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Abstract
Line planning as one of the first planning stages in public transport is a well-researched
topic. Nearly all models start with the assumption that the demand for public transport
is known and fixed. For real-world applications this assumption is not practicable,
since there are different demands depending on the period of the day and the day of
the week, e.g., the high demand in morning traffic differs from the demand during a
week-day, or from the low demand on Sunday’s afternoons, or at night. Planning lines
for different demand periods comes with two conflicting goals: On the one hand, the
line concept should be adapted as good as possible to the respective demand. On the
other hand, the lines should be as similar as possible for different demand periods, e.g.,
the line plan for Sunday afternoon should be related to the one on Monday morning.
In this paper, we show that line planning for different demand periods can be modeled
and solved:We introduce themulti-period line planning problemwhich is to find opti-
mized line concepts for each demand period which are similar (enough) to each other.
To this end, we discuss three different approaches to define the (dis)similarity between
line concepts. These are frequency-based concepts, and concepts taking the number of
different lines and the shape of the lines into account. For the latter, we useWasserstein
distances for modeling the similarity between two line concepts. We show that for all
these similarity measures the line planning problem can be formulated as an integer
linear program and solved efficiently. Our experiments furthermore show the differ-
ences of the resulting line concepts, and that the similarity of line concepts between
different demand periods and the quality of the line concept are conflicting goals.
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1 Introduction

Line planning is a well-known problem in public transport. Its goal is to determine
lines and the frequencies they should be operated with. The lines form the line plan,
and the line concept consists of the set of lines together with their frequencies. Line
planning dates back to the work of [1]. Since then, many models and approaches have
been suggested, ranging from cost-oriented models to passenger-oriented points of
view. Surveys on the literature in line planning have been presented in [2, 3].

Current research on line planning focuses on different topics. Besides speed-up
techniques as in [4, 5], algorithms for including route choice of passengers is a topic of
ongoing research [6–8]. Researchers also deal with the integration of the line planning
step into the planning process in public transport which consists of line planning,
timetabling, vehicle- and crew scheduling [9–12]. Another issue is the robustness of
lines and how they can be adapted in case of disruptions [13, 14]. When it comes to
introducing line concepts in practice, one encounters further aspects that are missing.
One of these is that the demand is not the same during a day or a week, but that
different demand periods such as a high-traffic morning peak and a low-traffic Sunday
afternoon need to be considered. In [15], a frequency-setting problem for multiple
demand periods is proposed but the similarity of the resulting line concepts is not
taken into account. In [16, 17] the problem was recognized and taken care of in the
evaluation, namely, a line concept is evaluated separately for each of the demand
periods. In [16], the authors also suggest measures to compute the similarity between
line plans. Here, we go a step further, namely, we not only evaluate a given line concept
with respect to different demand periods, but we proposemodels for constructing good
line concepts for different demand periods.

One could use the different demanddata as input for different line planning instances
and compute a separate line concept for each of them. However, different line plans
which are unrelated to each other are confusing for the passengers and hard to operate.
So, lines and their frequencies should change as little as possible between the different
demandperiods.Wedevelop approaches tomodel the similarity between line concepts.
We also suggest formulations that take both aspects, the quality of the line concept,
and the similarity of the line concepts between different demand periods, into account.
We test our models on close to real-to-world data from the LinTim-library ([18]).

The remainder of the paper is structured as follows. Section2 sets the general frame-
work by introducing the multi-period line planning problem (MP). An IP formulation
is sketched and the problem is analyzed. In Sect. 3, the model is further specified for
three different definitions of (dis)similarity: frequency-based, a concept based on the
number of different lines and a concept usingWasserstein-distances. The experiments
are described in Sect. 4 and we conclude in Sect. 5.
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2 Multi-Period Line Planning

There exist numerous models for line planning. The goal of this paper is to show how
these models can be extended to the multi-period case. The idea is the following: We
solve not only one instance for one demand period but consider an instance for each
of the demand periods. These instances are coupled by similarity constraints which
ensure that the resulting line plans do not differ toomuch between the different demand
periods. This idea can basically be applied to any line planning model. For the sake
of simplicity, we demonstrate it on an the cost model for line planning, which we
formally introduce in the next section.

2.1 Basic Notation and the Cost Model

We assume that a public transport network PTN= (V , E) with its set V of stops or
stations and the direct connections E between them is given.

A line � is a path in the public transport network PTN. For the ease of notation we
assume that lines are simple paths. The frequency of a line says how often it is operated
during the planning period (e.g., 1 h). In the line planning problem we look for a set
of lines together with their frequencies. As in most approaches we assume that a set
of potential lines L, the so-called line pool is already given. Note that construction of
the line pool can be done by practitioners or is an optimization problem by itself, see
[19] and references therein. A few models allow all possible paths in the PTN, i.e.,
they construct lines freely within the optimization, see, e.g., [20, 21].

A line plan L̃ ⊆ L is the set of used lines, and a line concept (L̃, f ) is the set of used
lines L̃ together with their frequencies f�, � ∈ L̃. Let LC be the set of all possible line
concepts. All line planning models look for a line concept, but have different notions
of feasibility and optimality of line concepts.

From the line planning models common in literature we exemplarily pick the so-
called cost model (see [2]) for which we show how it can be extended to multiple
periods. It contains the kernel of the cost models in [22, 23]. Although rather simple,
it is a building block of most other models such that the results obtained here can be
easily extended.

For evaluating a line concept w.r.t its costs, we assume operation costs cost� for
every line. These costs are mainly dependent on the length and time duration of line
�. If the line is operated with frequency f� we receive a total cost of f� · cost� for
operating the line.

Concerning the demand, we assume that the passengers demand is already dis-
tributed to public transport bymodal split procedures and thepassengers are then routed
in the public transport network PTN resulting in a demand de per hour (or planning
period) for each edge e ∈ E of the PTN. Assuming the same capacity of all vehicles,
this demand is in turn transferred to a minimal lower edge frequency fmin,e which is
the number of vehicles that have to go along edge e in order to transport all demand de.
We also consider upper bounds fmax,e which may reflect headways (to allow finding
feasible timetables later on), or which model infrastructure capacity constraints.
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Summarizing, the input data is:

• the PTN= (V , E)

• a line pool L with cost� for each line � ∈ L
• lower and upper frequency bounds fmin,e ≤ fmax,e for all e ∈ E

The cost model (LC) for finding a line concept then reads as follows.

(LC) min
∑

�∈L
cost� f� (1)

s.t. fmin,e ≤
∑

�∈L:e∈�

f� ≤ fmax,e for all e ∈ E (2)

f� ∈ IN0 for all � ∈ L

The resulting solution f ∗ determines an optimal line plan L∗ = {� ∈ L : f ∗
� > 0}

and an optimal line concept (L∗, f ∗).
The objective (1) minimizes the sum of all operating costs over all chosen lines

while the edge frequency constraints (2) ensure that each edge of the PTN is served
with a correct frequency. Despite of its name “cost model”, (LC) is passenger-friendly:
if passengers have been routed along shortest paths when the demand is distributed to
the edges of the PTN, the model ensures a line concept which allows every passenger
to travel on a shortest path.

However, the model does not take care of the number of transfers. Also, more
constraints could be added (see [2]) such as capacity requirements, requirements at
stations, or different cost factors for different types of vehicles, maybe even depending
on the number of cars. We neglect these extensions here in order to concentrate on our
main issue, namely on how to deal with different demand periods.

(LC) isNP-hard, evenwithout upper edge frequencies.Nevertheless, it canbe solved
by IP-solvers (in our case Gurobi 9.5.1, [24]) in a runtime of only a few seconds for
reasonably large instances, e.g., for the railway intercity/ice network of Germany with
line pools up to a size of 2800 potential lines.

2.2 Multi-Period Line Planning

Let us now consider n different demand periods. In the cost model of the previous
section, this is reflected in different upper and lower frequency bounds f (i)

min,e, f (i)
max,e, i

= 1, . . . , n for each of the n demand periods while the PTN and the line pool stays the
same. We could use the model (LC) of the previous section and determine an optimal
line concept (L∗(i), f ∗(i)) separately for each demand period i = 1, . . . , n. However,
these line concepts with their underlying line plans could be completely different from
each other which is not wanted. We hence add similarity constraints. To this end, we
need a measure for the (dis)similarity of line concepts,

dissim : LC × LC → IR. (3)
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We treat dissim as a distance measure for which we only require positivity and that
dissim is zero if the two line concepts are identical, i.e., we require

dissim
(
(L(i), f (i)), (L( j), f ( j))

)
≥ 0, (4)

dissim
(
(L(i), f (i)), (L( j), f ( j))

)
= 0 if (L(i), f (i)) = (L( j), f ( j)). (5)

Specific dissimilarity measures are introduced in Sect. 3.
With dissimwe can restrict the dissimilarity of two line concepts in themulti-period

line planning model which we formulate next. As in the basic cost model (LC), the
input data includes the public transport network PTN and the line pool. Additionally,
for each of the n demand periods, we need lower and upper bounds f (i)

min,e ≤ f (i)
max,e

for the edge frequency requirements. We also need a value K specifying how much
two line concepts are allowed to differ from each other. The model then outputs a line
concept (L∗(i), f ∗(i)) ∈ LC for each demand period i = 1, . . . , n and makes sure that
dissim

(
(L∗(i), f ∗(i)), (L∗( j), f ∗( j))

) ≤ K for each of the chosen line concepts, i.e.,
that the similarity between the line concepts for two different periods is high enough.
Summarizing, the model is given below.

Given:

• the PTN= (V , E)

• line pool L with cost� for each line � ∈ L
• lower and upper frequency bounds f (i)

min,e ≤ f (i)
max,e for all e ∈ E , for all demand

periods i = 1, . . . , n
• similarity parameter K
• a function dissim : LC × LC → IR

(MP)

min
n∑

i=1

∑

�∈L
cost� f

(i)
� (6a)

s.t.

f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E, i = 1, . . . , n, (6b)

dissim
(
(L(i), f (i)), (L( j), f ( j))

)
≤ K for all i, j = 1, . . . , n, (6c)

f (i)
� ∈ IN0 for all � ∈ L, i = 1, . . . , n.
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2.3 Bounds

For deriving a lower bound we consider (MP) without constraints (6c). The resulting
model is

(MP-Lower-Bound)

zlow := min
n∑

i=1

∑

�∈L
cost� f

(i)
�

s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E, i = 1, . . . , n

f (i)
� ∈ IN0 for all � ∈ L, i = 1, . . . , n.

Lemma 1 Consider the lower bound problem (MP-Lower-Bound).

1. (MP-Lower-Bound) provides a lower bound on (MP),
2. (MP-Lower-Bound) can be solved by solving n problems of type (LC).

Proof We delete a constraint of (MP), hence (MP-Lower-Bound) is a relaxation of
(MP) and its optimal objective value is a lower bound. Furthermore, (MP-Lower-
Bound) decomposes into n independent problems (LCi ), one for each period i
= 1, . . . , n, namely

(LCi ) z(i) := min
∑

�∈L
cost� f

(i)
�

s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E

f (i)
� ∈ IN0 for all � ∈ L,

i.e., n problems of type (LC). �	
Example 1 Consider the toy dataset of LinTim, see [25], for some randomly chosen
demand. We computed an optimal line concept separately for each of two demand
periods with the model (MP-Lower-Bound). Since there is no constraint on the simi-
larity of the resulting line concepts, we receive different line plans for the two periods.
The resulting frequencies are depicted in Fig. 1.

Looking at the single problems (LCi ) for each of the demand periods i = 1, . . . , n
also tells us if (MP-Lower-Bound) is feasible or not.

Corollary 2 (MP-Lower-Bound) is feasible if and only if (LCi ) is feasible for all
demand periods i = 1, . . . , n.

Wenow turn to an upper bound on (MP). The idea is to determine only one common
line concept which is feasible for each of the demand periods. To this end, we use only
one frequency f� for each line � ∈ L instead of variables f i� for each demand period
i = 1, . . . , n. We receive the following program.
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Fig. 1 Frequencies of an optimal solution to (MP-Lower-Bound)

(MP-Upper-Bound)

zupp := min
n∑

i=1

∑

�∈L
cost� f�

s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f� ≤ f (i)
max,e for all e ∈ E, i = 1, . . . , n

f� ∈ IN0 for all � ∈ L

Lemma 3 Consider the upper bound problem (MP-Upper-Bound).

1. If it is feasible, then (MP-Upper-Bound) provides an upper bound on (MP).
2. (MP-Upper-Bound) is a problem of type (LC).

Proof Assume that (MP-Upper-Bound) is feasible and let (L∗, f ∗) be its optimal
solution. We have to show that L∗(i) := L∗, f ∗(i) := f ∗ for i = 1, . . . , n is a
feasible solution to (MP). Clearly, it satisfies constraints (6b) since these are included
in (MP-Upper-Bound). Due to (5) we have that

dissim
(
(L∗(i), f ∗(i)), (L∗( j), f ∗( j))

)
= dissim

(
(L∗, f ∗), (L∗, f ∗)

) = 0,
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hence the dissimilarity constraints (6c) are also satisfied and (L∗, f ∗) is feasible to
(MP). Moreover, we can equivalently rewrite (MP-Upper-Bound) to

zupp = min
n∑

i=1

∑

�∈L
cost� f�

s.t. max
i=1,...,n

f (i)
min,e ≤

∑

�∈L:e∈�

f� ≤ min
i=1,...,n

f (i)
max,e for all e ∈ E

f� ∈ IN0 for all � ∈ L

which is a problem of type (LC). �	
Example 2 Again, consider the dataset of Example 1. Now using (MP-Upper-Bound),
we see that the line plans for both demand periods coincide and all lines have the same
frequency, see Fig. 2. The costs for this line concept are 16% higher than the costs for
the line concept computed by (MP-Lower-Bound).

As for (LC), it is NP-hard to find out if (MP-Upper-Bound) is feasible or not. It is
not feasible if maxi=1,...,n f (i)

min,e > mini=1,...,n f (i)
max,e for an edge e ∈ E .

We summarize our findings in the following corollary.

Fig. 2 Frequencies of an optimal solution to (MP-Upper-Bound)

123
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Corollary 4 1. Let f (i), i = 1, . . . , n be an optimal solution of (MP-Lower-Bound).
Its objective function value is equal or better than the objective function value
of every feasible solution to (MP). The dissimilarity of f (i), i = 1, . . . , n may
be large.

2. Let f
(i)

, i = 1, . . . , n be an optimal solution of (MP-Upper-Bound). Its dissim-
ilarity is zero and hence equal or better than the dissimilarity of every feasible

solution to (MP). The objective function value of f
(i)

, i = 1, . . . , n may be large.

3 Similarity Concepts

So far, we used the distance measure dissim in a rather abstract way. In this section, we
suggest three different concepts on how dissim of two line concepts can be defined. In
the first concept we require that the two sets of lines coincide and look at (dis)similarity
of the frequencies. In the second and third concept we allow different lines.

3.1 Frequency-Based Similarity

In the first class of similarity concepts, we require identical lines and only allow
differences in their frequencies. To this end, define L := |L| and let a norm ‖ · ‖ in
IRL be given. For two line concepts (L(i), f (i)) and (L( j), f ( j)) we define

dissimfreq((L(i), f (i)), (L( j), f ( j))) =
{ ‖ f (i) − f ( j)‖ if L(i) = L( j)

∞ otherwise.
(7)

Given a number K ≥ 0 we hence say, that the two line concepts (L(i), f (i)) and
(L( j), f ( j)), i, j ∈ {1, . . . , n}, are similar, if

• the two sets of lines are identical, i.e., L(i) = L( j), and
• their frequency vectors f (i), f ( j) ∈ IRL satisfy ‖ f (i) − f ( j)‖ ≤ K .

In order to use this definition of similarity for specifying (3) in (MP) we need to
ensure that the set of lines in both line concepts is the same. To this end, we introduce
variables x (i)

� for � = 1, . . . , L, i = 1, . . . , n which specify if line � is included in the
line concept L(i) of period i :

x (i)
� =

{
1 if f (i)

� > 0
0 otherwise

This gives the following integer program for (MP) with frequency-based similarity:

(MP − F)

min
n∑

i=1

∑

�∈L
cost� f

(i)
� (8a)
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s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E, i = 1, . . . , n, (8b)

f (i)
� ≤ Mx (i)

� for all � ∈ L, i = 1, . . . , n, (8c)

x (i)
� ≤ f (i)

� for all � ∈ L, i = 1, . . . , n, (8d)

x (i)
� = x ( j)

� for all � ∈ L, i, j = 1, . . . , n, (8e)

‖ f (i) − f ( j)‖≤ K for all i < j, i, j ∈ {1, . . . , n}, (8f)

f (i)
� ∈ IN0, x

(i)
� ∈ {0, 1} for all � ∈ L, i = 1, . . . , n. (8g)

In this formulation, (8c) and (8d) make sure that x (i)
� = 1 if and only if f (i)

� > 0 if
M is a constant chosen large enough.

Lemma 5 The formulation (8) is correct if M ≥ max{ f (i)
max,e : e ∈ E, i = 1, . . . , n}.

Proof Let f (i) be an optimal line concept for period i , i = 1, . . . , n. Clearly, f (i)
� = 0

forces x (i)
� = 0 in (8d) and (8c) then is satisfied. If the integer variable f (i)

� > 0 we

get f (i)
� ≥ 1, i.e., (8d) gets redundant since x (i)

� ∈ {0, 1}. From (8c) we conclude that

x (i)
� = 0 is not feasible. It remains to show that x (i)

� = 1 is feasible for (8c), i.e., that

f (i)
� is smaller than M in every optimal solution. But this has to be the case since for

any e ∈ � we have that

f (i)
� ≤

∑

�′:e∈�′
f (i)
�′ ≤ f (i)

max,e ≤ max{ f (i)
max,e : e ∈ E, i = 1, . . . , n} ≤ M .

�	
The next lemma states that for monotone norms, i.e., norms which satisfy

x ≤ y ⇒ ‖x‖ ≤ ‖y‖

(e.g., all p-norms are monotone), we can strengthen this result and use M as the maxi-
mumof theminimumedge frequency requirements. This ismuch better since the upper
edge frequency requirements can be rather large (sometimes they are even unbounded).

Lemma 6 The formulation (8) is correct if M ≥ max{ f (i)
min,e : e ∈ E, i = 1, . . . , n}

and ‖ · ‖ is a monotone norm.

Proof The first part of the proof is identical to the proof of Lemma 5. It remains
to show that x (i)

� = 1 is feasible for (8c), i.e., that f (i)
� is smaller than M in every

optimal solution. Suppose f (i)
� > M := maxe∈E, j=1,...,n f ( j)

min,e. Then we cut off the
frequencies which are larger than M by defining a new solution

f̄ (i)
� :=

{
maxe∈E, j=1,...,n f ( j)

min,e if f (i)
� > maxe∈E, j=1,...,n f ( j)

min,e

f (i)
� otherwise

(9)
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f̄ (i)
� still satisfies both inequalities of (8b) for all � ∈ L and all i = 1, . . . , n. It

remains to confirm that also the dissimilarity is still bounded by K . To this end, let us
fix i, j ∈ {1, . . . , n}. Since ‖ · ‖ is a monotone norm, we only have to show that for
all � ∈ L

| f̄ (i)
� − f̄ ( j)

� | ≤ | f (i)
� − f ( j)

� |, (10)

because then we can conclude that

‖ f̄ (i) − f̄ ( j)‖ ≤ ‖ f (i) − f ( j)‖ ≤ K .

Fix � ∈ L. Then (10) can be shown by a simple case analysis:

• f (i)
� ≤ M, f ( j)

� ≤ M : Then f̄ (i)
� = f (i)

� and f̄ ( j)
� = f ( j)

� , hence (10) holds.

• f (i)
� > M, f ( j)

� > M : Then f̄ (i)
� = M and f̄ ( j)

� = M , hence | f̄ (i)
� − f̄ ( j)

� | = 0
and (10) holds.

• Finally, f (i)
� > M, f ( j)

� ≤ M (or vice versa): Then f̄ (i)
� = M < f (i)

� and

f̄ ( j)
� = f ( j)

� , hence f̄ (i)
� ≥ f̄ ( j)

� and we get | f̄ (i)
� − f̄ ( j)

� | = f̄ (i)
� − f̄ ( j)

� ≤
f (i)
� − f ( j)

� ≤ | f (i)
� − f ( j)

� | and again, (10) holds.

However, since cost� > 0, the objective function improves. Hence f (i)
� > M is not

possible in an optimal solution. �	
The integer program (8) gets linear when the norm ‖ · ‖ can be linearized. This is

easily possible for the maximum norm

‖ f (i) − f ( j)‖∞ = max
�∈L

| f (i)
� − f ( j)

� |

by replacing (8f) by

f (i)
� − f ( j)

� ≤ K for all � ∈ L, i < j, i, j ∈ {1, . . . , n},
f ( j)
� − f (i)

� ≤ K for all � ∈ L, i < j, i, j ∈ {1, . . . , n}.
Example 3 Using the same data as in Example 1 and a similarity parameter of K = 1
with the maximum norm, we obtain the frequencies depicted in Fig. 3. Here, the line
plans are identical while the maximal deviation of frequency between the demand
periods is 1. The resulting line concept is only 9% more costly compared to the
solution of (MP-Lower-Bound). Note that the solution of the upper bound problem
(MP-Upper-Bound) implied an increase of costs by 16%.

While (MP-F) is easy to compute for ‖ · ‖∞, the use of the maximum norm is
arguable for practical purposes, since it only considers the maximum difference of the
frequencies over all lines. In contrast, the Manhattan norm

‖ f (i) − f ( j)‖1 =
∑

�∈L
| f (i)

� − f ( j)
� |

considers the average absolute difference of all frequencies. It can also be linearized
by using additional variables
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Fig. 3 Solution to (MP-F) with frequency-based similarity and the maximum norm ‖ · ‖∞, K = 1

z(i, j)� = | f (i)
� − f ( j)

� |
and replacing (8f) in (MP-F) by

f (i)
� − f ( j)

� ≤ z(i, j)� for all � ∈ L, i < j, i, j ∈ {1, . . . , n},
f ( j)
� − f (i)

� ≤ z(i, j)� for all � ∈ L, i < j, i, j ∈ {1, . . . , n},
∑

�∈L
z(i, j)� ≤ K for all i, j = 1, . . . , n,

z(i, j)� ∈ IN0 for all � ∈ L, i < j, i, j ∈ {1, . . . , n}.

But how to proceed if other norms, e.g. the Euclidean norm ‖ · ‖2, should be used?
Here we use that any norm can be approximated well by so-called block norms. In the
following, we derive an integer linear formulation of (8) for this very general class of
norms. A block norm is specified by G fundamental directions b1, . . . , bG ∈ IRL , L
being the number of lines in the line pool as before. It is then defined by

‖ f ‖B := min{
∑

g=1,...,G

|αg| : f =
∑

g=1,...,G

αgbg, α1, . . . , αG ∈ IR}.
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Geometrically, the fundamental directions are given by the extreme points of the unit
ball of the norm. For example, for the ‖ · ‖1-norm we have G := L fundamental
directions given by the standard basis vectors while for ‖ · ‖∞ we have G := 2L

fundamental directions, one for each vertex of the corresponding hypercube. The
integer program (MP-F) for frequency-based similarity with a general block norm
‖ · ‖B is then given as

min
n∑

i=1

∑

�∈L
cost� f

(i)
�

s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E, i = 1, . . . , n,

f (i)
� ≤ Mx (i)

� for all � ∈ L, i = 1, . . . , n,

x (i)
� ≤ f (i)

� for all � ∈ L, i = 1, . . . , n,

x (i)
� = x ( j)

� for all � ∈ L, i, j = 1, . . . , n,

f (i) − f ( j) =
∑

g=1,...,G

α
i, j
g bg for all i < j, i, j ∈ {1, . . . , n},

α
i, j
g ≤ β

i, j
g for all i < j, i, j ∈ {1, . . . , n}, g = 1, . . . ,G,

−α
i, j
g ≤ β

i, j
g for all i < j, i, j ∈ {1, . . . , n}, g = 1, . . . ,G,

∑

g=1,...,G

β
(i, j)
g ≤ K for all i, j = 1, . . . , n,

f (i)
� ∈ IN0, x

(i)
� ∈ {0, 1} for all � ∈ L, i = 1, . . . , n,

α
i, j
g ∈ IR, β

i, j
g ∈ IR≥0 for all g = 1, . . . ,G, i = 1, . . . , n.

Note that the programs for ‖ · ‖∞ and for ‖ · ‖1 are special cases of the program
for general block norms ‖ · ‖B . We conclude this section by summarizing statements
which hold for an arbitrary norm ‖ · ‖.
Lemma 7 For all norms ‖ · ‖ we have:

1. Choosing M ≥ max{ f (i)
max,e : e ∈ E, i = 1, . . . , n} suffices in (8). If the norm is

monotone, M ≥ max{ f (i)
min,e : e ∈ E, i = 1, . . . , n} suffices.

2. If the upper bound problem is feasible, then also the frequency-based line concept.
3. If K is increased, the objective value decreases or stays the same.
4. Frequency-based multi-period line planning is NP-hard

Proof The following statements all hold for any norm which is chosen in (8f).

1. This has been shown in Lemmas 5 and 6.
2. The dissimilarity of the solution of (MP-Upper-Bound) is zero according to Corol-

lary 4, hence the solution of (MP-Upper-Bound) is feasible for (8) independent of
the norm chosen.

3. Increasing K relaxes (8f), hence the objective function does not get worse.
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4. The case n = 1 (in which constraints (8c)–(8f) disappear) coincides with the cost
model (LC) which has been shown to be NP-hard in [26, 27].

�	

3.2 Binary-Line-Based Similarity

A disadvantage of the frequency-based model in Sect. 3.1 is that the line plans for
all demand periods need to coincide. We now allow new lines to be created in busy
demand periods, motivated by the assumption that the demand data given is monotone.
That is, there is an ordering of demand periods from low to high demand, such that
f (i)
min,e ≤ f ( j)

min,e and f (i)
max,e ≤ f ( j)

max,e for all i < j and all e ∈ E . Such a setting
can be observed if all edges show the same rough pattern, e.g., if for three demand
periods (Sundays, Saturdays, working days) every edge is less busy in terms of upper
and lower bounds on Sundays than on Saturdays than during a working day. In this
idealized case, we allow a limited number of new lines to be included in each demand
period. (An extension to non-monotone demand follows in (15).)

We receive the following definition of dissimbl, a binary-line-based dissimilarity
for monotone data:

dissimbl((L(i), f (i)), (L( j), f ( j))) =
{ |L( j)| − |L(i)| if f (i) ≤ f ( j)

∞ otherwise
(11)

For given numbers Ki > 0 we therefore say that two line concepts (L(i), f (i)) and
(L( j), f ( j)) are similar if

• the frequency of all lines is only rising from period i to period j and
• there are at most Ki new lines in period i .

With this we can again specify (3) in (MP-F) and obtain the following integer program
for solving the multi-period line planning problem with binary-line-based similarity
and monotone frequencies. We only compare neighboring demand periods in (12b).

(MP − B)

min
n∑

i=1

∑

�∈L
costl f

(i)
�

s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E, i = 1, . . . , n

f (i)
� ≤ Mx (i)

� for all � ∈ L, i = 1, . . . , n

x (i)
� ≤ f (i)

� for all � ∈ L, i = 1, . . . , n

f (i−1)
� ≤ f (i)

� for all � ∈ L, i = 2, . . . , n (12a)
∑

�∈L
(x (i)

� − x (i−1)
� )≤ Ki for all i = 2, . . . , n (12b)

f (i)
� ∈ IN0, x

(i)
� ∈ {0, 1} for all � ∈ L, i = 1, . . . , n
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Note that constraint (12b) can equivalently be written as ‖x (i) − x (i−1)‖1 for i
= 2, . . . , n, due to the monotonicity constraints (12a).

Lemma 8 The formulation for (MP-B) is correct if M ≥ max{ f (i)
min,e : e ∈ E, i

= 1, . . . , n}.
Proof The proof works along the lines of the proofs of Lemmas 5 and 6 noting that
we can cut frequencies higher than M always to M as in (9) and only improve the
objective function value. Feasibility follows directly since the similarity constraint
(12b) does not contain the frequencies. �	

For larger instances, solving (MP-B) may take too much time. Since we compare
only neighboring periods we can use the following heuristic to improve the runtime:
solve the demand periods sequentially instead of solving everything simultaneously.
In detail, we solve (LC) for period 1, and then fix f (i−1) and x (i−1) for computing a
solution for period i . This results in the following series of integer programs, one for
each demand period i = 1, . . . , n.

(MP-B_iter)

min
∑

�∈L
costl f

(i)
�

s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E

f (i)
� ≤ Mx (i)

� for all � ∈ L
x (i)
� ≤ f (i)

� for all � ∈ L
f (i−1)
� ≤ f (i)

� for all � ∈ L
∑

�∈L
(x (i)

� − x (i−1)
� )≤ Ki

f (i)
� ∈ IN0, x

(i)
� ∈ {0, 1} for all � ∈ L

(13)

In Sect. 4 we compare this sequential procedure with the integrated approach with
respect to solution time and quality.

We also investigate an extension of model (12) to non-monotone demand. To this
end, we omit the monotonicity constraint (12a) and we compare all line plans with
each other instead of only considering constraint (12b). This gives us an extended
definition of binary-line-based dissimilarity. As before, let a line plan be described by
variables x (i) ∈ {0, 1}L with x (i)

� = 1 if and only if line � is contained in the line plan
of demand period i . Then we define

dissimble((L(i), f (i)), (L( j), f ( j))) = max
i, j=1,...,n

‖x (i) − x ( j)‖1. (14)

Recall that dissimbl = maxi=2,...,n ‖x (i) − x (i−1)‖1, so dissimble is an extension in
whichwe compare every pair of demand periods. The resulting program is the extended
binary-line-based model and reads as follows.
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(MP-B_ext)

min
n∑

i=1

∑

�∈L
costl f

(i)
�

s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E, i = 1, . . . , n

f (i)
� ≤ Mx (i)

� for all � ∈ L, i = 1, . . . , n

x (i)
� ≤ f (i)

� for all � ∈ L, i = 1, . . . , n

‖x ( j) − x (i)‖1≤ K i, j = 1, . . . , n, i < j

f (i)
� ∈ IN0, x

(i)
� ∈ {0, 1} for all � ∈ L, i = 1, . . . , n

(15)

Apart from the change from dissimbl to dissimble the main difference between (MP-
B_ext) and (MP-B) is that there are no restrictions on the frequencies in (MP-B_ext).

3.3 Wasserstein-Line-Based Similarity

We further extend the possibilities to adapt line concepts by now allowing arbitrary
changes of their sets of lines and of their frequencies between demand periods. In
order to bound the dissimilarity of such changes we could use the binary-line-based
approach and use dissimble = maxi, j ‖x (i) − x ( j)‖ as similarity measure as in (14).
However, this definition of dissimilarity does not take into account if we replace a line
�1 by a completely different line �2, or if the new line �2 is only a slight change of the
line �1. Such slight changes of lines often occur in practice, e.g., two lines might be
the same at most of their edges but in the outskirts one line is serving the eastern part
and the other one the western part. Also, we might have short lines supporting a long
line in the city center in peak periods. In the following concept, we want to take such
effects into account. We hence look for a concept that compares two line concepts

• taking the similarity of the lines
• and their frequencies

into account. To this end, we use Wasserstein distances (also known as earth movers
distance). Wasserstein distances have originally been developed for comparing prob-
ability measures, here we use the discrete version.

We first define the dissimilarity between two lines �1, �2 ∈ L as the portion their
routes have in common. More precisely, we interpret a line as a point in IR|E | given
by its set of edges, and define

d(�1, �2) = length(�1��2)

length(�1 ∪ �2)
, �1, �2 ∈ L

where length(�1��2) is the sum of the edge lengths in the symmetric difference
of �1 and �2 and length(�1 ∪ �2) is the sum of edge lengths of all edges in �1 or �2.
Note that this gives d(�1, �2) = 0 if �1 = �2 and d(�1, �2) = 1 if �1 and �2 have no
common edges.
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We define the dissimilarity between two line concepts dissimw((L(i), f (i)), (L j ,

f ( j))) by using the Wasserstein distance between the two sets L(i), L( j) both con-
taining elements (namely lines) in IR|E |. Wasserstein distances allow to give weights
to the elements of the sets, which in our case are the frequencies f� of the lines.
Wasserstein distances have been developed to compare probability measures, i.e.,
under the assumption that the sum of weights of both sets is the same. In our
case we would have to require that

∑
�∈L(i) f (i)

� = ∑
�∈L( j) f ( j)

� (or shorter that
‖ f (i)‖1 = ‖ f ( j)‖1). Such a constraint does not make sense in the context of multi-
period line planning. There are different ways to overcome this restriction (see [28]).
Herewe use the transport-transformmetric introduced in [29, 30]. It can be interpreted
as a special case of an unbalanced Wasserstein metric, see [31] for the definition of
the latter and [29] for the full argument.

The dissimilarity between two line concepts is then the solution to the following
transportation problem: For line concepts (L(i), f (i)) and (L( j), f ( j)) let there be a
source for each line in {� ∈ L(i) : f (i)

� > 0} = L̃(i) and a sink for each line in

{�′ ∈ L( j) : f ( j)
� > 0} = L̃( j) with the corresponding transportation costs between

� ∈ L̃(i) and �′ ∈ L̃( j) given by d(�, �′). Furthermore, to deal with the case that
‖ f (i)‖1 �= ‖ f ( j)‖1, we need one additional helper source s and one additional helper
sink t that can serve all other sinks or sources with a given penalty cost pen, see
Example 4.

Example 4 We consider the solution to Example 3 for two periods, i = 1, 2. We
hence have two different line concepts (L(1), f (1)) and (L(2), f (2)), both containing
lines 2,3,4,5,6, and 8 with different frequencies. The resulting flow graph is given in
Fig. 4, where the left hand side corresponds to the lines in L(2) and the right hand
side corresponds to the lines in L(1). Note the additional source and sink nodes s and
t from which only one is needed. The resulting graph is a complete bipartite graph
of which we only depict the edges of a feasible solution. The sum of frequencies
is higher in the second line concept, (L(2), f (2)). The similarity between the same
lines is zero. Hence, we assign as much as possible, namely min{ f 2� , f 1� }, to the edge
connecting f 1� and f 2� (for all lines). Lines � = 2 and � = 3 are rather similar, so the
additional frequency of line 3 in period 2 goes to line 2 in period 1. The remaining
frequencies of lines � = 4, 5, 6, 8 go to the sink. The resulting transportation costs
are 4pen+ d(�2, �3), which hence is an upper bound on the Wasserstein dissimilarity
dissimw((L1, f (1)), (L(2), f (2))).

As the resulting problem is a classic transportation problem, it can be solved with
the following well-known integer program.
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Fig. 4 Flow-graph for
computing the dissimilarity of
the optimal solution for
Example 3. A feasible solution
is depicted

min
∑

�∈L(i)

∑

�′∈L( j)

y�,�′d(�, �′) +
∑

�∈L(i)

y�,tpen +
∑

�′∈L( j)

ys,�′pen

s.t. y�,t +
∑

�′∈L( j)

y�,�′= f (i)
� for all � ∈ L(i)

ys,�′ +
∑

�∈L(i)

y�,�′= f ( j)
�′ for all �′ ∈ L( j)

y�,�′ y�,t , ys,�′∈ N0 for all � ∈ L(i), �′ ∈ L( j)

(16)

We denote the optimal objective function value of (16) as dissimw((L(i), f (i)),

(L( j), f ( j))). In order to use this dissimilarity measure for (6c) in (MP), we need a
source and a sink for every pair of demand periods we wish to compare. The same
holds for the transportation variables y�,�′ . In our case, they are indexed by i indicating
that demand period i is compared to demand period i + 1, i = 1, . . . , n − 1.

Recall that the goal of (MP) is to determine a line concept for every period, hence the
sets L(i) and L( j) as used in formulation (16) are not input, but variable in (MP). This
usually would lead to nonlinear constraints, but in our case, we can easily overcome
the problem and replace both, L(i) and L( j), by L. The reason for this is as follows:
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If a line � is not chosen for L(i) (i.e., � /∈ L(i)) then it has frequency f (i)
� = 0 and

is hence not relevant in the transportation problem. We finally receive the following
integer program referring to the usage of Wasserstein-line-based similarity.

(MP-W)

min
n∑

i=1

∑

�∈L
costl f

(i)
� (17a)

s.t. f (i)
min,e ≤

∑

�∈L:e∈�

f (i)
� ≤ f (i)

max,e for all e ∈ E, i = 1, . . . , n, (17b)

y(i)
�,t +

∑

�′∈L
y(i)
�,�′= f (i)

� for all � ∈ L, i = 1, . . . , n − 1, (17c)

y(i)
s,�′ +

∑

�∈L
y(i)
�,�′= f (i+1)

�′ for all �′ ∈ L, i = 1, . . . , n − 1, (17d)

n−1∑

i=1

( ∑

�,�′∈L
d(�, �′)y(i)

�,�′ + pen ·
∑

l∈L
(y(i)

�,t + y(i)
s,�)

) ≤ K , (17e)

y(i)
�,�′∈ IN0 for all �, �′ ∈ L, i = 1, . . . , n − 1, (17f)

y(i)
s,�, y

(i)
�,t∈ IN0 for all � ∈ L, i = 1, . . . , n − 1, (17g)

f (i)
� ∈ IN0 for all � ∈ L, i = 1, . . . , n. (17h)

The y(i)
�,t and y(i)

s,� variables control the flow to the helper sources and sinks and
are therefore included with the weight pen in the dissimilarity constraint (17e) while
(17c) and (17d) are the corresponding flow constraints for controlling the dissimilarity
between demand periods i and i + 1.

4 Experiments

We implemented the models presented in Sect. 3. In particular, we tested

(MP-F) frequency-based similarity with ‖ · ‖1, see Sect. 3.1.
(MP-B) For studying the binary-line-based similarity with increasing frequencies
we use the first model of Sect. 3.2, i.e., binary-line-based similarity with monotone
frequencies. We also experimented with the two variations of Sect. 3.2,

• the heuristic (MP-B_iter) and
• the extended version (MP-B_ext).

(MP-W)Wasserstein-line-based similarity, see Sect. 3.3.

We used datasets of the open-source public transport library LinTim, see [18, 25].
Next to the toy dataset (8 stops, 8 edges, 8 lines in line pool) which was used in
Examples 1–4, all models were additionally tested on Germany-rail, a close-
to-real-world representation of the long-distance railway network in Germany. This
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dataset consists of 250 stops and 326 edges. We chose demand periods with random
monotone demand data. All models used the same demand. All experiments were run
on an AMD Ryzen 7 5800X with 32 GB of RAM, using Gurobi, see [24], as integer
programming solver.

4.1 The Trade-off Between Costs and Similarity

For a general idea of the models, compare Figs. 5, 6, and 7. Here, we solved the
problems (MP-F), (MP-B) and (MP-W) for twoperiods onmonotonedemanddata. The
similarity parameter K of the respective model is plotted against the optimal objective
value of the corresponding integer program on Germany-rail. All experiments
where run until an increase of K did not improve the objective value anymore, i.e.,
the corresponding constraint was not active anymore in the integer program.

Note that the similarity parameters are not comparable between different dissimi-
larity measures. While for the binary-line-based model, a value of K = 16 is enough
to allow all possible line plans, K needs to be increased to around 70 for the other two
models to have the same effect. Nevertheless, we clearly can observe that minimizing
the dissimilarity and the costs are conflicting functions. The solutions for fixed K can
be interpreted as the Pareto solutions (found by the epsilon-constraint method) of the
bi-objective problem minimizing the costs and the dissimilarity simultaneously. The
upper left solution is a solution with dissimilarity of zero, i.e., when the same line
concept is chosen for both periods in (MP-F) and (MP-W). In (MP-B), a dissimilarity

Fig. 5 Solutions for different K for (MP-F), Germany-rail, two periods
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Fig. 6 Solutions for different K for (MP-B), Germany-rail, two periods

Fig. 7 Solutions for different K for (MP-W), Germany-rail, two periods
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of zero is already reached if L(1) = L(2) and the frequencies behave monotone. This
allows a bit more freedom on choosing the frequencies for the two-line concepts and
results in a better value for the costs in this case.

The lower right solution is the one with relaxed dissimilarity constraints. Since
some of our definitions of dissimilarity need restrictions different from the one which
include the similarity parameter K we can observe that we receive different solutions
even for the largest values of K . This is due to the requirement of identical line plans
in (MP-F) and due to the requirement that frequencies are only allowed to increase in
(MP-B). The Wasserstein-line-based model is able to compute an optimal solution to
(MP-Lower-Bound) if K is large enough. Note that the same holds for (MP-B_ext)
(not depicted here), since here the only restriction comes from the differences in the
line plans which gets redundant if K is large enough.

4.2 Effects on the Runtime

Two different parameters may have an effect on the runtime of the models for a
given instance, the number of lines in the line pool and the number of demand
periods considered.

Line Pool Size We compare the models on dataset Germany-rail for different line
pool sizes. We therefore tested all models for 10 different similarity parameters on
line pools of sizes 132, 423, 710, and 2770 lines. The average runtimes can be found
in Table 1.

First, note that even for the largest line pool with 2770 lines (which is from an
application point of view much more than usual) the runtime is still below an hour
also for the most time-consuming model. This shows that multiple periods can be
considered for the line planning process.We observe—as expected— that the runtime
is increasing for all models with increasing line pool size. This is especially the case
for the binary-line-based model, where the average runtime increases to over 46 min
for the largest line pool. This motivates the introduction of the iterative model (MP-
B_iter) in (13) which reduces the runtime by approx. 83% while only increasing
the corresponding objective function by 9%. For smaller line pools, the increase in
the objective function is smaller as well, between 2 and 5%. It may therefore be
beneficiary to use the iterative model, especially in cases where faster computation
times are required, e.g., when using metaheuristics where many solutions need to
be computed.

Table 1 Runtime for different models on different line pool sizes for 2 periods on Germany-rail

Model Line pool size: 132 423 710 2770

(MP-Lower-Bound) 0.97s 1.12s 1.20s 2s

(MP-F) frequency-based, ‖ · ‖1 1.28s 1.86s 7.32s 44s

(MP-B) binary-line-based 1.3s 3.27s 13.68s 3424s

(MP-B_iter) binary-line-based iterative 1.04s 1.36s 1.71s 574s

(MP-W) Wasserstein-line-based 2.17s 10.87s 31.75s 1105s
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Table 2 Runtime for different models for different numbers of demand periods on Germany-rail with
a line pool of 132 lines

Model # periods: 3 5 10 20

(MP-Lower-Bound) 1.22s 1.31s 1.35s 1.57s

(MP-F) frequency-based, ‖ · ‖1 1.34s 2.41s 3.49s 9.12s

(MP-B) binary-line-based 1.36s 1.41s 1.61s 2.1s

(MP-B_iter) binary-line-based iterative 1.27s 1.32s 1.48s 1.74s

(MP-B_ext) binary-line-based extended 1.29s 1.40s 1.80s 5.60s

(MP-W) Wasserstein-line-based 2.29s 3.02s 4.74s 10.09s

Number of Demand Periods Another effect may be the number of demand periods
considered. For this, all models were run 10 times with different values for the similar-
ity parameter K on dataset Germany-rail with 132 lines. The resulting runtimes
for different demand periods can be found in Table 2. The same experiment on a larger
line pool with 423 lines can be found in Table 3.We list the runtimes for 3,5,10, and 20
demand periods. Note that having line concepts for more than 10 demand periods does
not make sense in the real world, so the last column is mainly included for academic
reasons but has no practical relevance.

For the smaller line pool size, the main observation is that all models have an
acceptable runtime even for a large number of demand periods. More specifically, we
see a runtime increase mainly for the frequency-based model. This can be explained
by the number of variables which increases quadratically with the number of periods
in (MP-F). This is not the case for the binary-line-based models: In (MP-B) and in
(MP-B_iter) we only compare neighboring periods, hence adding new periods has no
effect. We found it interesting to also experiment with (MB-B_ext) which still gives
rather low computation times, in between (MP-B) and (MP-F). This is due to the fact,
that the number of constraints increases quadratically, but no new variables are needed.
For the larger line pool size, these effects are even more dominant: The runtimes for
the frequency-based model increase dramatically. For 10 periods, the duration was
already half an hour, and for 20 periods, the two runs we performed took 4.1 and
6.1h. Nevertheless, all other models were computable within a small runtime. The

Table 3 Runtime for different models for different numbers of demand periods on Germany-rail with
a line pool of 423 lines

Model # periods: 3 5 10 20

(MP-Lower-Bound) 0.99s 1.10s 1.30s 1.72s

(MP-F) frequency-based, ‖ · ‖1 1.90s 65.11s 1854.13s ≈18,000s

(MP-B) binary-line-based 4.82s 5.34s 9.14s 13.64s

(MP-B_iter) binary-line-based iterative 1.17s 1.29s 1.49s 1.95s

(MP-B_ext) binary-line-based extended 5.45s 7.78s 10.44s 46.64s

(MP-W) Wasserstein-line-based 11.36s 22.19s 67.87s 85.05s
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Wasserstein-based model shows the second-largest increase in runtimes, but even for
20 different demand periods its runtime is less than 90s.

4.3 An Illustrative Example

Finally, we use dataset toy with two periods and monotone demand to give
an intuitive idea of the results for the different models. For this, solutions with
similar costs where computed for (MP-F), (MP-B) and for (MP-W) and com-
pared to the solution of (MP-Lower-Bound). For the resulting line concepts see
Fig. 8.

(MP-Lower-Bound) contains an the optimal solution for period 1 (left side)
and the optimal solution for period 2 (right side). In order to make the solu-
tions of (MP-F), (MP-B), and (MP-W) comparable, the similarity parameters
K for these models are chosen such that the resulting costs of their
optimal solutions are very similar to each other, approx. 16% more than the
solution of (MP-Lower-Bound). We therefore obtain the most similar line con-
cepts for given costs for (MP-F), (MP-B), and (MP-W), respectively. In the
graphs of Fig. 8, the edges are denoted with their corresponding line id while
the thickness of an edge represents the frequency of its corresponding line in
this period.

In the figure, we see that the solution for period 2 consists of the same lines
for all three models (but their frequencies differ between the models) and is
rather close to the solution of the lower bound problem. We can use this to dis-
cuss the differences which get mainly visible for the first period. Looking at the
lower bound solution we see the “goal”, namely the cost-minimal solution without
any restriction.

First, we see the disadvantage of the frequency-based model (MP-F) when
comparing it to the other solutions. All lines of the second period need also be
present in the first period. This is realized by having many lines in period 1, all
with low frequencies. This is not the case for the binary-line-based model and
the Wasserstein-line-based model, where new lines can be operated in the sec-
ond period. The binary-line-based model creates one new line (number 8) while
the Wasserstein-line-based model even adds two lines (namely number 2 and
number 5). The difference between the binary-line-based model and the Wasserstein-
line-based model can be observed as well: The Wasserstein-line-based model is
allowed to decrease the frequency of a line, resulting in a lower frequency for
line 4 in period 2. Also, it does not need the unnecessary line between nodes
6 and 8. This flexibility while keeping similarity constraints is an advantage
of (MP-W).
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Fig. 8 Different line concepts for toy and different similarity models. Costs for the solutions in Fig. 8c–h
are similar, approx. 16% over the lower bound
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5 Conclusion

In this paper, we introduced the multi-period line planning problem, allowing to
compute different line concepts for different demand periods and therefore more
cost-efficient public transport systems, while maintaining similarity between the cor-
responding line concepts. For this, we introduced three different approaches for
(dis)similaritymeasures and corresponding integer programs to compute optimal solu-
tions. All models were implemented and tested w.r.t their runtimes and their solution
quality and (dis-)advantages of the different models are discussed.

Our findings are the following: First, multi-period line planning can be solved in
reasonable computation time for practically relevant instances. We hope that this is
an important step to real-world applicability of line planning procedures. Second, we
analyzed different models to compare the similarity of line concepts. We recommend
Wasserstein-based similarity, since it takes not only the number of different lines and
their frequencies into account, but also the similarity between the lines themselves
which is an important issue in practice.

Apart from studying more variations of similarity measures (including a discussion
of the similarity between lines) there are several new problems that arise from this
work. In public transport, different but similar line plans are a good first step for more
cost-efficient public transport systems, but the corresponding timetables need to be
optimized as well which is a new problem to consider. Additionally, the transition
period between different line plans needs to be considered, in the timetabling stage
but also in the stage of vehicle and crew scheduling. Another extension is the adaption
to other line planning models. Especially models integrating passenger routing are
interesting since these do not require the minimal lower edge frequencies fmin,e used
in this paper.

Furthermore, similar models for airline and maritime transportation (see [32] for
an example) are of interest as a topic of further research.

There also arise interesting theoretical questions. In this setting, we have defined
distance measures between line concepts. A theoretical analysis of these measures
(e.g., in which cases we obtain a metric and how to compute Barycenters for them, for
some first results, see [33]) is currently under research. This is in particular interest-
ing for the Wasserstein-based similarity measure for which we also anticipate other
applications.
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