominated points which can be found by
solving a weighted sum of the objectives, can be controlled in a more direct way.

Another aspect for future work would be a generalization of the test instance gen-
erator for non-separable test instances. A possible approach in this regard could be
the use of a finite family of continuous subproblems instead of only a single subprob-
lem (4.1). This would allow for a slightly stronger coupling of the integer and the
continuous variables.

Finally, recall that the main motivation for the development of the test instance
generator was to obtain a set of benchmark problems that allows to compare and
evaluate the strengths andweaknesses of solution algorithms formultiobjectivemixed-
integer optimization problems. Since such a set of benchmark problems can now be
generated, corresponding numerical experiments would be the logical next step and a
highly valuable contribution for the community.
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