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Abstract
We consider the mission and flight planning problem for an inhomogeneous fleet of
unmanned aerial vehicles (UAVs). Therein, themission planning problem of assigning
targets to a fleet of UAVs and the flight planning problem of finding optimal flight
trajectories between a given set of waypoints are combined into one model and solved
simultaneously. Thus, trajectories of an inhomogeneous fleet of UAVs have to be
specified such that the sum of waypoint-related scores is maximized, considering
technical and environmental constraints. Several aspects of an existing basic model
are expanded to achieve a more detailed solution. A two-level time grid approach is
presented to smooth the computed trajectories. The three-dimensionalmission area can
contain convex-shaped restricted airspaces and convex subareas where wind affects
the flight trajectories. Furthermore, the flight dynamics are related to the mass change,
due to fuel consumption, and the operating range of every UAV is altitude-dependent.
A class of benchmark instances for collision avoidance is adapted and expanded to fit
our model and we prove an upper bound on its objective value. Finally, the presented
features and results are tested and discussed on several test instances using GUROBI
as a state-of-the-art numerical solver.

Keywords Mixed-integer nonlinear programming · Mission planning ·
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1 Introduction

Due to their variety and flexibility, unmanned aerial vehicles (UAVs) have many pos-
sible applications. Next to the long-studied military use [6], also many companies
make efforts to incorporate them into their processes, e.g., in parcel delivery [26], but
for an efficient and autonomous use, it is crucial to plan the considered task carefully
since not only the technical parameters of the used UAV but also the weather and
maybe other airborne UAVs must be taken into account. Furthermore, the mission
area can contain airports, power plants, or mountains, restricting the airspace and the
possible routes. Incorporating all these conditions into the planning process can make
the resulting problem very intricate to solve.

The flight planning problem for a given number of inhomogeneous UAVs asks to
calculate a flight trajectory between a set of given waypoints for any considered UAV,
complying with its technical parameters and the related flight dynamics. The mission
planning problem for an inhomogeneous fleet of UAVs can be seen as a version of
the Team Orienteering Problem with time windows (TOPTW). Therein, a group of
participants wants to maximize its score by visiting waypoints from a given set, each
equipped with a score and a time window. The complexity arises from the limited
number of paths that can be generated and that there are usually far more waypoints
than participants. Since this problem is a variant of the NP-hard Orienteering Problem
(OP) [3], it is difficult to solve instances to proven global optimality. A survey about
the OP and its variants, also mentioning the TOPTW, can be found in [29].

We consider the mission and flight planning problem for an inhomogeneous fleet
of fixed-winged UAVs as a variant of the TOPTW, where further constraints regarding
the flight dynamics of the considered UAVs and the environment have to be taken into
account. UAVs can navigate through the air almost freely with some related conditions
like minimum velocity, maximum altitude, or restricted airspaces. Furthermore, safety
distances in aviation are critical. Wind affects the flight of every UAV since their
movement is always relative to the surrounding atmosphere. Next to environmental
parameters, the mass of a flying object has a strong influence on its flight dynamics.
Several characteristics, e.g., maximum acceleration, maximum reachable altitude, or
fuel consumption, depend on it [25]. Finally, the operating range has to be observed
if the connection of a UAV and its ground control station is not a satellite link, but a
UHF/VHF connection instead.

In the literature, the mission planning problem for UAVs applies to a large number
of practical tasks, e.g., military operations [17], the observation of icebergs [1], or the
reconstruction of terrain from two-dimensional data [28], but often, the calculation
of the related flight trajectories is simplified or neglected. An extensive survey on the
evolving field of civil applications for UAVs and possible optimization approaches can
be found in [20]. Another comprehensive reviewwith a theoretical focus is given in [7],
highlighting different modeling approaches for the trajectory optimization problem
and providing a taxonomy of 70 papers into the discussed methods by a large set of
attributes. Furthermore, several directions for future research are identified therein.

Due to the great interest in the autonomous use of UAVs and the large number of
related optimization approaches, we only highlight some recent publications, where
mission and flight planning is considered. Ramirez et al. [21] use a genetic algorithm
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to assign several tasks to a fleet of inhomogeneous UAVs considering technical param-
eters of the different types of UAVs, restricted airspaces, and time windows. Zhen,
Xing, and Gao [32] combine an ant colony algorithm for assigning missions to a set of
homogeneous UAVs with a Dubins curve to generate the trajectory of every UAV. The
resulting paths are affected by technical parameters of the considered UAV, collision
avoidance constraints, and restricted airspaces. Ribeiro et al. [24] use a mixed-integer
linear program (MILP) to organize the observation of conveyor belts in a mining
site. Their approach is rather combinatorial without exact trajectories but incorpo-
rates energy consumption and the possibility to place and use charging stations. Li et
al. [18] apply an ant colony algorithm combined with the metropolis criterion to the
problem of finding optimal trajectories for a fleet of homogeneous UAVs on a grid
map, regarding a given safety distance between the UAVs and given obstacles. Glock
and Meyer [11] present a neighborhood search algorithm to assign possible sampling
locations after fire or chemical incidents to a set of UAVs and plan their trajecto-
ries to maximize the collected information in a given time horizon. Flight dynamics,
i.e., maximum velocity, acceleration, and battery level of the homogeneous fleet, are
translated into travel times between target locations. Coutinho, Fliege, and Battarra
[8] formulate the problem of surveying a set of locations in the aftermath of a disaster
by pilotless gliders as a mixed-integer nonlinear problem (MINLP). By applying sev-
eral linearization techniques, they achieve an MILP computing trajectories for several
aircrafts from a starting point to a set of possible landing areas within an obstacle-free
airspace assuming constant weather conditions. Cheng, Adulyasak, and Rousseau [5]
derive a branch-and-cut algorithm to solve anMINLP describing the problem ofmulti-
trip parcel delivery by a homogeneous fleet of UAVs. Considering constant altitude
and velocity, their energy consumption is modeled using a mass-dependent, nonlinear
function, and trajectories are given by distances and travel times. Thibbotuwawa et
al. [27] set up anMILP to plan the supply of a set of customers with an inhomogeneous
fleet of UAVs under weather uncertainty. Their proposed model incorporates several
weather zones, each with related wind conditions, energy consumption, and collision
avoidance. In terms of the flight dynamics, it lacks the exact trajectory, only computing
the sequence of visited customers. Kai et al. [15] give an MILP to plan the trajectory
of a UAV visiting a given set of waypoints taking into account detailed flight dynam-
ics. In terms of environmental constraints, the therein presented model lacks weather
conditions and restricted airspaces. Xia, Wang, and Wang [30] formulate the problem
of controlling moving ships in emission control areas by UAVs, stationed at the coast,
as an MILP and compare it with a Lagrangian relaxation. The UAVs are assigned to
computed waypoints, where they meet a vessel. Though, besides the battery level, no
flight dynamics are taken into account. Albert, Leira, and Imsland [1] present an inte-
ger linear optimization model for the observation of drifting icebergs in arctic areas
to support shipping using a homogeneous fleet of UAVs deployed at a ship. Their
approach uses Dubins curves to compute trajectories and can update the present path
during the mission by a new run of the optimization model. But therefore, it neglects
most of the flight dynamics to speed up the solution process. Chen et al. [4] consider a
UAV as particle affected by different force fields and plan trajectories avoiding given
obstacles. The resulting problem is solved using optimal control theory but neglects
flight dynamics and weather conditions.
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Within the flight planning process, collision avoidance and conflict resolution is
a crucial field to ensure the safe operation of aircrafts and avoid significant harm.
It considers a given number of aircraft within the same airspace and asks for the
best control changes for each of them to achieve collision-free trajectories. If the
problem is stated in three dimensions, also altitude changes are possible to resolve
conflicts. Although the process of solving potential conflicts between midair aircraft
is automated [16], considering this aspect already in the operation planning phase can
reduce the number of conflicts and errors later.

An extensive review about the field of conflict detection and resolution and related
solution methods can be found in [23]. Due to its currency, we further mention only
another forthcoming approach. In Hoch et al. [13], consider collision avoidance as a
non-stop disjoint trajectory problem, where commodities are shipped through a time-
expanded graph without coming across each other. They study the general properties
of this problem and examine different graph classes which can be applied as take-
off/landing phase with several aircraft or airspaces with a fixed number of airports and
aircraft. Due to the underlying network, this approach lacks detailed flight trajectories.

We contribute to the state-of-the-art by considering the mission and flight planning
problem for an inhomogeneous fleet of UAVs in a mixed-integer non-linear program-
ming framework, including detailed flight dynamics of the different UAVs, the effect
of wind in different subareas and altitudes, convex shaped restricted airspaces, and col-
lision avoidance. Furthermore, we extend several of its aspects to enhance the quality
of the computed solution. The novelty of our approach is the combination of assigning
waypoints to the participating UAVs and calculating detailed flight trajectories at the
same time. This paper extends the work presented in [10]. The newly incorporated
aspects are the following: By the combination of two different time discretizations, the
computed flight trajectories have an increased level of detail. We incorporate mass-
dependent maximum velocity, maximum acceleration, maximum reachable altitude,
and amass-dependent fuel consumption into the presentedmodel. The operating range
of every UAV is defined dependent on altitude, assuming no sky propagation, and the
height of the used antenna. Restricted airspaces are generalized to convex shaped
areas and wind affects any UAV within specified convex subareas. Considering colli-
sion avoidance, we adapt and extend a class of benchmark problems to fit our model
and derive upper bounds for their necessary amount of discrete time steps in the two-
and three-dimensional case.

This paper is structured as follows. In Sect. 2, the basic model is set up by applying
the two-level time discretization. Furthermore, the computation of the UAVs flight
dynamics, the operating range, the restricted airspaces, and the influence of wind
are expanded to allow more realistic constraints and achieve high-quality solutions.
In Sect. 3, a class of benchmark instances for collision avoidance is adapted to the
introduced model to study the efficiency of the collision avoidance constraints and
upper bounds for the necessary time horizon are given. The effect of the derived
modifications and results is tested in several scenarios inSect. 4, including the influence
of the time discretization on the computation time, comparison between the derived
upper bounds and the computed optimal solution for collision avoidance problems, and
a detailed discussion of particular aspects of our model. We summarize the presented
results and give directions for future work in Sect. 5.
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2 Two-time-level model

If the velocity and the acceleration can change only at some discrete time step, the
step length has to decrease to smoothen the computed trajectories. Thus, more time
steps are necessary to cover the same time interval, leading to more complex instances
and slower solution processes. In the following, we present a possibility to achieve
smooth trajectories by using two different, coupled time discretizations and apply it
to the model in [10]. Afterwards, the derived two-level time discretization model is
extended in several ways. A list of all used sets can be found in Table 1. The parameters
and variables within the two-level time discretization model are given in Tables 2 and
3, while the additional parameters and variables of the complete extended model are
described in Tables 4 and 5. Note, that for vector valued parameters and variables the
first component refers to the x-direction, the second to the y-direction, and the third to
the z-direction, respectively. The components of a vector valued parameter or variable
are marked by their respective coordinate direction as a superscript, e.g., the position
vector r contains the components (r x , r y, r z)T .

The time horizon [0,�t · T ], for a given number of time steps T and time step length
�t , is discretized in two different ways to achieve a better discretization without an
increase in the number of time steps and discrete decision variables. Let n f denote
the number of fine time steps between two adjacent time steps in {0, 1, . . . , T }. For
the first discretization, the step size �t is applied, but the set T contains all multiples
of n f + 1 in the interval

[
0, (n f + 1)T

]
, i.e., T = {0, n f + 1, . . . , (n f + 1)T }.

This discretization is applied to the binary variables to model the possible decisions.
Note, that |T | is constant for varying values of n f . Then, we embed T in the superset

Table 1 Overview of the sets used in the extended mission and flight planning model

Symbol Index Definition

Lu i Set of altitude bands of UAV u

L0,u = Lu ∪ {0} i Set of altitude bands of UAV u
including the ground

P p Set of all wind zones

Q q Set of all restricted airspaces

T = {0, n f + 1, . . . , (n f + 1)T } t Set of discrete time steps

T − = {0, n f + 1, . . . , (n f + 1)T − 1} t Set of discrete time steps excluding
the last one

T f = {0, 1, . . . , (n f + 1)T } t Set of refined discrete time steps

T −
f = {0, 1, . . . , (n f + 1)T − 1} t Set of refined discrete time steps

excluding the last one

Tw ⊆ T t Set of time steps at which waypoint
w can be visited

U u Set of all considered UAVs

Vu j Set of throttle bands of UAV u

W w Set of all waypoints to be visited
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Table 2 Overview of the
parameters used in the mission
and flight planning model of
Sect. 2

Symbol Domain Definition

au R+ Maximum acceleration of UAV u

cq (t) R
3 Location of the top-right corner of

restricted airspace q at time step t

cq (t) R
3 Location of the bottom-left corner of

restricted airspace q at time step t

Fu R+ Maximum fuel of UAV u in weight
units

Gu R
3 Location of the ground control

station for UAV u

Hu,i R+ Altitude limit of UAV u in altitude
band i

hu R+ Maximum flight altitude of UAV u

hu [0, hu ] Minimum flight altitude of UAV u

Mi
R+ Sufficiently large constants with

different magnitude

For i ∈ {dist, air , f uel, alt, vel}
n f N ∪ {0} Number of fine time steps

pw R
3 Location of waypoint w

R0
u R

3 Start location of UAV u

RT̃
u R

3 End location of UAV u

Sw R+ Score value for visiting waypoint w

v
z,+
u R+ Maximum climb rate of UAV u

v
z,−
u R+ Maximum descent rate of UAV u

vu R+ Maximum velocity of UAV u

vu [0, vu ] Minimum velocity of UAV u

w(t) R
2 Horizontal wind velocity at time step

t

T N Number of coarse discrete time steps

�t R+ Length of one discrete time step

�t f R+ Length of one refined discrete time
step

δu,w

[
0, �u

]
Maximum operational distance of
UAV u to waypoint w

ε R
3+ Required minimum safety distance

between two UAVs

ηu,i, j R+ Fuel consumption of UAV u in
altitude band i and throttle band j

θu, j R+ Velocity limit of UAV u in throttle
band j

�t� T Fine-to-coarse mapping for time
discretization

ξu R+ Fuel surplus of UAV u for climbing

�u R+ Maximum operating range of UAV u
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Table 3 Overview of the variables used in the mission and flight planning model of Sect. 2

Symbol Domain Definition

au(t) R
2 Variable indicating the acceleration of UAV u at time

step t in horizontal direction

bu(t) {0, 1} Binary variable indicating whether UAV u is airborne at
time step t

b+
u (t) {0, 1} Binary variable indicating whether the task of UAV u

started at time step t or before

b−
u (t) {0, 1} Binary variable indicating whether UAV u is still on its

way at time step t

du,w(t) {0, 1} Binary variable indicating whether UAV u visits
waypoint w at time step t

eu,u′ (t) {0, 1}3 Binary variable indicating whether the distance between
UAVs u, u′ is smaller than the safety distance in
top-right direction

eu,u′ (t) {0, 1}3 Binary variable indicating whether the distance between
UAVs u, u′ is smaller than the safety distance in
bottom-left direction

fu,q (t) {0, 1}3 Binary variable indicating whether UAV u is below-left
the top-right corner of the restricted airspace q at time
step t

fu,q (t) {0, 1}3 Binary variable indicating whether UAV u is upper-right
the bottom-left corner of the restricted airspace q at
time step t

gu(t) R+ Variable indicating the amount of remaining fuel of
UAV u at time step t

ru(t) R
3 Variable indicating the position of UAV u at time step t

su,i, j (t) {0, 1} Binary variable indicating whether UAV u is in altitude
band i and throttle band j at time step t

vu(t) R
2 Variable indicating the horizontal velocity of UAV u at

time step t

v
z,+
u (t)

[
0, vz,+u

]
Variable indicating the climb rate of UAV u at time step
t

v
z,−
u (t)

[
0, vz,−u

]
Variable indicating the descent rate of UAV u at time
step t

T f = {0, 1, . . . , (n f + 1)T } with the corresponding step length �t f = �t
n f +1 to

cover the same time horizon. This fine time approximation is applied to all continuous
variables to refine the computed trajectories by controlling n f . Furthermore, a function
�t� : T f → T of the form

�t� =
⌊

t

n f + 1

⌋
(n f + 1) (1)
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Table 4 Overview of the additional parameters introduced in Sects. 2.1–2.5

Symbol Domain Definition

Au R+ Height of the antenna at the ground control station of
UAV u

C R+ Sufficiently large constant

cq,i (t) R
3 Normal vector of hyperplane i of restricted airspace q at

time step t

crhsq,i (t) R Right-hand side of the coordinate form related to
hyperplane i of restricted airspace q at time step t

E R+ Radius of the earth

mu R+ Empty weight of UAV u

N P
p N Number of hyperplanes describing wind zone p

NQ
q N Number of hyperplanes describing restricted airspace q

np,i (t) R
3 Normal vector of hyperplane i of wind zone p at time

step t

nrhsp,i (t) R Right-hand side of the coordinate form related to
hyperplane i of wind zone p at time step t

v
z,+,0
u R+ Maximum climb rate of UAV u at takeoff

v
z,+
u,i, j R+ Maximum climb rate of UAV u in altitude band i and

throttle band j

v
z,−
u,i, j R+ Maximum descend rate of UAV u in altitude band i and

throttle band j

vu,i R+ Maximum velocity of UAV u in altitude band i

wl (t) R
2 Horizontal wind velocity in altitude band l at time step t

θu,i, j R+ Velocity limit of UAV u in altitude band i and throttle
band j

�alt R+ Change of operating range per unit of altitude

�ini t R+ Operating range on ground level

ϕaccu R− Obtainable percentage of the maximum velocity and
acceleration per unit of fuel for UAV u

ϕ
alt,1
u [0, 1) Proportion of maximum fuel for which UAV u can

reach its maximum altitude

ϕ
alt,2
u [0, 1] Proportion of maximum altitude which UAV u can

reach with maximum fuel capacity used

ϕ
f uel
u R Additional fuel consumption for every remainig unit of

fuel of UAV u

is introduced to map the fine time steps to their coarse counterpart, always rounding
down. As abbreviations T − = T \ {(n f +1)T } and T −

f = T f \ {(n f +1)T } are used.
Figure 1 holds an illustration of this two-level time grid approach.

Adetailed discussion of the following constraints can be found in [10]. Furthermore,
we use the following settings assumed therein:

– An inhomogeneous fleet of fixed-winged, fuel-driven UAVs is considered
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Table 5 Overview of the additional variables introduced in Sects. 2.1–2.5

Symbol Domain Definition

bu(t) {0, 1} Binary variable indicating whether UAV u is airborne
and has minimum velocity at time step t

fu,q,i (t) {0, 1} Binary variable indicating whether UAV u is inside
restricted airspace q regarding hyperplane i at time
step t

wu,p,i (t) {0, 1} Binary variable indicating whether UAV u is inside
wind zone p regarding hyperplane i at time step t

wu,p(t) {0, 1} Binary variable indicating whether UAV u is inside
wind zone p at time step t

Fig. 1 Sets and time step lengths for the layers T and T f of the two-level time grid approach

– Velocities are calculated using the TC-TH-W vector triangle, where TH is the true
heading vector, W is the wind vector, and by vector addition obtained is the true
course vector TC=TH+W

– Every UAV u ∈ U chooses the highest allowed velocity θu, j for every velocity
band j ∈ Vu since the fuel consumption rate ηu,i, j depends only on the considered
velocity band and not on the chosen velocity within it.

Applying the time step sets T and T f to the respective group of variables and the
mapping (1) to match them, the mission and flight planning problem, incorporating
the two-time-level discretization, is given by

ru(0) = R0
u ∀u ∈ U , (2.1)

ru((n f + 1)T ) = RT̃
u ∀u ∈ U , (2.2)

‖ru(t) − Gu‖2 ≤ �u ∀u ∈ U , t ∈ T f , (2.3)

hubu(�t�) ≤ r zu(t) ≤ hubu(�t�) ∀u ∈ U , t ∈ T f , (2.4)

r iu(t + 1) = r iu(t) + �t f v
i
u(t) + �t f w

i (�t�)bu(�t�) + (�t f )2

2
aiu(t)

∀u ∈ U , t ∈ T −
f , i ∈ {x, y}, (2.5)

viu(t + 1) = viu(t) + �t f a
i
u(t) ∀u ∈ U , t ∈ T −

f , i ∈ {x, y}, (2.6)

r zu(t + 1) = r zu(t) + �t f
(
vz,+u (t) − vz,−u (t)

) ∀u ∈ U , t ∈ T f , (2.7)
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vu(t)bu(�t�) ≤ ‖vu(t)‖2 ≤ vu(t)bu(�t�) ∀u ∈ U , t ∈ T f , (2.8)

au(t)bu(�t�) ≥ ‖au(t)‖2 ∀u ∈ U , t ∈ T f , (2.9)

bu(t) = b+
u (t) + b−

u (t) − 1 ∀u ∈ U , t ∈ T , (2.10)

b−
u (t + n f + 1) ≤ b−

u (t) ∀u ∈ U , t ∈ T −, (2.11)

b+
u (t) ≤ b+

u (t + n f + 1) ∀u ∈ U , t ∈ T −, (2.12)

‖ru(t) − pw‖3 ≤ δu,w + Mdist (1 − du,w(t)) ∀u ∈ U , w ∈ W, t ∈ Tω, (2.13)
∑

u∈U ,t∈Tw

du,w(t) ≤ 1 ∀w ∈ W, (2.14)

cq(�t�) − Mdist fu,q(�t�) ≤ ru(t) ≤ cq(�t�) + Mdist fu,q(�t�)

∀u ∈ U , q ∈ Q, t ∈ T f , (2.15)

1 · fu,q(t) + 1 · fu,q(t) ≤ 5 ∀u ∈ U , q ∈ Q, t ∈ T , (2.16)

ru′(t) + ε − Mdisteu,u′(�t�) ≤ ru(t) ≤ ru′(t) − ε + Mdisteu,u′(�t�)

∀u, u′ ∈ U : u < u′, t ∈ T f , (2.17)

1 · eu,u′(t) + 1 · eu,u′(t) ≤ 7 − bu(t) − bu′(t)

∀u, u′ ∈ U : u < u′, t ∈ T , (2.18)

gu(0) = Fu ∀u ∈ U , (2.19)

gu(t + 1) = gu(t) − �t f

⎛

⎝ξuv
z,+
u +

∑

i∈Lu , j∈Vu

ηu,i, j su,i, j (�t�)

⎞

⎠

∀u ∈ U , t ∈ T −
f , (2.20)

∑

i∈Lu , j∈Vu

su,i, j (t) = bu(t) ∀u ∈ U , t ∈ T , (2.21)

∑

j∈Vu

θu, j

⎛

⎝
∑

i∈Lu

su,i, j (�t�)

⎞

⎠ = ‖vu(t)‖2 ∀u ∈ U , t ∈ T f , (2.22)
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∑

i∈Lu

Hu,i−1

⎛

⎝
∑

j∈Vu

su,i, j (�t�)

⎞

⎠ ≤ r zu(t) ≤
∑

i∈Lu

Hu,i

⎛

⎝
∑

j∈Vu

su,i, j (�t�)

⎞

⎠

∀u ∈ U , t ∈ T f , (2.23)

with the objective function

max
∑

u∈U ,w∈W,t∈Tω

Swdu,w(t) − 1

(n f + 1)T

∑

u∈U ,t∈T

t

Mair
bu(t)

+ 1

|T f |
∑

u∈U ,t∈T f

(
gu(t)

M f uel
+ r zu(t)

Malt
− ‖vu(t)‖2

Mvel

)
, (3)

where ‖.‖2 and ‖.‖3 denote the two and three-dimensional Euclidean norm, respec-
tively. Note, that the components for maximizing altitude and minimizing velocity
in (3) are not necessarily required to minimize the fuel usage, but our experience
showed that it is beneficial for the performance of the simplex method to incorpo-
rate all variables with nonzero coefficients in the objective function, if they affect the
optimization goal.

Constraints (2.1) and (2.2) fix the respective start and end location of every UAV,
while (2.3) limits their maximum operating range. The maximum and minimum alti-
tude of the considered UAVs is restricted by (2.4). Equations (2.5) and (2.6) are a
discretization of the Newton’s equations of motion to compute the exact flight trajec-
tory together with the altitude changes in (2.7). The UAVs velocity and acceleration
is bounded by (2.8) and (2.9). In (2.10)–(2.12) it is ensured, that any UAV can only
take off once and remain on the ground after landing. The visit of the given waypoints
is managed by (2.13) and (2.14), guaranteeing that the respective UAV is inside the
required operational range and every waypoint is only visited once. Constraints (2.15)
and (2.16) let a UAV avoid the given restricted airspaces, while (2.17) and (2.18) man-
age the collision avoidance between any pair of UAVs. The correct computation of the
UAVs fuel consumption is ensured by Eqs. (2.19)–(2.23). In the objective function (3),
the primary goal is to maximize the score of visited waypoints within the given time
horizon. At the same time, on a subordinate level the used trajectory should be most
economical in terms of fuel by reducing the airborne time and the used amount of fuel,
choosing low velocity, and flying in high altitude. All of these aspects reduce fuel on
their own, but their importance can be weighted arbitrarily by choosing appropriate
values for the constants Mair , M f uel , Malt , and Mvel .

By increasing the number of fine time stepsn f , the calculation of theflight dynamics
in model (2), consisting of the constraints (2.1)–(2.23), is done more often between
two adjacent decision time steps in T . This gives the possibility to achieve more
detailed flight trajectories without increasing the number of discrete decision variables
and leads to a less complex model compared to an approach using a single time
discretization for all variables with the same level of detail. The Euclidean norms in
the presented model have to be linearized to achieve a mixed-integer linear problem.
We achieve this according to the methods shown in [10].
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2.1 Flight dynamics

In the given model, the left part of Eq. (2.8) forces every UAV to fly with at least
minimumvelocity as soon as it takes off. If one of the deployedUAVs cannot accelerate
to its minimum velocity within a single time step, it would have to stay on the ground
and thus would not be used for mission planning. To overcome this drawback, we
define a new binary variable bu(t), indicating whether the minimum velocity has to
hold.

Proposition 1 Let tu :=
⌈

vu
au�t

⌉
for UAV u ∈ U . Then the equation

bu(t) ≥
tu∑

k=−tu

bu(t + k(n f + 1)) − 2tu (2.24)

∀u ∈ U , t ∈ T ∩ {(n f + 1)tu, . . . , (n f + 1)(T − tu)}

ensures bu(t) = 1 if and only if the UAV has minimum velocity.

Proof Due to constraint (2.6), the UAVs velocity is a linear function of its acceleration.
Thus, the real time for reaching minimum velocity vu with maximum acceleration au
is given by vu

au
. Conversion into a number of discrete time steps tu ∈ N leads to

tu :=
⌈

vu
au�t

⌉
.

To ensure that bu(t) is set to one tu time steps after the UAV starts to move or before
it attempts to land, we relate it to bu(t). Then, bu(t) = 1 has to hold, if bu(t ′) = 1
for all t ′ ∈ T ∩ {t − (n f + 1)tu, . . . , t + (n f + 1)tu}. To relate all 2

(
tu + 1

)
binary

variables bu(t ′) in this interval to a single binary decision, 2tu is subtracted leading to
the desired Eq. (2.24). �

To incorporate the new variable, the minimum velocity has to hold only tu time steps
after takeoff. Thus, constraint (2.8) changes to

vubu(�t�) ≤ ‖vu(t)‖2 ≤ vubu(�t�) ∀u ∈ U , t ∈ T f . (2.8’)

Accordingly, the fuel consumption Eq. (2.21) is adjusted to the new variable by

∑

i∈Lu , j∈Vu

su,i, j (t) = bu(t) ∀u ∈ U , t ∈ T . (2.21’)

Otherwise, Eqs. (2.21) and (2.22) would force any UAV that cannot accelerate to its
minimum velocity in one timestep to stay on the ground. Linking the fuel consumption
to the new variables bu(t) by (2.21’) may lead to a underestimation of the burned fuel
during the tu time steps for the takeoff and the landing phase, where the UAV u ∈ U
is possibly moving with a velocity lower than its minimum velocity while it holds
bu(t) = 0. The fuel surplus for climbing ξu depends only on the UAVs current climb
rate and thus is not affected by this changes. By defining ξu for every altitude band
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and adjusting its value for low altitudes, the underestimation of burned fuel during
the takeoff could be compensated. For descending, there is no fuel used due to the
assumption of descending by the force of gravity.

Due to the physics of flight, a UAV slower than minimum velocity cannot ascend
and therefore not take off. Thus, similar to the minimum velocity, the left part of
Eq. (2.4) eliminates any UAV from the planning process if it cannot accelerate to its
minimum velocity and ascend to the minimum altitude within a single time step. To
avoid this, the variable bu(t) also is incorporated into Eq. (2.4), leading to

hubu(�t�) ≤ r zu(t) ≤ hubu(�t�) ∀u ∈ U , t ∈ T f . (2.4’)

We consider the minimum altitude small enough such that any UAV with minimum
velocity can ascend to it within a fine time step.

Another occurring phenomenon in aviation is the altitude- and velocity-depen-
dent change of flight dynamics due to decreasing thrust in higher altitudes caused by
decreasing air temperature and pressure. It affects the maximum velocity as well as the
maximum climb and descent rates. For the maximum velocity, altitude dependence is
incorporated into the model by defining a maximum velocity vu,i of UAV u ∈ U for
every of its altitude bands i ∈ Lu and replace Eq. (2.8’) by

vubu(�t�) ≤ ‖vu(t)‖2 ≤ vubu(�t�) +
∑

i∈Lu

(
vu,i − vu

) ∑

j∈Vu

su,i, j (�t�) (2.8”)

∀u ∈ U , t ∈ T f .

Besides this family of constraints, an altitude-dependent maximum velocity has to be
taken into account in the calculation of the fuel consumption. By redefining parameter
θu, j to θu,i, j , describing the velocity of UAV u ∈ U in throttle band j ∈ Vu and
altitude band i ∈ Lu , Eq. (2.22) changes to

∑

i∈Lu , j∈Vu

θu,i, j su,i, j (�t�) = ‖vu(t)‖2 ∀u ∈ U , t ∈ T f . (2.22’)

For climb and descent rates, the velocity has to be taken into account, next to the
altitude. In a similar way to the velocity, the related parameters change to v

z,+
u,i, j and

v
z,−
u,i, j , describing the maximum climb and descent rate of UAV u ∈ U for altitude

band i ∈ Lu and throttle band j ∈ Vu , respectively. Thereby, the upper bounds for the
variables v

z,+
u (t) and v

z,−
u (t) are no longer constant. Thus, the new constraint for the

upper limit of the descent rate is given by

vz,−u (t) ≤
∑

i∈Lu , j∈Vu

su,i, j (t)v
z,−
u,i, j ∀u ∈ U , t ∈ T f . (2.25)

For the climb rate, the approach is a bit different since a constraint similar to (2.25)
would reject any takeoff. Therefore, a new parameter vz,+,0

u is introduced for the
maximum climb rate at takeoff for every UAV u ∈ U and it is adjusted to get the
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maximum midair climb rates vz,+u . The constraint, limiting the climb rate for every
UAV, then has the form

vz,+u (t) ≤ vz,+,0
u −

∑

i∈Lu , j∈Vu

su,i, j (t)
(
vz,+,0
u − v

z,+
u,i, j

)
∀u ∈ U , t ∈ T f . (2.26)

In model (2), the maximum acceleration of the UAVs is assumed to be constant in
every situation. Thus, the computed flight trajectories are inaccurate since in practice
themaximally allowed acceleration at the takeoff is significantly higher than during the
flight. This results either in underestimation during the takeoff phase or overestimation
when in midair. We follow the approach given in the Base of Aircraft Data (BADA)
[19] of the Eurocontrol Experimental Centre. Therein, a reduction factor from takeoff
thrust to cruise thrust applies with a value of CTcr = 0.95. It is incorporated into the
model by changing Eq. (2.9) to

au(t)
(
bu(�t�) − 0.05bu(�t�)

) ≥ ‖au(t)‖2 ∀u ∈ U , t ∈ T f . (2.9’)

2.2 Fuel-dependent flight dynamics

The flight dynamics in model (2) are independent of the mass of the considered UAVs,
but this assumption only holds for electrical systems, where the weight of the battery
is constant. For UAVs with liquid fuels, the mass affects the maximum velocity, maxi-
mum acceleration, maximum altitude, and fuel consumption rate [25] of an aircraft by
weight reduction due to burned fuel. Since the portion of the fuel on the gross take-off
weight of a UAV can go up to 43% [9], this has a great impact on the mission planning
scenario. To include these fuel-dependent flight dynamics into the proposed model,
several changes are necessary.

In terms of the altitude, we assume an affine-linear dependency between the amount
of remaining fuel and the reachable altitude.We expect the empty weightmu of UAV u
to include a small fuel reserve. Let UAV u ∈ U reach altitude ϕ

alt,2
u hu for its maximum

amount of fuel Fu and its maximum altitude hu for ϕ
alt,1
u Fu , with ϕ

alt,1
u ∈ [0, 1) and

ϕ
alt,2
u ∈ [0, 1]. The resulting linear function is displayed in Fig. 2 and gives the

constraint

r zu(t) ≤ hu

⎛

⎝1 +
(
1 − ϕalt,2

u

) ϕ
alt,1
u Fu − gu(t)

Fu
(
1 − ϕ

alt,1
u

)

⎞

⎠ ∀u ∈ U , t ∈ T f . (2.27)

Besides, the right part of constraint (2.4’) is still necessary to limit the reachable
altitude to its maximum value and set the maximum altitude to zero when the UAV is
on the ground.

To include the mass of the remaining fuel into the calculation of the velocity and
the acceleration, we have the following proposition.

123



Two-time-level mission and flight planning UAV 307

Fig. 2 Linear dependency
between the amount of fuel and
the reachable altitude

Proposition 2 For any UAV u ∈ U and time step t ∈ T f , the linear approximations

‖vu(t)‖2 ≤
(

ϕacc
u

gu(t)

Fu + mu
+ 1

)
vu,i + V u

⎛

⎝1 −
∑

j∈Vu

su,i, j (�t�)

⎞

⎠ (2.28)

∀i ∈ Lu

and

‖au(t)‖2 ≤
(

ϕacc
u

gu(t)

Fu + mu
+ 1

)
au, (2.29)

with V u = maxi∈Lu vu,i and

ϕacc
u = (mu + Fu)

2
(
(Fu − 2mu)

√
m2

u + Fumu + 2m2
u

)
− 3

2 F
2
u

F3
u

, (4)

minimizes the quadratic error of the mass-dependent maximum velocity and acceler-
ation, respectively.

Proof We compare the givenmaximum velocity vu related tomu with another velocity
ṽu for a UAV with more remaining fuel. Since the generated thrust of UAV u ∈ U is
limited, it can reach a certain kinetic energy Emax

u = 1
2muv

2
u for a given time. Thus,

by energy preservation, we get the relation

1

2
(mu + gu(t))ṽ

2
u = 1

2
muv

2
u ⇒ ṽu =

√
mu

mu + gu(t)
vu . (5)
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Using the equation a = v
t , in the same way the expression

ãu =
√

mu

mu + gu(t)
au (6)

can be derived. Since we consider the maximum velocity and acceleration in (5)
and (6), we restrict on the positive solution of the respective square root. The non-
linear factor for Eqs. (5) and (6) is the same. Thus, we only have to perform one least
squares approximation of the form

min
ϕacc
u

∫ Fu

0

(√
mu

mu + gu(t)
−
(

ϕacc
u

gu(t)

mu + Fu
+ 1

))2

dgu(t), (7)

where we fix the absolute term of the linear function to 1 to ensure that the maximum
velocity and acceleration is attained according to our assumption. The factor 1

mu+Fu
is applied to have a greater numerical value for ϕacc

u and thus avoid numerical issues.
The solution of (7) gives the desired parameter ϕacc

u for the obtainable percentage of
the maximum velocity and acceleration per unit of fuel for UAV u ∈ U . Replacing
the factor bu(�t�) − 0.05bu(�t�) by the computed linear function ϕacc

u
gu(t)
Fu+mu

+ 1
in (2.9’), it gives the desired mass-dependent maximum acceleration (2.29) for every
airborne UAV u ∈ U in time step t ∈ T f . In terms of the mass-depedent maximum
velocity, the above approach is used and slightly modified since the altitude depen-
dence in (2.8”) calls for the incorporation of an sufficiently large additive constant

V u

(
1 −∑

j∈Vu
su,i, j (�t�)

)
with V u = maxi∈Lu vu,i to avoid nonlinearities. This

leads to the remaining Eq. (2.28). �

Note, that the used approach has no underlying physical model and is just one possi-
bility to incorporate measured and approximated data into the problem. It is similar to
the method used by Eurocontrol [19], a European organization for air traffic manage-
ment, except that we assume the UAV to reach maximum velocity and acceleration
with only the fuel reserve incorporated in the empty weight. This assumption also
yields −1 ≤ ϕacc

u ≤ 0 for Fu ≥ 1 since in (7) a linear approximation of a monoton-
ically falling function with f (0) = 1 on the interval [0, Fu] is computed for every
UAV u ∈ U .

In terms of the fuel-dependent fuel consumption, a further parameter ϕ
f uel
u is nec-

essary. It describes the additional fuel consumption for every remaining fuel unit at the
previous time step and is incorporated as an additional factor into the constraint (2.20).
To ensure that a UAV is consuming no fuel when landed, a distinction between the
fuel calculation for a landed and a flying UAV is needed. Thus, the constraint (2.20)
is replaced by

gu(t + 1) ≤ Fu(1 − bu(�t�)) + gu(t) (2.20i)

− �t f

⎛

⎝ξuv
z,+
u +

∑

i∈Lu , j∈Vu

ηu,i, j su,i, j (�t�) + ϕ
f uel
u gu(t)

⎞

⎠∀ u ∈ U , t ∈ T −
f ,
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gu(t + 1) ≥ −Fu(1 − bu(�t�)) + gu(t) (2.20ii)

− �t f

⎛

⎝ξuv
z,+
u +

∑

i∈Lu , j∈Vu

ηu,i, j su,i, j (�t�) + ϕ
f uel
u gu(t)

⎞

⎠∀ u ∈ U , t ∈ T −
f ,

gu(t + 1) ≤ gu(t) + Fubu(�t�) ∀ u ∈ U , t ∈ T −
f , (2.20iii)

gu(t + 1) ≥ gu(t) − Fubu(�t�) ∀ u ∈ U , t ∈ T −
f . (2.20iv)

Note, that in addition to Eqs. (2.28) and (2.29) the constraints (2.8”) and (2.9’) are
still necessary to force the maximum velocity and acceleration to zero for grounded
UAVs. They are the only remaining constraints incorporating the variables bu(t) and
thus ensure the correct calculation of the fuel consumption in (2.20i) – (2.20iv). The
new introduced variables bu(t) cannot be used here since they would neglect the fuel
consumption for ascending at the takeoff phase before reaching the minimum velocity.

Applying these changes to the model, the flight dynamics of the UAVs are compro-
mised since Eq. (2.19) ensures that every UAV takes off with maximum fuel, reducing
the maximum altitude, velocity, and acceleration. Thus, Eq. (2.19) is dropped to make
the amount of takeoff fuel variable and allow the UAVs to reduce the amount of ini-
tial fuel to achieve better flight dynamics. To ensure these fuel-saving aspects, the
objective function (3) has to change to

max
∑

u∈U ,w∈W,t∈Tω

Swdu,w(t) − 1

(n f + 1)T

∑

u∈U ,t∈T

t

Mair
bu(t) (3’)

− 1

|U |
∑

u∈U

gu(0)

M f uel Fu
+ 1

|T f |
∑

u∈U ,t∈T f

(
r zu(t)

Malt
− ‖vu(t)‖2

Mvel

)
.

2.3 Range

In model (2), the maximum operating range �u is chosen constant, although it depends
on the height Au of the used antenna and the altitude r zu(t) of the UAV. Assuming
UHF/VHF control and no satellite link, the UAV must ensure a signal link to the
ground station, represented by the antenna. Thus, for large distances, it has to fly
above a certain altitude to establish its connection, due to the curvature of the earth.
To achieve a more realistic setting, we deduce an altitude-dependent maximum range.

Proposition 3 Let C be a constant with C ≥ maxu∈U hu. Then the linear approxima-
tion

‖ru(t) − Gu‖2 ≤ �alt r zu(t) + �̃ini t , (2.3’)
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Fig. 3 Maximal operating range
�u of a UAV for antenna height
Au and altitude r zu(t)

with �̃ini t = �ini t +√
2AuE − A2

u and coefficients �alt , �ini t solving

2C3

3 �alt + C2�ini t = E3
(

π
2 − sin−1

( E−C
E

)− E−C
E

√
1 − ( E−C

E

)2
)

,

− 2E3

3

(
1 − ( E−C

E

)2) 3
2

C2�alt + 2C�ini t = E2
(

π
2 − sin−1

( E−C
E

)− E−C
E

√
1 − ( E−C

E

)2
)

,

(8)

minimizes the quadratic error to the altitude-dependent maximum operating range at
time step t ∈ T f .

Proof The maximum range of UAV u ∈ U can be displayed as in Fig. 3.
Applying the Pythagorean theorem, the maximum range is calculated by

�u(r
z
u(t)) =

√
2AuE − A2

u +
√
2Erzu(t) − (r zu(t))2, u ∈ U , t ∈ T f , (9)

where E is the radius of the earth and Au is the height of the antenna.
Due to the nonlinearity of this expression, we use the continuous least squares

method tofind thebest approximation in termsof a linear function f (x) = �alt x + �ini t .
Since the antenna height Au is constant, the first term in (9) is an additive constant and
only shifts the whole function. Thus it can be neglected in the least squares approxi-
mation, leading to the problem

min
�alt , ˜�ini t

∫ C

0

(√
2Erzu(t) − (r zu(t))2 − (�alt r zu(t) + �ini t )

)2
dr zu(t), (10)

with C ≥ maxu∈U hu representing a sufficiently large altitude as upper limit of the
integral. By integration and solution of the remaining minimization problem, the
parameters �alt and �ini t are given by (8). Finally, the constant maximum operating
range �u in (2.3) is replaced by the linear function �alt r zu(t)+ �̃ini t to obtain (2.3’). �
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2.4 Restricted airspaces

Equations (2.15) and (2.16) in model (2) allow to incorporate restricted airspaces for
the UAVs, but only cubic ones which are parallel to the coordinate axes. To compare
the respective coordinates of UAV u ∈ U and the restricted airspace q ∈ Q at time step

t ∈ T and report if it is inside the area, two binary variables f i
u,q

f
i
u,q are necessary

for every coordinate direction i ∈ {x, y, z}, one per side. Using this approach, also
more complex restricted airspaces can be modeled by a union of these cubic ones, but
only at the expense of many additional binary variables.

To describe restricted airspaces by arbitrary polyhedrons, we assume its NQ
q

describing hyperplanes to have coordinate form with normal vector cq,i (t) and right-

hand side crhsq,i (t) for i = 1, . . . , NQ
q and q ∈ Q. Thus, every restricted airspace q ∈ Q

is represented by

AQ
q (t) =

{
x ∈ R

3|cq,i (�t�) · x ≤ crhsq,i (�t�), i = 1, . . . , NQ
q

}
. (11)

Similar to the parameters, the related binary variables f (t) are redefined to fu,q,i (t),
with fu,q,i (t) = 1 if UAV u ∈ U is outside of the restricted airspace q ∈ Q regarding

hyperplane i = 1, . . . , NQ
q at time step t ∈ T , and fu,q,i (t) = 0 otherwise. Then

Eqs. (2.15) and (2.16) are replaced by

cq,i (�t�) · ru(t) ≥ crhsq,i (�t�) − Mdist (1 − fu,q,i (�t�)
)

(2.15’)

∀u ∈ U , q ∈ Q, i = 1, . . . , NQ
q , t ∈ T f ,

NQ
q∑

i=1

fu,q,i (t) ≥ 1 ∀u ∈ U , q ∈ Q, t ∈ T , (2.16’)

providing a more general approach to model restricted convex airspaces with again
one binary variable per side.

2.5 Wind

In the basic model (2), the wind is assumed to blow constantly everywhere within the
considered area. By introducing the fine time steps, the wind can change in every fine
time step t ∈ T f . To allow a more accurate influence of weather conditions, we want
to include the possibility of different wind zones within the mission area. But this
comes with the restriction that wind changes only in time steps t ∈ T . For simplicity,
the computation of the position (2.5) is modified to

r iu(t + 1) = r iu(t) + �t f
(
viu(t) + w̃i

u(t)
)

+ (�t f )2

2
aiu(t) (2.5’)
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∀u ∈ U , t ∈ T −
f , i ∈ {x, y},

where w̃i
u(t) is the influence of wind for UAV u ∈ U in coordinate direction i ∈ {x, y}

at time step t ∈ T −
f .

As a first approach, altitude-dependent wind zones could be added since the wind
intensity and its direction can change with increasing altitude, e.g., the jetstream has
to be taken into account for mission planning in altitudes between 8 to 12 kilometers.
To incorporate this into our model, the wind vector wl(t) = (

wx
l (t), wy

l (t)
) ∈ R

2 is
now defined for every altitude band l ∈ Lu . Since the variable su,i, j (t) cannot change
in every fine step, there is a discretization error between two time steps if the altitude
layer is changed. To reduce its influence, we consider a convex combination of the
wind between time steps t, t + n f + 1 ∈ T at every fine time step t ∈ T f . Thus, the
influence of wind is calculated by

w̃i
u(t) =

∑

l∈Lu , j∈Vu

(
(1 − μ) wi

l (�t�)su,i, j (�t�) + μwi
l (�t�)su,i, j (�t�)

)

∀u ∈ U , t ∈ T −
f , i ∈ {x, y}, (12)

with μ = t mod (n f +1)
n f +1 and �t� = �t� + n f + 1. But this method requires again con-

stant wind direction within every altitude band over the whole mission area.
To overcome this drawback, a second approach is possible. In the same way as for

the restricted airspaces in Sect. 2.4, a set P of wind zones is defined, with each p ∈ P
described by N P

p hyperplanes

AP
p (t) =

{
x ∈ R

3|np,i (�t�) · x ≤ nrhsp,i (�t�), i = 1, . . . , N P
p

}
, (13)

with normal vectors np,i (t) and right-hand sides nrhsp,i (t). Note, that this approach
allows the coverage of the mission area by a set of polyhedral non-overlapping wind
zones of arbitrary size to incorporate the wind in great detail, if necessary.

Furthermore, new binary variables wu,p,i (t) ∈ {0, 1} are introduced with
wu,p,i (t) = 1, if UAV u ∈ U is within wind zone p ∈ P regarding hyperplane
i ∈ AP

p at time step t ∈ T . In contrast to the restricted airspaces, now additional
constraints and an auxiliary binary variable ωu,p(t) are necessary to map the variables
wu,p,i (t) to a single binary decision and to ensure that wind is only taken into account
when UAV u ∈ U is in midair. Therefore, the decision if UAV u is affected by wind
zones p at time step t is modeled by

nu,p,i (�t�) · ru(t) ≥ nrhsp,i (�t�) − Mdistwu,p,i (�t�) (2.30)

∀u ∈ U , p ∈ P, i = 1, . . . , N P
p , t ∈ T f ,
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N P
p∑

i=1

wu,p,i (t) ≤ N P
p + ωu,p(t) − 1 ∀u ∈ U , p ∈ P, t ∈ T , (2.31)

N P
p∑

i=1

wu,p,i (t) ≥ N P
p ωu,p(t) ∀u ∈ U , p ∈ P, t ∈ T , (2.32)

∑

p∈P
ωu,p(t) ≤ |P|bu(t) ∀u ∈ U , t ∈ T . (2.33)

Analogue to the first approach, the variable wu,p(t) can only change at time step
t ∈ T . Thus, the convex combination with t̃ is applied again and the influence of wind
is calculated by

w̃i
u(t) =

∑

p∈P
(1 − μ) wi

p(�t�)ωu,p(�t�) + μwi
p(�t�)ωu,p(�t�) (2.34)

∀ u ∈ U , t ∈ T −
f , i ∈ {x, y},

where againμ = t mod (n f +1)
n f +1 and�t� = �t� + n f + 1. For this approach, the number

of binary variables within the model increases by
∑

p∈P (|AP
p | + 1) per time step and

UAV. The Eqs. (2.30)–(2.34) allow the influence of multiple wind zones to a single
UAV at the same time. This is not realistic since in this case completely new weather
conditions arise, in contrast to just adding the wind vectors as in (2.34). The user of
our model must be aware of this and has to define all wind zones in (13) as pairwise
non-overlapping areas.

3 Collision avoidance

Compliance with safety distances in aviation is crucial due to the disastrous conse-
quences of its failure. Therefore, the parts of a planningmodel computing collision-free
flight trajectories should be examined excessively. In the following, we consider a two
dimensional and a three dimensional setting to examine the modelled collision avoid-
ance (2.17) and (2.18).

A class of two-dimensional benchmark instances, called Random Circle Problems
(RCPs) [22], has a wide application in collision avoidance and conflict resolution. In
this problem class, a set of aircrafts is randomly arranged on a circle. At the beginning,
all UAVs maintain the safety distances, head towards the circles center, and have their
respective destination on its opposite side. The deviation from the shortest connection

123



314 J. Schmidt, A. Fügenschuh

is minimized for every participant. With an increasing number of aircrafts, it is a chal-
lenging problem to conflict resolution approaches due to its fast increasing violations
of the safety distance if no countermeasures are taken.

3.1 Two-dimensional model

We adapt these benchmark instances to our setting, assuming every participating UAV
has the same technical characteristics. Thus, there are no waypoints and the start
locations of the participating UAVs are distributed randomly along a circle of radius
r RCP , with their respective end location on the opposite side. The operating range is
neglected since every UAV must be able to reach its end location. Thus, the whole
circle is within its operating range. In the beginning, every UAV is heading towards
the center of the circle and all safety distances are ensured. To incorporate this into
the model, a new constraint

vu(0) = γu ·
(
C − R0

u

)
∀u ∈ U , (14)

is added, where C is the location of the center of the considered circle and the new
variable γu scales the given direction to ensure the limits of the velocity.

Due to the absence of waypoints and the altitude, many constraints can be neglected
and also many binary variables are unnecessary or must be redefined, i.e., su,i, j (t)
changes to su, j (t) indicating whether UAV u ∈ U is within throttle band j ∈ V1 at
time step t ∈ T and the variables bu(t) and bu(t) are substituted by b−

u (t) since all
UAVs start in midair and have to stop at their end location.

We minimize the deviation of the shortest connection by the number of necessary
time steps Tmin , such that every UAV reaches its respective end location. This number
is not known a priori and increases the more UAVs are participating. Only a lower
bound Tmin is given by the number of time steps it takes for a single UAV to fly along
the diameter of the circlewithmaximumvelocity. Setting T to a sufficiently large value
and read Tmin from the optimal solution can be an ineffective way since the number of
constraints and variables is time-dependent, leading to a possibly too large model. In
[2], the same situation occurs for a scheduling problem with the objective to minimize
themakespan and it is solved by an sequential solution approach increasing the number
of considered time steps. We follow this approach, solving the RCP sequentially for
an increasing number of time steps, starting with T = Tmin , until a feasible solution
is found or its existence cannot be determined within a given computation time. This
procedure has the advantage of working without any objective function since the first
found feasible solution gives the value of Tmin .

To ensure that the safety distances are observed at every time step, it has to hold

�t ≤ maxi∈{x,y} εi

V 1
, (15)

where V 1 = maxi∈L1 v1,i is again the maximum of the altitude-dependent maximum
velocities of the first UAV. Due to the assumption of identical technical characteristics
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of all participating UAVs, the first UAV can be chosen without loss of generality.
Without condition (15), a pair of UAVs, complying with the safety distance between
them, could swap their positions within one time step by flying through each other.
The resulting resolution of the time is sufficient to obtain smooth trajectories. Thus,
we renounce on fine time steps in this case.

The following result gives a heuristical solution for the two-dimensional RCP.

Proposition 4 Consider the two-dimensional RCPwith centerC ∈ R
2, radius r RCP ∈

R+, safety distances ε ∈ R
2+, time step length �t ∈ R+, n ∈ N participating UAVs,

and v ∈ R+ their maximum velocity. Then it holds

Tmin ≤
⌈
2r RCP + (π − 2)‖C − rn(t ′)‖

v�t

⌉
, (16)

with t ′ = min {t | t ∈ Tε} and

Tε = {
t ∈ Z+ | ‖ru1(t + 1) − ru2(t + 1)‖ ≤ ‖ε‖, u1, u2 ∈ {1, . . . , n}, u1 < u2

}
.

(17)

Proof Every UAV starts at its random starting location and heads towards the center
C with maximum speed. To avoid conflicts near the center C, all UAVs are assigned
to a smaller circle with centerC and radius rub ≤ r RCP before the first conflict would
occur. Along this smaller circle, the UAVs rotate around its center on a semicircle and
then fly to their respective end locations. This approach generates a feasible solution
if the safety distances are observed during the rotation. Therefore, it is necessary to
ensure at least the distance ‖ε‖ between any pair of UAVs. Let

Tε = {
t ∈ Z+ | ‖ru1(t + 1) − ru2(t + 1)‖ ≤ ‖ε‖, u1, u2 ∈ {1, . . . , n}, u1 < u2

}

(18)

denote the set of time steps for which in the next one the safety distance is violated
by some pair of UAVs. Then t ′ = min {t | t ∈ Tε} is the last time step maintaining all
safety distances and the radius rub is given by ‖C − rn(t ′)‖, where the position of
any UAV at time step t ′ can be chosen since they all have equal distance to the center.
Without loss of generality, we take the position of UAV n. For the described solution,
every UAVmust fly a distance of 2(r RCP −rub)+πrub units to reach its end location.
Thus, there are

T =
⌈
2r RCP + (π − 2)rub

v�t

⌉
(19)

time steps necessary to complete this trajectory. Substitution of rub leads to the upper
bound of Tmin given in (16). �

Furthermore, the quality of the described heuristic solution can be calculated.
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Corollary 1 For the two-dimensional RCP with minimum number of time steps Tmin,
it holds

1 ≤ Tmin

Tmin
≤ π

2
. (20)

Proof In the worst case, there are two UAVs u1, u2 ∈ U starting with ‖R0
u1 −R0

u2‖ =
‖ε‖. Then it follows rub = r RCP and the trajectory of every UAV is πr RCP . Since
all UAVs have the same constant maximum velocity v, it holds Tmin = 2r RCPv

and the number of time steps Tmin depends only on the radius r RCP , leading to
Tmin = πr RCPv = π

2 T
min . Thus, in a general setting the desired estimate (20)

is obtained by combining the definition of Tmin with the described worst case and
rearranging it. �

For the case of evenly distributed UAVs, the result of proposition 4 can be computed
without the knowledge of t ′.

Corollary 2 Consider the Circle Problem with n ∈ N evenly distributed UAVs with
maximum velocity v ∈ R+, radius r RCP ∈ R+, safety distances ε ∈ R

2+, and time
step length �t ∈ R+. Then it holds

Tmin ≤
⎡

⎢⎢⎢

2r RCP + (π−2)
2 sin( π

n )
‖ε‖

v�t

⎤

⎥⎥⎥
. (21)

Proof In the evenly distributed case, every pair of UAVs has the same distance. Thus,
their start locations are the corners of a regular polygonwith circumradius r RCP . Since
all UAVs head towards the center with the same velocity, they stay corner points of a
regular polyhedron with decreasing side length. The radius rub of the smaller circle is
then the circumradius of a regular polyhedron with n corners and side length ε. It is
computed by

rub = ‖ε‖
2 sin

(
π
n

) (22)

Substituting this term into (19) gives the upper bound (21). �

The model in the two-dimensional case is given by the constraints (2.1), (2.2), (2.5’),
(2.6), (2.8’), (2.9’), (2.11), (2.17), (2.18), (2.20i)–(2.20iv), (2.21), (2.22), (2.28), (2.29),
and (14), where all terms with v

z,+
u (t) are neglected, due to the absence of altitude

changes. Furthermore, the variables bu(t) and bu(t) have to be substituted by b−
u (t)

since all UAVs start in midair and should only stop at their respective end locations.

3.2 Three-dimensional model

Since in ordinary air traffic the aircrafts are not restricted to a single altitude and to
fully evolve the potential of our model, we extend the concept of RCPs into three
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dimensions. Therefore, minimum and maximum altitudes h and h are incorporated as
lower and upper bound of the altitude r zu(t) of every UAV u ∈ U at time step t ∈ T f ,
respectively. All UAVs are positioned analog to the two-dimensional case, but with
initial altitude R0,z ∈ [h, h

]
.

The result of proposition 4 can also be adapted for the three-dimensional RCP.

Proposition 5 Consider the three-dimensional RCP with center C ∈ R
3, radius

r RCP ∈ R+, minimum and maximum altitude h and h, safety distances ε ∈ R
3+,

and time step length �t ∈ R+. Let nl = � h−h
εz

� and the sets U1, . . . ,Unl be a parti-
tion of U = {1, . . . , n}. Furthermore, every participating UAV has maximum velocity
v ∈ R+, maximum climb and descent rate vz,+ and vz,−, and initial altitude R0,z .
Then it holds

Tmin ≤ max
i∈{1,...,nl }

{⌈
2r RCP + (π − 2)‖C − rn(t ′i )‖

v�t

⌉

+
⌈ |R0,z − h + (i − 1)εz |

vz,+�t

⌉
+
⌈ |R0,z − h + (i − 1)εz |

vz,−�t

⌉}
, (23)

with

t ′i = min
t∈Z+

{‖ru1(t + 1) − ru2(t + 1)‖ ≤ ‖ε‖ | u1, u2 ∈ Ui ; u1 < u2
}

∀i ∈ {1, . . . , n}. (24)

Proof For the given altitude range
[
h, h

]
and vertical safety distance εz , it is possible

to stack nl = � h−h
εz

� UAVs one above each other at the same x- and y-coordinates.
Thus, every partition {Ui }i∈{1,...,nl } of the set U = {1, . . . , n} decomposes the three-
dimensional RCP into nl two-dimensional RCPs considering only the UAVs Ui ,
respectively. According to this, the number of time steps to perform the three-
dimensional trajectory of every UAV u is the sum of the number of time steps for
its trajectory in the two-dimensional problem and the number of time steps necessary
for the altitude changes.

To arrange all two-dimensional RPCs into the altitude range
[
h, h

]
, one of them is

located at the lower or upper altitude limit and the vertical distance between two of
them is at least εz . Without loss of generality, we assign the problem considering the
UAVs of subset U1 to the altitude h. Then, the necessary number of time steps for the
altitude changes of every UAV u ∈ Ui are computed by

T z
i =

⌈ |R0,z − h + (i − 1)εz |
vz,+�t

⌉
+
⌈ |R0,z − h + (i − 1)εz |

vz,−�t

⌉
∀i ∈ {1, . . . , nl}.

(25)
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Table 6 Data for the UAV technical parameters according to [9]

Description Parameter Unit UAV-1 UAV-2

Minimum velocity vu
km
h 130 167

Maximum velocity vu
km
h 232 204

Military static thrust at s/l FN
u kp 1250 64

Maximum initial climb rate v
z,+,0
u

m
s 8 2

Maximum fuel Fu kg 2000 150

Fuel surplus for climbing ξu
kg
min 0.2 0.02

Empty weight mu kg 4000 540

Thus, the number of necessary time steps in the three-dimensional case is computed
by

Ti =
⌈
2r RCP + (π − 2)‖C − rn(t ′)‖

v�t

⌉
+
⌈ |R0,z − h + (i − 1)εz |

vz,+�t

⌉

+
⌈ |R0,z − h + (i − 1)εz |

vz,−�t

⌉
∀i ∈ {1, . . . , nl}, (26)

with t ′ from proposition 4. Themaximum of these Ti is the desired upper bound (23).�

Themodel in the three-dimensional case is given by the constraints (2.1), (2.2), (2.5’)–
(2.9’), (2.11), (2.17), (2.18), (2.20i)–(2.20iv), (2.21)–(2.23), (2.25), (2.26), (2.28),
(2.29), (14), and the constraint

h ≤ r zu(t) ≤ h ∀u ∈ U , t ∈ T f . (27)

Similar to the two-dimensional case, the variables bu(t) and bu(t) are substituted by
b−
u (t).

4 Computational results

To test the derived results, we apply the extended model (2.1), (2.2), (2.3’)–(2.9’),
(2.10)–(2.14), (2.15’), (2.16’), (2.17), (2.18), (2.20i)–(2.20iv), (2.21), (2.22’), (2.23)–
(2.34) with objective (3’) to different instances considering real-world UAVs. These
are:

UAV-1. Heron TP UAV [Eitan]-Israel (Air Force), since 2012.
UAV-2. RQ-5A Hunter UAV-United States (Army), since 1996.

The data for the technical parameters of the UAVs are taken from [9] and can be found
in Table 6 to Table 8.

As length of one time step, �t = 0.1h is assumed. Regarding the maximum oper-
ating range, we choose in (8) Crange = 15 km, E = 6371 km, and Au = 0.005 km
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Table 7 Altitude and throttle band related data of UAV-1 according to [9]

Altitude- Altitude Velocity Descend rate Fuel cons.

Throttle band (in km) (in km
h ) (in m

s ) (in kg
min )

Altitude band 1 loiter speed 0.001–3.658 130 8 2.08

Altitude band 1 cruise speed 0.001–3.658 204 24 2.60

Altitude band 1 military speed 0.001–3.658 232 24 5.23

Altitude band 2 loiter speed 3.658–7.315 130 8 1.53

Altitude band 2 cruise speed 3.658–7.315 204 24 1.91

Altitude band 2 military speed 3.658–7.315 232 24 3.85

Altitude band 3 loiter speed 7.315–10.972 130 8 1.06

Altitude band 3 cruise speed 7.315–10.972 204 24 1.33

Altitude band 3 military speed 7.315–10.972 232 24 2.66

Altitude band 4 loiter speed 10.972–13.716 130 8 0.70

Altitude band 4 cruise speed 10.972–13.716 204 24 0.88

Altitude band 4 military speed 10.972–13.716 232 24 1.78

Table 8 Altitude and throttle band related data of UAV-2 according to [9]

Altitude- Altitude Velocity Descend rate Fuel cons.

Throttle band (in km) (in km
h ) (in m

s ) (in kg
min )

Altitude band 1 loiter speed 0.001–3.658 167 2 0.19

Altitude band 1 cruise speed 0.001–3.658 194 6 0.23

Altitude band 1 military speed 0.001–3.658 204 6 0.44

Altitude band 2 loiter speed 3.658–4.572 167 2 0.14

Altitude band 2 cruise speed 3.658–4.572 194 6 0.17

Altitude band 2 military speed 3.658–4.572 204 6 0.32

for all u ∈ U . Thus, we obtain the optimal values �alt := 23.30 and �ini t := 116.61,
leading to the linear approximation displayed in Fig. 4.

For the altitude and throttle dependend climb rate we assume v
z,+
u,i, j = vz,+,0

u for
all UAVs u ∈ U , altitude bands i ∈ Lu , and throttle bands j ∈ Vu .

The operational range δu,w ofUAVu ∈ U towaypointw ∈ W is set to a valuewithin
the second highest altitude band to reject the UAVs staying at maximium altitude all
the time. According to this, we choose the values δ1,w = 10 km and δ2,w = 3 km.

The maximum acceleration au of UAV u ∈ U is not provided by [9], but it gives
a value for the military static thrust at starting or landing. In these processes, the
maximum possible acceleration of the aircraft is used [25], so we use it as an upper
bound for every time step. To compute the acceleration related to the given thrust, the
second of Newton’s axioms F = ma is chosen, rearranged to get a, and the thrust,
converted to Newton, is put in. Combined with the conversion factor from m

s2
to km

h2
,
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Fig. 4 Linear approximation of
the nonlinear maximum
operating range function for
antenna height Au = 0

Fig. 5 Least squares approximation of the non-linear factor for the maximum velocity and acceleration of
UAV-1 (left) and UAV-2 (right)

this yields the formula

au = 12960
9.807FN

u

mu
. (28)

Applied to the consideredUAVs, theirmaximumacceleration is givenbya1 = 26478.9km
h2

and a2 = 11788.87km
h2
.

Equation (4) with the respective values of every UAV u ∈ U results in the parameter
values ϕacc

1 = −0.591 for UAV-1 and ϕacc
2 = −0.554 for UAV-2, displayed in Fig. 5.

For the constraint of mass-dependent maximum reachable altitude (2.27), we choose
ϕ
alt,1
u = 0.5 and ϕ

alt,2
u = 1 for all u ∈ U . In absence of data, we set ϕ f uel

u = 0.
The weightsMi , i ∈ {air , f uel, vel, alt}, for the subordinate level of the objective

function (3’) must be chosen such that they do not outperform the visit of a waypoint
w ∈ W with minimal score S = minw∈W {Sw}. Since the components of the subor-
dinate level in (3’) have different signs, this has to hold for both the negative and the
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positive part. Thus, they must be chosen accordingly to

1

|T f |
∑

u∈U

⎛

⎝ gu(0)

|U |FuM f uel
+
∑

t∈T

|T f |t
T (n f + 1)Mair

bu(t) +
∑

t∈T f

‖vu(t)‖2
Mvel

⎞

⎠ < S,

(29)
∑

u∈U ,t∈T f

r zu(t)

Malt |T f | < S, (30)

ensuring that visiting a waypoint is always preferred. In this work, we choose Mair =
102, M f uel = 10, Mvel = 105, Malt = 103. Furthermore, we assume the sufficiently
large constant Mdist = 103 and set Sw = 1 for all w ∈ W .

All instances were generated with the modeling language AMPL (Version:
20200501) and solved with GUROBI 9.1.2 [12] on an Apple Mac Pro with an Intel
Xeon W running 32 threads parallel at 3.2 GHz clock speed and 768 GB RAM, with
the relative and absolute gap set to 0 and default settings otherwise. If a time limit
is considered, it is set to 3600 seconds. For objective value z and upper bound z, the
relative gap is in the following defined by

relgap = |z − z|
|z| . (31)

4.1 Time discretization

In this section, we examine the influence of the two-time-level discretization to the
computation time and the solution quality of the problem. With the use of a more
detailed approach, the resulting problem becomes more complex and its computation
time rises. Since we apply the state-of-the-art solver GUROBI, we find the instance
sizes that can be solved within a given time limit.

4.1.1 CPU time analysis

To examine the influence of fine time steps on the solution time, we generate 41
instances with 15 waypoints, a single UAV, 40 time steps, and two restricted airspaces
and vary the number of fine time steps from 0 to 9. The results in Fig. 6 show, that
the average computation time increases with a larger number of fine time steps. To
solve 90% of the given instances within the considered time limit, at most five fine
time steps can be used. For nine fine time steps only nine instances were solved within
the time limit and also the average relative gap takes its maximum with 18% for the
arithmetic mean. The total amount of CPU time for solving all 410 instances was
691,583 seconds.
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Fig. 6 Solution time and relative gap depending on the number of fine time steps

4.1.2 Solution quality

To study the effect of a varying number of fine time steps on the quality of the solution,
we perform two experiments. At first, a comparison of the computed flight trajectories
of a single instance for one, three, seven, and 15 fine time steps is shown in Fig. 7.
The primal feasibility tolerance, the integer feasibility tolerance, and the optimality
tolerance on the reduced costs inGUROBIwere set to 10−4 to avoid numerical issues in
the biggest instance. For the problemwith one, three, seven, and 15 fine time steps, the
solution process took 87 seconds, 537 seconds, 2, 020 seconds, and 13, 289 seconds,
respectively.

One can see that the optimal trajectory gets less crooked for an increasing number
of fine time steps since the UAV hasmore possibilities to change its velocity and accel-
eration. At the same time, the differences between the computed trajectories become
smaller. Thus, it suggests to use not too many fine time steps to save computation
time. The remaining oscillation of the trajectory, e.g., in Fig. 7b between WP-13 and
WP-9, is caused by the linearization of the Euclidean norm taken from [10] since it
overestimates the real norm for some points.

In the second experiment, we compare the solution quality for a given level of detail
in the absence and presence of fine time steps. Therefore, an instance was solved with
T = 200, �t = 0.02, and n f = 0 in the case of no fine time steps and with T = 40,
�t = 0.1, and n f = 4 in presence of them. For the former one, 897 seconds were
necessary to compute the proven global optimum, while the solution process for the
latter one took 7, 032 seconds. The results are displayed in Fig. 8.

The main differences between both solutions are found in the altitude profile and
the fuel consumption. Due to the fact that in the presence of fine time steps the binary
decision variables can only change every n f + 1-th time step, the UAV is sometimes
restricted to certain decisions unnecessarily long. Regarding the altitude this can be
seen during the takeoff and the landing phase, where the UAV stays at the same altitude
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Fig. 7 Optimal flight trajectories with one fine time step (a) and for three (b), seven (c), and 15 (d) of them.
Each fine time step is represented by an arrow head, describing the UAVs heading

for some time before ascending or descending further. It also affects the trajectory
since the halfspaces described by (2.15’) can only be entered or left at a coarse time
step. Thus, the UAV can fly around a corner of the restricted air space only when the
subsequent time step is in T . Finally, the visit of a waypoint and the landing can be
performed only at a coarse time step, limiting the possibilities when the UAV passes a
waypoint within sensor range and when it lands. These three aspects result in longer
flight duration, force the UAV to fly detours, like its trajectory between WP-1 and
its hub, to choose a smaller velocity, as at the beginning of its mission, or to burn
additional fuel by flying at a lower altitude to get into a waypoints sensor range, like
at WP-3. The latter behavior is also encouraged by the objective function since the
flight duration has a higher weight than the fuel consumption. Thus, the solution in the
presence of fine time steps is an overestimate of the solution in terms of flight duration
and fuel consumption.

Next to the described discretization errors, there is also another phenomenon, called
“corner cutting”, visible in the trajectories in Fig. 8. Since the check of the position of
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Fig. 8 Optimal flight trajectories, altitude and velocity profiles, the fuel consumption, and the time windows
of all waypoints in the absence (left) and presence (right) of fine time steps

123



Two-time-level mission and flight planning UAV 325

Table 9 Area and wind velocity per the coordinate direction of the considered wind zones in Sect. 4.2.1

Wind zone Area (in km) Velocity (in km
h ) Direction

Windzone1
(red)

⎛

⎝
0
0
7

⎞

⎠ –

⎛

⎝
300
300
20

⎞

⎠ 300

Windzone2
(green)

⎛

⎝
149
0
0

⎞

⎠ –

⎛

⎝
300
300
8

⎞

⎠ 100

Windzone3
(blue)

⎛

⎝
0
0
0

⎞

⎠ –

⎛

⎝
150
300
8

⎞

⎠ 100

the UAV regarding the restricted airspace is done only at discrete time steps, the UAV
can traverse these areas within a single time step if it is again outside at the next time
step.This problem occurs also in the absence of fine time steps and is a topic of our
future work.

4.2 Special instances

In the following experiments, we apply the model to specially designed instances to
examine some of its aspects in detail. For the effect of wind to the optimal flight
trajectories, we compare the optimal solutions of an instance with and without the
presence of wind. Furthermore, the altitude-dependent operating range approach the
mass-dependent flight dynamics are discussed.

4.2.1 Influence of wind zones

We consider an instance with 10 waypoints, two UAVs, 25 time steps with 4 fine time
steps each, and three wind zones. Their respective area and wind velocity are given in
Table 9. The first wind zone displays the jetstream on the northern hemisphere, while
the other two describe local weather phenomena with a heavy storm to emphasize its
influence on the UAVs, although real UAVs would stay on the ground in this situation.

In absence of wind, the total amount of CPU time to solve the instance was 181
seconds, while in presence of wind the computation time increased to 2270 seconds.
The optimal flight trajectories and the obtained altitudes of the UAVs for both cases
of the considered instance are given in Fig. 9.

One can see that, in the presence of wind, the assignment from waypoints to UAVs
changes. UAV-1 benefits from all three wind zones. At first, it uses wind zone 1 to
travel a longer way to waypoint 8, while the time step for visiting it is the same. Then,
it stays below wind zone 1 and uses wind zone 2 to visit the more distanced waypoint
3 at the same time step it visits waypoint 9 in the absence of wind. Finally, wind
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Fig. 9 Optimal flight trajectories for the considered instance in absence (left) and presence (right) of wind.
In the presence of wind, the different wind zones are displayed in different colors

zone 3 is advantageous on the way to the end location. UAV-2 also profits from the
wind zones on the way to its first visited waypoint and when it flys to waypoint 2.
In the presence of wind, the objective value decreases since both UAVs are longer in
midair and UAV-1 has to reduce its altitude to avoid wind zone 1. Regarding the initial
fuel, UAV-1 needs 6.7% less (337.22kg instead of 361.42kg), although its trajectory
is 32.3% longer (558.1km instead of 421.84km). This fuel saving is the result of the
presence of advantegeous wind zones. On the other side, UAV-2 needs 15.14% more
initial fuel (35.13kg instead of 30.51kg) for its 12.69% longer trajectory (435.03km
instead of 386.04km). Since UAV-2 cannot benefit from tailwinds like UAV-1, it needs
more fuel for the also longer trajectory.

4.2.2 Altitude-dependent range

As shown in Fig. 4, the altitude-dependent approach (2.3’) in Sect. 2.3 results in a
significant enlarged operating range compared to the constant approach (2.3) with
�u = 185 km.

To illustrate the newapproach and its limits,we consider bothUAVs, twowaypoints,
200 time steps without any fine steps each, and �t = 0.025h. The UAVs are stationed
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Fig. 10 Optimal flight trajectories for the altitude-dependent operating range approach for UAV-1 (orange)
and UAV-2 (blue). Waypoints and ground controls are indicated by a red or green square, respectively. The
dashed lines mark the altitude-dependent operating range of the respective UAV and the colored area its
maximum operational distance to the waypoints

at the location of their respective ground control, which is also their start and end
location. Furthermore, we set ϕalt,1

u = 0.05 and ϕ
alt,2
u = 0.5, u ∈ U , to have a better

resolution of the increasing maximum flight altitudes of the UAVs. All components
of this instance are lined up along the x-axis and both waypoints can be visited at any
time step. It took 3,908 seconds to solve this instance to proven global optimality. The
optimal flight trajectories of the UAVs are displayed in Fig. 10.

As shown in Fig. 10, UAV-1 could reach the position of both points but it cannot
visit WP-2 since for the necessary range it requires a flight altitude greater than the
maximum operational distance to WP-2. So for visiting all points, UAV-2 has to be
deployed, although UAV-1 is near the waypoint. Furthermore, the optimal trajectories
can be divided into several phases, marked in Fig. 10: (a) First, both UAVs ascend
after takeoff with their maximal ascend rate to reach their mass-dependent maximal
altitude. (b) Due to the mass reduction by fuel consumption, the maximum altitude of
every UAV increases over time so the UAVs keep ascending slowly. This behavior is
controlled by the parameters ϕ

alt,1
u and ϕ

alt,2
u . (c) Near the respective waypoint, the

UAVs slow down and descent to get into the operational range of the waypoint. (d)
At their point of return, the UAVs achieve the maximum operational distance of the
respective waypoint, visit it and start to fly back to their end location since no UAV
can get into the operational distance to both points without leaving its operating range.
To save fuel, they ascend again to their maximum altitude. (e) On their way back, the
UAVs can reach a higher altitude compared to the beginning since they consumed
most of their initial amount of fuel. (f) Every UAV descends to its end location with
maximum descent rate to stay in the higher altitude bands as long as possible and
benefits from its lower fuel consumption. This approach, to reach the top of descent
point before going down, is the most economic descent strategy [25].
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4.2.3 Mass-dependent flight trajectories

To illustrate the effect of mass-dependent flight dynamics to the computed trajectories,
we consider an instance with 10 waypoints, two UAVs, 25 time steps with four fine
time steps each, and two restricted airspaces and solve it in the presence and absence
of mass-dependent flight dynamics. In terms of mass-dependent fuel consumption,
we assume the additional fuel per mass factor ϕ

f uel
u = 0.01 for each UAV u ∈ U ,

while for the mass-dependent reachable altitude we set ϕ
alt,1
u = 0.05 and ϕ

alt,2
u =

0.5. For the absence of mass dependencies the values ϕ
f uel
u = 0, ϕacc

u = 0, and
ϕ
alt,2
u = 1 are chosen. The parameter ϕ

alt,1
u can be set to an arbitrary value since it is

no effect for the choice ϕ
alt,2
u = 1. The total amount of CPU time to solve the instance

neglecting the mass dependencies was 1,105 seconds, while in its presence 4,184
seconds were necessary. Figure 11 displays the optimal flight trajectories, altitude and
velocity profiles, the fuel consumption, and the time windows of all waypoints for
both instances.

As the results in Fig. 11 indicates, the optimal solution changes in the presence of
mass-dependent flight dynamics. Both UAVs have shorter trajectories and return to
their end location earlier, while only 8 of 10 waypoints were visited, one less than in
the absence of mass dependencies.

While, without the influence of mass, both UAVs use their fastest throttle band and
attain their respective maximum velocity, in the presence of the reduction factor ϕacc

u ,
they cannot reach it and must stay longer in the second-fastest throttle band. Thus,
UAV-1 cannot reach waypoint 9 and UAV-2 cannot reach waypoint 3 within the given
time.

The resulting shorter trajectories are beneficial to the attained altitude of UAV-1.
It can now ascend higher since it visits fewer waypoints. But it can reach its maxi-
mum altitude near the end of its flight due to the mass-dependent maximum altitude.
For UAV-2, one can see the influence of the abovementioned restriction on its flight
dynamics. Whenever it ascends after visiting a waypoint, it can reach a higher altitude
since its fuel mass reduces over time.

In terms of the initial amount of fuel, althoughUAV-1 has a 27.9% shorter trajectory
(382.7km instead of 530.82km), it requires 6.54% more initial fuel (from 365.03kg
to 388.89kg). In contrast, UAV-2 has an 9.03% lower amount of initial fuel (from
38.89kg to 35.38kg) for an also 37.21%shorter trajectory (282.46km insteadof 449.84-
km). This contrary behavior of UAV-1 is justified in the fuel per mass factor ϕ

f uel
u

since it applies as a percentage of the fuel mass. Thus, larger UAVs with higher fuel
consumption are affected more than smaller ones and in comparison, UAV-1 can hold
nearly four times the amount of fuel of UAV-2.

4.3 Collision avoidance

In this section, we take a closer look at the computation time of RCPs for an increasing
number of UAVs and outline the solution quality of the optimal solutions compared to
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Fig. 11 Optimal flight trajectories, altitude andvelocity profiles, the fuel consumption, and the timewindows
of all waypoints for both UAVs in the absence (left) and in the presence (right) of mass-dependent flight
dynamics
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Fig. 12 Solution time of the two-dimensional RCP depending on the number of participating UAVs. The
count of solved instances for every number of UAVs is displayed above its respective column

the upper bound derived in proposition 4. For the following computations, the models
described in Sect. 3 were used.

For the two-dimensional case, we consider a circle with center C = (140, 140)
and radius r RCP = 90 km and use UAVs from the type UAV-1. The safety distances
in each coordinate direction are εi = 9.26 km, i ∈ {x, y}. They are chosen accord-
ingly to the minima for radar seperation, published by the International Civil Aviation
Organization (ICAO) [14]. For �t = 0.02, we get Tmin = ⌈ 180

232·0.02
⌉ = 39, but we

initialize the calculation with T = 40 since the initial maximum velocity is reduced
by the present mass dependencies.

Varying the number of participating UAVs between 2 and 15, we generate 41
instances and solve them with the sequential method, see page 22, with a time limit
of 3600 seconds per iteration. The results are displayed in Fig. 12.

For small problems with up to five UAVs, at least 98% of all instances were solved
with a feasible solution found within the given time limit. In medium-scaled problems
with six to 13 participating UAVs, this percentage decreases from 88% to 22%, while
it drops below 7% for large problems considering 14 or more UAVs.

To illustrate the result of Proposition 4, we generate the upper bound for the nec-
essary number of time steps for the 356 solved instances and compare its minimum
and median value against the computed solutions for up to 14 participating UAVs.
In Fig. 13, one can see that already for small instances with four UAVs, there is a
significant gap between the given upper bound and the found optimal solution in
both median and minimum value. Furthermore, this gap increases rapidly for larger
numbers of UAVs.

In Fig. 14, the optimal trajectories of a RCP instance with 14 UAVs are displayed
for two different time steps, also including the circle used to calculate the upper bound
in Proposition 4. UAVs 2 and 11 are the first pair violating the given safety distances.
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Fig. 13 Minimum and the median value of the time steps for the upper bound of proposition 4 and the first
feasible solution found by the sequential method of all solved instances

Fig. 14 Trajectories of a two-dimensional RCP with 14 UAVs at time steps t = 13 (left) and t = 39 (right).
Start and end location of every UAV are marked by diamonds and the end location is labeled with the
number of the UAV. The solid circle displays the underlying circle of the RCP, while the dashed one is part
of the computed upper bound

Since they start near to each other, the generated circle for the upper bound has radius
rub = 86.12 km, which is only about 4% smaller than the original radius r RCP .

For the three-dimensional RCP, we take the same parameters as in the two-
dimensional case, together with the initial altitude r zu(0) = 10 km, vertical safety
distance εz = 1 km, and altitude bounds h = 9 km and h = 10.972 km for all UAVs.
Thus, they are all within their second-highest altitude band. The number of partici-
pating UAVs is varied between 2 and 20, generating 41 instances for each case. For
every instance, there is a time limit of 3600 seconds per iteration. Again the sequential
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Fig. 15 Solution time of the three-dimensional RCP depending on the number of participating UAVs. The
count of solved instances for every number of UAVs is displayed above its respective column

method, described at page 22, is used to solve all instances. The results are displayed
in Fig. 15.

Allowing the UAVs to avoid conflicts by choosing different altitudes, the solution
process is accelerated significantly. For 676 problems the sequential method found a
feasible solution within the given time limit and for instances up to 16 participating
UAVs, 90% of all cases were solved. Considering at most 13 UAVs, the desired first
feasible solution was found within 252 seconds for all problems. For large-scale prob-
lems with at least 17 participating UAVs, the number of solved rapidly decreases to
10% at the maximum amount of 20 UAVs.

5 Conclusions and future work

In this work, we considered the mission and flight planning problem for an inhomo-
geneous fleet of UAVs and extended an existing model from [10] to achieve solutions
with a higher level of detail. A two-time-level discretization was applied to smooth the
resulting trajectory without increasing the number of discrete decision variables. The
maximum velocity, acceleration, reachable altitude, and the fuel consumption of the
UAVs were related to their changing weight during the flight. Taking the curvature of
the earth into account, the maximum operating range of the UAVs is now depending
on its current altitude. Occurring restricted air spaces are now described by arbitrary
polyhedrons and every UAV is affected by time-dependent wind if it is in a polyhedral
wind zone. Furthermore, the model was adapted to fit the RCP for collision avoidance
in two and three dimensions and a heuristic solution for this problem class in both
dimensions was derived.

By applying different linearization techniques, themodel got applicable to theMILP
solver GUORBI and in numerical tests, several of its aspects were examined. Apply-
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ing the two-time-level discretization leads to smoother trajectories for an increasing
number of fine time steps, but at the cost of a higher computation time. The exper-
iments showed, that the differences between the computed trajectories get smaller
for many fine time steps, thus one should find a trade-off between the level of detail
and the necessary computation time. A drawback of this approach is the addition of
further discretization errors since the binary variables can no longer change in every
time step. Further experiments were performed to examine the influence of the model
enhancements and it turned out that the fuel-dependent flight dynamics as well as the
new introduced wind zones have significant impact on the optimal solution and the
computation time. In a last experiment, randomly generated instances for the RCP
were solved by a sequential method and the solutions were compared to these calcu-
lated by the derived heuristic, showing a large gap especially when a large number of
participating UAVs is considered.

With this article, we provide an optimization approach linking the routing of an
inhomogeneous fleet of UAVs with detailed trajectory calculation and environmental
constraints, a main problem identified in [7]. Possible applications are surveillance
or observation tasks, like tracking icebergs [1] or monitoring emission limits [31] in
shipping and observing damages after a natural disaster [8]. Our future work will
focus on the acceleration of the solution process to solve also larger instances within
a reasonable time, the further extension of the model to cover more applications, and
the reduction of discretization errors like corner cutting.
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