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Abstract
While the COVID-19 pandemic negatively affects the world economy in general, the crisis accelerates concurrently the 
rapidly growing subscription business and online purchases. This provokes a steadily increasing demand of reliable meas-
ures to prevent customer churn which unchanged is not covered. The research analyses how preventive uplift modeling 
approaches based on decision trees can be modified. Thereby, it aims to reduce the risk of churn increases in scenarios with 
systematically occurring local estimation errors. Additionally, it compares several novel spatial distance and churn likelihood 
respecting selection methods applied on a real-world dataset. In conclusion, it is a procedure with incorporated additional and 
engineered decision tree splits that dominates the results of an appropriate Monte Carlo simulation. This newly introduced 
method lowers probability and negative impacts of counterproductive churn prevention campaigns without substantial loss 
of expected churn likelihood reduction effected by those same campaigns.

Keywords Churn · Prevention · Uplift modeling · Local errors · Decision trees · Additional splits

Introduction

Pejić Bach et al. (2021, p. 1) define churn as “a situa-
tion when customer stops buying products or using ser-
vices from a company.” Regarding the telecommunication 
industry, as an industry that for a long time proactively 
handles churn  (Hashmi et al. 2013), they correspond-
ingly describe that “churn management aims to minimize 
the churn using various retention strategies to prevent 
customers from canceling subscriptions, such as offer-
ing new devices or services.” Irrespective of the field, 
one can differentiate between the two churn management 
disciplines prevention and retention depending on the 
moment of churn announcement. Prevention combines 
churn avoiding measures that take place before the cus-
tomer announces churn while retention means the bunch 
of actions in the period between churn announcement 
and expiration of the contract. Companies naturally want 
preferably narrow churn funnels, which first of all is less 
churn announcements and therefore less churn. Thus, a 

critical factor for success in the upcoming (subscription) 
business era will be a strong churn management, as far as 
possible in a preventive way.

However, in practice, there is still no trusted concept 
of reducing churn in a preventive measure. That applies 
to uplift techniques, which are comparing the customers 
responses depending on the inclusion in a churn prevention 
campaign and all the more to response modeling. One rea-
son is the rarity of the event churn in comparison with, e.g., 
purchase, which complicates its prediction. Another chal-
lenging aspect is that failures tend to generate additional 
churn (Radcliffe 2007b). Failures mean false selections in 
terms of customers would not have churned if they would 
not have received emails or any other contacting. This 
results in at least futile churn prevention efforts (Ascarza 
2018).

The paper counteracts those momentous misjudgments 
of probabilities with a diversifying portfolio approach. This 
concept by dint of additional and engineered decision tree 
splits trades in expected churn probability for distance in the 
feature space. Simultaneously, it is able to reduce the risk of 
churn increasing churn prevention campaigns considerably 
in a setting with systematically assumed local estimation 
errors.
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The fundamental idea of the line of thought is the true lift 
model of Lo (2002), which considers the incremental impact 
of an action toward the target variable, in this case churn, as 
the guide for decision-making. In order to train a decision 
tree to estimate churn probability increments as defined by 
Lo, the paper uses and adapts the real-world dataset of Kevin 
Hillstrom (2008) provided in The minethatdata email ana-
lytics and data mining challenge. Hence, it obtains a parti-
tion of the feature space in which it randomly incorporates 
the local errors mentioned above in a next step. Finally, it 
exercises different campaign-selection methods within the 
framework of a Monte Carlo simulation. The results of 
this simulation demonstrate the superiority of the portfolio 
approach in a scenario as described, notably in comparison 
with the classic approach.

Related work

The prediction of uplifts as per Lo is theoretically clear and 
sufficiently comprehensible (Radcliffe 2007b; Kane et al. 
2014; Guelman et al. 2015). However, with a few mixed 
exceptions (Manahan 2005; Radcliffe 2007b; Devriendt et al. 
2021), empirical results as well as best practices and track 
records in business are not existing in the churn context.

Concerning this matter, Diemert et  al. (2018, 2021) 
quote missing publicly available real-world datasets as a 
fundamental problem for the research on successful usage of 
uplift models (UM) in general and moreover provide a very 
large dataset (25M rows, 12 features). Additionally, they 
mention Hillstroms dataset as “the second largest and most 
popular uplift prediction dataset” (Diemert et al. 2018, p. 3) 
and note that ”in the field of UM, a notable exception to 
private datasets is the Hillstrom study (64,000 samples) 
collecting the sales results of an email marketing campaign 
from the 2000s” (Diemert et al. 2021, p. 2). This research 
will base the simulations on this exact Hillstrom dataset in 
the remainder of the paper.

Radcliffe (2007b, p. 13) uses the same line when he says 
“performance of uplift models on fabricated test data is often 
a particularly unreliable indicator of likely performance on 
real-world data. A significant challenge is therefore to find 
suitable data that can be made publicly available for bench-
marking.” Not related to this, he brings up that “in practice, 
most of the real difficulties with uplift modeling derive from 
noise” (Radcliffe 2007b, p. 13). He describes several rea-
sons for this noise (addition of estimation errors while fitting 
a difference, considerably unbalanced treated and control 
population, uplift phenomenon way smaller than absolute 
outcome rates) and states “a wide variety of methods to 
control noise, including careful variable selection and bin-
ning methodologies, bagging, stratified sampling, and k-way 
cross-validation methods” (Radcliffe 2007b, p. 13).

Shaar et al. (2016) underline Radcliffe’s perception 
with their statements “uplift models show high sensitiv-
ity to noise and disturbance, which leads to unreliable 
results” (Shaar et al. 2016, p. 1) and “most of real-world 
datasets contains noise and disturbances, specially for 
uplift modeling, as uplift effects tend to be smaller than 
the real treatment effect” (Shaar et al. 2016, p. 9). They 
allow for that with their disturbance effects minimizing 
approach called Pessimistic Uplift Modeling. Furthermore, 
they show among others using Hillstroms dataset “that our 
approach outperforms the existing approaches, especially 
in the case of high noise data environment” (Shaar et al. 
2016, p. 1). Their procedure is geared to Lai (2006), who 
wants to maximize the probability that customers belong to 
the group that shows the desired response when treated or 
that does not show the desired response when not treated. 
Furthermore, it supplements Lai’s method with weights 
representing the predicted cases proportions of the whole 
population. Thus, Shaar et al. (2016) generate additional 
certainty on the expected outcomes by incorporating the 
overall frequency of an event.

The latest research toward uplift modeling mainly 
focuses on noise, disturbance, uncertainty, and estimation 
errors  (Athey et  al. 2015; Lo and Pachamanova 2015; 
Oechsle et  al. 2016; Athey and Imbens 2016; Zhao 
et al. 2017; Rößler et al. 2021). Summing up Zhao et al. 
(2017, p. 8) put it in a nutshell while describing that their 
contribution is in a first step to “present a way to obtain an 
unbiased estimate of the expected response under an uplift 
model which has not been available in the literature.”

Whereas aforesaid papers attend to the uplift modeling 
challenges from a technical and engineering emphasis, 
Oechsle and Schönleber (2020) examine the problem of 
unreliable expected outcomes to a greater extent from a 
business perspective, in this case churn business. They 
“investigate the effect of suddenly upcoming estimation 
errors due to moving environments in the subscription 
business”  (Oechsle and Schönleber 2020,  p.  3). As 
a moving environment, they subsume “dynamic 
surrounding parameters” like “company-intern changes 
such as mandatory price increases, product migrations 
owing to technical improvement, tariff launches of 
competitors, or other specific events influencing customer 
groups in undetermined ways” (Oechsle and Schönleber 
2020, p. 3). They suppose those “game-changing events” 
to systematically generate estimation errors, which in the 
uplift and churn context can be very disadvantageous, 
exceedingly when similar customers, that is local 
neighbors in the feature space, are selected. Concretely, 
they define circles with radius R around random error 
seeds E and attribute the users (or customers) U with 
Euclidean distance r to E an unnoticed change in expected 
uplift Δ to Δ� appropriate to
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Finally, they indicate supported by simulations that it can be 
beneficial in defective scenarios to use distance regarding 
customer selection techniques.

The idea of locally occurrent unanticipated changes in 
churn probabilities is supported by several publications 
concerning the topic of churn in the neighborhood of 
influential churners (Dasgupta et al. 2008; Kusuma et al. 
2013; Droftina et  al. 2015a, b). For example,  Droftina 
et al. (2015b, p. 1) assert that “highly influential customers 
deserve special attention, since their churns can also trigger 
churns of their peers.” Correspondingly, Kusuma et  al. 
(2013) show on a real-world dataset that when 50 percent 
of the peers of users yet churned, those users’ churn rate is 
two times the overall churn rate among all users.

This paper picks up the idea of noise and uncertainty 
typified by spatially specified sources of error and exert it on 
a real-world dataset (Hillstrom), which previously is tailored 
to a churn scenario. A decision tree is trained on that dataset 
and it is acted upon the splitting/pruning via novel selection 
methods targeted to a predefined churn prevention campaign. 
The introduced methods are meant to regard distance in the 
feature space, which is well able to be done per decision tree. 
Besides that established decision trees employed for uplift 
modeling only use differences of probabilities for splitting, 
that is particularly they disregard distances, nor do they 
use pruning (Rzepakowski and Jaroszewicz 2010). Thus, 
common decision trees, as well as various other procedures, 
have an issue with locally occurring errors. The research 
randomly incorporates these errors in a concluding Monte 
Carlo Simulation (MC) which “is a very useful mathematical 
technique for analyzing uncertain scenarios and providing 
probabilistic analysis of different situations” (Raychaudhuri 
2008, p. 9) while “the basic principle for applying MC 
analysis is simple and easy to grasp”  (Raychaudhuri 
2008, p. 9). It thereby provides evidence for the superiority 
of its approach. Certainly, even an perfectly engineered 
prediction model experiences problems if the described 
errors arise after a perfect estimation process. Hence, the 
focus is not to derive the most accurate prediction model, 
in this case, the most sophisticated decision tree, but rather 
to reliably implement an arbitrary proper decision tree for 
using the novel selection methods. In the following third 
chapter, the methodology will be described in depth.

The contribution of the research therefore consists 
of a) a publicly available uplift analysis on a real-world 
dataset and b) a straight forward feasible and nevertheless 
promising approach for daily practice c) based on decision 
trees combined with a distance respecting course of action 

(1)Δ� =

{

Δ r > R,

Δ
[

1 − 2 cos

(

𝜋r

2R

)]

, r ≤ R

d) in the rarely considered and eminently fraught with risk 
uplift modeling field churn, which intensifies some of the 
general problems uplift modeling have to deal with.

Methodology

As seen in the comparing work of Zhao et  al. (2017), 
Oechsle and Schönleber (2020), or Radcliffe and Surry 
(2011), the direct path is the superior one of the two 
popular uplift modeling approaches (direct uplift modeling 
versus two separate models subtracted afterward). Thus, 
let there be a decision tree with I ∈ ℕ leaves for the direct 
estimation of the uplift

of a churn prevention campaign whereas p0 , respectively, 
and p1 display the churn probability without, respectively, 
and with treatment. Let further Δi for i = 1, 2,… , I  be 
the (correctly) estimated and therefore expected uplift 
for the customers enclosed in leaf i, whereas w.l.o.g. for 
simplification, only positive uplifts Δi are assumed. Leaves 
with estimated negative uplifts would be excluded from the 
first for every respectable churn prevention campaign. Let, 
in addition, Ci be the center of the leaf i consisting of the 
average values of all features across the customers of the leaf 
i. Then the distance dij of two leaves i and j pursuant to an 
arbitrary metric, e.g., Minkowski, is defined as the distance 
of their centers Ci and Cj appropriate to this very metric.

Also let the best leaf b be defined as the leaf with the 
highest dedicated uplift

and the contained customers equivalently stand for the best 
customers in the same vein.

Typically for a churn prevention campaign, as well as 
for every other uplift campaign, the best customers are 
selected as far as the allocated budget allows it. That is one 
ignores distances and absolutely concentrates on uplifts.

However, the paper presents selection methods (best 
k, max dist, tradeoff, and add split), which take account 
of distances as well. Some of them are recent (best k for 
k > 3 and especially add split), while some of them were 
already introduced by Oechsle and Schönleber (2020). 
The subsequent listing defines them and distinguishes the 
classic selection method. 

Classic  Selects all the customers in the best leaf b and 
thus focuses on uplift.

(2)Δ = p0 − p1,

(3)Δb = max
i=1,…,I

Δi
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Best k  Randomly selects 1/k of the customers in the 
k best leaves and thus trades off uplift against 
diversification.

Max dist  Randomly selects half of the customers in the 
best leaf b, and half of the customers in the leaf 
i where the distance to leaf b is maximal. Thus, 
it focuses on distance.

Tradeoff  Randomly selects half of the customers in the 
best leaf b, and half of the customers in the leaf 
t which is defined via 

 Thus it considers likewise distance and uplift.

add split  synthetically conducts an additional split in the 
best leaf b just as in the second best leaf, which, 
respectively, bisect the corresponding leaves 
concerning the quantity of customers. That is it 
selects half of the customers in the best leaf and 
half of the customers in the second best leaf with 
the pairwise highest distance. Thus, it considers 
likewise distance and uplift.

Numerical evaluation

The minethatdata email analytics and data mining challenge 
of Kevin Hillstrom (2008) marks the starting basis for our 
research. It is inspired by Diemert et al. (2018, 2021), Shaar 
et al. (2016) and the winning entry of Radcliffe (2008), who 
approached the exercise via uplift modeling. His underlying 
thoughts, independent of the won competition, are illustrated 
in a separate paper (Radcliffe 2007a), albeit he zooms in on 
sales instead of churn.

Hillstroms dataset includes the results of an email 
marketing campaign relating to the customer behavior in 
terms of website visits and purchasing. More precisely, 
it contains 64.000 customers who last purchased within 
twelve months and afterward were involved in an email test 
(2/3 were randomly chosen to receive an email campaign 
featuring merchandise, 1/3 were randomly chosen to not 
receive an email campaign). During a period of two weeks 
following the email campaign, anew purchases were tracked.

Therefore, in the following research, Churn is defined 
as did not buy again in a certain period of time, which is 
represented by the binary target variable conversion. Its 
two possible values, 1 for customer purchased again within 
two weeks after the email campaign took place and 0 for 
customer did not purchase again within two weeks after 

(4)Δt = min
i=1,…,I

Δb − Δi

dbi

the email campaign took place, provide a churn prediction 
target as per definition of Pejić Bach et al. (2021) intro-
duced in the first chapter. 578 out of Hillstroms 64.000 
customers purchased again within the above-mentioned 
two weeks. This is a conversion rate of 0.9% which fits 
to the rareness of the prediction target in ordinary churn 
prevention cases.

Against this background, a decision tree has been 
developed on Hillstrom’s dataset. Preparative tasks have 
been a) engineering of features to result in only dealing 
with numeric input variables (seven features), b) calculation 
of z-Scores for standardization of the predictors, and c) 
explicit exclusion of the information whether a customer was 
targeted by the email campaign or not. Finally, the tree itself 
was built on a 80/20 training/validation split of the sample.

There is no more model-tuning since the research does 
not seek for the best predicting model but one reasonable 
partitioning of the feature space into leaves in order to utilize 
the selection methods specific to decision trees.

So the feature space of Hillstroms dataset was sectioned 
into subareas: the leaves of the decision tree. Every single 
customer, also the 20% in the validation subset, could be 
assigned to its corresponding leaf. Casually spoken the 
whole dataset was scored with the on itself derived model. 
For this purpose, the relative frequency of the value 1 
of the binary target variable among the customers of the 
dedicated leaf defines the estimation of the conversion 
probability per leaf, respectively, its customers. Vice versa, 
the complementary probability represents the likelihood of 
the above-defined event churn according to the customers 
in that specific leaf.

To obtain the basic framework for the hereinafter 
described simulations, the differentiation between the 
customers that received an email and those who did not 
preliminary was performed. That is the conversion or rather 
the churn probability grouped by email recipients and non-
email recipients was computed per leaf. By subtraction of 
the churn probability with email from the churn probability 
without email, Δ [cf. Eq. (2)] was generated as the real and 
correctly estimated effect of the churn prevention campaign 
per customer, in the absence of noise and uncertainty typified 
by spatially specified sources of error. For the generation of 
these errors, the simulations adapt the concept of Oechsle 
and Schönleber (2020), which was previously outlined and 
discussed [cf. Eq. (1)].

As described above based on Hillstroms dataset, a deci-
sion tree is engineered, which complies with the require-
ments of the methodology introduced in the third section. 
Concretely, the tree consists of I = 9 leaves with Δi > 0 for 
i = 1, 2,… , 9 , whereas the uplifts represent the reduction 
in likelihood of churn (did not buy again) due to the email 
campaign in Hillstroms scenario. The chosen metric is the 
Euclidean distance.
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In the following passage, the selection methods as 
listed in Sect. 3 are compared by a Monte Carlo simulation 
predicated on the described decision tree. An additional 
construction detail is the stipulated minimal leaf size of 
4800 customers, which represents 7.5% of the whole dataset 
and, respectively, 9.4% of the training dataset. The reason 
is that this is an in practice imaginable campaign size and 
the quantitative comparability of the leaf sizes supports the 
elucidated selection methods.

Eight miscellaneous radii are used for the construction of 
the circularly occurring errors [cf. (1)] as listed in Table 2. 
The error radius R ranges from zero to two times d∅Cb

 , which 
is defined as the average Euclidean distance per customer 
to the center Cb of the best leaf b. While R = 0 serves as a 
baseline without failures, R = 2d∅Cb

 somehow will mark a 
break even point when it comes to the economic logic of the 
prevention campaign.

The research performs 1000 runs per error radius and 
with it benchmarks six selection methods (classic, best k 
for k = 2 , best k for k = 3 , max dist, tradeoff, add split) by 
means of the expected Δ values per customer. The underly-
ing decision tree is always the same, while the position of 
the error seed E randomly alters. Figure 1 visualizes the 
statistical distributions of the results, explicitly the distribu-
tions of the achieved average uplift per selected customer 
and per employed selection method. Table 1 depicts the 
averages per selection method (for the eight times 1000 
runs) of achieved (and therefore expected) uplift, number of 
failures and achieved uplift among failures. More precisely 
�[Δ] specifies the average (per 1000 runs) carried out aver-
age uplift per selected customer. The runs among the each 
undertaken 1000 runs overall that produce negative average 
uplifts per customer are counted as failures. Vice versa the 
complementary runs are counted as successes, which later 
will be relevant for the reading of Table 2. �[Δ]Successes 
and �[Δ]Failures consequently denote the respective average 
of the average uplifts generated by the dedicated successes 
and accordingly failures.

In Fig.  1 it is very striking that the classic selection 
approach comes along with the highest level of uncertainty. 
That is the results of the classic selection method are furthest 
spread as measured by values of Δ . Conversely the alternative 

methods, second to none best 3, generate more dense ranges of 
outcomes. Particularly, as consolidated can be seen in Table 1, 
in comparison the classic approach not only most frequently 
(separate from best 3) led to failures, namely negative values 
of average uplift per customer ( Δ ), but also induced clearly 
more grave failures, viz., lowest values of �[Δ]Failures. This 
circumstance becomes even more apparent in Table 2 whose 
composition will be explained below.

Table 2 consists of 48 rows (eight radii times six selection 
methods), which, respectively, represent the results of the 
according unique radius and selection method combination 
in the above described each 1000 runs. To that effect, col-
umns one and two identify the radii (as a multiple of d∅Cb

 ) 
and the selection methods. �[Δ] , �[Δ]Successes and �[Δ]
Failures, and therefore columns three to seven, have already 
been explained with Table 1. Concluding the column, cam-
paign size contains the number of contacted customers per 
selection method, which, due to the simulation construction, 
does not vary within the different runs. The analysis controls 
for this dimension to ensure comparability of the selection 
methods.

In the first column, as previously mentioned, the error 
radius varies from R = 0 to R = 2d∅Cb

 . While R = 0 
constitutes a perfect surrounding with no need to deviate 
from the classic proceeding, R = 2d∅Cb

 delivers failures with 
nearly every second run (469 out of 1000 for the classic 
method) and thus contests the general idea of preventing 
churn.

In-between these boundaries, the superiority of the classic 
approach becomes apparent in terms of �[Δ] . But it is also 
the approach with the permanently lowest �[Δ] Failures and 
an oftentimes highest number of failures. The alternative 
selection methods lower these effects. By doing so, the add 
split approach is most suitable since it creates considerably 
the fewest failures. Additionally, these few failures come 
along with the highest �[Δ] Failures. Above all, the add split 
selection demands the lowest risk premium (as measured 
by �[Δ] ) for the gained robustness in results. In the case of 
R∕d∅Cb

= 7∕4 even none.

Conclusion and discussion

The research described in this paper illustrates well-known 
challenges with churn prevention campaigns on a real-world 
dataset. It shows with the help of the previously churn-
tailored Hillstrom dataset that noise and uncertainty rep-
resented by local spatial errors pose a veritable problem, 
which can economically destroy whole churn campaigns, 
especially with the classic selection approach. Thereby, it 
naturally plays a decisive role how voluminous relevant 
arising errors are. Lastly, it is demonstrated that there exist 
distance respecting alternative selection methods that largely 

Table 1  Quintessence of runs with R > 0

Selection method ∅�[Δ] ∅ # Failures ∅�[Δ] Failures

Classic 0.008 181.7 − 0.0039
Best 2 0.0063 178.1 − 0.0028
Best 3 0.0058 190.1 − 0.0024
Max dist 0.0044 164.9 − 0.0017
Tradeoff 0.0063 178.9 − 0.0029
Add split 0.0069 143.4 − 0.0022
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Table 2  Summary of simulation results

R∕d∅Cb
Selection method �[Δ] # Successes �[Δ] Successes # Failures �[Δ] Failures Campaign size

0 Classic 0.012 1000 0.012 0 – 6055
0 Best 2 0.01 1000 0.01 0 – 6008
0 Best 3 0.008 1000 0.008 0 – 6964
0 Max dist 0.006 1000 0.006 0 – 6894
0 Tradeoff 0.01 1000 0.01 0 – 5965
0 Add split 0.01 1000 0.01 0 – 6084
1 Classic 0.012 999 0.012 1 −0.001 6055
1 Best 2 0.009 1000 0.009 0 – 6008
1 Best 3 0.007 1000 0.007 0 – 6964
1 Max dist 0.006 1000 0.006 0 – 6894
1 Tradeoff 0.009 1000 0.009 0 – 5965
1 Add split 0.01 1000 0.01 0 – 6084
9/8 Classic 0.011 981 0.011 19 −0.001 6055
9/8 Best 2 0.008 991 0.008 9 −0.001 6008
9/8 Best 3 0.007 991 0.007 9 0.00 6964
9/8 Max dist 0.006 997 0.006 3 0.00 6894
9/8 Tradeoff 0.008 991 0.008 9 −0.001 5965
9/8 Add split 0.009 1000 0.009 0 – 6084
5/4 Classic 0.009 928 0.01 72 −0.002 6055
5/4 Best 2 0.007 935 0.008 65 −0.001 6008
5/4 Best 3 0.006 925 0.007 75 −0.001 6964
5/4 Max dist 0.005 955 0.005 45 −0.001 6894
5/4 Tradeoff 0.007 932 0.008 68 −0.001 5965
5/4 Add split 0.008 999 0.008 1 0.00 6084
11/8 Classic 0.008 862 0.01 138 −0.003 6055
11/8 Best 2 0.007 859 0.008 141 −0.001 6008
11/8 Best 3 0.005 822 0.007 178 −0.001 6964
11/8 Max dist 0.005 877 0.005 123 −0.001 6894
11/8 Tradeoff 0.007 858 0.008 142 −0.002 5965
11/8 Add split 0.007 937 0.008 63 −0.001 6084
3/2 Classic 0.007 790 0.01 210 −0.003 6055
3/2 Best 2 0.006 770 0.008 230 −0.002 6008
3/2 Best 3 0.005 724 0.007 276 −0.002 6964
3/2 Max dist 0.004 798 0.005 202 −0.001 6894
3/2 Tradeoff 0.006 766 0.008 234 −0.002 5965
3/2 Add split 0.006 842 0.008 158 −0.001 6084
7/4 Classic 0.005 637 0.01 363 −0.004 6055
7/4 Best 2 0.004 635 0.009 365 −0.003 6008
7/4 Best 3 0.004 629 0.007 371 −0.003 6964
7/4 Max dist 0.003 650 0.006 350 −0.002 6894
7/4 Tradeoff 0.004 635 0.009 365 −0.003 5965
7/4 Add split 0.005 655 0.008 345 −0.002 6084
2 Classic 0.004 531 0.011 469 −0.005 6055
2 Best 2 0.003 563 0.009 437 −0.004 6008
2 Best 3 0.003 578 0.007 422 −0.003 6964
2 Max dist 0.002 569 0.006 431 −0.002 6894
2 Tradeoff 0.003 566 0.009 434 −0.004 5965
2 Add split 0.003 563 0.009 437 −0.003 6084
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Fig. 1  Comparison of average uplift per selected customer for different selection methods and radii R (in units of d∅Cb
)
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give better results, dependent on the emergence of errors in 
terms of error radius R.

The most remarkable insight finally came from the add 
split selection. This method synthetically conducts additional 
splits in the best leaves before it selects the customers in the 
thereby arising subareas with the pairwise highest Euclidean 
distance. It directly influences the generation of the decision 
tree itself, because depending on the interpretation of the 
dodge, it either steps in the splitting rules or it intervenes in 
the pruning of the tree. By all means, the add split selection 
method revealed the most promising results. That implies 
that there are situations in which it can be beneficial to 
diverge from common ways of decision tree construction by, 
for example, adding supposedly (by the textbook) needless 
splits. By departing from the concept of expected values, this 
strategy evidently helps reducing abortive churn prevention 
campaigns.

In less risky scenarios ( R∕d∅Cb
≤ 1 ), there is no reason 

for not choosing the classic selection approach. However, 
in error-prone settings ( R∕d∅Cb

> 1 ), distance respecting 
selection approaches based on decision trees are able to 
outperform the classic way. This appears in the reduced 
number of churn increasing churn prevention campaigns, as 
well as in the reduced extent of failures. In only slightly more 
inconvenient settings ( 9∕8 ≤ R∕d∅Cb

≤ 5∕4 ), it is possible 
to reduce failures by switching from the classic method, 
respectively, even to avoid failures completely by using 
selection method add split. In clearly more inconvenient 
settings ( 11∕8 ≤ R∕d∅Cb

≤ 3∕2 ) solely add split yields a 
respectable reduction to an acceptable level of uncertainty. 
In adverse surroundings ( R∕d∅Cb

≥ 7∕4 ), the distance-based 
methods again outperform the classic approach. Only the 
rationale of the campaign on the whole is questioned by a 
failure quota of 1/3 to 1/2.

In an overall view, the findings can lead to feasible 
concepts for uplift modeling in general and especially in 
the churn prevention context, which will be of highest 
interest for the in all likelihood still growing subscription 
economy and the e-commerce business. At this juncture, 
the methodology equipes each technically correct evolved 
decision tree with more reliability in practical applications 
and thus is a valuable tool for every practitioner.

Funding Open Access funding enabled and organized by Projekt 
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