
Herwartz, Helmut; Wang, Shu

Article  —  Published Version

Statistical identification in panel structural vector
autoregressive models based on independence criteria

Journal of Applied Econometrics

Provided in Cooperation with:
John Wiley & Sons

Suggested Citation: Herwartz, Helmut; Wang, Shu (2024) : Statistical identification in panel structural
vector autoregressive models based on independence criteria, Journal of Applied Econometrics,
ISSN 1099-1255, Wiley, Hoboken, NJ, Vol. 39, Iss. 4, pp. 620-639,
https://doi.org/10.1002/jae.3044

This Version is available at:
https://hdl.handle.net/10419/309470

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1002/jae.3044%0A
https://hdl.handle.net/10419/309470
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Received: 26 March 2023 Revised: 5 December 2023 Accepted: 9 December 2023

DOI: 10.1002/jae.3044

R E S E A R C H A R T I C L E

Statistical identification in panel structural vector
autoregressive models based on independence criteria

Helmut Herwartz Shu Wang

Chair of Econometrics, University of
Göttingen, Göttingen, Germany

Correspondence
Shu Wang, Chair of Econometrics,
University of Göttingen, Humboldtallee 3,
D-37073 Göttingen, Germany.
Email: shu.wang@uni-goettingen.de

Funding information
Deutsche Forschungsgemeinschaft,
Grant/Award Number: HE 2188/8-2 and
2188/17-1

Summary

This paper introduces a novel panel approach to structural vector autoregres-
sive analysis. For identification, we impose independence of structural inno-
vations at the pooled level. We demonstrate robustness of the method under
cross-sectional correlation and heterogeneity through simulation experiments.
In an empirical application on monetary policy transmission in the Euro area,
we find that bond spreads rise significantly after an unexpected monetary tight-
ening. Furthermore, the central bank responds to offset effects of adverse finan-
cial shocks. Additionally, we document sizable heterogeneity in country-specific
output responses.
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1 INTRODUCTION

Structural VARs (SVARs) have become indispensable tools for macroeconometricians and policymakers for assessing
effects of structural shocks on macroeconomic aggregates. Identification methods play an essential role in SVAR analyses
and can be broadly categorized as theory-based, instrument-based, and statistical approaches. While statistical identi-
fication methods seem attractive in situations with limited theoretical or institutional knowledge, or a lack of external
instruments, their finite-sample performance in macroeconomic applications might face challenges due to the short time
spans of available data. To address this, our paper proposes a panel approach that builds upon the assumption of indepen-
dent pooled structural shocks. This methodological contribution places us at the intersection of statistical identification in
SVARs and its extension to the panel context (see Canova & Ciccarelli, 2013, and Kilian & Lütkepohl, 2017, for compre-
hensive literature reviews, respectively). As an important field of application, we investigate the transmission mechanisms
of monetary policy (MP) and financial shocks among fourteen Euro area (EA) member states, within a relatively short
time period starting with the introduction of the common currency in 1999 (Corsetti et al., 2021; Georgiadis, 2015;
Peersman, 2004).

Identification in SVARs typically relies on economic theory and institutional knowledge that can be used to develop
exclusion restrictions (e.g., Blanchard & Quah, 1989; Sims, 1980), sign restrictions (e.g., Faust, 1998; Uhlig, 2005), or
instruments for structural shocks (Mertens & Ravn, 2013; Stock & Watson, 2012). However, a potential drawback of
theory-based identification, as highlighted by Uhlig (2005), is the risk of conflating assumptions with empirical con-
clusions. In addition, the availability of valid and sufficiently strong external instruments is not always guaranteed. To
address these challenges, a branch of SVAR analysis has emerged, exploring statistical properties of the data-generating
process. This involves leveraging heteroskedasticity (see, e.g., Lewis, 2021; Rigobon & Sack, 2003) or imposing statisti-
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cal independence among the shocks (see, e.g., Anttonen et al., 2023; Gouriéroux et al., 2017; Lanne et al., 2017; Lanne
& Luoto, 2021). While these statistical identification approaches have yielded fruitful results and provided interesting
economic insights, they face two important limitations. First, statistical identification alone does not guarantee the inter-
pretability of the outcomes from an economic perspective. Second, these methods may suffer from a high estimation
uncertainty when sample information is limited. Addressing these concerns, especially in cases of macroeconomic vari-
ables measured at low frequency or over short periods, a panel data approach becomes attractive. This is particularly
relevant when research questions pertain to cross-sections sharing similar institutions and regulations, such as the G7,
the OECD, or the EA. By pooling data across multiple cross-sectional members, the panel approach mitigates data scarcity
at the individual level, allowing for improved statistical identification performance through the combination of both data
dimensions, namely, “length” (denoted by T) and “width” (denoted by N). For example, panel data analysis has been
extensively employed to assess hypotheses like purchasing power parities through panel unit root and cointegration tests
(Breitung & Pesaran, 2008; Breitung & Westerlund, 2013; Taylor & Taylor, 2004).

Applied panel (S)VARs often rely on reduced-form specifications or zero and sign restrictions for structural iden-
tification (Canova & Ciccarelli, 2013). For instance, Pedroni (2013) specifies a panel SVAR model with flexible load-
ings, identifying structural shocks through a Cholesky scheme. Meanwhile, Georgiadis (2015) identifies MP shocks
through sign restrictions, scrutinizing their transmission in EA economies. Unlike sign or zero restrictions, adapting
statistical identification procedures to panel models is challenging, as informative patterns of mixed or heteroskedas-
tic distributions may not universally apply to all panel members. Additionally, strong distributional assumptions for
independent shocks, enabling parametric methods for independent component analysis (ICA), may lack general appli-
cability. In contrast, methods derived under the principle of Hodges-Lehmann (HL) estimation (Dufour, 1990; Hodges &
Lehmann, 2006)—minimizing statistics from non-parametric independence tests (as provided, for instance, by Bakirov
et al., 2006; Genest et al., 2007; Székely et al., 2007)—may benefit from less stringent distributional assumptions. This
approach has found successful application in single monetary policy SVAR models with both small and large dimensions
(Herwartz, 2018; Herwartz & Wang, 2023).

In this paper, we advocate for the utilization of HL estimation for statistical identification in panel SVAR mod-
els. We articulate the conditions necessary to establish the identifiability of structural shocks at the pooled level and
discuss their implications at the individual cross-section level. Through comprehensive simulation-based evidence,
we underscore the performance enhancement achieved through pooling, taking into consideration key panel data
features, such as cross-sectional correlations and heterogeneity. We compare the proposed HL estimator with other
independence-based identification approaches, including (pseudo) ML and GMM estimators (see Gouriéroux et al., 2017,
and Keweloh, 2021; Lanne & Luoto, 2021, respectively). To shed light on the transmission of monetary policy in the
EA, empirical results for a panel of 14 EA member states are presented and compared with outcomes from an EA-wide
model.

Our findings suggest that cross-sectional pooling substantially improves statistical identification in macroeconomic
panels with a small time series dimension. This is especially pertinent given that HL estimation based on non-parametric
independence criteria proves more robust under cross-sectional correlations and heterogeneity compared to alternative
procedures. Concerning the effects of MP in the EA, our results indicate that MP shocks have sizable and persistent effects
on real output at the weighted mean group (MG) level. A contractionary shock resulting in a 25 bps interest rate hike
leads to a reduction in real GDP of 0.2% and 0.25% at horizons of 2 and 5 years, respectively. Bond spreads react immedi-
ately and significantly to MP surprises, and the European Central Bank (ECB) systematically responds to an exogenous
tightening of financial conditions to offset potential adverse effects. Evidently, a comprehensive understanding of the
contemporaneous interaction between MP and financial conditions is crucial for estimating the real effects of MP shocks
within the EA (see Caldara & Herbst, 2019, for similar evidence for the United States). Moreover, unconventional policies
are found to be as effective as conventional policy tools. Regarding the important aspect of EA heterogeneity (e.g., Corsetti
et al., 2021; Peersman, 2004), our estimated country-specific output responses to MP shocks align strikingly with previous
findings documented in fig. 5 of Corsetti et al. (2021), where MP shocks are partially identified based on high-frequency
instruments.

The remainder of the paper is structured as follows: Section 2 outlines the proposed HL estimator for
independence-based identification within a panel data context. Section 3 provides simulation-based evidence, while
Section 4 presents empirical results on the effects of MP within the EA. Section 5 concludes. Appendix S1 provides a styl-
ized illustration of the identification scheme (Section S1), further simulation results (Sections S2 and S4), and materials
that supplement the empirical analysis (Section S3, data description, reduced-form and structural diagnostics, bootstrap
inference, and additional impulse responses).
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2 METHODOLOGY

This section introduces a statistical identification approach in panel SVAR models. We state the panel VAR model in both
its reduced and structural forms, along with identifying assumptions and discuss the impact of cross-sectional correla-
tion and heterogeneity on uniqueness of the structural model. Moreover, we outline Hodges-Lehmann (HL) estimation
principles for the structural model.

2.1 Model specification and identifying assumptions

Conditional on available presample values, the K-dimensional panel SVAR model of order Pi for member i is given by

𝑦it = 𝜈i + Ai1𝑦it−1 + Ai2𝑦it−2 + · · · + AiPi𝑦it−Pi + uit, (1)

= 𝜈i + Ai1𝑦it−1 + Ai2𝑦it−2 + · · · + AiPi𝑦it−Pi + Di𝜉it, (2)

⇐⇒ Ai(L)𝑦it = 𝜈i + Di𝜉it, t = 1, … ,T, i = 1, … ,N, (3)

where 𝑦it =
(
𝑦
(1)
it , … , 𝑦

(K)
it

)′
represents the K × 1 vector of observable variables and Aip, p = 1, … ,Pi, are K × K autore-

gressive parameter matrices. The corresponding lag polynomial is defined as Ai(L) = I − Ai1L − · · · − AiPi L
Pi and the

fixed effects specific to cross-section i are collected by vector 𝜈i. Under the assumption of causal cross-sectional dynamics,
det(Ai(z)) ≠ 0, ∀|z| ≤ 1, z ∈ C and the reduced-form residuals uit exhibit a zero mean and a cross-section-specific covari-
ance matrix, that is, uit ∼ (0,Ωi). The vector of structural shocks in Equation (3), denoted as 𝜉it =

(
𝜉
(1)
it , … , 𝜉

(K)
it

)′
, has a

mean of zero and an identity covariance matrix, that is, 𝜉it ∼ (0, IK). These structural shocks are linked to the reduced-form
system through a nonsingular K × K structural mixing matrix Di, satisfying DiD′

i = Ωi.
It is widely recognized in the SVAR literature that the matrix Di remains unidentified without additional assumptions.

To focus more sharply on the identification problem, we introduce Γi, a diagonal matrix collecting the marginal variances
of the reduced-form residuals, and Gi, a baseline decomposition (e.g., a lower triangular matrix) of the correlation matrix
Ω̃i, such that GiG′

i = Ω̃i = Γ−1∕2
i ΩiΓ−1∕2

i . By consistently estimating the parameters in the reduced-form model (1), includ-
ing the covariance matrix, we can obtain the non-structural orthogonalized residuals 𝜉it = G−1

i Γ−1∕2
i uit. The identification

problem can then be framed as solving the system of equations given by

𝜉it = Qi𝜉it, (4)

where Qi is an orthonormal matrix satisfying QiQ′
i = IK . It can be verified that 𝜉it ∼ (0, IK) and Di = Γ1∕2

i GiQi.
While the structural mixing matrix Di in (3) may exhibit cross-sectional variation, it is often reasonable to impose

certain degrees of homogeneity on the structural implications. In cases where profiles of instantaneous transmission
of structural shocks 𝜉t to orthogonalized residuals 𝜉it apply to the entire cross-section (i.e., Qi = Q for all i), statistical
identification performance can benefit from cross-sectional pooling and the combination of both data dimensions (i.e.,
“length” T and “width” N). Hence, we make the following distributional assumptions to establish the identifiability of
Q and consequently Di.

Assumption 1. Let 𝜏 = 1, … ,NT denote a sequence of ordered indices reflecting the Cartesian product of the sets
of cross-sectional (i = 1, … ,N) and time indices (t = 1, … ,T). It holds for random vectors 𝜉𝜏 = (𝜉(1)𝜏 , … , 𝜉

(K)
𝜏 )′ and

𝜉𝜏 = (𝜉(1)𝜏 , … , 𝜉
(K)
𝜏 )′ in (4) that

𝜉𝜏 = Q𝜉𝜏 and 𝜉
(k)
𝜏 ∼ 𝜑(k)(0, 1), k ∈ {1, … ,K}, (5)

where 𝜑(k) is a centered and standardized univariate distribution and at most one of 𝜑(k) is a Gaussian distribution.

Assumption 2. The components in the vector of structural shocks 𝜉𝜏 are mutually independent.
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Theorem 1. Under Assumptions 1 and 2, the orthogonal mixing matrix Q is identified up to right-multiplication by
Λ , where Λ is a diagonal matrix with diagonal elements being ±1 and  is a permutation matrix. In other words, Q is
identifiable up to column permutations and sign flips.

Theorem 1 follows directly from the characterization theorem of Darmois-Skitovich for Gaussian linear forms (see also
Th.11 in Comon, 1994). A proof is provided in Appendix A.

While the indeterminacy of column permutations and signs can be removed by imposing mechanical restrictions,1
statistical identification alone does not necessarily provide a sound economic interpretation of the resulting shocks. To
render the shocks meaningful in an economic sense, additional reasoning based on economic theory and institutional
background is necessary. A comprehensive discussion of the so-called shock labeling can be found in Herwartz and
Lütkepohl (2014). Recently, Herwartz and Wang (2023) have demonstrated that carefully designed sign restrictions can
effectively constrain the parameter space of the matrix Q to a subspace that exclusively encompasses shocks with sound
economic interpretations.

Given that our novel identification approach aims to identify panel SVAR models through cross-sectional pooling, it
becomes crucial to comprehend the implications of the identifying assumptions at the level of individual cross-sections.
Furthermore, panel data introduces specific considerations that necessitate careful attention. Next, we explicitly tackle
these concerns to provide a comprehensive understanding of our approach.

2.2 Statistical identification in panel SVAR models

2.2.1 Independence at the pooled level

To enhance the performance of statistical identification in panel SVAR models through cross-sectional pooling, this
study employs identifying assumptions that deviate from those commonly used for identifying single SVAR models. Our
approach distinguishes itself in two key aspects. First, it imposes a stronger condition of independence at the pooled level,
which differs from the typical requirement of independence at each individual cross-sectional level

Remark 1. The independence assumption at the pooled level, as stated in Assumption 2, is stronger than the indepen-
dence assumption at each cross-sectional level, which asserts that the components in 𝜉it are mutually independent
for all i = 1, … ,N.

To illustrate this, let us assume that N is even and the k-th structural shock for cross-section i at time t is generated as
follows:

𝜉
(k)
it = 𝜅i𝜂

(k)
it , k = 1, … ,K, (6)

where 𝜅i is a scalar variable common to all shocks within cross-section i and 𝜂
(k)
it is independent from 𝜂

(k′)
it for k ≠ k′.

While within the same cross-section 𝜉
(k)
it is independent of 𝜉(k

′)
it , at the pooled level, 𝜉(k)𝜏 may not be independent of 𝜉(k

′)
𝜏 .

For example, let 𝜂(k)it follow an exponential distribution for all k, that is, 𝜂(k)it
iid∼ Exp(𝜆) with 𝜆 > 0. Furthermore, define

𝜅i = 1 if i is even and 𝜅i = −1 if i is odd. It can be verified that the marginal distribution of the pooled shock 𝜑(k) is
a symmetric exponential mixture with P

(
𝜉
(k)
𝜏 > 0

)
= 1∕2 and E

[
𝜉
(k)
𝜏

]
= 0. However, for k ≠ k′, the corresponding

conditional probability is P
(
𝜉
(k)
𝜏 > 0|𝜉(k′)

𝜏 > 0
)
= 1 and conditional expectation E

[
𝜉
(k)
𝜏 |𝜉(k′)

𝜏 > 0
]
= 1∕𝜆 > 0.2

It is worth noting that when only a subset of the shocks satisfies the assumption of independence while others do not,
Cardoso (1998) demonstrates that the mutually independent shocks can still be uniquely identified. The framework of
HL estimation proposed in this study allows for addressing partial identification in the presence of dependent shocks
by appropriately adjusting the employed independence test. This topic has recently been discussed in Herwartz and
Wang (2023).

1Due to this indeterminacy, the model is sometimes referred to as “locally identified.” One approach to achieving global identification is by selecting
the column signs and ordering such that the diagonal elements of matrix Q are positive, and the trace of Q is maximized among all K! possible column
orderings. Alternative methods have been explored, which involve imposing specific constraints on the structural mixing matrix D derived from Q (see,
e.g., Lanne et al., 2017).
2In this illustration, we have disregarded the assumptions about the mean and variance of the structural shocks, as they do not play a role in the current
argument. It is worth noting that a similar problem related to co-heteroskedasticity is discussed in Montiel Olea et al. (2022).
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The second aspect that distinguishes our approach is the imposition of cross-sectional homogeneity on the orthogonal
rotation matrix Q.

Remark 2. The panel SVAR approach proposed in this work is based on the assumption of cross-sectional (and
temporal) invariance of the rotation matrix Q in (4).

While this assumption may seem restrictive, it is essential to note that the structural mixing matrix Di in (4) provides
flexibility in terms of cross-section-specific marginal variances and correlations, characterized by Γi and Gi, respectively.
The approach is primarily restrictive in terms of the contemporaneous causal direction, which is captured by the common
rotation matrix Q.3 This consideration becomes particularly relevant when panel members are subject to similar legislative
or regulatory restrictions, such as belonging to the same currency union, or share other institutional similarities. It is worth
mentioning that this assumption is implicit in some theory-based identifications where economic theory is assumed to
hold for all panel members. For instance, in the case where identification is achieved by imposing a recursive scheme,
the variable ordering requires careful justification that should apply consistently across the entire cross-section. In such
recursive systems, where Di is lower triangular, the matrix Q is constrained to be an identity matrix for all panel sections.

However, the economic implications of a cross-sectionally homogeneous Q matrix should be carefully investigated and
justified based on economic theory and institutional knowledge. If there are compelling reasons to believe that specific
transmission patterns exist within certain subsets of the cross-sections (e.g., large vs. small economies) or during specific
time periods, it is possible to estimate different rotation matrices for different pools constructed as well-defined subsam-
ples. This allows for greater cross-sectional and temporal flexibility in the transmission mechanism. Furthermore, if the
assumption of a common rotation is violated for certain panel members, the recovered structural shocks for those mem-
bers cannot be statistically independent under the assumption of non-Gaussianity. This is due to the uniqueness of linear
forms of non-Gaussian independent variables. Diagnostic analysis can be conducted using powerful tools available for
testing independence (Bakirov et al., 2006; Genest et al., 2007; Matteson & Tsay, 2017).

To assess the robustness of the proposed approach against potential deviations from the assumption of a common
rotation matrix, we perform a Monte Carlo experiment in Section 3.2. In the empirical application of this study, we thor-
oughly examine the implications of a common rotation by comparing cross-section-specific structural outcomes with
those reported in a benchmark study (Corsetti et al., 2021) and in an aggregate (EA-wide) model. Additionally, we present
in Section S3.3 comprehensive diagnostic evidence to support the statistical identifying assumptions. Furthermore, to
accommodate temporal flexibility, we apply the proposed panel SVAR approach to subsample periods characterized by
both conventional monetary policies and unconventional measures.

2.2.2 Cross-sectional correlation and heterogeneity

When considering structural identification in macroeconomic panel data models, it is crucial to account for two important
data features. First, the same type of structural shock may exhibit cross-sectional correlation. Second, cross-sectional
heterogeneity can arise from the idiosyncratic characteristics of specific panel members.

The cross-sectional correlation between specific shocks from different panel members, denoted as 𝜉(k)it and 𝜉
(k)
𝑗t , i ≠ 𝑗,

manifests as serial correlation in 𝜉
(k)
𝜏 . In extreme cases, one might consider the presence of a common shock, where 𝜉(k)1t =

… = 𝜉
(k)
Nt . However, such cross-sectional correlation patterns do not violate the independence Assumption 2 imposed on

distinct shocks, that is, 𝜉(k)𝜏 independent of 𝜉(k′)𝜏 for k ≠ k′. Thus, the identifiability of the system remains intact. Moreover,
since the sequence of structural shocks is typically assumed to be generated from a white noise process, most ICA routines,
such as the non-Gaussian ML estimator of Lanne et al. (2017), remain consistent.4 Nevertheless, tools for testing the null
hypothesis of independence may experience efficiency loss, and the performance enhancement of statistical identification
achieved by combining both data dimensions may not reach its full potential. Matters of contemporaneous cross-sectional
dependencies have been extensively discussed in various empirical and theoretical analyses of macroeconomic panel data

3For a detailed interpretation of the orthogonal matrix Q as a rotation transformation (or reflection, depending on the orientations of the bases), we
refer the reader to Herwartz and Wang (2023).
4For a fixed number of panel sections N, it can be verified that the sequence of structural shocks 𝜉𝜏 is strong 𝛼-mixing. This property allows for the
establishment of laws of large numbers and central limit theorems for statistics related to 𝜉𝜏 , even in the presence of considerable serial correlation (see,
e.g., White & Domowitz, 1984). It is widely recognized that ML estimation remains consistent and asymptotically normal for mixing processes (see,
e.g., Levine, 1983).
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(see, e.g., Taylor & Taylor, 2004). To account for these dependency patterns, one may employ a suitably designed GLS
approach to further whiten the shocks 𝜉it in (4) prior to the pooling and ICA steps.

Regarding cross-sectional heterogeneity, it is worth noting that pooling samples obtained from orthogonalized
reduced-form residuals homogenizes the first two moments of the shocks. The distributional heterogeneity of shocks can
be empirically tested, for instance, using classical Kolmogorov-Smirnov tests. In general, such cross-sectional heterogene-
ity does not impair the ICA approach for identifying independent components at the pooled level. Nevertheless, there are
special cases, as illustrated in the previous section, where distinct shocks from different cross-sections exhibit coexisting
cross-sectional distributional properties. Such cross-sectional “co-heterogeneity” in the shock distribution renders the
shocks 𝜉(k)𝜏 and 𝜉

(k′)
𝜏 for k ≠ k′ dependent at the pooled level, thus violating identifying Assumption 2. Diagnostic tests for

the independence of components in 𝜉𝜏 can be applied to examine such patterns of co-heterogeneity.
Given these considerations regarding the specific features of panel data, it becomes crucial for the chosen ICA approach

to exhibit favorable performance in finite samples, especially when dealing with serial correlation and distributional
heterogeneity. In practice, relying on pre-specified probability density functions through parametric or semi-parametric
approaches, such as the non-Gaussian ML approach proposed by Lanne et al. (2017) or the PML approach introduced
by Gouriéroux et al. (2017), may carry a risk of misspecification. Consequently, analysts may prefer less restrictive
approaches, like GMM methods presented in Lanne and Luoto (2021) and Keweloh (2021), that incorporate higher
order cross-moment conditions such as co-skewness and co-kurtosis. Another alternative is the non-parametric approach
known as Hodges-Lehmann estimation, which utilizes independence tests for identification (Herwartz, 2018).5 Among
these approaches, simulation results provided by Herwartz (2018) and Herwartz and Wang (2023) and in Sections 3.1, S2,
and S4 of this work demonstrate the robustness of HL estimation under a wide range of data-generating processes and
diverse distributional features. Considering these compelling results, we believe that HL estimation is highly suitable for
structural identification in panel SVAR models. We next provide a brief description of this approach.

2.3 Hodges-Lehmann estimation based on independence criteria

As a first step, given its specification and conditioning on presample values, the parameters in the reduced-form (1) are
individually estimated using least squares (LS) for different panel members.6 These estimates, including the reduced-form
AR parameters Âip, p = 1, 2, … ,Pi, and covariance matrices Ω̂i, are then used to retrieve the residual vector ûit, the
diagonal matrix containing the marginal variances Γ̂i, and the lower triangular Cholesky factor of the correlation matrix
Ĝi. From these quantities, the vector of orthogonalized residuals is obtained as Ĝ−1

i Γ̂−1∕2
i ûit.

To identify the independent structural shocks, we express the orthogonal matrix Q as a product of Givens rotation
matrices, parameterized by rotation angles collected in the K(K − 1)∕2 × 1 vector 𝜃.7

For a given choice of 𝜃, we define a candidate structural mixing matrix D𝜃,i ∶= Γ̂1∕2
i ĜiQ𝜃 and the implied vector of

structural shocks 𝜉𝜃,it ∶= D−1
𝜃,i ûit. These candidate shocks are then pooled to form the sample defined as


(N)
𝜃

∶=
{
{𝜉𝜃,it}T

t=1
}N

i=1 . (8)

The proposed panel SVAR identification method aims to minimize the mutual dependence among the components in


(N)
𝜃

with respect to 𝜃, that is,

�̂� ∶= arg min
𝜃

{
Mutual dependence of theK components in(N)

𝜃

}
.

5Generalizations of the restrictive non-Gaussian ML approach have also been attempted from a Bayesian perspective. These include utilizing a Dirichlet
process mixture to specify the shocks (Braun, 2021) or employing a skewed generalized t-density (Anttonen et al., 2023).
6Properties of the LS estimator for parameters in VAR models are discussed in Section 2.3 of Kilian and Lütkepohl (2017). Canova and Ciccarelli (2013)
discuss alternative approaches for estimating reduced-form models across a wider range of specifications.
7For instance, in the trivariate case, one has

Q𝜃 =

[ 1 0 0
0 cos(𝜃1) − sin(𝜃1)
0 sin(𝜃1) cos(𝜃1)

][ cos(𝜃2) 0 − sin(𝜃2)
0 1 0

sin(𝜃2) 0 cos(𝜃2)

][ cos(𝜃3) − sin(𝜃3) 0
sin(𝜃3) cos(𝜃3) 0

0 0 1

]
, (7)

where 𝜃𝑗 ∈ [0, 2𝜋), 𝑗 = 1, … ,K(K − 1)∕2.
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The identified cross-sectional-specific structural mixing matrix is then obtained as

D̂i ∶= D�̂�,i = Γ̂1∕2
i ĜiQ�̂� . (9)

Recognizing that the linear mapping from the structural to reduced-form disturbances can be represented by an orthog-
onal rotation (Q), a shearing transformation (G), and a stretching/squeezing transformation (Γ1∕2), the stylized bivariate
example depicted in Figure S1.1 in Section S1 offers a visual illustration of our proposed approach. It demonstrates how
our approach addresses the inherent trade-off between model flexibility and parsimony, which is often a key consideration
in the analysis of macroeconomic panel data.

To measure the mutual dependence among the components in 
(N)
𝜃

, we employ a set of test statistics from
non-parametric independence tests. The choice of �̂� is made to minimize the evidence against the null hypothesis of
independence, lending it the interpretation of a HL estimator (Dufour, 1990; Hodges & Lehmann, 2006). As a bench-
mark dependence measure, we employ a test based on the distance covariance (dCov) statistic introduced by Székely
et al. (2007), denoted as  . It has been demonstrated by Matteson and Tsay (2017) to exhibit favorable power character-
istics across a wide range of violations of the null hypothesis. We further utilize the Cramér-von-Mises (CvM) distance
introduced by Genest et al. (2007), denoted as , for robustness analysis and additional diagnostic testing.8

3 MONTE CARLO ANALYSIS

In this section, we assess the simulation performance of the proposed statistical identification approach in panel SVAR
models. Previous Monte Carlo studies have examined the effectiveness of statistical identification using non-parametric
independence tests in single SVAR models (e.g., Herwartz, 2018; Herwartz & Wang, 2023). For example, based on a set
of carefully selected shock distributions, Herwartz and Wang (2023) show that the HL approach performs well even
in scenarios where the structural shocks are “almost” Gaussian. Additionally, Matteson and Tsay (2017) demonstrate
through simulations that ICA based on the dCov statistic  outperforms other prominent ICA methods, such as FastICA
(Hyvärinen & Oja, 1997), under various data-generating distributions.

We conduct the first set of experiments in Section 3.1 to investigate the extent to which the performance enhancement
through pooling translates to panel data with substantial cross-sectional correlations and heterogeneity. We also compare
the proposed approach with alternative independence-based identification methods, such as GMM and PML. The second
set of experiments in Section 3.2 explores the impact of violating the strict assumption of a common rotation matrix on
the performance of the suggested approach. We also consider the presence of a cross-sectionally common shock to mimic
the case of a monetary union, which is relevant for the empirical analysis of the EA.

3.1 Robustness of Hodges-Lehmann estimation in panel data

We simulate a pair of independent components (K = 2) generated with equal probabilities (drawn with replacement)
from 18 distributions. As shown in the left-hand side panel of Figure 1, these distributions include uniform (distribution
1), Student's t with 3 and 5 degrees of freedom (2 and 4), exponential (12), Gaussian mixtures (symmetric: 5–6 and 8–11;
asymmetric: 13–18), and mixtures of exponential distributions (3 and 7). The alternative distributions encompass a wide
range of stochastic origins that may be relevant in empirical practice, such as symmetric versus asymmetric shocks, uni-
modal versus multimodal, and leptokurtic versus platykurtic distributions. The independent components generated from
all data-generating distributions are centered and standardized to have mean zero and unit variance. After generation,
the independent components are mixed using a common orthogonal matrix Q drawn uniformly from its parameter space
(i.e., the Haar distribution, see Rubio-Ramírez et al., 2010).

We consider three scenarios. In the first scenario, labeled “homogeneous panel,” shocks of the same type are iden-
tically distributed across all cross-sections without any cross-sectional correlations. In the second scenario, labeled
“heterogeneous panel,” shocks from different cross-sections have distinct distributions while remaining cross-sectionally

8In Section S4, we present a comprehensive simulation study with stylized settings, where we also incorporate the dependence coefficient  introduced
by Bakirov et al. (2006) and compare the performance of three alternative independence measures. As an alternative to minimizing the dependence
statistic, we also explore the option of maximizing its p-value as proposed in Herwartz (2018). Notably, the simulation and empirical results discussed
in this paper remain unchanged when switching to these alternative HL estimation settings.
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FIGURE 1 Simulation results for the identification of bivariate independent components. The left-hand side panel displays 18
data-generating distributions, encompassing uniform, Student's t, exponential, symmetric and asymmetric mixtures of Gaussian, and
exponential distributions. The right-hand side panel depicts the distribution of the estimation error using boxplots, with medians marked by
horizontal lines, covering various scenarios, estimation methods, and sample dimensions, with 1000 replications.

uncorrelated. In the third scenario, labeled “cross-sectionally correlated panel,” we introduce cross-sectional correlations
to the shocks generated from the first scenario as follows. Let the N-dimensional vectors 𝝃

(k)
t =

(
𝜉
(k)
1t , … , 𝜉

(k)
Nt

)′
stack

the structural shock k ∈ {1, … ,K} over all cross-section members at time t. Sets of N-dimensional structural shocks{
𝝃
(k)
t

}T

t=1
are drawn as

𝝃
(k)
t = 1∕2�̌�

(k)
t , t = 1, … ,T, (10)

where 1∕2 is the symmetric matrix square root of the N×N correlation matrix  and �̌�
(k)
t is the vector of structural shocks

generated under the first scenario.9 The typical [i, 𝑗]-th off-diagonal element of  is 𝜚|i−𝑗|. We discuss results based on
settings with a sizable correlation of neighbors using 𝜚 = 0.6. In Section S2, we vary the cross-section correlations in dif-
ferent directions and investigate their effect on the performance of the proposed approach. Furthermore, we also consider
additional scenarios that feature both cross-sectional heterogeneity and various degrees of cross-sectional correlations.
Simulation results documented under these alternative scenarios lead to similar conclusions, as discussed below.

To assess the overall performance of the identification procedures in estimating the structural mixing matrix Q, we
evaluate the Amari distance (see Matteson & Tsay, 2017)

9The symmetric square root is given by 1∕2 = WV 1∕2W ′, where the eigenvectors of  are the columns of W , and the diagonal matrix V has the
eigenvalues of  along its diagonal.
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||Q, Q̂||Amari =
K∑

i=1

⎛⎜⎜⎝
∑K

𝑗=1 |ri𝑗|
max

𝑗
|ri𝑗| − 1

⎞⎟⎟⎠ +
K∑
𝑗=1

(∑K
i=1 |ri𝑗|

max
i

|ri𝑗| − 1

)
, (11)

with ri𝑗 =
(

Q−1Q̂
)

i𝑗 . The Amari distance is invariant to sign flips and column permutations. Monte Carlo experiments
cover two variants of the proposed HL estimator, which is either based on the statistic  (HLdCov) or on  (HLCvM).
We also compare these variants with GMM estimation based on higher-order moment conditions (Lanne & Luoto, 2021)
and the PML method (Gouriéroux et al., 2017), using a super-Gaussian (Student's t(5), PML(+)), and a sub-Gaussian
(Gaussian mixture, PML(−)) pseudo density. For the purpose of GMM estimation, we impose the following (asymmetric)
third- and fourth-order moments conditions

E
[(

𝜉
(k)
𝜏

)2
𝜉
(k′)
𝜏

]
= 0 and E

[(
𝜉
(k)
𝜏

)3
𝜉
(k′)
𝜏

]
= 0 for all k ≠ k′ and k, k′ ∈ {1, … ,K}. (12)

In each experiment, we first apply the alternative estimation methods independently to each panel member, compute
Amari distances and document the average across all cross-sections. Subsequently, we employ these alternative estimation
methods on the pooled sample (8) and evaluate the estimation error of the estimated common rotation matrix.

Simulation results as displayed in Figure 1 show that both GMM and HL estimation methods exhibit notable robustness
against distributional heterogeneity of the independent shocks. However, the semi-parametric PML method, which relies
on a fixed pseudo-density, carries the risk of misspecification and inconsistent estimation. Furthermore, when applied
to pooled samples rather than pursuing cross-section-specific estimation, both GMM and HL estimation demonstrate a
pronounced performance advantage. Importantly, this performance enhancement through pooling remains sizable even
in the presence of cross-sectional heterogeneity and correlations, albeit with slight increases of estimation uncertainty.
In contrast, PML estimation with fixed pseudo-densities does not benefit from exploiting pooled samples. Among the
alternative measures of independence, HL estimation based on dCov statistics exhibits superior performance in smaller
panels, while the use of CvM statistics can substantially benefit from an increase in sample information in either the time
or cross-sectional dimension.

In summary, HL estimation based on the dCov statistic shows the most favorable finite-sample performance in terms
of median estimation errors. This finding is particularly striking in panels of moderate size (N = 24, T = 120, 240).
Considering its robustness against cross-sectional correlation and distributional heterogeneity, we deem this approach
highly suitable for the proposed statistical identification in panel SVAR models.

3.2 Assessing monetary neutrality under a common shock

The data-generating-process (DGP) employed in the second experiment is a trivariate DSGE model comprising the output
gap (xt), inflation (𝜋t) and the nominal interest rate (rt) (see, e.g., Herwartz et al., 2022). The log-linearized structural
model reads as follows:

xit = 𝛾xEtxit+1 + (1 − 𝛾x)xit−1 − 𝛿i,x(rit − Et𝜋it+1) + 𝜔
(x)
it (13)

𝜋it = (1 + 𝛼𝛽)−1𝛽Et𝜋it+1 + (1 + 𝛼𝛽)−1𝛼𝜋it−1 + 𝛾𝜋xit + 𝜔
(𝜋)
it (14)

rit = 𝜏rrit−1 + (1 − 𝜏r)(𝜏𝜋𝜋it + 𝜏xxit) + 𝜔
(r)
it (15)

𝜔
(•)
it = 𝜌•𝜔(•)

it−1 + 𝜉
(•)
it , • ∈ {x, 𝜋, r}, t = 1, … ,T, i = 1, … ,N. (16)

Equations (13), (14), and (15) represent an IS curve, a New Keynesian Phillips curve, and a policy reaction function
given by the Taylor rule, respectively. All structural innovations in (16) are assumed to follow mutually independent
autoregressive processes of order one with coefficients 𝜌x, 𝜌𝜋 , and 𝜌r for demand, supply, and MP shocks, respectively.
Under the condition of equilibrium determinacy, the data-generating DSGE model implies a VAR(2) representation of
𝑦it = (xit, 𝜋it, rit)′ (see, e.g., Ravenna, 2007).

The DSGE model is calibrated in a common setting with parameter values 𝛽 = 0.99, 𝛾𝜋 = 0.05, 𝜏𝜋 = 1.8, 𝜏r = 0.6 and
𝜌x = 𝜌r = 𝛼 = 𝛾x = 𝜏x = 𝜌𝜋 = 0.5. In each experiment, the parameter 𝛿i,x, which governs the impact of the ex-ante
real interest rate on the output gap, is drawn from a uniform distribution on the interval [0.05; 0.15]. Allowing 𝛿i,x to vary
across panel members is compelling for at least two reasons. On the one hand, such a setting is economically reasonable
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TABLE 1 Simulation results for the DSGE model.

Freq. d̂MG
13 < 0 Avg. |d̂MG

13 − Ed13| Avg. ||EQ, Q̂i||Amari

N T unpooled pooled unpooled pooled unpooled pooled
Idiosyncratic MP shock 6 120 0.737 0.863 0.509 0.294 0.425 0.213

6 240 0.838 0.960 0.436 0.183 0.339 0.125
12 120 0.807 0.939 0.513 0.223 0.425 0.138
12 240 0.895 0.998 0.431 0.112 0.337 0.083
24 60 0.760 0.897 0.575 0.269 0.496 0.177
24 120 0.875 0.989 0.521 0.130 0.426 0.088
24 240 0.955 0.994 0.434 0.086 0.338 0.054

Common MP shock 6 120 0.722 0.807 0.483 0.404 0.465 0.269
6 240 0.835 0.816 0.419 0.449 0.399 0.247
12 120 0.800 0.958 0.486 0.214 0.443 0.137
12 240 0.915 0.956 0.399 0.222 0.354 0.098
24 60 0.752 0.962 0.559 0.216 0.498 0.144
24 120 0.859 0.984 0.487 0.144 0.422 0.078
24 240 0.969 0.976 0.390 0.140 0.332 0.055

Note: From left to right: Average frequencies of detecting non-neutrality of MP, average absolute errors for the impact effect
of MP on output, and average overall accuracy of the estimated rotation matrix Q̂ measured by the Amari distance. Model
comparisons involve results from cross-section-specific estimation of rotation matrices (“unpooled”) versus results
obtained after pooling (“pooled”). The upper panel shows results for the model under fully idiosyncratic shocks. The lower
panel shows results for the case of a common MP shock present in all cross-section members.

and realistic, as members of a monetary union might show stronger or weaker real effects of monetary policies.10 On
the other hand, since such an economically meaningful setting yet violates the assumption of the existence of a common
rotation matrix Q, it is interesting to ascertain whether and in how far a cross-sectional pooling can still be beneficial
for structural identifications. Given the favorable performance of HL estimation based on the dCov statistic, the second
simulation experiment focuses on this statistical identification method.

To address the performance of panel SVAR estimation under fully idiosyncratic shocks on the one hand and in presence
of cross-sectionally “identical” shocks on the other hand, we consider two alternative settings. The idiosyncratic shocks
{𝜉(•)t }T

t=1 comprise independent standardized Student's t distributed random variables with degrees of freedom uniformly
drawn from the interval [5; 8]. To establish that a particular shock is common to all cross-section members, we draw data
for a system featuring a monetary policy shock that is shared by all cross-sectional entities (i.e., 𝜉(r)1t = … = 𝜉

(r)
Nt ,∀t). After

their generation, 100 pre-sample observations are discarded to immunize simulation outcomes against the initialization.
Simulation experiments are performed 1000 times (M = 1000).

Since monetary policies in all panel sections are not neutral given that 𝛿i,x > 0, ∀i ∈ {1, … ,N}, we report the
frequencies of obtaining d13 < 0 in an independence-based identification alternatively based on unpooled and pooled
samples for various N,T combinations, that is, N = 6,T = 120,240;N = 12,T = 120,240;N = 24,T = 60,120, 240.
Furthermore, we document the average distance between d̂MG

m,13 and its expected value given by the DGP, where d̂MG
m,13

denotes the MG estimate of the structural impact multiplier of interest in experiment m. In specific, we compute
average outcomes |d̂MG

13 − Ed13| ∶= M−1 ∑M
m=1 |d̂MG

m,13 − Ed13|, where Ed13 is determined by Monte Carlo integration with
30,000 draws. In addition, we evaluate estimates for Q by means of the Amari distance defined in (11). In specific, let Q̂m,i
denote the estimated rotation matrix for panel member i in experiment m, we document the average Amari distance

avg.||EQ, Q̂||Amari = M−1N−1
M∑

m=1

N∑
i=1

||EQ, Q̂m,i||Amari,

where the expectation EQ is determined by Monte Carlo integration. Notice that for identification based upon pooled
samples, Q̂m,1 = … = Q̂m,N for all m.

As reported in Table 1, pooling panel time series data leads to more frequent estimates of non-neutral (i.e., negative)
MP effects. In case T = 240, when the data are sufficiently informative for a fairly accurate LS estimation of the reduced

10The impact multiplier of a contractionary MP shock for the output gap (i.e., di,13) is a monotone decreasing function of the DSGE parameter 𝛿i,x . The
value for di,13 implied by a minimum (maximum) calibration of 𝛿i,x is −0.24 (−0.55).
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form, the frequencies of detecting the structural impact multiplier of interest with correct sign are throughout larger than
96% for the proposed panel SVAR estimator. By contrast, the corresponding frequencies that result from country-specific
structural analyses in these scenarios are between 80% and 95%. Much like the qualitative assessment (sign), the pro-
posed method also produces MG estimates with considerably better accuracy in a quantitative sense. The advantage of
combining both data dimensions materializes when the panel dimension extends from N = 6 to N = 24 for a given
time dimension. While both the average absolute bias of MG estimates dMG

13 and the estimation error of the matrix Q are
reduced by more than one half for pooled samples (e.g., for T = 240 from 0.18 to 0.08 and from 0.12 to 0.05), results from
country-level identifications remain largely unaffected (around 0.43 and 0.33). Unsurprisingly, the precise effect estima-
tion for the common shock appears relatively challenging, especially when the available sample information is scarce. For
instance, with data dimensions N = 6,12;T = 120, the pooling step offers only a mild improvement for the assessment of
the effect of the common MP shock on economic activities. Nevertheless, the estimation of the complete rotation matrix
Q considerably benefits from pooling in all scenarios considered, even in the presence of a common shock.

4 MONETARY POLICY TRANSMISSION IN THE EURO AREA

The process of monetary integration within the European Union, dating back to the late 1970s, reached a milestone
with the introduction of the common currency on January 1, 1999. Academics and policymakers have shown substantial
interest in the challenges faced by a single authority, namely, the ECB, conducting monetary policy within a heterogeneous
environment. Notably, crucial market segments, such as labor and housing markets, are subject to marked institutional
heterogeneity, and fiscal authorities retain the capacity to pursue country-specific expenditure plans and debt policies
(e.g., Peersman, 2004; Georgiadis, 2015). However, studies explicitly focusing on post-1999 data are relatively limited.
For instance, Neuenkirch and Nöckel (2018) investigate the manifestations of the “risk-taking channel” in the banking
systems of 10 member countries of the monetary union by employing both recursive schemes and sign restrictions for
identification. Another notable contribution is the dynamic factor model approach proposed by Corsetti et al. (2021),
uncovering country-specific responses to MP shocks for a wide range of macroeconomic variables, with MP shocks being
partially identified using high-frequency instruments.

The empirical analysis in this paper focuses on a dataset comprising 14 EA economies and covers the period from
2001Q1 to 2019Q4. We employ a set of VAR models consisting of four endogenous variables with additional exogenous
variables (VARX). This set up is motivated by (i) the robustness of the three-variable MP model similar to the one employed
in Section 3.2 (see, e.g., Plagborg-Müller & Wolf, 2021) and (ii) the role of financial conditions in assessing real effects of
monetary policy (Caldara & Herbst, 2019). The suggested approach to panel SVAR identification is designed to unravel
(i) country-specific responses of core macroeconomic variables (real GDP, inflation) to EA-wide shocks originating in MP
and financial conditions, (ii) the interaction between the ECB and largely integrated financial markets, and (iii) a poten-
tial break in the MP transmission when the ECB switched from conventional short-rate adjustments to unconventional
measures such as forward guidance and large-scale asset purchases.

In the following, we first explicitly outline the specific models employed at the country level and describe the estimation
procedure. Second, we complement the analysis with a structural MP model for the entire EA. Third, we discuss panel
SVAR results both at the monetary union level and for individual member countries. Fourth, we address potential changes
in the MP transmission profile with the advent of unconventional policies.

To account for both estimation and identification uncertainty, we adopt bootstrap methods, which have been widely
adopted in the existing literature. In particular, we employ variants of the wild bootstrap that are specifically tailored to
preserve cross-sectional correlation patterns. The procedure is explained and further examined in Section S3.4.11

4.1 Panel SVARX specifications

Our analysis covers 10 EA member states that adopted the Euro in 1999 (Austria, Belgium, Finland, France, Germany,
Italy, Luxembourg, the Netherlands, Portugal, and Spain), along with four other countries meeting Euro convergence cri-

11A formal statistical analysis of bootstrap inference in panel SVARs is beyond the scope of this study. For a rigorous proof of asymptotic validity of a
related bootstrap procedure in single SVAR models, the reader may consult Brüggemann et al. (2016).
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teria later (Greece, Slovenia, Cyprus, and Malta). Countries joining the monetary union after the financial crisis (Slovakia
in 2009, Estonia in 2011, Latvia in 2014, and Lithuania in 2015) are not included in the panel.12

We estimate 14 cross-section-specific VARXs models, each with distinct lag orders Pi, including an intercept, a linear,
and quadratic deterministic trends:

𝑦it =
2∑

m=0
𝜈imtm + Bixt +

Pi∑
p=1

Aip𝑦it−p + uit, (17)

where 𝜈im ∈ R
4 for m = 0, 1, 2, and Bi and Aip ∈ R

4×4 for p = 1, … ,Pi. The vector-valued variables 𝑦it and xt comprise
both country-specific information and observations that are common to all cross section members or observed at a global
level, that is, 𝑦it =

(
𝑦
(1)′
it , 𝑦

(2)′
t

)′
, xit =

(
x(1)

′

it , x(2)
′

it , x(3)
′

t

)′
. The first set of variables includes country-specific real activity

and price measures, that is, 𝑦(1)it = (Δzit, 𝜋it)′, where zit and 𝜋it denote the (log) real GDP and the annualized inflation
of the (log) GDP deflator in country i and time t, respectively. Since the ECB is the only monetary authority aiming to
ensure the price stability and the stability of (integrated) financial markets for the entire EA, 𝑦(2)t = (rt, bst)′ comprises the
EA-wide short-term interest rate and option-adjusted bond spreads, as indicators for the general monetary and financial
conditions, respectively. Noticing that short-term rates approached the zero lower bound during the course of the financial
and sovereign debt crisis, we employ shadow rates of Wu and Xia (2016) to capture MP signals for the periods following
2004Q4. To approximate EA financial conditions, we include option-adjusted spreads of high-yield bonds issued on EA
bond markets.13 Accounting for spillover effects, lag-exogenous variables x(1)it =

(
ΔzEA

−i,t−1, 𝜋
EA
−i,t−1

)′
comprise the first

difference of log real GDP and the weighted inflation in the remaining countries, that is, zEA
−i,t = ln

∑
𝑗≠ie

z𝑗,t and 𝜋EA
−i,t =∑

𝑗≠i
(
𝜋𝑗,tez𝑗,t∕

∑
𝑗e

z𝑗,t
)
. Furthermore, we include trade volume (imports + exports) and government spending, both as a

percentage of GDP, that is, x(2)it = (tradeit, geit)′ to control for openness and fiscal measures. Finally, we control for changes
in global demand, inflation, and policy signals from the US central bank by including the inflation of a world commodity
price index joint with the effective federal funds rate, that is, x(3)t =

(
𝜋W

t , rUS
t

)′. For graphical displays of the analyzed time
series and data sources, see Section S3.1.

To determine the VARX orders Pi, we try to keep the reduced-form specification parsimonious and use the Schwarz
information criterion (BIC) and a series of diagnostic tests to guide model selection. For a detailed discussion of model
selection and diagnostic results (including tests on remaining serial correlation and fundamentalness), we refer the reader
to Section S3.2. After the first-step LS estimation of country-specific VARs and the extraction of reduced form residuals
ûit, standardized and orthogonalized residuals are pooled as described in (8), and a common orthogonal rotation matrix
is estimated using the dCov statistic.14 Section S3.7 documents the HL-estimate of the common rotation matrix, along
with bootstrap statistics.

In Section S3.3, we test the identifying assumption of mutual independence and its implications at the level of indi-
vidual cross-sections, finding no evidence against the independence assumption. Further diagnostic results documented
in Section S3.3 are largely supportive for the non-Gaussianity and the homogeneity of cross-sectional distributions of
identified shocks.

4.2 One money, one market: an EA-wide model

When discussing the results obtained from the large-scale panel SVARX model, we compare structural outcomes with
results from a well-understood aggregated EA-wide model:

𝑦EA,t =
2∑

m=0
𝜈EA,mtm + Bx(3)t +

PEA∑
p=1

Ap𝑦EA,t−p + uEA,t, (18)

12Ireland is also excluded, since foreign direct investment plays an important role for its economy and aggregates reported in the national accounts may
not precisely match the situation of real domestic activities.
13High-yield bonds offer informative signals about changes of external financing costs and have been shown to exert significant explanatory power for
general financial conditions and the business cycle. Structural estimates documented in this work remain largely robust when alternative financial
indicators, such as changes in loans to the private sector, are employed.
14Adopting an alternative independence measure—such as the Cramér-von-Mises distance—yield similar structural outcomes.
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where 𝑦EA,t =
(
𝑦
(1)′
EA,t, 𝑦

(2)′
t

)
′ with 𝑦

(1)
EA,t = (ΔzEA,t, 𝜋EA,t)′ collects the real GDP growth and inflation for the EA at the

aggregate level and 𝑦
(2)
t = (rt, bst)′ containing the MP and financial indicators as before. The lag order PEA = 2 minimizes

the BIC and yields estimated residuals uEA,t free of any serial correlation. Similar to the panel models, the EA-wide model
is also identified by means of HL estimation based on the dCov statistic. The estimated structural impact multiplier reads
as

D̂EA =

⎡⎢⎢⎢⎢⎢⎢⎣

0.087
(0.153;0.794)

−0.285
(−0.182;−2.46)

−0.131
(−0.039;−1.074)

−0.148
(−0.053;−1.879)

0.453
(0.216;2.115)

0.317
(0.331;2.412)

−0.052
(−0.016;−0.404)

0.041
(−0.018;0.315)

0.123
(0.051;1.312)

−0.062
(0.015;−0.706)

0.276
(0.233;4.731)

−0.035
(0.018;−0.600)

0.000
(−0.028;−0.001)

−0.397
(−0.082;−1.611)

0.159
(0.031;0.857)

1.025
(0.858;6.083)

⎤⎥⎥⎥⎥⎥⎥⎦
,

where the values in parentheses (a; b) denote the bootstrap means (a) and t-ratios (b). The sign patterns of columns of D̂EA
allow for an economic labeling of the shocks. Specifically, the shock identified in the first column, which moves output
and prices in the same direction, can be classified as a demand shock. Conversely, the shock in the second column, which
moves output and prices in opposite directions, qualifies as a supply shock. However, the main focus of this research is
primarily on analyzing the transmission of MP and financial shocks. Of particular interest are the shocks in the third
column, which have the strongest impact on interest rates, and the shocks in the fourth column, which have the strongest
impact on bond spreads. While both shocks exhibit opposite effects on prices and short-term rates, aligning with the
characteristic response of MP shocks, the magnitude of the effects on short-term rates allows us to identify the shock in
the third column of D̂EA as a contractionary MP shock. In labeling the shock in the fourth column of D̂EA, it is important to
consider its impact on output and interest rates. The tightening of financial conditions leads to a significant reduction in
economic activity. In response to this shock, short rates show a relatively mild downward impact, indicating a potentially
accommodating MP conduct. The structural impulse response functions (IRFs) depicted in Figure 2 underpin the adverse
effects of both MP and financial shocks on economic activity. Additionally, financial conditions experience a temporary
deterioration following a MP shock. Therefore, financial conditions can be seen as a potential channel through which
adverse effects of MP on economic activity occur. Neglecting this channel could result in misidentification of the MP
shock, as emphasized by recent findings in the context of the US economy by Caldara and Herbst (2019).

4.3 One money, many markets: evidence from panel SVARs

4.3.1 Weighted mean group IRFs

To examine the structural implications derived from the panel model, we begin by investigating whether the findings
obtained from the EA-wide model align with the outcomes observed in the panel model at the MG level. The estimated
structural impact multipliers, along with the examination of the resulting IRFs, enable us to assign economic interpreta-
tions to the identified shocks in a single SVAR model comprising EA-aggregates. Specifically, we find that the shocks with
the size of one standard deviation, which cause the most significant and pronounced instantaneous reactions in the short
rate and bond spreads, are identified as MP and financial shocks, respectively. Taking this into account, the MG estimates
for the structural impact multiplier obtained from the panel SVAR identification support the interpretation of the third
and fourth shocks as MP and financial shocks, respectively. Implied IRFs provide additional evidence in support of this
interpretation. Figure 2 presents the (weighted) MG estimates of structural IRFs (along with 16% and 84% bootstrap cov-
erage bands) for normalized MP and financial condition shocks. The MG estimates are computed by assigning weights
to the cross-sectional IRFs based on the average share of their respective real GDP over the sample period. The MP and
financial conditions shocks are normalized to have +25 bps instantaneous effects on the short rate and bond spreads,
respectively. As it emerges, the identified panel SVAR models and the EA-wide model exhibit a remarkably high degree
of agreement regarding the core transmission patterns for both shocks.

MP shocks invoke a gradual off-tapering in the short rate, while their effects on inflation are temporary and mild at
the MG level, which confirms insights from previous studies (e.g., Slacalek et al., 2020). Unlike inflation, the responses
of output are persistent and significant. Following an unexpected tightening of MP, the real GDP experiences a decline
of approximately 0.2% and 0.25% at the MG level after 2 and 5 years, respectively. Additionally, external financing costs
increase, and financial conditions deteriorate significantly as a result of the monetary contraction. The response of
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FIGURE 2 Weighted mean group responses to MP and financial shocks in panel SVARX (green dashed) models and the area-wide model
(blue solid). Both shocks are normalized to have an impact effect of 25 bps on the respective variables. Shaded areas indicate a coverage band
composed from 16% and 84% quantiles of the bootstrap distribution of the estimates based on 1000 replications.

financial conditions exhibits a hump-shaped profile, with bond spreads climbing towards 30 bps and remaining above
10 bps for 2.5 years after the shock. The response profile of credit spreads shows notable similarities with the findings
of Caldara and Herbst (2019) for the United States, despite differences in model composition and variables used.15

Furthermore, our results align with the role of the “risk-taking channel” within the EA as explored by Neuenkirch
and Nöckel (2018). The observed increase (decrease) in the required reward for holding risky assets in response to an
unexpected monetary tightening (easing) amplifies the impact of MP.

As shown in the right panel of Figure 2, an exogenous tightening of financing costs leads to a significant contraction
in output, with real GDP shrinking by approximately 0.05% in just one quarter following the shock. In response to this
countercyclical effect, the central bank adopts accommodative policies by reducing the short-term interest rate by around
3 bps after one quarter. However, as bond spreads return to their initial levels within 2 years, the effects on the short rate
diminish and become insignificant in the medium to long terms.

4.3.2 Country-specific sensitivity to monetary policy and financial condition shocks

Having established that the MG estimates derived from the panel SVAR models largely replicate the economically mean-
ingful outcomes obtained from the EA-wide model, we proceed to exploit the specific advantages offered by a panel data
framework. The panel model enables the simultaneous modeling of multiple markets, allowing us to explore the hetero-

15Besides a slightly different and larger set of variables, in particular, the Bayesian approach in Caldara and Herbst (2019) builds upon high-frequency
proxies and exclusion restrictions (i.e., a block Cholesky factor) to identify MP and financial shocks, respectively. Quantitative differences between their
results for the United States and ours for the EA can be partly addressed to the fact that European bond markets are less liquid in comparison with US
markets and that we employ spreads of below-investment-grade bonds.
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FIGURE 3 Response of the real GDP in the EA (black solid) and its member states (colored dashed) to a MP (upper panel) and financial
shock (lower) identified by means of Cholesky scheme (left panel) and the Hodges-Lehmann estimation by minimizing dependence using
distance covariance (right). The MP (financial) shock is normalized to have an impact effect of 25 bps on the short rate (bond spreads).

geneous effects of MP shocks across different cross-sections, as also examined by Corsetti et al. (2021). Furthermore, we
conduct a similar analysis concerning financial shocks.

We begin by comparing country-specific structural outcomes from the panel SVAR model with estimates obtained
from a recursive scheme, which is conventionally used to identify MP and financial shocks based on the assumption
that slow-moving variables (such as output and inflation) do not respond immediately to surprise information in mon-
etary policy and financial markets. Results are illustrated in Figure 3. At the weighted MG level, both approaches yield
reasonable responses of the output to contractionary MP shocks and unexpected deteriorations in financial conditions.
These shocks generally lead to declines in economic activity. However, for certain member states (such as Malta, Slove-
nia, and Greece), the recursive scheme produces puzzling positive output responses following an unexpected tightening
in MP or financial conditions. These counter-intuitive patterns are particularly pronounced for responses to financial
shocks. In contrast, the panel SVAR approach generates negative output responses to adverse MP or financial shocks
for all panel members and across various horizons. Interestingly, the patterns of country-specific output responses to
MP shocks closely resemble the results in Corsetti et al. (2021) (see fig. 5 in their paper), which reflect considerable het-
erogeneity across important market segments within the EA, such as labor markets, housing, and mortgage markets.
While a detailed analysis focusing on the structural origins of country-specific results is beyond the scope of this study,
the observed heterogeneous response profiles provide valuable insights for future research in these areas. Additionally,
in Section S3.5, we present the estimated country-specific responses of inflation. In line with the modest and inconclu-
sive pattern observed in the response profile at the MG level, the country-specific responses of inflation demonstrate
substantial heterogeneity. This finding also aligns with the evidence presented in Corsetti et al. (2021), who find that
the price responses to an unexpected monetary contraction are positive for half of the countries and negative for the
remaining half.

To further illustrate the benefits of combining both data dimensions through cross-sectional pooling, we also conduct
statistical identifications by imposing independent shocks at the individual cross-sectional level, as typically done in the
statistical identification of single SVAR models. Specifically, we employ alternative estimators investigated in Section 3,
including the HL estimator based on the dCov statistic, GMM with moment conditions in (12), and PML based on a
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Student's t pseudo density with 5 degrees of freedom. The estimated country-specific real effects of MP and financial
shocks obtained from these approaches are presented in Section S3.6. Notably, with limited sample information of approx-
imately 78 observations at the cross-sectional level, the statistical identifications produce implausible and outlying output
responses. This issue is particularly severe for results obtained from the GMM and PML approaches. These findings are
consistent with the simulation-based evidence documented in Section 3.1.

Finally, considering the inclusion of EA-wide information in the VAR models, it is interesting to examine whether the
panel SVAR effectively captures “common” MP and financial shocks. The analysis reveals a striking similarity in the
informational content of both shocks extracted from the panel SVAR models, The correlation coefficients between the
shocks range from 0.72 (for Finland and Portugal) to 0.95 (for France and Spain) for MP shocks and from 0.61 (for Finland
and Italy) to 0.92 (for Spain and Portugal) for financial shocks.

4.3.3 Structural change of transmission mechanisms

Up until now, our findings from both the EA-wide and panel SVAR models have been based on the assumption that MP
transmission within the EA has remained stable over time. However, with central banks facing policy rates nearing the
zero lower bound, they have implemented unconventional policy measures such as forward guidance and asset purchas-
ing programs. It is still unclear whether these changes in policy conduct have led to modifications in the transmission
mechanism of shocks (see, e.g., Swanson, 2021). For instance, in July 2013, the ECB added forward guidance to its tool-
box for the first time by communicating future MP intentions. In mid-2014, the ECB adopted the negative interest rate
policy in order to contain the unprecedented disinflationary risks.

To investigate possible changes in the transmission of monetary and financial shocks for the periods of conventional
and unconventional policies, we conduct separate HL estimations and search for the optimum rotation that minimizes

FIGURE 4 Weighted MG responses to monetary policy (𝜉3t) and financial shocks (𝜉4t) in panel SVARX models as identified from
subsamples covering pooled standardized residuals from the pre- and post mid-2013. For further notes and full sample estimates, see Figure 2.
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the dependence among pooled orthogonalized residuals that belong to time instances up to and after 2013Q2, which has
also been considered by Cieslak and Schrimpf (2019).16 More explicitly, in the notation of Section 2.2 (in particular, see
Equation (8)), the reduced-form systems are estimated using full sample information, from which two pooled subsamples
of orthogonalized residuals are retrieved, namely,


(N,pre)
𝜃

= {{𝜉𝜃,it}t∈pre}N
i=1 and(N,post)

𝜃
= {{𝜉𝜃,it}t∈post}N

i=1. (19)

From these subsamples, the detection of independent components yields two alternative estimates of rotation matrices,
that is, Q̂(pre) and Q̂(post), which are subsequently used to derive structural parameter matrices D̂(pre)

i , D̂(post)
i as formalized

in equation (9). Since we do not find evidence against the stability hypothesis based on a Chow test, we abstain from
estimating the reduced form VARs for each subsample period.

Impulse responses in Figure 4 indicate whether and to what degree the transmission of MP and financial shocks
changed during the period of unconventional policies. Interestingly, the shape, locations, and significance of these IRFs
closely resemble the results obtained for the full sample as depicted in Figure 2, which is consistent with the findings
of Swanson (2021) for the United States. Formal Wald-tests also support these observations, as we do not detect changes
in the structural impact multiplier at the weighted MG level with common significance. However, there are a few note-
worthy observations to be made. In comparison to the results from the first subsample, there appears to be a stronger
interaction between monetary and financial conditions in more recent years. Specifically, a contractionary policy shock
invokes a more immediate response in bond spreads and leads to a faster and more pronounced deterioration in financial
conditions. Conversely, a tightening of financial conditions coincides with a stronger accommodative response from MP,
both in the short-term and over longer horizons.

5 CONCLUSIONS

This paper introduces a novel method for identifying panel SVAR models by imposing statistical independence on
the structural innovations at the pooled level. The proposed approach identifies a common rotation of orthogonalized
cross-section-specific reduced-form model residuals. Following the principles of Hodges-Lehmann estimation, a unique
structural model is derived by minimizing a selected independence measure, such as the distance covariance introduced
by Székely et al. (2007) and suggested by Matteson and Tsay (2017) for ICA. Monte Carlo exercises showcase the perfor-
mance benefits achieved by combining both data dimensions while explicitly accounting for cross-sectional correlations
and heterogeneity of distributional patterns.

Results derived from the panel SVARX model enable a robust labeling of monetary policy (MP) shocks and shocks
to financial conditions in the Euro area. We document interactions between the short rate and bond spreads, as well as
substantial cross-sectional heterogeneity in the real effects of MP. Notably, the estimated effects of MP shocks remained
largely unchanged when the European Central Bank has resorted to unconventional policy tools. The identified het-
erogeneity in the real effects of MP in member states suggests a need for further exploration, similar to the approach
taken by Corsetti et al. (2021). Expanding upon their benchmark study and considering the interaction between MP and
financial conditions highlighted in this work, a crucial avenue for future research could involve a nuanced understand-
ing of housing markets and the financial balance sheets of households in the transmission of MP and financial shocks.
Another intriguing macroeconomic application includes analyzing the impact of currency appreciations on country risks
in economies with holdings of US dollar-denominated assets (Bernoth & Herwartz, 2021; Goodhart & Hofmann, 2008).
The panel SVAR approach may prove beneficial in enhancing structural estimations of such relationships under limited
time series information, typically encountered in the study of emerging economies.
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APPENDIX A: PROOF OF THEOREM 1

Lemma 1 (Darmois-Skitovich). For two scalar random variables L1 and L2 of the linear form

L1 =
K∑

k=1
𝛼k𝜉

(k)
𝜏 and L2 =

K∑
k=1

𝛽k𝜉
(k)
𝜏 , (A1)

where 𝜉(k)𝜏 are independent scalar random variables for k = 1, … ,K, which are not necessarily identically distributed. If
L1 and L2 are independent, all variables 𝜉(k)𝜏 whose coefficients satisfy 𝛼k𝛽k ≠ 0 are Gaussian.

The proof of Lemma A.1 relies on the application of Cramér's theorem (Cramér, 1936) and a extended version of the
Marcinkiewicz's theorem. The latter states that if a characteristic function has the form 𝜙(s) = E exp P(t), where P(t) is a
polynomial, then P(t) is at most a quadratic polynomial, and 𝜙(s) corresponds to the characteristic function of a normal
law (see, e.g., Linnik, 1964). A detailed proof of Lemma A.1 can be found in standard statistical textbooks that address
characterization problems, such as Section 3 of Kagan et al. (1973).

Now, let 𝜉𝜏 represent the vector of true independent structural shocks, where at most one of 𝜉(k)𝜏 is Gaussian. Suppose that
there exists another vector of independent components, denoted as 𝜉𝜏 = Q̌𝜉𝜏 and Q̌ is not equal to Λ . As the components
in 𝜉𝜏 =

(
𝜉
(1)
𝜏 , … , 𝜉

(K)
𝜏

)′
are independent and Q̌ differs from Λ , Q̌ will necessarily contain two non-zero elements in at

least two distinct columns. Let us denote these columns as k1 and k2, and without loss of generality, suppose that the
non-zero elements are q̌m,k1 and q̌n,k2 with q̌i,𝑗 being the [i, 𝑗]-th element in matrix Q̌ (k1, k2,m,n ∈ {1, … ,K}, k1 ≠

k2, m ≠ n). Note that

𝜉
(m)
𝜏 =

K∑
k=1

q̌m,k𝜉
(k)
𝜏 and 𝜉

(n)
𝜏 =

K∑
k=1

q̌n,k𝜉
(k)
𝜏 , (A2)

where 𝜉
(m)
𝜏 and 𝜉

(n)
𝜏 are independent. Since q̌m,k1 q̌n,k1 ≠ 0 and q̌m,k2 q̌n,k2 ≠ 0, according to Lemma A.1, the corresponding

shocks 𝜉(k1)
𝜏 and 𝜉

(k2)
𝜏 must be both Gaussian. This contradicts our identifying Assumption 1, which states that at most one

of 𝜉(k)𝜏 is Gaussian. Therefore, Q̌ must take the form Λ , which implies that elements in 𝜉𝜏 are the same as those in 𝜉𝜏 with
a permutation and sign flips.
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