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Abstract
Scalarization is a common technique to transform a multiobjective optimization problem
into a scalar-valued optimization problem. This article deals with the weighted Tchebycheff
scalarization applied to multiobjective discrete optimization problems. This scalarization
consists of minimizing the weighted maximum distance of the image of a feasible solution to
some desirable reference point. By choosing a suitable weight, any Pareto optimal image can
be obtained. In this article, we provide a comprehensive theory of this set of eligible weights.
In particular, we analyze the polyhedral and combinatorial structure of the set of all weights
yielding the same Pareto optimal solution as well as the decomposition of the weight set as a
whole. The structural insights are linked to properties of the set of Pareto optimal solutions,
thus providing a profound understanding of the weighted Tchebycheff scalarization method
and, as a consequence, also of all methods for multiobjective optimization problems using
this scalarization as a building block.
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1 Introduction

Multiobjective optimization has gained substantial and increasing attention in the opti-
mization literature. This can be partly explained by the prevalence of multiple, conflicting
objectives in practical applications, see e.g. [20] for a prominent example in cancer radia-
tion treatment. From a theoretical point of view, multiobjective optimization is not only an
interesting research area but it is also worth studying due to its connections to game theory,
inverse optimization, and, among others, robust optimization, see [7, 10, 11].

A multiobjective optimization problem (MOP) with p objectives, p ∈ N, p ≥ 2, can be
stated as

min f (x) = min ( f1(x), . . . , f p(x))
� (MOP)

s.t. x ∈ X ,

where X ⊆ R
n , for n ∈ N, is called the feasible set, and f = ( f1, . . . , f p)� : Rn → R

p is the
(vector-valued) objective function. A multiobjective discrete optimization problem (MODO)
can be stated as an MOP with the additional restriction that X is a finite set. We denote by
Y := f (X):={y ∈ R

p : y = f (x), x ∈ X} the set of images and call Rn and Rp the decision
space and the image space, respectively.

For images y, ȳ ∈ R
p the weak componentwise ordering is defined by y � ȳ if and only

if yi ≤ ȳi for all i = 1, . . . , p, the componentwise ordering is defined by y ≤ ȳ if and only
if y � ȳ and y �= ȳ, and the strict componentwise ordering is defined y < ȳ if and only if
yi < ȳi for all i = 1, . . . , p. Further, the nonnegative orthant is defined by Rp

�:={y ∈ R
p :

y � 0}. The sets Rp
≥ and Rp

> are defined analogously. Then, a feasible solution x dominates
another feasible solution x ′ if and only if f (x) ≤ f (x ′). A feasible solution x∗ ∈ X is
efficient (weakly efficient) if there does not exist another feasible solution x ∈ X such that
f (x) ≤ f (x∗) ( f (x) < f (x∗)). We call an image y = f (x) (weakly) nondominated if x is
(weakly) efficient and denote by YN (YwN ) the set of (weakly) nondominated images. For a
more detailed and thorough introduction on multiobjective optimization, we refer to [15].

A scalarization transforms systematically an MOP into a single objective problem using
additional parameters, such as weights or reference points. In this context, three questions are
of major interest: Is the optimal solution of the scalarized problem guaranteed to be (weakly)
efficient? And, vice versa, can any efficient solution be obtained as an optimal solution for a
scalarized problem? If yes, how do the parameters need to be chosen to obtain this specific
efficient solution?

The well-known weighted sum scalarization chooses a non-negative weight λi ≥ 0 for
each objective function and solves the problem miny∈Y {λ�y}, see [35]. The image of every
optimal solution of this scalar-valued problem is a (weakly) nondominated image of the
original problem if λ ∈ R

p
> (λ ∈ R

p
≥) [18]. By varying the weights, other nondominated

images can be found. Weighted sum scalarizations yield so-called supported nondominated
images. These are located on the convex hull of the set of images and, in general, are a strict
subset of YN . Those nondominated images that are also extreme points of the convex hull of
Y are called extreme supported nondominated images.
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The basic idea of the weight set decomposition is quite intuitive and has been explored
extensively for the weighted sum scalarization [2, 6, 19, 26, 28]. Each nondominated image
has an associated weight set component, i.e., the set of all weight vectors for which the
weighted sum scalarization yields the same nondominated image. The weight set decom-
position is usually taken to be a (minimal) collection of weight set components that cover
the weight set, the set of all eligible weights.

Weight set components offer decision makers additional insight into the nondominated
set, and can be particularly useful for three or more objectives, when visualization of the
nondominated set is difficult. For example, a weight set component with a comparatively
large volume is obtained from a nondominated image that is more ‘robust’ with respect to
changes in preferences of the single objectives. The intersections of weight set components
also embody the adjacency structure of the supported nondominated images: two supported
nondominated images are adjacent, if the dimension of the intersection of their weight set
components is equal to the dimension of the weight set minus one. In addition to their value
to decision makers, the construction of weight set components may also form an integral part
of algorithms for generating sets of nondominated images or approximations to them. The
adjacency structure can be especially helpful in the design of interactive methods [2, 19, 28].

However, the existence of unsupported nondominated images, i.e., images that are non-
dominated but not supported, and the fact that corresponding solutions cannot be computed
by the weighted sum scalarization delimits the applicability of this particular scalarization.
Yet, it motivates the weighted Tchebycheff scalarization which does not suffer from this
shortcoming.

Let s ∈ R
p be a reference point, λ ∈ R

p
≥ aweight vector, and ‖y‖λ∞:=maxi=1,...,p{|λi yi |}

the max-norm on Rp . Then, the weighted Tchebycheff scalarization can be stated as

min {‖ f (x) − s‖λ∞ : x ∈ X}. (�T S(λ))

Typically, the reference point is chosen to be the ideal point y Ii :=minx∈X fi (x), i =
1, . . . , p, or to be some utopia point yU < y I . For weights λ ∈ R

p
> and reference points s �

y I , every optimal solution to �T S(λ) is weakly efficient for an MODO. If the solution is
unique, it is efficient [32]. Conversely, each nondominated image is indeed optimal for a
weighted Tchebycheff scalarization problem with appropriately chosen weights [32].

In this work, we provide a first rigorous and comprehensive theory on the weighted
Tchebycheff weight set components, we analyze the polyhedral and combinatorial structure
of the sets and provide an adjacency concept of nondominated images.

1.1 Related work

The Tchebycheff norm was introduced for biobjective optimization problems by Geoffrion
in 1967 [17]. Bowman [8] and Wierzbicki [33], among others, suggest using the (weighted)
Tchebycheff norm to find nondominated images of MOPs, even for nonlinear objective func-
tions. To avoid weakly nondominated images which are not nondominated, modifications
are introduced: the lexicographic weighted Tchebycheff scalarization [32] chooses among
all images that are optimal the imagewithminimal 1-norm. The augmented weighted Tcheby-
cheff norm [32] adds the 1-norm scaled with a small parameter to the objective function. The
modified augmented weighted Tchebycheff norm [14, 21] also uses weights in the augmen-
tation term.

Since the distance to the reference point may provide useful information in the opti-
mization process, many applications of these Tchebycheff scalarization techniques can be
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found in the context of interactive approaches, see [25] for an overview. For example, Steuer
and Choo [32] utilize the (augmented) weighted Tchebycheff scalarization, while Luque
et al. [24] develop such an approach for solving convex multiobjective programs using the
lexicographic weighted Tchebycheff scalarization. For multiobjective mixed integer linear
programming, Alves and Clímaco [1] combine a branch-and-bound approach with adjust-
ments of the reference point, employing the augmented weighted Tchebycheff scalarization.

Weight set decomposition methods for the weighted sum scalarization date back to the
work of Yu and Zeleny in 1975 [34], who introduce a generalized simplex method and
link basic efficient solutions with the set of weights in the polyhedral cone defined by the
corresponding basis matrix. For biobjective problems, the well-known dichotomic search
approach [3, 12] in fact calculates all extreme supported nondominated images. Benson and
Sun [4, 5] extend this idea and establish a link between extreme supported nondominated
images of a multiobjective linear optimization problem and a partitioning of the weight set.

Przybylski et al. [28] adapt this technique to multiobjective integer programs. They state
fundamental properties concerning the weight set components: Each weight set component
�WS(y) of an image y is a polytope and knowing all extreme supported nondominated
images is sufficient for its calculation. A weight set component has dimension equal the
dimension of the weight set if and only if the corresponding image is an extreme supported
nondominated one, which implies that the set of extreme supported nondominated images is
sufficient and necessary to cover the whole weight set. Further, two weight set components
intersect in common faces only. That is, there exists a face F of �WS(y) and a face F ′ of
�WS(y′) such that F = F ′ = �WS(y) ∩ �WS(y′). Based on this symmetry, two extreme
supported nondominated images are defined to be adjacent if and only if the dimension of their
intersection is one less than the dimension of theweight set. Finally, they present an algorithm
for computing all extreme supported nondominated images for three objectives using the
derived properties by iteratively shrinking supersets of the actual weight set components.

The weight set decomposition is implicitly calculated by the algorithms of Özpeynirci
and Köksalan [26] and Bökler and Mutzel [6]. The algorithms of Alves and Costa [2] and
Halffmann et al. [19] iteratively augment subsets of the weight set components based on
the convexity property. Seipp [31] and Schulze et al. [30] use a weight set decomposition
linked with so-called arrangements of hyperplanes in the image space to show that the num-
ber of extreme supported nondominated images of multiobjective minimum spanning tree
problems and unconstrained multiobjective combinatorial problems, respectively, is poly-
nomially bounded. Correia et al. [13] modify the results of Seipp to enumerate all efficient
minimum spanning trees.

For the weighted Tchebycheff scalarization, Eswaran et al. [16] explicitly consider weight
set components for biobjective problems. Based on this approach, Ralphs et al. [29] adapt
the dichotomic search method to calculate all nondominated images of biobjective discrete
optimization problems. Karakaya et al. [23] introduce an adjacency concept based on the
weighted Tchebycheff scalarization. Here, two images are called adjacent if the intersection
of their weight set components with respect to the weighted Tchebycheff scalarization is
non-empty. Bozkurt et al. [9] give a representation of the weight set components as a union
of polytopes, which is used to evaluate the quality of efficient solutions and efficient solution
sets. In connection with [23], this is recently modified by Karakaya and Köksalan [22].
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Fig. 1 An example with image set y1 = (2, 6, 8)�, y2 = (8, 2, 4)�, y3 = (4, 8, 2)�, y4 = (6, 4, 6)�,
y5 = (7, 7, 5)� illustrated in (a), and their weight set components �(yr ), r = 1, . . . , 5, for both weighted
sum scalarization (b) and weighted Tchebycheff scalarization (c). Note that, for both scalarizations, the
restriction to weights contained in � = {λ ∈ R

p
≥ : ∑p

i=1 λi = 1} is without loss of generality. Thus,

λ3 = 1 − λ1 − λ2. All images are nondominated. The image y4 is not extreme supported. The image y5 is
not supported. The images y1 and y2 are adjacent w.r.t. the weighted sum weight set decomposition though
their weighted Tchebycheff weight set components do not intersect

1.2 Our contribution

We present a rigorous theory on the weight set decomposition approach for the weighted
Tchebycheff scalarization of MODOs. As shown in Fig. 1, the weighted Tchebycheff scalar-
ization implies a more complex structure in comparison to the weighted sum scalarization.
Our primary contribution is a comprehensive theoretical analysis of this structure and its
properties. Knowing this structure may allow for new algorithms in the future, following the
methodologies of [2, 6, 19, 26, 28], to compute all or subsets of the nondominated images
including their weighted Tchebycheff weight set decomposition. Moreover, calculating the
weighted Tchebycheff weight set decomposition might also enrich already existing algo-
rithms, see for example [14, 21] and the references therein, to provide additional information
on the solution set, cf. [9, 22].

In Sect. 2, we show that it is necessary and sufficient to consider only the weight
set components for nondominated images and establish that weight set components have
convexity-related properties: they are star-shaped and convex along rays emanating from a
vertex of the weight set. We study the intersection of weight set components in Sect. 3. Such
intersections coincide with weight set components of certain weakly nondominated images,
and, hence, all convexity-related properties also apply, although intersections of star-shaped
sets are not star-shaped in general. In Sect. 4, we follow the approach of Bozkurt et al.
[9] to describe weight set components as unions of finitely many polytopes. We show that
the obtained polytopes induce, for any weight set component, the existence of a so-called
polytopal subdivision, which lays the foundation of the dimensional analysis in Sect. 5. In
particular, this allows an adaption and a refinement of the adjacency concepts introduced in
[28] and [23], respectively, which ‘reveals the organization’ of the nondominated set. We
close with some concluding remarks in Sect. 6.
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2 Foundations

In this section, we introduce the concept of the weight set decomposition for the weighted
Tchebycheff scalarization. We also derive properties connecting the weight set with the
nondominated set YN and investigate convexity properties.

Recall that a polyhedron is the intersection of finitely many halfspaces and the dimension
of a polyhedron P ⊆ R

p is the maximum number of affinely independent points in P minus
one. A polyhedron is called a polytope if it is bounded. Forw ∈ R

p and z ∈ R, the inequality
w�y ≤ z is valid for P if P ⊆ {y ∈ R

p : w�y ≤ z}. A set F ⊆ P is a face of P if there is
some valid inequality w�y ≤ z such that F = {y ∈ P : w�y = z}. Note that faces of P are
polyhedra themselves and, thus, the notion of dimension can be adapted. In particular, faces
of dimension 0 are called extreme points. Polyhedra can be generalized as follows:

Definition 2.1 (Ziegler [36]) A polytopal complex C is a finite collection of polytopes in Rp

such that

(i) the empty polytope is in C,
(ii) if P ∈ C, then all the faces of P are also in C,
(iii) the intersection P ∩ Q of two polytopes P , Q ∈ C is a face of both P and Q.

The dimension dim(C) of the polytopal complex C is the largest dimension of a polytope in
C. The underlying set of C is the point set

⋃
P∈C P . A subcomplex of a polytopal complex C

is a subset C′ ⊆ C that is a polytopal complex itself. A polytopal subdivision of a set S ⊆ R
p

is a polytopal complex C with the underlying set
⋃

P∈C P = S. For example, the collection
of all faces of a polytope P defines a polytopal subdivision of P itself.

Definition 2.2 (Preparata and Shamos [27]) A set S ⊆ R
p is star-shaped, if there exists an

element y ∈ S such that θ y + (1 − θ)ȳ ∈ S for all ȳ ∈ S and all θ ∈ (0, 1). The set of all
such elements y is called kernel of S and is denoted by ker(S).

In the remainder of this paper, we consider MODOs. Further, we make the following
assumption on the reference point used in the weighted Tchebycheff scalarization.

Assumption 1 The reference point s ∈ R
p is a utopia point. Thus, s < y for all images y ∈

Y and we can also assume that the reference point s used in the weighted Tchebycheff
scalarization is the zero vector (s = 0) and Y ⊆ R

p
>.

As a consequence of Assumption 1, the problem �T S(λ) simplifies to min{‖ f (x)‖λ∞ : x ∈
X} = min{‖y‖λ∞ : y ∈ Y }. Furthermore, it holds ‖y‖λ∞ > 0 for all y ∈ Y and λ ≥ 0.

The followingproposition extendsTheorem4.5 in [32] to the case ofweakly nondominated
images.

Proposition 2.3 For each image y ∈ YwN , there exists a weight λ ∈ R
p
> such that y minimizes

�T S(λ). Moreover, if y ∈ YN , then there exists a weight λ such that y uniquely minimizes
�T S(λ).

Proof For y ∈ YwN , define the weight λ componentwise by λi = 1
yi

> 0 for i = 1, . . . , p.

Suppose there exists a ȳ such that ‖y‖λ∞ > ‖ȳ‖λ∞. Then, it is maxi=1,...,p λi yi >

max j=1,...,p λ j ȳ j which implies 1 > λ j ȳ j and, thus, y j > ȳ j for all j = 1, . . . , p. This
contradicts y ∈ YwN . To prove the second statement, we choose again the weight λ defined
by λi = 1

yi
for i = 1, . . . , p. Then, similar calculations imply that, for an image y �= ȳ ∈ Y

with ‖y‖λ∞ ≥ ‖ȳ‖λ∞, it holds that y j ≥ ȳ j for all j = 1, . . . , p. This is a contradiction to
y ∈ YN . ��
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Since α‖y‖λ∞ = ‖y‖αλ∞ holds for all scalars α > 0, normalization of the weight λ does not
change the optimal solution set of�T S(λ). Hence, analogously to the weighted summethod,
we restrict the set of eligible parameters to the (normalized) weight set

�:=
{

λ ∈ R
p
� :

p∑

k=1

λk = 1

}

. (2.1)

Note that � is a (p − 1) dimensional polytope and the projection/bijection φ : � →
{λ ∈ R

p−1
� : ∑p−1

i=1 λi ≤ 1}, (λ1, . . . , λp) �→ (λ1, . . . , λp−1) is particularly useful for the

visualization of the weight sets of MODOs with three objectives. Next, we introduce the
decomposition of the weight set implied by the weighted Tchebycheff scalarization.

Definition 2.4 For an image y ∈ Y , the weight set component of y with respect to the
weighted Tchebycheff scalarization is defined by

�(y):= {
λ ∈ � : ‖y‖λ∞ ≤ ‖ȳ‖λ∞ for all ȳ ∈ Y

}
.

Note that λ ∈ �(y) if and only if y is optimal for �T S(λ), i.e., y = f (x) for some optimal
solution x of �T S(λ). Obviously, if an image is not weakly nondominated, then its weight
set component is empty.

We introduce a notation for the normalized weight used in the proof of Proposition 2.3
since it plays a major role.

Definition 2.5 For y ∈ YwN , we denote the kernel weight1 of y by λ(y) and define it com-
ponentwise by

λi (y):= 1

yi

1
∑p

j=1
1
y j

for i = 1, . . . , p.

Proposition 2.3 implies that if y is weakly nondominated then its weight set component is
nonempty. Hence, an image is weakly nondominated if and only if its weight set component
is nonempty. If y is nondominated, we obtain the following corollary.

Corollary 2.6 Let Bε(λ):={λ′ ∈ � : ∑p
i=1 |λi − λ′

i | ≤ ε}. For an image y ∈ YN , there exists
an ε > 0 such that Bε(λ(y)) ⊆ �(y). If ε is chosen sufficiently small, then Bε(λ(y))∩�(y′) =
∅ for each y′ ∈ YwN\{y}.
Proof The claim follows by Proposition 2.3, the definition of the kernel weight, finiteness of
the feasible set, and the continuity of the function defined by λ �→ ‖ȳ‖λ∞. Hereby, note that,
for any given weakly nondominated image ȳ ∈ YwN , the function defined by λ �→ ‖ȳ‖λ∞ is
continuous since it is the pointwise maximum of finitely many linear functions. ��

The next propositions show that nondominated images suffice to define the weight set
components of all images.

Proposition 2.7 Let an image y ∈ Y be given. Then

�(y) = {λ ∈ � : ‖y‖λ∞ ≤ ‖ȳ‖λ∞ for all ȳ ∈ YN }.
Proof Let ȳ ∈ Y \YN . Then, since Y is finite, there exists an image y′ ∈ YN such that y′ ≤ ȳ.
This yields ‖y′‖λ∞ ≤ ‖ȳ‖λ∞ for all λ ∈ �. Thus, ‖y‖λ∞ ≤ ‖y′‖λ∞ ≤ ‖ȳ‖λ∞ for λ ∈ �(y).
Hence, the inequality ‖y‖λ∞ ≤ ‖ȳ‖λ∞ is redundant. ��
1 also known as T-vertex [24] or break-even weight vector [22]
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The following proposition shows that all weights λ ∈ � map to a nondominated image in
YN by optimizing �T S(λ).

Proposition 2.8 It holds that � = ⋃
y∈YN �(y).

Proof For a weight λ ∈ �, there exists an image y ∈ Y that is optimal for �T S(λ). Hence,
λ ∈ �(y). If y /∈ YN , then, due to finiteness of Y , there exists ȳ ∈ YN such that ȳi ≤
yi for all i = 1, . . . , p. Since λ ≥ 0, this implies ‖ȳ‖λ∞ ≤ ‖y‖λ∞. So, ȳ is optimal for
�T S(λ) and, thus, λ ∈ �(ȳ). It follows � ⊆ ⋃

ȳ∈YN �(ȳ). The reverse inclusion holds
trivially. ��

Proposition 2.3 implies another fact about the weight set components: a weight set com-
ponent of a nondominated image cannot be a subset of another. In particular, y ∈ YN implies

�(y)\
(⋃

ȳ∈YN ,ȳ �=y �(ȳ)
)

�= ∅. Thus, Proposition 2.8 states a sufficient and necessary con-
dition to decompose the weight set.

Next, we observe a structural property of the weight set components: in contrast to the
weighted sum weight set components, the sets �(y) are not necessarily convex.

Example 2.9 Consider the set of nondominated images

Y =
{
y1 = (3, 1, 2)�, y2 = (2, 1, 3)�, y3 = (2, 2, 2)�, y4 = (1, 2, 3)�

}
.

Let λ1 = (0.24, 0.72, 0.04)� and λ2 = (0.24, 0.46, 0.3)�. Then, it is λ1, λ2 ∈ �(y1).
However, for λ3:= 1

2λ
1 + 1

2λ
2 = (0.24, 0.59, 0.17)�, it holds ‖y1‖λ3∞ = 0.72 > 0.59 =

‖y2‖λ3∞ and, therefore, λ3 /∈ �(y1). Consequently, �(y1) is not convex.

Figure 2 illustrates the weight set components for Example 2.9. In Sect. 4, we explain how
these sets can be computed.

To gain more insights into the structure of weight set components, we subdivide weight
set components into smaller subsets according to the index in which the maximum of the
associated scalar product is attained (i.e., defining the weighted Tchebycheff norm value).
This will be useful to prove a convexity related property (Corollary 2.12) and to establish a
polytopal subdivision of the weight set components.

Definition 2.10 For a weakly nondominated image y ∈ YwN and i = 1, . . . , p, we define
the i th dimensional weight set component by

�(y, i):={λ ∈ �(y) : λi yi ≥ λk yk for all k = 1, . . . , p}.

Clearly, �(y, i) = {λ ∈ �(y) : ‖y‖λ∞ = λi yi } and ⋃p
i=1 �(y, i) = �(y). Figure2 presents

these sets for Example 2.9. With the image set of Example 2.9, one can also show that both
λ1 and λ2 are contained in �(y1, 1) and, thus, the dimensional weight set components are
not necessarily convex. However, we can derive a ‘convexity-related’ property.

Proposition 2.11 For a weakly nondominated image y ∈ YwN , the following holds true:

(i)
p⋂

i=1
�(y, i) = {λ(y)}.

(ii) For i = 1, . . . , p, the i th dimensional weight set component �(y, i) is a star-shaped set
with λ(y) ∈ ker(�(y, i)).
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Fig. 2 Theweight set components a–d of Example 2.9. The colored regions represent�(yr ), the dot represents
the kernel weight λ(yr ), r = 1, 2, 3, 4, and the dashed lines indicate the decomposition of the weight set
components into its dimensional weight set components. The red line in (a) represents the convex combination
of weights investigated in Example 2.9

Proof Clearly, λi (y)yi = 1∑p
j=1

1
y j

for all i = 1, . . . , p, which implies λ(y) ∈ �(y, i) for all

i = 1, . . . , p. Furthermore, λ ∈ ⋂p
i=1 �(y, i) implies λ j y j ≥ λk yk for all j, k = 1, . . . , p.

This yields λ1y1 = λ2y2 = · · · = λp yp = M if and only if λi = M
yi

for all i = 1, . . . , p for

some constant M ∈ R. Since
∑p

i=1 λi = 1, we get M =
(∑p

i=1
1
yi

)−1
and, therefore, λ is

the kernel weight. This shows statement (i).
To prove (ii), fix i and let λ′ ∈ �(y, i). We first show that for θ ∈ (0, 1), the convex

combination (θλ(y) + (1 − θ)λ′) ∈ �(y). To do so, we prove for all images ȳ ∈ Y that

‖y‖θλ(y)+(1−θ)λ′
∞ ≤ ‖ȳ‖θλ(y)+(1−θ)λ′

∞ . Observe that λ(y), λ′ ∈ �(y, i) implies ‖y‖λ(y)∞ =
λi (y)yi ≥ λk(y)yk and ‖y‖λ′

∞ = λ′
i yi ≥ λ′

k yk for all indices k = 1, . . . , p. Fix θ ∈ (0, 1). It
is now straightforward to show that for all k = 1, . . . , p,

(θλi (y) + (1 − θ)λ′
i )yi = θλi (y)yi + (1 − θ)λ′

i yi

≥ θλk(y)yk + (1 − θ)λ′
k yk = (θλk(y) + (1 − θ)λ′

k)yk,

and, so,

‖y‖θλ(y)+(1−θ)λ′
∞ = (θλi (y) + (1 − θ)λ′

i )yi . (2.2)

Let ȳ ∈ Y . For some index j , it must be thatλ′
j ȳ j = ‖ȳ‖λ′

∞. ByAssumption 1, ‖ȳ‖λ′
∞ > 0 and,

thus, λ′
j > 0. Since λ′ ∈ �(y), it holds that ‖y‖λ′

∞ ≤ ‖ȳ‖λ′
∞ and therefore λ′

i yi = ‖y‖λ′
∞ ≤

λ′
j ȳ j . Furthermore, λ′

j y j ≤ λ′
i yi by the definition of ‖y‖λ′

∞. Thus, λ′
j y j ≤ λ′

j ȳ j . Since λ′
j >
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0, this implies y j ≤ ȳ j and, hence, λ j (y)y j ≤ λ j (y)ȳ j . But λ j (y)y j = 1∑p
k=1

1
yk

= λi (y)yi ,

so it is also the case that λi (y)yi ≤ λ j (y)ȳ j . Putting it all together, we obtain

‖y‖θλ(y)+(1−θ)λ′
∞ = θλi (y)yi + (1 − θ)λ′

i yi ≤ θλ j (y)ȳ j + (1 − θ)λ′
j ȳ j

= (θλ j (y) + (1 − θ)λ′
j )ȳ j ≤ ‖ȳ‖θλ(y)+(1−θ)λ′

∞

and, thus, (θλ(y) + (1 − θ)λ′) ∈ �(y). From (2.2) we immediately get that (θλ(y) + (1 −
θ)λ′) ∈ �(y, i), which finishes the proof. ��

The first property of Proposition 2.11 states that the kernel weight is the only weight that
is contained in all dimensional weight set components. The second justifies the name kernel
weight. We immediately get the following corollary.

Corollary 2.12 Let a weakly nondominated image y ∈ YwN be given. Then, �(y) is a star-
shaped set and λ(y) ∈ ker(�(y)).

For one dimensional weight sets (i.e. for two objectives), star-shapedness is equivalent to
convexity of the weight set components. This justifies why the dichotomic search approach
used for the weighted-sum scalarization can be adapted to the weighted Tchebycheff scalar-
ization as proposed in [16, 29].

We can also derive a second convexity-related property with the help of the following
lemma. Note that we fix p − 1 entries of a weight λ ∈ R

p
≥ and do not consider normalized

weights here.

Lemma 2.13 Let an index k, a weight λ ∈ R
p
≥, and a scalar t > 0 be given. If an image y ∈ Y

is optimal for both �T S(λ) and �T S(λ + tek), where ek is the kth unit vector in Rp, then y
is also optimal for �T S(λ + θ tek) for all θ ∈ [0, 1].
Proof First observe that for any y ∈ Y , θ ∈ [0, 1], and k, λ and t as given,

‖y‖λ+θ tek∞ = max{λi yi , (λk + θ t)yk},
where i is an index such that ‖y‖λ∞ = λi yi . Consider the image y ∈ Y that is optimal for
both�T S(λ) and�T S(λ+ tek), fix i∗ such that ‖y‖λ∞ = λi∗ yi∗ and fix θ ∈ (0, 1). Let ȳ ∈ Y
and fix i such that ‖ȳ‖λ∞ = λi ȳi . Thus,

‖y‖λ+θ tek∞ = max{λi∗ yi∗ , (λk + θ t)yk} and ‖ȳ‖λ+θ tek∞ = max{λi ȳi , (λk + θ t)ȳk}.
We consider two cases for ‖ȳ‖λ+tek∞ . For each case, we show that ‖y‖λ+θ tek∞ ≤ ‖ȳ‖λ+θ tek∞ . In
both cases, we use the observation that λi∗ yi∗ ≤ λi ȳi since y is optimal for �T S(λ).
(i) Suppose ‖ȳ‖λ+tek∞ = λi ȳi . Since θ < 1, t > 0 and ȳk > 0, we can conclude that

(λk + θ t)ȳk < (λk + t)ȳk ≤ ‖ȳ‖λ+tek∞ = λi ȳi

and, therefore, ‖ȳ‖λ+θ tek∞ = λi ȳi = ‖ȳ‖λ+tek∞ . Likewise,

(λk + θ t)yk < (λk + t)yk ≤ ‖y‖λ+tek∞ ≤ ‖ȳ‖λ+tek∞ = ‖ȳ‖λ+θ tek∞ ,

where the last inequality follows by optimality of y for �T S(λ + tek). Recall that λi∗ yi∗ ≤
λi ȳi = ‖ȳ‖λ+θ tek∞ . Thus,

‖y‖λ+θ tek∞ = max{λi∗ yi∗ , (λk + θ t)yk} ≤ ‖ȳ‖λ+θ tek∞ .
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Fig. 3 The convexity property of Proposition 2.14. The intersection of the line segments Hk,a (dashed lines)
in (2.3) and the weight set components are always convex sets. The green-gray and violet-gray checkerboard
areas represent the intersection of weight set components �(y1) ∩ �(y2) and �(y1) ∩ �(y3), respectively.
See Fig. 2 for a representation of the individual weight set components

(ii) Suppose ‖ȳ‖λ+tek∞ = (λk + t)ȳk . Now, ‖y‖λ+tek∞ ≤ ‖ȳ‖λ+tek∞ since y is optimal for
�T S(λ + tek). So, (λk + t)yk ≤ (λk + t)ȳk . Since t > 0 and λk ≥ 0, it must be that
yk ≤ ȳk and, hence, (λk + θ t)yk ≤ (λk + θ t)ȳk ≤ ‖ȳ‖λ+θ tek∞ . Furthermore, recall that
λi∗ yi∗ ≤ λi ȳi ≤ ‖ȳ‖λ+θ tek∞ . Hence, we again have

‖y‖λ+θ tek∞ = max{λi∗ yi∗ , (λk + θ t)yk} ≤ ‖ȳ‖λ+θ tek∞ .

��

Lemma 2.13 shows that, for any pair λ1 and λ2 with λ2−λ1 equal to a positive multiple of
a unit vector, if an image y is optimal for both �T S(λ1) and �T S(λ2), then y is also optimal
for �T S(λ), where λ is any convex combination of λ1 and λ2.

In order to transfer this result to the weight set, we define, for a given index k ∈ {1, . . . , p}
and a vector a ∈ R

p such that ai > 0 for i �= k, the following line segments:

Hk,a :={λ ∈ R
p : aiλi = a jλ j for all i, j ∈ {1, . . . , p} \ {k}} ∩ �. (2.3)

Fig. 3 shows some of these line segments. The line segments Hk,a ∩ � emanate from one of
the vertices of �. This can be seen by rewriting

Hk,a = {λ ∈ R
p : λ = ek + (a′ − ek)t for some t ∈ [0, 1]},

where ek denotes the kth unit vector and a′ is defined by a′
k :=0 and a′

i := 1
ai

1∑
j �=k

1
a j

for i �= k.

Along these line segments, some convexity-related property holds true.

Proposition 2.14 For any k ∈ {1, . . . , p} and a ∈ R
p such that ai > 0 for i �= k, the

intersection �(y) ∩ Hk,a is convex for all y ∈ YwN .

Proof Without loss of generality, let k = p. Since the multiplication with a positive scalar
does not change the validity of any equality in (2.3), we may assume that the entries of a are
chosen such that

λ1 = aiλi , i = 2, . . . , p − 1, (2.4)

holds for all λ ∈ Hp,a . Let λ1, λ2 ∈ �(y) ∩ Hp,a and λ = θλ1 + (1− θ)λ2 ∈ � ∩ Hp,a for
some θ ∈ (0, 1). Without loss of generality, assume λ11 ≤ λ21. By (2.4) we then get λ1i ≤ λ2i

123



428 Journal of Global Optimization (2023) 86:417–440

for i = 2, . . . , p − 1, and, therefore,
∑p

i=1 λ1i = ∑p
i=1 λ2i = 1 implies λ1p ≥ λ2p . Since λ is

a convex combination of λ1 and λ2, we summarize as follows:

λ1i ≤ λi ≤ λ2i for i = 1, . . . , p − 1, (2.5a)

λ1p ≥ λp ≥ λ2p. (2.5b)

Assume first that λ11 > 0. This implies that λ21 ≥ λ1 > 0 and, therefore, we can define

positive scalars ε2:= λ11
λ21

and ε:= λ11
λ1

and Eq. (2.5a) implies

0 < ε2 ≤ ε ≤ 1. (2.6)

Set λ̄2:=ε2λ
2 and λ̄:=ελ. Then, it follows λ̄21 = λ̄1 = λ11 and, consequently, λ̄2i = λ1i and

λ̄i = λ1i holds for i = 2, . . . , p − 1. Combining (2.5a) and (2.6) results in

λ̄2p = ε2λ
2
p ≤ ελ2p ≤ ελp = λ̄p and λ̄p = ελp ≤ λp ≤ λ1p.

We get λ̄ ∈ conv{λ1, λ̄2}. Recall that α‖y‖λ∞ = ‖y‖αλ∞ holds for all y ∈ Y and all scalars
α > 0. Hence, as λ2 ∈ �(y), we know that y is optimal for�T S(λ̄2). Since λ̄ ∈ conv{λ1, λ̄2},
the image y is optimal for �T S(λ̄) by Lemma 2.13, and, therefore, the image y is optimal
for �T S(λ).
Now, assume λ11 = 0. Since λ1 ∈ Hp,a , it follows that λ1i = 0 for i = 2, . . . , p − 1 and
therefore λ1 = ep . We show that there is some weight λ′ ∈ Hp,a ∩ �(y) with λ′

1 > 0 and
λ ∈ conv({λ′, λ2}). Then, λ ∈ �(y) ∩ Hp,a follows by the argumentation above. Choose

0 < M ≤ min
y′∈Y

min
i=1,...,p−1

y′
p

y′
i
ai

+ ∑p−1
j=1

y′
p

a j

and define λM :=(Ma1
, M
a2

, . . . , M
ap−1

, (1 − ∑p−1
i=1

M
ai

)), where a1:=1. Then,

p∑

i=1

λM
i =

p−1∑

i=1

M

ai
+ 1 −

p−1∑

i=1

M

ai
= 1

and, for each i = 2, . . . , p − 1, it holds that

λM
1 = M

a1
= M = ai · M

ai
= ai · λM

i .

Consequently, λM ∈ � ∩ Hp,a and, for any y′ ∈ Y , it is easy to verify that ‖y′‖λM

∞ =
λp y′

p . Since y is optimal for �T S(ep), it must be that yp ≤ y′
p for all y′ ∈ Y . Then, also

‖y‖λM

∞ = λM
p yp ≤ λM

p y′
p = ‖y′‖λM

∞ must hold for all y′ ∈ Y and, thus, λM ∈ �(y). Since

λM → ep for M → 0, we can find, for each θ > 0, a small scalar M > 0 such that
λ = θep + (1 − θ)λ2 ∈ conv({λM , λ2}), which concludes the proof. ��

3 The intersection of weight set components

In this section, we analyze the structure of the intersection of two weight set components. In
general, the intersection of two star-shaped sets is not guaranteed to be star-shaped. However,
this holds true for the intersection of twoweight set components. To prove this, we first define
a (possibly artificial) image.
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Definition 3.1 For a subset of weakly nondominated images Ȳ ⊆ YwN , we define the local
nadir image yN (Ȳ ) by

yNi (Ȳ ) = max
ȳ∈Ȳ

ȳi for i = 1, . . . , p.

We say an image ȳ ∈ Ȳ contributes to the local nadir image if ȳi = yNi (Ȳ ) for some
i ∈ {1, . . . , p}.
In the following, we avoid trivial cases by requiring |Ȳ | ≥ 2. Further, for ease of exposition,
we assume that the local nadir image exists in Y . The local nadir image yN (Ȳ ) is dominated,
and, consequently, �(yN (Ȳ )) �= ∅ implies yN (Ȳ ) ∈ YwN\YN .

Definition 3.2 Wecall the kernel weightλN (Ȳ ):=λ(yN (Ȳ )) of yN (Ȳ ) the local nadir weight.

Clearly, λN (Ȳ ) ∈ �. Observe that, for all y ∈ Ȳ , it holds that

‖y‖λN (Ȳ )∞ = max
i=1,...,p

yi
max ȳ∈Ȳ ȳi

M ≤ M,

with M =
(∑p

j=1
1

max ȳ∈Ȳ ȳ j

)−1
. Thus, if an image y contributes to the local nadir image,

it holds that ‖y‖λN (Ȳ )∞ = M . In particular, all images contributing to yN (Ȳ ) share the same
weighted Tchebycheff norm value with weight λN (Ȳ ).

The local nadir image is closely related to the intersection of weight set components, as
shown in the following proposition.

Proposition 3.3 Let a subset of weakly nondominated images Ȳ ⊆ YwN be given. Then,⋂
y∈Ȳ �(y) = �(yN (Ȳ )).

Proof Let Ȳ ⊆ YwN .We abbreviate yN :=yN (Ȳ ). If
⋂

y∈Ȳ �(y) = ∅, the inclusion ‘⊆’ holds

trivially. Let λ ∈ ⋂
y∈Ȳ �(y). Then, there exists a constant c > 0 such that ‖ȳ‖λ∞ = c for all

ȳ ∈ Ȳ and c ≤ ‖y′‖λ∞ for all y′ ∈ Y . We show ‖yN‖λ∞ = c. Since maxi=1,...,p λi ȳi = c for
all ȳ ∈ Ȳ , it is λi ȳi ≤ c for all i = 1, . . . , p and for all ȳ ∈ Ȳ . Thus, max ȳ∈Ȳ λi ȳi ≤ c and,

therefore, λi yNi = λi · max ȳ∈Ȳ ȳi ≤ c for all i = 1, . . . , p. Consequently, ‖yN‖λ∞ = c, and

λ ∈ �(yN ). The other direction follows by ȳ � yN for all ȳ ∈ Ȳ due to the definition of the
local nadir weight. ��

Thus, Proposition 3.3 implies that Corollary 2.12 and Proposition 2.14 hold in fact for
intersections of weight set components:

Corollary 3.4 Let a subset of weakly nondominated images Ȳ ⊆ YwN be given. Then:

(i) If λN (Ȳ ) /∈ ⋂
y∈Ȳ �(y), then

⋂
y∈Ȳ �(y) = ∅.

(ii) The intersection
⋂

y∈Ȳ �(y) is a star-shaped set with λN (Ȳ ) in its kernel.
(iii) For k ∈ {1, . . . , p} and ai > 0, i �= k, the intersection

⋂
y∈Ȳ �(y) ∩ Hk,a is convex.

Proof If λN (Ȳ ) /∈ ⋂
y∈Ȳ �(y), it is λN (Ȳ ) /∈ �(yN ) by Proposition 3.3. Then, by the proof

of Proposition 2.3, it follows yN /∈ YwN and, therefore, the weight set component of the
local nadir image is empty. Thus, we get by Proposition 3.3 that

⋂
y∈Ȳ �(y) = ∅. This

shows (i). If
⋂

y∈Ȳ �(y) = ∅, there is nothing to show. Otherwise, statements (ii) and (iii)
follow by Corollary 2.12 and Proposition 2.14, respectively, as well as Proposition 3.3 since
�(yN ) �= ∅ and, thus, yN ∈ YwN . ��
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Fig. 4 The local nadir weights a λN ({y1, y2}), b λN ({y2, y3}) = λN ({y3, y4}) = λN ({y2, y3, y4}) and
c λN ({y1, y2, y3}) = λN ({y1, y3, y4}) = λN ({y1, y2, y3, y4}) for Example 2.9. The intersection sets of
weight set components are always star-shaped sets. In particular, the corresponding local nadir weight is
contained in the kernel

4 A polytopal subdivision of the weight set components

In the following, we construct a representation of the weight set components as the union
of polytopes based on the idea of [9]: For an image y ∈ YN , the weight set can be decom-
posed into p polytopes where the i th polytope contains all weights such that the weighted
Tchebycheff norm of y is attained in the i th index. By taking all nondominated images into
account, we can refine this decomposition such that the following holds: for each polytope
obtained and for any image y ∈ YN , the index in which the weighted Tchebycheff norm is
attained can exactly be determined. Hence, additional dividing hyperplanes based on which
image is optimal can be added. In this section, we establish that this construction yields the
existence of a polytopal subdivision of each weight set component which lays a well-defined
foundation of a notion of dimension.

We formally state the construction. Based on Example 2.9, each step of this construction
is illustrated in Fig. 4. Let YN = {y1, . . . , yR}. For y1, recall the i th dimensional weight set
component for i ∈ {1, . . . , p} (see Definition 2.10):

�(y1, i) = {λ ∈ �(y1) : λi y
1
i ≥ λk y

1
k for all k = 1, . . . , p}.

Using y1, we subdivide the weight set into p polytopes P(i):={λ ∈ � : λi y1i ≥ λk y1k , k �= i},
i = 1, . . . , p (Fig. 5a). For a weight λ in one of these polytopes, we can then immediately
identify the index (pairs) in which the weighted Tchebycheff norm (with weight λ) of y1

is attained. Using y2, we can further subdivide the weight set into (at most) p2 polytopes
P(i1,i2):={λ ∈ � : λi1 y

1
i1

≥ λk y1k , k �= i1, λi2 y
2
i2

≥ λk y2k , k �= i2}, i1, i2 = 1, . . . , p,

to identify weights for which the weighted Tchebycheff norm of y1 is attained in index i1
and the weighted Tchebycheff norm of y2 is attained in index i2 (Fig. 5b). This reasoning
can be extended to multiple images y1, . . . , yR : For each image yr , we choose an index
ir ∈ {1, . . . , p} and consider

P(i1,...,iR):=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ ∈ � :

λi1 y
1
i1

≥ λk y1k for k �= i1,
λi2 y

2
i2

≥ λk y2k for k �= i2,
...

λiR y
R
iR

≥ λk yRk for k �= iR,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4.1)
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Fig. 5 The construction of the polytopal subdivision of the weight set � according to (4.1) for Example 2.9
with p = 3. a The image y1 induces a decomposition of the weight set into three polytopes P(i) = {λ ∈ � :
λi y

1
i ≥ λk y

1
k , k �= i}. b The images y1 and y2 induce a decomposition of the weight set into (at most) p2

polytopes P(i1,i2) = {λ ∈ � : λi1 y
1
i1

≥ λk y
1
k , k �= i1, λi2 y

2
i2

≥ λk y
2
k , k �= i2}. c Taking the other images y3

and y4 into account, the weight set can be decomposed into the polytopes P(i1,i2,i3,i4) = {λ ∈ � : λir y
r
ir

≥
λk y

r
k , k �= ir , r = 1, 2, 3, 4}. d Each polytope P(i1,i2,i3,i4) can further be subdivided based on the optimal

image for the weighted Tchebycheff scalarizations. For example, P(i1,i2,i3,i4) is divided into four polytopes

�(yr ) ∩ P(i1,i2,i3,i4). Hereby, note that the polytopes �(y3) ∩ P(i1,i2,i3,i4) and �(y4) ∩ P(i1,i2,i3,i4) have
dimension one, cf. Fig. 2. e Then, the polytopes can individually be assigned to the (in some cases multiple)
weight set components. See Fig. 2 for a representation of the individual weight set components

Obviously, each set P(i1,...,iR) is a polytope and each weight λ ∈ � is contained in at least
one polytope of the form 4.1. If λ ∈ P(i1,...,iR), we can deduce that ‖yr‖λ∞ = λir y

r
ir
for all

r = 1, . . . , R (Fig. 5e). Hence, by Proposition 2.7, deciding whether λ ∈ �(yr ) holds true
reduces to check R inequalities:

�(yr ) ∩ P(i1,...,iR) = {λ ∈ P(i1,...,iR) : λi1 y
r
ir ≤ λir y

s
is for all s = 1, . . . , R, s �= r}. (4.2)

See Fig. 5d for a zoomed-in illustration of such a further refinement. Since �(yr ) ∩
P(i1,...,iR) is a polytope, the following definition of family of polytopes for an image yr ∈ YN

is motivated:

C̃(yr ):=
{
�(yr ) ∩ P(i1,...,iR) : (i1, . . . , iR) ∈ {1, . . . , p}R

}
. (4.3)

We state some properties of the families defined in (4.3).

Proposition 4.1 The following statements hold:
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(i) It is
⋃

P∈C̃(yr ) P = �(yr ) for all yr ∈ YN .
(ii) Let yr , ys ∈ YN be two nondominated images and P(i1,...,iR), P( j1,..., jR) be two polytopes.

Then,
(
P(i1,...,iR) ∩ �(yr )

) ∩ (
P( j1,..., jR) ∩ �(ys)

)
is a face of both P(i1,...,iR) ∩ �(yr )

and P( j1,..., jR) ∩ �(ys). In particular, the face is inclusion-wise maximal.

Proof The statement (i) is easy to see. Without loss of generality, let YN be enumerated such
that yr = y1 and ys = y2. We define

H :={λ ∈ R
p
≥ : λi1 y

1
i1 = λ j1 y

1
j1 , . . . , λiR y

R
iR = λ jR y

R
jR , λi1 y

1
i1 = λ j2 y

2
j2}

= {λ ∈ R
p
≥ : λ1i1 y

1
i1 = λ j2 y

2
j2} ∩

(
R⋂

r=1

{λ ∈ R
p
≥ : λir y

r
ir = λ jr y

r
jr }

)

.

On the one hand,

{λ ∈ R
p
≥ : λ1i1 y

1
i1 ≤ λ j2 y

2
j2} ∩

(
R⋂

r=1

{λ ∈ R
p
≥ : λir y

r
ir ≥ λ jr y

r
jr }

)

is an intersection of valid inequalities for P(i1,...,iR)∩�(y1), as shown in (4.2). These inequal-
ities define a face F1 = P(i1,...,iR) ∩ �(y1) ∩ H , if it is nonempty. On the other hand,

{λ ∈ R
p
≥ : λ1i1 y

1
i1 ≥ λ j2 y

2
j2} ∩

(
R⋂

r=1

{λ ∈ R
p
≥ : λir y

r
ir ≤ λ jr y

r
jr }

)

is an intersection of valid inequalities for P( j1,..., jR) ∩ �(y2). Analogously, the set F2 =
P( j1,..., jR) ∩ �(y2) ∩ H is a face of P( j1,..., jR) ∩ �(y2). By definition, a weight λ ∈(
P(i1,...,iR) ∩ �(y1)

) ∩ (
P( j1,..., jR) ∩ �(y2)

)
satisfies for r = 1, . . . , R:

λir y
r
ir ≥ λk y

r
k for k �= ir ,

λ jr y
r
jr ≥ λk y

r
k for k �= jr .

This implies λir y
r
ir

= λ jr y
r
jr
. Since also λi1 y

1
i1

≤ λi2 y
2
i2
and λ j2 y

2
j2

≤ λ j1 y
1
j1
hold, we get

λi1 y
1
i1

≤ λi2 y
2
i2

= λ j2 y
1
j2

≤ λ j1 y
2
j1

= λi1 y
1
i1
. Thus, the equality λi1 y

1
i1

= λ j2 y
2
j2
holds true.

It follows that

λ ∈ F1 ⇔ λ ∈ (
P(i1,...,iR) ∩ �(y1)

) ∩ (
P( j1,..., jR) ∩ �(y2)

) ⇔ λ ∈ F2

holds. Consequently, F1 = F2 = (
P(i1,...,iR) ∩ �(y1)

) ∩ (
P( j1,..., jR) ∩ �(y2)

)
. Inclusion-

wise maximality follows also from the latter equalities. ��
This motivates to augment the families of polytopes C̃(y).

Definition 4.2 For an image y ∈ YN , theweight set complex of y with respect to the weighted
Tchebycheff scalarization is defined by

C(y):={F : there exists a polytope P ∈ C̃(y) such that F is a face of P}.
Since Proposition 4.1 (ii) remains true if yr is chosen to be equal to ys , we can conclude that
polytopes in C̃(yr ) always intersect in common faces. Hence, Proposition 4.1(i) implies that
the weight set complex of yr is indeed a polytopal subdivision of its weight set component
�(yr ).
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Corollary 4.3 Let y ∈ YN . Then, C(y) is a polytopal complex such that
⋃

P∈C(y)

P = �(y).

Fig. 4 shows the subdivision for Example 2.9. Moreover, Proposition 2.8 can be adapted: The
knowledge of all polytopal complexes C(y) is sufficient to cover the weight set, that is, � =⋃

y∈YN
⋃

P∈C(y) P . Here, note a slight but important difference: for all nondominated images
y ∈ YN , the full knowledge of all polytopes in the weight set complex C(y) (and, hence,
�(y)) is not required anymore, since individual polytopes can belong to multiple weight set
complexes. Nevertheless, the knowledge of all nondominated images is still required, and
the underlying set of the union of all known polytopes must cover the complete weight set.

Remark 4.4 Analogous to the construction of the weight set complex, we get a polytopal
subdivision of the dimensional weight set components if we fix the inequality λi yri ≥ λ j yrk
in (4.1) and subsume all faces of the polytopes in

C̃(yr , i):={�(yr ) ∩ P(i1,...,ir−1,i,ir+1,...,iR) :
(i1, . . . , ir−1, ir+1, . . . , iR) ∈ {1, . . . , p}R−1}.

Then, by construction, the family of polytopes

C(y, i):={F : there exists a polytope P ∈ C̃(y, i) such that F is a face of P}
is again a polytopal complex. This construction is consistent with the definition of the
dimensional weight set components: it holds that �(y, i) = ⋃

P∈C(y,i) P and, moreover,
P ∈ C(y, i) implies that P ∈ C(y), and, vice versa, for each polytope P ∈ C(y) there is an
index i ∈ {1, . . . , p} such that P ∈ C(y, i). That is, C(y, i) is indeed a subcomplex of C(y).

Definition 4.5 For a nondominated image y ∈ YN and an index i ∈ {1, . . . , p}, we call
C(y, i):={F : there exists a polytope P ∈ C̃(y, i) such that F is a face of P}.

the i th dimensional weight set complex.

Taking images in YwN \ YN into account, the construction of the polytopal subdivision
needs to be refined. This can be done by adapting (4.1) and (4.2) based on an enumeration
of YwN . Then, the following result can be analogously derived.

Corollary 4.6 For any weakly nondominated image y ∈ YwN , there exists a polytopal subdi-
vision of �(y).

Remark 4.7 Due to the construction of these polytopal subdivisions, the intersection ofweight
set components induces a polytopal subdivision that uses polytopes of both subdivisions
only. That is �(y1) ∩ �(y2) = ⋃

P∈C(y1)∩C(y2) P . In particular, C(y1) ∩ C(y2) itself is also
a polytopal complex. Thus, we can compare weight set components based on the polytopes
in the polytopal subdivision.
Similarly, the union of two weight set complexes is a polytopal subdivision of the union
of the corresponding weight set components. This is, in particularly, important to define a
notion of dimension of (unions/intersections of) weight set components.
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5 The dimension of the weight set components

In this section, we analyze the dimension of the weight set components. First, we define the
dimension with respect to the associated polytopal complex. Recall that a polytopal complex
is defined via a finite set of polytopes and, for all weight set components, there exists a
polytopal subdivision, see Corollary 4.3.

Definition 5.1 For an image y ∈ Y , the dimension of its weight set component �(y) is
defined by dim(�(y)):= dim(C(y)).

Note that the dimension of the dimensional weight set components as well as the intersections
or unions of weight set components can be defined analogously by Remarks 4.4 and 4.7. In
the following, we distinguish between images in YN and YwN\YN .

We first consider nondominated images. Due to the finite number of polytopes in C(y),
Corollary 2.6 immediately implies that the dimension of the corresponding weight set com-
plexes C(y) must be equal to p − 1.

Corollary 5.2 Let y ∈ YN . Then, dim(�(y)) = p − 1.

Since a weakly nondominated but dominated image yw ∈ YwN\YN is optimal for the
scalarized problem �T S(λ(yw)) with the central weight of yw, the corresponding weight set
component �(yw) is not empty. We have already seen that these sets also have a polytopal
subdivision and fulfil the convexity properties stated in Proposition 2.14 and Corollary 2.12.
Yet, Corollary 5.2 does not immediately hold due to the fact that there is no ε > 0 such that
Bε(λ(yw)) ⊆ �(yw) holds. The next example shows this for two objectives.

Example 5.3 Let Ỹ = {ỹ1 = (4, 4)�, ỹ2 = (4, 2)�}. Clearly, ỹ2 ∈ YN and ỹ1 ∈ ỸwN\ỸN .

For the kernel weight λ(ỹ1) = ( 12 ,
1
2 )

�, it holds ‖ỹ1‖λ(ỹ1)∞ = 2 = ‖ỹ2‖λ(ỹ1)∞ . However, for
any scalar ε > 0 and λ = (λ1(ỹ1) + ε, λ2(ỹ1) − ε)�, we get ‖ỹ1‖λ∞ = 2 + 4ε > 1 + 2ε =
λ1 ỹ21 as well as ‖ỹ1‖λ∞ = 2+4ε > 2−4ε = λ2 ỹ22 .Hence, ‖ỹ1‖λ∞ > ‖ỹ2‖λ∞. Nevertheless,
we can conclude �(ỹ1) = �(ỹ2) ∩ {λ ∈ � : λ1 ≤ λ1(ỹ1)}, since the weighted Tchebycheff
norm values are attained in the second objective for both ȳ1 and ȳ2 and, thus, they coincide.
Consequently, both weight set components have dimension p − 1 = 1.

This raises the question whether an analogon to Corollary 5.2 for weakly nondominated but
dominated images holds true. This is not the case.

Example 5.4 (Example 5.3 cont.) We add another image to the image set:

Ỹ ∗ = Ỹ ∪ {ỹ3 = (2, 4)�}.
Analogously, we get ‖ỹ1‖λ∞ > ‖ỹ3‖λ∞, λ = (λ1(ỹ1) − ε, λ2(ỹ1) + ε)� for any ε > 0. Thus,
�(ỹ1) = {λ(ỹ1)} and it is dim(�(ỹ1)) = 0.

How can we characterize the dimension of the weight set components of images yw ∈
YwN \ YN ? We will conclude that this depends on the images dominating yw . If yw ∈
YwN\YN , then there exists an image y ∈ YN such that yi ≤ yw

i for all i = 1, . . . , p, i.e.,
�(yw, i) ⊆ �(y, i) for all i satisfying yw

i = yi .

Lemma 5.5 Let yw ∈ YwN\YN and y ∈ YN such that y ≤ yw and yi1 < yw
i1
, . . . , yil < yw

il

for indices {i1, . . . , il} ⊆ {1, . . . , p}. Then, �(yw)\
(⋃

i /∈{i1,...,il } �(yw, i)
)

= ∅.
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Proof Without loss of generality, let i1 = 1, . . . , il = l. Assume, there is a weight λ ∈
�(yw)\ (⋃p

i=l+1 �(yw, i)
)
. Then,

λ ∈
(

l⋃

i=1

�(yw, i)

)

\
( p⋃

i=l+1

�(yw, i)

)

,

which, with y � yw, implies that

λi yi < λi y
w
i i = 1, . . . , l, (5.1)

λk yk ≤ λk y
w
k k = l + 1, . . . , p, (5.2)

there is some i ∈ {1, . . . , l} such that λk y
w
k < λi y

w
i k = l + 1, . . . , p. (5.3)

If ‖y‖λ∞ = λi yi for an i ∈ {1, . . . , p}, Eq. (5.1) implies that λi yi < λi yw
i ≤ ‖yw‖λ∞. If

‖y‖λ∞ = λk yk for a k ∈ {l + 1, . . . , p}, Eqs. (5.2) and (5.3) imply that λk yk ≤ λk yw
k <

λi yw
i ≤ ‖yw‖λ∞ for an i ∈ {1, . . . , l}. Both are contradictions to λ ∈ �(yw). ��
Thus, the dimension of theweight set components of weakly nondominated but dominated

images depends on the number of images that dominate yw and onwhich indices those images
are strictly better.

Proposition 5.6 Let yw ∈ YwN \YN . If, for all I ⊆ {1, . . . , p}, |I | = l, there exists an image
y ∈ YN such that y � yw and yi < yw

i for all i ∈ I , then dim(�(yw)) ≤ p − 1 − l.

Proof This follows from Lemma 5.5. ��
The dimension of the weight set components of images in YwN\YN is determined by the

maximal cardinality of a set that satisfies the assumptions of Proposition 5.6.

Example 5.7 (Example 2.9 cont.) We augment the set Y to

Y ′ = Y ∪ {y5 = (3, 2, 2)�, y6 = (2, 3, 3)�, y7 = (3, 2, 3)�}.
Then, y5, y6, and y7 areweakly nondominated but dominated images. For y5, it holds y53 ≤ y3
for all y ∈ Y . Thus, Proposition 5.6 yields dim(�(y5)) > 3 − 1 − 1 = 1 and, therefore,
dim(�(y5)) = 2 = dim(�) must hold.
The nondominated images dominating y6 are y2 = (2, 1, 3)�, y3 = (2, 2, 2)� and y4 =
(1, 2, 3)�. Thus, for all indices i , there exists an image y ∈ YN such that y � y6 and
yi < y6i . Proposition 5.6 induces that dim(�(y6)) ≤ 3− 1− 1 = 1. However, for the index
pair (1, 3), there does not exist an image satisfying the assumptions of Proposition 5.6. Thus,
dim(�(y6)) > 3 − 1 − 2 = 0 and we get dim(�(y6)) = 1.
For the image y7, there exists for all pairs of indices an image satisfying the assumptions of
Proposition 5.6. Thus, dim(�(y7)) ≤ 3−1−2 = 0 and, therefore, the weight set component
consists of the kernel weight, only. Figure6 illustrates the weight set components of y5, y6

and y7.

As a further consequence, we obtain a characterization of nondominated images.

Corollary 5.8 Let int(�(y, i)) denote the set of all weights λ ∈ �(y, i) such that there exists
a scalar ε > 0 with Bε(λ) ⊆ �(y, i). An image y ∈ Y is nondominated if and only if
int(�(y, i)) �= ∅ for all i = 1, . . . , p.
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Fig. 6 Theweight set components�(yr ), r = 5, 6, 7, of Example 5.7. Note that yr ∈ YwN \YN for r = 5, 6, 7
and, thus, the interior of at least one dimensional weight set component is empty

The intersection of weight set components In Sect. 3, the intersection of weight set compo-
nents

⋂
y∈Ȳ �(y) for Ȳ ⊆ Y is determined by the weight set component of the (dominated)

local nadir image yN (Ȳ ). Thus, the dimension of the intersection sets is characterized by
Proposition 5.6. Note that a nonempty intersection implies that all images in Ȳ contribute
to yN (Ȳ ), and Ȳ = {y′ ∈ YN : y′ � yN (Ȳ )}. Thus, if all images in Ȳ coincide in at least
one index i , it holds that dim(

⋂
y∈Ȳ �(y)) = p − 1 and they share at least one (p − 1)-

dimensional polytope in their weight set complexes, in particular, in their i th dimensional
weight set component. Notice also that this cannot happen between different dimensional
weight set components as �(y1, i) ∩ �(y2, j) ⊆ {λ ∈ � : λi y1i = λ j y2j } and the dimension
of the latter polytope is p−2. Considering only two nondominated images, we can therefore
define a concept of (proper) adjacency regarding the weighted Tchebycheff scalarization.

Definition 5.9 Let two images y, ȳ ∈ Y be given.

(i) The images y and ȳ are weakly adjacent (with respect to the weighted Tchebycheff
scalarization) if �(y) ∩ �(ȳ) �= ∅.

(ii) The images y and ȳ areadjacent (with respect to theweightedTchebycheff scalarization)
if dim(�(y) ∩ �(ȳ)) ≥ p − 2.

(iii) The images y and ȳ are properly adjacent (with respect to the weighted Tchebycheff
scalarization) if dim(�(y) ∩ �(ȳ)) = p − 2.

(iv) The (dimensional) weight set components of y and ȳ overlap if dim(�(y, i) ∩
�(ȳ, i)) = p − 1 for some i ∈ {1, . . . , p}.

Figure 7 visualizes this concept for Example 2.9. The definition of adjacency of non-
dominated images with respect to the weighted Tchebycheff scalarization introduced and
used in [22, 23] aligns with the definition given in Definition 5.9(i). Definitions 5.9(ii) and
(iii) are motivated by the concept given in [28]. In conclusion, taking the dimension of the
intersection set into account, the notion of adjacency can and should be refined.

6 Conclusion

Besides the weighted sum and the ε-constraint method, the weighted Tchebycheff method
is a frequently applied scalarization technique in multiobjective optimization. The weighted
Tchebycheff scalarization problem is closely linked to many other single objective optimiza-
tion disciplines, including robust optimization, goal programming, and location theory. It is a
building block of many exact and heuristic algorithms, which systematically vary the choice
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Fig. 7 Two weight set complexes can share a (p − 1)-dimensional polytope P (a). Thus, the images are
adjacent but not properly adjacent. The adjacency of the images in the image space is visualized in (b). The
bold lines indicate an overlapping of the corresponding weight set components. The dotted line indicates weak
adjacency

of weights to get (a subset of) all nondominated images. In other words, these algorithms
utilize elements of the weight set while the set itself has not yet been the focus of research.

In this article, we provide the first rigorous and comprehensive theory of the set of all
eligible weights for the weighted Tchebycheff scalarization. We analyze the polyhedral and
combinatorial structure of the set of all weights yielding the same efficient solution as well
as the composition of the weight set as a whole. To date, analogous research has mostly been
published for the weighted sum method. However, there are substantial differences: The
weighted Tchebycheff scalarization is able to yield all efficient solutions (i.e., not only the
supported ones as in the weighted sum method). Additionally, due to absence of convexity,
the structure of the weight set of the weighted Tchebycheff method is more complex and the
analysis is more technical. Through this analysis, convexity-related properties and bounds
on dimension of the weight set components have been proven.

Contrasting the structures of the weight set decomposition of the weighted sum scalariza-
tion, the weighted Tchebycheff scalarization provides some additional insights at a higher
level. For the weighted sum scalarization, the decomposition describes the gradients of the
nondominated part of the convex hull of the set of images as well as information about
adjacent nondominated faces. However, it neither provides information about the positioning
nor the size of the convex hull in the image space. In fact, nondominated frontiers (of some
multiobjective optimization problems) may vary substantially but still share the same weight
set decomposition of the weighted sum scalarization (cf. Figure8(a)).

In contrast, the weight set decomposition of the weighted Tchebycheff norm yields more
information about the positioning of the nondominated images. Note that the weight set
decomposition includes the knowledge of the local nadir weights. In fact, the weight set
decomposition of two sets of nondominated images coincides as long as their set of local
nadir weights coincide. With the local nadir weights λN for the weight set components
known, the local nadir images must be located on the rays defined by D(λN ):={t · λN :
t > 0}. These rays narrow down the configuration of the nondominated set, since each
nondominated image y must be within the region determined by all rays of local nadir
weights that are contained in the weight set component �(y). If the kernel weight for the
weight set component�(y) is additionally known, the nondominated image ymust be located
on the ray D(λ(y)):={t · λ(y) : t > 0}. Taking nondominance and the definition of local
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Fig. 8 Biobjective example of distinct sets of nondominated images (indicated by color), each of which have
the same weight set decomposition with respect to weighted sum scalarization (a) or weighted Tchebycheff
scalarization (b). a The gradient vectors describing the convex hull are equivalent (parallel lines are indicated
by line type, e.g., solid, dashed, and dotted) even though the frontiers vary widely in overall shape. bWith the
local nadir weights for weight set components known, the local nadir images must be located on the associated
rays (indicated by dotted lines) and, hence, these rays narrow down the possible location of the nondominated
images. If the kernel weights for weight set components are additionally known, then the nondominated
images must be located on the associated rays (indicated by dashed lines). In this case, the location of the
nondominated set is uniquely determined up to scaling by multiplicative factor

nadir images into account, the complete nondominated set can be determined up to scaling
of the objectives by a multiplicative factor. Figure8(b) illustrates these observations for a
biobjective example. An analogous reasoning is not possible for theweight set decomposition
of the weighted sum scalarization.

Thus, an immediate idea for future research is a thorough analysis of ‘duality’ between
the weight set decomposition and the image space described informally above and illus-
trated in Fig. 8 Other directions of research include the algorithmic utilization of the derived
properties. Star-shapedness and line convexity may be used to derive outer approximation
[28] or inner approximation [2, 19] methods that iteratively shrink or augment weight set
components, respectively. The properties may be also utilized for interactive approaches with
focus on a graphical exploration and presentation of solutions. The idea of weight set decom-
postion can further be applied to the parameter sets of other scalarizations. For example,
weighted p-norm scalarizations or the augmented modified weighted Tchebycheff scalariza-
tion yield nondominated images, only, and theoretically connect the already studied weight
set decompositions. This may provide methods for dealing algorithmically with overlap-
ping components of weighted Tchebycheff weight set components and revealing additional
insights in the images space of multiobjective optimization problems.
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