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Beyond one-size-fits-all: designing monetary policy for

diverse models and frequencies?

Alexander Dück∗ Fabio Verona§

Abstract

We offer a contribution to the analysis of optimal monetary policy. The standard approach to

determine what policy rule a central bank should follow is to take a single structural model and min-

imize the unconditional volatilities of inflation and real activity. In this paper, we propose monetary

policy rules that perform robustly across a broad range of structural models, focusing on minimizing

volatility at the frequencies most relevant for policymakers’ stabilization goals. Our findings indicate

that robust rules, which account for model uncertainty, advocate significantly less aggressive policy

responses. Moreover, incorporating frequency-specific stabilization preferences further moderates the

optimal policy actions. Ignoring model uncertainty imposes significant costs, while the cost of insur-

ing against this uncertainty is relatively low. This cost-benefit analysis strongly supports adopting a

robust-model approach to monetary policy.

JEL classification: C49, E32, E37, E52, E58

Keywords: monetary policy rules, policy evaluation, model comparison, model uncertainty, fre-

quency domain, design limits, DSGE models
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1 Introduction

We propose a novel approach to designing optimal monetary policy rules. The traditional method involves

selecting a structural macroeconomic model and determining the interest rate (Taylor) rule coefficients

that minimize the central bank’s objective function, typically a weighted average of the unconditional

variances of inflation and real activity. In this paper, we challenge this approach for two key reasons.

First, policymakers have access to numerous structural models, yet none represents the true economy, nor

are they ideal for all policy questions. As Levin, Wieland and Williams (2003) demonstrate, a policy rule

optimized for one model can lead to poor or even disastrous outcomes in others, highlighting the critical

importance of model selection. The lack of robustness in model-specific rules is a recurring issue in the

literature. Relying solely on a single structural model risks an overly narrow perspective, underscoring

the need to account for model uncertainty when designing policy rules. To address this, the literature

on model-robust monetary policy identifies rules with stabilization properties that perform well across a

range of models. A consistent finding is that simple model averaging improves robustness.1

Second, monetary policy, through interest-rate setting, should focus on smoothing cyclical fluctuations

rather than fine-tuning high-frequency movements in inflation and real activity or promoting long-term

economic growth. Policymakers should aim to stabilize specific frequencies of inflation and real activity,

rather than targeting their unconditional volatilities, as commonly done in the literature. By focusing

on unconditional variances, researchers and policymakers overlook the distinct high-, business-cycle-,

and low-frequency (HF, BCF, and LF) effects of monetary policy. Studies such as Onatski and Williams

(2003), Brock, Durlauf, Nason and Rondina (2007), and Brock, Durlauf and Rondina (2008, 2013) em-

phasize the frequency-specific nature of these effects. They show that choosing a policy rule involves

a frequency-by-frequency variance trade-off: reducing variance at certain frequencies may increase it at

1 For example, Levin and Williams (2003), Levin et al. (2003), Taylor and Wieland (2012), Schmidt and Wieland (2013),
and Wieland, Afanasyeva, Kuete and Yoo (2016) develop model-robust policy rules using structural models of the US econ-
omy. Côte, Kuszczak, Lam, Liu and St-Amant (2004) analyze monetary policy rule robustness in Canadian models, while
Adalid, Coenen, McAdam and Siviero (2005), Kuester and Wieland (2010), and Orphanides and Wieland (2013) conduct
similar analyses for the Euro area (EA).
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others.

Table 1 illustrates well this trade-off. The first row reports the volatility of inflation and its frequency

components (HF, BCF, LF) under a Taylor rule that minimizes overall inflation volatility. The second

and third rows show percentage differences in these volatilities when the Taylor rule is optimized to

minimize BCF or LF volatility specifically. A rule targeting BCF volatility increases LF volatility, while

a rule targeting LF volatility raises HF and BCF volatilities. Policymakers must consider these trade-offs

and prioritize the frequency components most relevant to their stabilization goals.

Building on this context, in this study we depart from the traditional approach and evaluate monetary

policy rules considering both model uncertainty and frequency-specific effects in a unified framework.

Our contribution is twofold.

First, we advance the literature on model-robust monetary policy rules (see references in footnote 1)

by developing frequency-based rules tailored to both model-specific and model-robust settings. This

analysis uses an extensive array of Dynamic Stochastic General Equilibrium (DSGE) models for the

US economy, including the latest vintages.2 Unlike much of the existing literature, which typically

dichotomizes models into backward- and forward-looking categories, our analysis considers a variety of

model groupings based on their key characteristics.3

Second, we contribute to the literature on design limits in monetary policy by developing optimal frequency-

specific responses across a broad range of DSGE models. Prior research in this area has largely relied

on simple two-equation New Keynesian models of inflation and output (see e.g., Brock et al., 2007, and

Brock et al., 2008, 2013). Furthermore, it has typically focused on the sensitivity of policy rules to

frequency-specific preferences rather than addressing the design of optimal responses as we do here.

Our findings highlight several key insights. Compared to conventional approaches that rely on a single

2 Our analysis considers the policymaker’s uncertainty to be about identifying the reference model of the economy. It
excludes other sources of uncertainty, such as parameter uncertainty, shock processes, or data quality concerns. For a compre-
hensive discussion of these additional uncertainties, see, for example, Onatski and Williams (2003).

3 Binder, Lieberknecht, Quintana and Wieland (2019) offers a notable exception by distinguishing models with and without
financial frictions, but our approach significantly expands this scope.
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structural model and minimize unconditional variances of inflation and real activity, we demonstrate that

both model uncertainty and frequency-specific preferences advocate for less aggressive policy responses.

Quantitatively, model uncertainty exerts a much larger influence, reducing optimal policy responses by

over half, while frequency-specific preferences have a comparatively modest dampening effect. More-

over, we find that ignoring model uncertainty imposes significant costs, while the cost of insuring against

this uncertainty is relatively low. This cost-benefit analysis strongly supports adopting a robust-model

approach to monetary policy.

The paper is organized as follows. Section 2 introduces the DSGE models, central bank objective func-

tions, monetary policy rules, and frequency decomposition methods. Section 3 examines optimized

model-specific and model-robust policy rules, alongside various experiments and robustness checks. Sec-

tion 4 concludes.

2 The setup

2.1 DSGE models

DSGE models are fundamental tools in monetary policy analysis, widely employed by both academics

and policymakers. For this study, we selected several DSGE models from the Macroeconomic Model

Data Base,4 ensuring they represent a broad spectrum of economic transmission mechanisms, frictions,

and shocks. The initial selection was refined by excluding models that exhibited excessive macroeco-

nomic volatility, instability, or significant redundancy with other models. This process culminated in a

final set of 29 US-focused DSGE models. Notably, some of these are actively used in policy institutions,

such as the model by del Negro, Giannoni and Schorfheide (2015), employed at the Federal Reserve

Bank of New York.5

4 www.macromodelbase.com/. Wieland, Cwik, Müller, Schmidt and Wolters (2012) and Wieland et al. (2016) explain
database developments over the years and provide several applications.

5 In an earlier version of the paper, we conducted the analysis separately for the Euro area using nine DSGE models
calibrated or estimated on Euro area data. The results were similar and are available upon request.
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The models span various sizes and complexities. About half are small- to medium-scale New Keyne-

sian (NK) models, including simple three-equation frameworks and medium-sized DSGE models, such

as the influential Smets and Wouters (2007) model. We include these small-scale NK models to render

policy recommendations more robust to model uncertainty. Furthermore, as demonstrated by del Negro,

Hasegawa and Schorfheide (2016), their forecasting performances are usually better than those of larger

models with financial frictions during stable economic periods. The remaining models incorporate ad-

vanced features, such as financial frictions, using mechanisms like the Bernanke, Gertler and Gilchrist

(1999) financial accelerator or Gertler and Karadi’s (2011) framework for financial intermediation.

All models include nominal price rigidity, as proposed by Calvo (1983) or Rotemberg (1982), with over

half also incorporating nominal wage rigidity à la Calvo. Additionally, one model employs an entirely

backward-looking accelerationist Phillips curve, while others balance backward- and forward-looking in-

flation dynamics to create hybrid Phillips curves. Real rigidities, such as habit formation in consumption

and investment or capital adjustment costs, are common across the models.

Some models offer detailed sectoral dynamics. For example, labor market frictions are modeled us-

ing the search-and-matching framework of Mortensen and Pissarides (1994), while housing markets are

modeled through Two-Agent New Keynesian (TANK) frameworks, inspired by Iacoviello (2005), which

incorporate heterogeneity among households.6

The models differ in their estimation methods and data samples. For consistency, we utilized the authors’

provided estimations or calibration values. Table A1 in Appendix A lists the models and summarizes

their key features. All models were solved using log-linear approximations around their respective steady

states.
6 The Macroeconomic Model Data Base does not include the latest generation of macro DSGE models that incorporate

fully developed heterogeneity, specifically Heterogeneous Agent New Keynesian (HANK) models.
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2.2 Central bank preferences and objective functions

Inflation and output (or unemployment) are central to monetary policy decisions, but policymakers of-

ten prioritize specific frequencies of fluctuations in these variables. For example, Lagarde (2021) and

Powell (2021) emphasize that monetary policy should avoid reacting to temporary, high-frequency fluc-

tuations in inflation, as these changes often dissipate before policy interventions take effect. Similarly,

since long-term inflation trends are predominantly driven by monetary factors, central banks may refrain

from actions that could destabilize low-frequency inflation fluctuations. Practical examples include the

Federal Reserve’s 2020 revision of its price-stability mandate, which de-emphasized short-term inflation

deviations in favor of ensuring that inflation averages 2 % over the long run. This highlights a clear focus

on low-frequency inflation management.7

In the same vein, central banks avoid using monetary policy to influence the economy’s long-term growth

rate (Mester, 2023) and to fine-tune high-frequency variations in real economic activity. As Kažimír

(2024) argues, acting on short-term surprises without a clear medium-term perspective is inherently risky.

To reflect these frequency-specific preferences, we evaluate several central bank objective functions (de-

tailed in Table 2). These allow policymakers to target specific frequency bands of fluctuations in inflation

and output growth.

As a starting point, we adopt the traditional objective function (OF), which minimizes the unconditional

variances (var) of inflation (π) and output growth (∆y). Although many studies employ the output gap

(the deviation of output from its potential level) in central bank objective functions and Taylor rules,

its use is not without challenges. As Plosser (2010) notes, output gap measurements depend heavily

on the empirical method used to estimate potential output, and different economic models may adopt

varying theoretical definitions of this gap. By contrast, output growth is straightforward to calculate and

consistently defined across models, making it a more practical alternative.

7 As reported in Verona, Martins and Drumond (2013, Table 1), the Federal Reserve has been using forward guidance (on
nominal interest rate) at least since June 2003 to shape inflation expectations and, ultimately, inflation in the long run.
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Building on this, we explore objective functions that prioritize certain frequency components. For in-

stance, we exclude high-frequency fluctuations in inflation and output growth, as well as low-frequency

output growth fluctuations. Instead, we focus on combinations of business-cycle frequency (BCF) and

low-frequency (LF) volatilities for inflation, alongside BCF fluctuations for output growth.

Following standard practice in business-cycle literature (e.g., Brock et al., 2013), we define BCF fluc-

tuations as cycles with periods of two to eight years. High-frequency (HF) components are those with

periods below two years, while LF components correspond to periods longer than eight years. Robustness

tests, detailed later, explore alternative ways of computing BCF fluctuations.

We introduce a relative weight ( λy) to output growth in the objective function, reflecting varying central

bank mandates. For instance, λy > 0 aligns with the Federal Reserve’s dual mandate of price stability and

maximum employment, while λy = 0 mirrors the European Central Bank’s stricter focus on inflation tar-

geting. Additionally, all objective functions incorporate a penalty term to limit the variability of changes

in nominal interest rates (∆r), following common practice (e.g., Smets, 2003 and Kuester and Wieland,

2010). This term reflects central banks’ preference for interest rate smoothing and prevents excessively

volatile optimized policy responses that may violate constraints like the zero lower bound on nominal

interest rates.

In this study, we use an ad hoc loss function as the performance criterion, inspired by Tinbergen (1952).

This approach closely aligns with standard central bank mandates and policy practices and has been

widely adopted in the literature (e.g., Lippi and Neri, 2007, Sala, Soderstrom and Trigari, 2008, Adolf-

son, Laseen, Linde and Svensson, 2011, Gelain, Lansing and Mendicino, 2013, and Verona, Martins and

Drumond, 2017). This method contrasts with studies such as Faia and Monacelli (2007), Schmitt-Grohe

and Uribe (2007), and Curdia and Woodford (2010), which evaluate policies by directly incorporating

households’ utility. While utility-based approaches provide theoretically consistent Ramsey policies and

enable analytical social welfare analysis, they present several significant challenges. First, these methods

are highly sensitive to model-specific distortions, leading to performance criteria that vary across models

and complicating comparisons under model uncertainty. Second, utility-based loss functions are often
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unsuitable for real-world application, making it difficult for central banks to design effective policy rules

for achieving macroeconomic stability. Furthermore, no central bank’s mandate explicitly includes max-

imizing social welfare. Given these limitations, we adopt a more pragmatic approach. By focusing on

minimizing a loss function, we ensure better alignment with central bank mandates and the operational

realities of policymaking.

2.3 Taylor rules

Policymakers aim to achieve their macroeconomic targets by setting nominal interest rates according to

simple, implementable feedback rules (e.g., Faia and Monacelli, 2007 and Schmitt-Grohe and Uribe,

2007). In this paper, we assume the nominal interest rate (rt) is determined by a Taylor rule of the form:

rt = ρrt−1 +αππt +αy∆yt ,

where rt is the quarterly annualized nominal interest rate, πt represents the quarterly annualized inflation

rate, and ∆yt denotes quarter-on-quarter output growth. The coefficients απ and αy measure the central

bank’s responsiveness to inflation and output growth, respectively, while ρ captures the degree of interest

rate smoothing.

This framework aligns with the class of simple Taylor rules widely used in monetary policy literature

(e.g., Gilchrist and Zakrajsek, 2011 and Carrillo and Poilly, 2013). Such rules rely solely on observable

macroeconomic indicators, making them both practical and transparent. By focusing on inflation and

output growth, central banks can formulate effective policies without requiring unobservable variables

like the natural rate of interest or potential output.
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2.4 Frequency decomposition

To extract the different frequency components from the time series of inflation and output growth, we

use the Maximal Overlap Discrete Wavelet Transform (MODWT). This method decomposes time series

into a trend and several cyclical components, capturing fluctuations across distinct frequency bands. The

approach is comparable to the traditional Beveridge and Nelson (1981) trend-cycle decomposition but

offers greater flexibility, as it applies to variables with diverse time series properties.8

Using the Haar filter, the MODWT allows us to decompose any variable Xt into:

Xt =
J

∑
j=1

XD j
t +XSJ

t , (1)

where XD j
t represents wavelet coefficients capturing cyclical fluctuations at scale j, and XSJ

t is the scaling

coefficient. The wavelet coefficients are calculated as:

XD j
t =

1
2 j

[
2( j−1)−1

∑
i=0

Xt−i−
2 j−1

∑
i=2( j−1)

Xt−i

]
(2)

and

XSJ
t =

1
2J

2J−1

∑
i=0

Xt−i . (3)

Equations (1)-(3) show that the original series Xt can be decomposed (by means of an appropriate se-

quence of band-pass filters) in different time series components, each defined in the time domain and

representing the fluctuation of the original time series in a specific frequency band. The coefficients XD j
t

can then be viewed as components with different levels of persistence operating at different frequencies,

whereas the scaling coefficient XSJ
t corresponds to the LF trend of the series. Importantly, the Haar filter’s

one-sided structure ensures that it can be implemented in real time, making it suitable for operational use

8 See Crowley (2007) for a comprehensive review of the theory and applications of the MODWT. Applications of the
MODWT in DSGE models include Caraiani (2015), Gallegati, Giri and Palestrini (2019), Lubik, Matthes and Verona (2019),
and Caraiani and Gupta (2020).
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in policy analysis.9

In this paper we compute a J=4 level decomposition of our time series. The time period in the models is

a quarter, hence the first component (XD1
t ) captures fluctuations with a period between 2 and 4 quarters,

while the components XD2
t , XD3

t , and XD4
t capture fluctuations with periods of 1-2, 2-4, and 4-8 years,

respectively. Finally, the scale component XSJ
t captures fluctuations with a period longer than 8 years.10

Subsequently, we define the HF component of inflation and output growth (e.g. inflation, πt) as πHF
t =

π
D1
t +π

D2
t , the BCF component (πBCF

t ) as πBCF
t = π

D3
t +π

D4
t , whereas its LF components correspond

to π
S4
t . That is, cycles with periodicity below (above) two (eight) years are considered as HF (LF)

fluctuations, whereas BCF fluctuations as those with a period of two to eight years.

For illustrative purposes, we decomposed US data (1990Q1-2017Q4) on Personal Consumption Expen-

ditures (PCE) inflation and quarter-on-quarter real output growth. The first row in Figure 1 reports the

time series of the variables, along with business-cycle recessions (depicted as gray-shaded areas). The US

economy experienced three recessions over the sample period, with negative GDP growth around those

recessions. Inflation mostly fluctuates around 2 %, with some larger swings around the Global Financial

Crisis (GFC) of 2007-2008.

The second to fourth rows in Figure 1 report the time series of the frequency components for both vari-

ables. Most of the volatility of GDP growth during the GFC is due to its HF and BCF fluctuations,

whereas its LF component seems to have shifted to a somehow lower level after the GFC (from 2.5 % to

1.5 %). Similarly, the large swings of inflation during and after the GFC are mainly due to its HF and

BCF components, while the LF component of inflation (often interpreted as the inflation target or the

perception thereof) has been remarkably anchored to the 2 % inflation target of the Federal Reserve since

the late-1990s.
9 The Haar filter is widely used in macro and finance applications (see e.g. Faria and Verona, 2018, 2020, 2021, 2025,

Bandi, Perron, Tamoni and Tebaldi, 2019, Kilponen and Verona, 2022, Martins and Verona, 2023, 2024, Stein, 2024, and
Canova, 2025). It has some intuitive advantages over band-pass filters, as it operates in the time domain and the number of
moving average terms is finite.

10 In the MODWT, each wavelet component at frequency j approximates an ideal high-pass filter with passband f ∈[
1/2 j+1 , 1/2 j

]
. Hence, they are associated with periodicity fluctuations

[
2 j , 2 j+1

]
(quarters, in our case). We provide the

analytical expressions for these components in Appendix B.
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3 Optimized monetary policy rules

In this section, we begin by analyzing the optimized monetary policy rule for each DSGE model individ-

ually (Sub-section 3.1). We then explore the implications of model uncertainty for the design of robust

monetary policy rules (Sub-section 3.2). In Sub-section 3.3, we quantify the costs associated with model

uncertainty and the neglect of frequency-specific preferences, measured in terms of the increase in the

central bank’s objective functions. Next, in Sub-section 3.4, we categorize the models based on their

key features and compute model-robust rules for each group separately. Finally, in Sub-section 3.5, we

present the results of various robustness tests.

3.1 Model-specific rules

For each model m ∈M, we solve the following optimization problem:

min
{ρ,απ ,αy}

varm

(
π

f req
)
+λyvarm

(
∆y f req

)
f req = BCF,LF,all

s.t. rt = ρrt−1 +αππt +αy∆yt

Et
[

fm
(
xm

t ,x
m
t+1,x

m
t−1,zt ,Θ

m)]= 0

and there exists a unique and stable equilibrium for that model (that is, the Taylor principle is verified),

where fm is the set of all model-specific equations besides the policy rule. xm and Θ
m are model-specific

variables and parameters, while z are common variables in all models. When computing the optimized

model-specific (and model-robust) rules, we set the limits for each policy rule coefficient (ρ ∈ [0,0.9],

απ ∈ [0.1,5], and αy ∈ [0,2]) and run a grid search (with steps of size 0.1 (0.2) below (above) 1 for all

grids) to minimize the objective function.

We conduct the analysis by considering both the unconditional volatilities of the variables of interest

(denoted as "all", since all frequencies are implicitly included in this case) and various frequency com-
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binations in the objective function, as detailed in Table 2. In the baseline case, we examine λy = 0 and

λy = 1.

The first three columns of Table 3 display the averages of the optimized model-specific coefficients. We

highlight four key results. First, the average smoothing coefficient for the nominal interest rate is 0.9,

regardless of the objective function. Second, if the central bank focuses on stabilizing only one frequency

of inflation fluctuations (either the BCF or the LF), the optimized model-specific rules suggest smaller

or comparable average response coefficients to inflation. However, when both frequencies of inflation

are stabilized, the average inflation response is either higher or similar to that of stabilizing aggregate

inflation. Third, if the central bank prioritizes stabilizing output growth, the average response to output

growth is larger (as expected), while the response to inflation is smaller. Fourth, when the central bank

aims to stabilize the BCF of GDP growth, its average response to GDP growth is lower compared to when

it focuses on stabilizing the volatility of aggregate GDP growth.

In Figure 2, we plot the distribution of optimized model-specific coefficients. It is evident that not only

are the average model-robust coefficients (marked by red crosses) lower when the policymaker focuses

on stabilizing specific frequencies of inflation and output growth, but the entire distribution of optimized

model-specific coefficients shifts downward. Frequency-specific preferences, therefore, lead to more

restrained responses by policymakers.

Next, we assess the robustness of the optimized model-specific rules to model uncertainty, or, in other

words, the cost of disregarding model uncertainty. We evaluate the performance of rules optimized for

one model when applied to other models. Table 4 reports the percentage increase in objective function

1 (% L) when using a rule optimized for model X in model Y, compared to using the rule optimized for

model Y.11 To interpret the economic significance of this metric, Levin and Williams (2003) suggest that

a rule yielding up to a 50 % increase in % L may still be considered satisfactory, while a rule that causes

a % L increase greater than 100 % would imply that insurance against model uncertainty is prohibitively

costly.
11 These results hold for all objective functions of the central bank.
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This analysis shows that rules optimized for specific models lead to significant losses (though never

explosiveness, indeterminacy, or multiple equilibria) when applied to other models. This finding is con-

sistent with earlier literature. Specifically, the majority of optimized model-specific rules (as shown in

Table 4) result in large increases in % L in several other models, making them unsuitable in the face of

model uncertainty. However, two model-specific rules (M_1 and M_2) are robust to model uncertainty,

as they do not cause loss increases above 65 %. Additionally, four other rules (M_3, M_13, M_22, and

M_24) perform reasonably well across all models. On the other hand, as seen in the columns of Table

4, only a few models (notably M_12) are relatively insensitive to other optimized model-specific rules,

while most models exhibit high % L increases when applying rules optimized for other models.

3.2 Model-robust rules

Given the lack of robustness in the optimized model-specific rules discussed in the previous sub-section,

we now seek rules that perform well across all models. To achieve this, we follow the approach of Levin

et al. (2003), Taylor and Wieland (2012), and Orphanides and Wieland (2013), applying simple model

averaging.12

Formally, the model-robust rules are obtained by choosing the coefficients of the monetary policy rule

that solve the following optimization problem:

min
{ρ,απ ,αy}

M

∑
m=1

ωm

[
varm

(
π

f req
)
+λyvarm

(
∆y f req

)]
f req = BCF,LF,all

s.t. rt = ρrt−1 +αππt +αy∆yt

Et
[

fm
(
xm

t ,x
m
t+1,x

m
t−1,zt ,Θ

m)]= 0 ∀m ∈M

where there exists a unique and stable equilibrium ∀m∈M (that is, the Taylor principle is always verified)

12 Alternative approaches to robust policymaking include Bayesian model averaging (e.g., Kuester and Wieland, 2010),
the robust Bayesian rule (e.g., Levine, McAdam and Pearlman, 2012), and non-Bayesian methods based on minimax and
minimax regret criteria (e.g., Brock et al., 2007 and Levine and Pearlman, 2010).
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and ωm = 1/M.

Columns 4 to 6 in Table 3 present the optimized model-robust coefficients for each objective function.

We highlight the following key results. First, all model-robust rules exhibit the same degree of interest

rate smoothing, which aligns with the optimized average model-specific coefficient. Second, compared

to the average model-specific coefficients, model-robust rules prescribe significantly smaller responses

to inflation and more subdued reactions to output growth, regardless of the objective function. In other

words, rules robust to model uncertainty generally imply much less aggressive central bank responses.

Third, similar to the model-specific rules, if the policymaker prioritizes stabilizing only a subset of infla-

tion and output growth frequencies, the robust responses to both inflation and output growth are further

reduced.

Figure 2 illustrates that the model-robust coefficients (represented by black crosses) are positioned on the

lower end of the boxes, indicating much smaller than average (and smaller than median) responses by the

central bank when facing model uncertainty.

Overall, policymakers facing uncertainty about which model(s) to use must adopt much more cautious

policy responses than those prescribed by the status quo of using a single model. Policymakers with

preferences for stabilizing specific frequencies of inflation and output growth should exercise even greater

caution.

3.3 Quantifying the costs of insuring against model uncertainty and ignoring

frequency-specific fluctuations

3.3.1 The cost of insuring against model uncertainty

The model-robust rule is designed to perform well across all models, but it is rarely the best rule for any

single model. To assess the relative performance of the model-robust policy rule in a particular model,

we compute the percentage increase in each objective function (% L) when using the optimized model-
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robust rule, relative to the optimal outcome achievable in that model (i.e., the optimized model-specific

rule for that model).

Results are presented in Table 5. Although some individual % L values exceed the 50 % threshold con-

sidered acceptable (as discussed in Sub-section 3.1), the average losses remain well below this thresh-

old. Moreover, when the policymaker focuses on stabilizing specific frequencies of inflation and output

growth (objective functions 2-4 and 6-8), the cost of insuring against model uncertainty is significantly

lower, both on average and for nearly all models individually. For example, comparing the costs implied

by objective function 5 with those of objective functions 6 to 8 shows that the average cost of insuring

against model uncertainty is halved.

This analysis demonstrates that policymakers can insure against model uncertainty at a reasonable cost

in each model of the economy.

3.3.2 The cost of ignoring frequency-specific fluctuations

What if policymakers ignore, or are unaware of, the frequency-specific trade-offs discussed in the intro-

duction and instead base their policies on the aggregate volatilities of the variables of interest?

We present the cost of this approach in Table 6. Each value in the table shows the percentage increase

in each objective function when using the optimized model-specific (m-s) or model-robust (m-r) rule

from objective function 1 (5) in objective functions 2 to 4 (6 to 8), relative to its own optimized rule.

As reported in the last row of the table, the average percentage increases in objective functions are not

substantially higher (at most 10 %). Only two models (M_8 and M_14) show greater sensitivity when

the stabilization of real activity is a priority (objective functions 5 to 8).

Therefore, ignoring these frequency-specific trade-offs does not significantly worsen the outcomes for

policymakers.
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3.4 Model-robust monetary policy rules and and the features of the models

The DSGE models used in this paper feature various frictions and transmission mechanisms. In this sub-

section, we explore whether and how specific model features affect the size of the model-robust policy

responses.

Table 7 reports the model-robust coefficients separately for: i) calibrated and estimated models (8 and 21

models, respectively), ii) models with and without financial frictions (15 and 14 models, respectively),

iii) models with and without wage rigidities (15 and 14 models, respectively), and iv) models with a

hybrid / backward-looking Phillips curve versus a forward-looking Phillips curve (20 and 9 models, re-

spectively).

Regardless of how the models are grouped, the results are qualitatively consistent with the main findings

of the paper. Specifically, robust inflation and output growth responses tend to be smaller or similar

when the central bank is concerned with stabilizing specific frequencies of inflation and output growth.

Moreover, robust output growth responses are larger when policymakers prioritize stabilizing real activity.

Quantitatively, calibrated models suggest a stronger response (both to inflation and output growth) by

policymakers, while the response coefficients of estimated models are closer to the baseline ones. Wage

frictions also play a significant role: models without wage frictions prescribe stronger responses to both

inflation and output growth, whereas models with wage frictions result in weaker policy responses. Fi-

nancial frictions, however, do not appear to substantially affect the design of robust monetary policy

rules, as the response coefficients are similar in models with or without these frictions. Finally, the spec-

ification of the Phillips curve significantly shapes the results: models with a forward-looking Phillips

curve prescribe more aggressive responses compared to models with a hybrid Phillips curve, which yield

results closer to the baseline.

We track these quantitative differences across model sub-samples by observing that the optimized model-

robust coefficients typically increase as the variance of the variable of interest decreases. For example,

estimated models, models with wage frictions, and models with a hybrid Phillips curve tend to exhibit
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higher volatilities of inflation and output growth than calibrated models, models without wage frictions,

and models with a forward-looking Phillips curve, respectively. In the former group, the monetary policy

response does not need to be as pronounced, as monetary policy is more effective in volatile economies.

As a result, these models would call for a less aggressive central bank response to stabilize the economy

and avoid excessive macroeconomic fluctuations. Interestingly, models with or without financial frictions

generate similar levels of inflation and output growth volatility. In fact, models with financial frictions

produce slightly less volatility, which contrasts with the conventional "financial accelerator" view of

business cycle fluctuations (Bernanke et al., 1999). This could be due to the fact that the models used in

our analysis were estimated using data from before the GFC, during which financial frictions might have

played a less significant role (see, e.g., Drautzburg and Uhlig, 2015).

3.5 Robustness tests

In the first robustness check, we relax the assumption that the central bank equally values the variances

of inflation and output growth by assigning different weights to output growth. Results for λy = 0.5 are

displayed in Table C1 (columns 4 to 6) in Appendix C, with the benchmark results shown in the first three

columns of the table. Reducing the relative weight on output growth does not affect the central bank’s

response to inflation. However, as expected, it generally leads to a moderate decrease in the response to

output growth compared to the case where λy = 1.

Next, following Levin et al. (2003) and Orphanides and Wieland (2013), we consider forecast-based

monetary policy rules of the form:

rt = ρrt−1 +απEtπt+4 +αy∆yt , (4)

where Etπt+4 represents the inflation expectation 4-quarter ahead. Results are reported in Table C1

(columns 7 to 9). We find that the responses to inflation and output growth are larger when the central

bank reacts to one-year-ahead expected inflation rather than current inflation. Nevertheless, the main find-

17



ings remain consistent: considering one specific frequency in the objective function reduces the response

to inflation, while including output growth typically increases the response to inflation.

Next, we consider fluctuations between 1 and 4 years, and between 1 and 8 years, as BCF fluctuations.

The model-robust coefficients, reported in columns 10 to 15 of Table C1, show that the results are not

highly sensitive to the definition of BCF fluctuations.

Finally, we find that the results are quantitatively robust to variations in the preference parameter for

restraining the variability of changes to nominal interest rates (in the objective function). This preference

parameter, which typically ranges from 0.1 to 1 in the literature (e.g., Brock, Durlauf and West, 2003 and

Levin and Williams, 2003), does not significantly alter the outcomes.

4 Conclusions

What policy rule should a central bank follow? This paper tackles this classic question with a novel

approach, departing from the traditional framework in two key ways.

First, instead of relying on a single structural macroeconomic model, we conduct our analysis using

a wide range of DSGE models. This allows us to identify monetary policy rules that remain robust

despite model uncertainty. Second, rather than focusing on rules that minimize a weighted average of the

unconditional variances of inflation and output, we search for the rules that reduce fluctuations at specific

frequencies – those most relevant to policymakers.

Our findings offer clear policy guidance. Central banks facing model uncertainty should adopt less ag-

gressive policy responses. Moreover, stabilization preferences tied to specific frequencies further dampen

these responses. Ignoring model uncertainty proves costly, while the measures required to mitigate its

effects come at a relatively low expense. This cost-benefit analysis thus strongly supports a robust-model

approach to monetary policy.
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Figure 1: Frequency decomposition of inflation and output growth
Notes. Sample period: 1990Q1–2017Q4. Shaded horizontal bars are NBER recessions. HF stands for fluctuations shorter
than 2 years, BCF for fluctuations between 2 and 8 years, and LF for cycles longer than 8 years. Quarterly GDP growth is
computed from Real GDP per capita, and year-over-year PCE inflation rate is computed from the PCE price index. Source:
FRED2 data base.
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Figure 2: Boxplot of optimized Taylor-rule coefficients
Notes. In the box, the red line displays the median across models. The boundaries of the box depict the 25 % and 75 %
percentiles. The whiskers outside of the box mark the entire range of the distribution. The black cross depicts the coefficients
of the model-robust rule, and the red cross is the average of model-specific rules. OF 1 to OF 8 refer to the central bank
objective functions as reported in Table 2.
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TR that min σ (π) var(π) var
(
πHF

)
var
(
πBCF

)
var
(
πLF

)
Taylor rule that minvar(π) 0.12 0.03 0.06 0.03
Taylor rule that minvar

(
πBCF

)
11 -10 -2 60

Taylor rule that minvar
(
πLF

)
10 40 7 -19

Table 1: Frequency-specific effects and trade-offs of monetary policy choices
Notes. The first row reports the unconditional variances (var) of inflation and its frequency components, while the remaining
rows report the percentage differences with respect to the values in the first row. Model used: Blanchard and Gali (2010). HF
stands for fluctuations shorter than 2 years, BCF for fluctuations between 2 and 8 years, and LF for cycles longer than 8 years.

Objective Function 1 var(π)
Objective Function 2 var

(
πBCF

)
Objective Function 3 var

(
πLF

)
Objective Function 4 var

(
πBCF

)
+ var

(
πLF

)
Objective Function 5 var(π)+λy var(∆y)
Objective Function 6 var

(
πBCF

)
+λy var

(
∆yBCF

)
Objective Function 7 var

(
πLF

)
+λy var

(
∆yBCF

)
Objective Function 8 var

(
πBCF

)
+ var

(
πLF

)
+λy var

(
∆yBCF

)
Table 2: Central bank objective functions

Notes. HF stands for fluctuations shorter than 2 years, BCF for fluctuations between 2 and 8 years, and LF for cycles longer
than 8 years. All objective functions include a term for restraining the variability of changes to nominal interest rates (∆r)
with a weight of 0.5.

Objective functions Individual models Robust rule
functions ρ απ αy ρ απ αy

var(π) 0.9 2.2 0.5 0.9 0.9 0.2
var
(
πBCF) 0.9 1.8 0.5 0.9 0.7 0.2

var
(
πLF) 0.9 1.8 0.5 0.9 0.7 0.2

var
(
πBCF)+ var

(
πLF) 0.9 2.1 0.5 0.9 0.9 0.2

var(π)+ var(∆y) 0.9 1.6 1.2 0.9 1 0.9
var
(
πBCF)+ var

(
∆yBCF) 0.9 1.5 0.8 0.9 0.7 0.6

var
(
πLF)+ var

(
∆yBCF) 0.9 1.5 0.9 0.9 0.7 0.5

var
(
πBCF)+ var

(
πLF)+ var

(
∆yBCF) 0.9 1.9 0.8 0.9 0.9 0.5

Table 3: Model-specific and model-robust monetary policy rules
Notes. HF stands for fluctuations shorter than 2 years, BCF for fluctuations between 2 and 8 years, and LF for cycles longer
than 8 years. All objective functions include a term for restraining the variability of changes to nominal interest rates (∆r)
with a weight of 0.5.
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OF Optimized model-robust rule for
OF OF 1 OF 2 OF 3 OF 4 OF 5 OF 6 OF 7 OF 8

M1 5 4 5 5 11 9 9 8
M2 5 4 4 5 11 8 8 8
M3 12 14 11 12 14 11 12 12
M4 16 12 5 12 20 15 7 14
M5 23 18 21 26 39 21 20 26
M6 55 6 82 55 55 9 93 61
M7 12 11 5 13 11 6 3 10
M8 15 14 12 15 132 81 50 55
M9 5 1 3 3 27 12 6 6
M10 6 5 5 6 21 12 16 17
M11 16 6 7 10 27 12 8 15
M12 4 4 4 4 54 2 4 3
M13 25 20 19 22 26 16 16 20
M14 30 26 14 27 72 17 20 34
M15 30 25 16 23 26 26 15 24
M16 6 4 7 8 7 1 4 5
M17 25 12 10 21 155 37 52 26
M18 22 17 11 18 68 35 35 33
M19 38 29 22 39 31 19 14 30
M20 21 17 10 17 15 15 11 16
M21 38 35 21 32 44 45 22 38
M22 24 21 19 21 25 16 17 19
M23 19 15 9 15 16 20 12 18
M24 19 14 11 16 91 38 45 41
M25 108 93 25 99 56 49 22 72
M26 14 9 6 14 28 9 7 14
M27 1 0 0 1 5 2 0 1
M28 20 15 21 21 22 17 23 23
M29 1 1 0 1 10 3 1 2
Average 21 16 13 19 39 19 19 23

Table 5: The cost of insurance against model uncertainty
Notes. The values display the increase of each objective function (in %) when using the optimized model-robust rule relative
to the first-best simple rule for each model.
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OF Optimized rule for
OF OF 1→ OF 2 OF 1→ OF 3 OF 1→ OF 4 OF 5→ OF 6 OF 5→ OF 7 OF 5→ OF 8
OF m-s m-r m-s m-r m-s m-r m-s m-r m-s m-r m-s m-r
M1 0 -2 0 -2 0 0 0 -1 0 -1 0 2
M2 0 -2 0 -2 0 0 0 -1 0 -1 0 2
M3 2 2 0 2 0 0 3 -4 2 -8 2 -9
M4 0 -6 1 -3 0 0 14 -3 15 1 14 2
M5 8 24 11 27 1 0 5 45 7 50 0 27
M6 18 2 0 -32 0 0 11 -5 0 -53 0 -18
M7 5 13 0 11 0 0 10 15 7 11 7 2
M8 4 7 3 7 0 0 13 132 11 161 11 157
M9 8 0 6 -3 0 0 6 37 3 36 10 31
M10 2 4 1 3 0 0 4 -4 2 -11 3 -14
M11 10 -5 17 -5 1 0 10 -4 17 -5 1 10
M12 2 1 5 4 0 0 15 0 11 0 15 -3
M13 0 -5 0 -5 0 0 5 -8 3 -9 8 -3
M14 9 5 1 2 0 0 5 32 4 65 18 125
M15 0 -9 0 -5 0 0 1 -11 1 -7 1 -2
M16 4 11 6 14 0 0 8 11 7 11 8 1
M17 0 -4 0 -4 0 0 2 2 0 -12 10 -18
M18 0 -6 0 -4 0 0 1 -18 0 -22 7 -2
M19 3 20 0 20 0 0 6 25 3 23 2 5
M20 0 -8 1 -5 0 0 1 -8 1 -8 2 -2
M21 0 -12 0 -6 0 0 0 -15 0 -6 0 7
M22 0 -4 0 -3 0 0 0 -8 0 -10 0 -7
M23 0 -7 1 -4 0 0 4 3 4 7 4 11
M24 0 -3 0 -2 0 0 0 -23 1 -30 2 -22
M25 8 15 13 24 1 0 9 22 9 33 0 -21
M26 8 20 9 21 0 0 9 37 9 41 0 14
M27 3 4 4 5 0 0 2 11 2 12 2 13
M28 2 5 1 3 0 0 2 -3 1 -11 2 -16
M29 3 6 1 5 0 0 3 16 1 15 0 11
Average 3 2 3 2 0 0 5 9 4 9 5 10

Table 6: The cost of ignoring frequency-specific fluctuations
Notes. The values display the increase of each objective function (in %) when using the optimized rule of objective function
X in objective function Y, relative to its own optimized rule (OF X → OF Y). The terms m-s / m-r refer to the model-
specific / model-robust rule, respectively.
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Objective functions Calibrated Estimated Financial No financial
functions functions functions frictions frictions
functions ρ απ αy ρ απ αy ρ απ αy ρ απ αy

var(π) 0.9 1.2 0.2 0.9 0.9 0.2 0.9 1 0.3 0.9 0.9 0.2
var
(
πBCF) 0.9 1 0.3 0.9 0.7 0.2 0.9 0.8 0.3 0.9 0.7 0.2

var
(
πLF) 0.9 0.9 0.3 0.9 0.7 0.2 0.9 0.7 0.3 0.9 0.8 0.2

var
(
πBCF)+ var

(
πLF) 0.9 1.2 0.2 0.9 0.9 0.2 0.9 0.9 0.3 0.9 0.9 0.2

var(π)+ var(∆y) 0.9 1.4 1.8 0.9 0.9 0.7 0.9 1 1 0.9 0.9 0.9
var
(
πBCF)+ var

(
∆yBCF) 0.9 1 1 0.9 0.7 0.5 0.9 0.8 0.6 0.9 0.7 0.6

var
(
πLF)+ var

(
∆yBCF) 0.9 0.9 1 0.9 0.7 0.5 0.9 0.8 0.6 0.9 0.7 0.5

var
(
πBCF)+ var

(
πLF)+ var

(
∆yBCF) 0.9 1.2 0.9 0.9 0.9 0.5 0.9 0.9 0.5 0.9 0.9 0.5

Objective functions Wage No wage Hybrid Forward-looking
functions frictions frictions Phillips curve Phillips curve
functions ρ απ αy ρ απ αy ρ απ αy ρ απ αy

var(π) 0.9 0.8 0.1 0.9 1.2 0.5 0.9 0.9 0.2 0.9 1.6 0.3
var
(
πBCF) 0.9 0.6 0.1 0.9 0.9 0.5 0.9 0.7 0.2 0.9 1.4 0.3

var
(
πLF) 0.9 0.6 0.2 0.9 0.9 0.4 0.9 0.7 0.2 0.9 1.2 0.4

var
(
πBCF)+ var

(
πLF) 0.9 0.7 0.1 0.9 1 0.5 0.9 0.9 0.2 0.9 1.6 0.3

var(π)+ var(∆y) 0.9 0.8 0.7 0.9 1.2 1.4 0.9 0.9 0.7 0.9 1.6 2
var
(
πBCF)+ var

(
∆yBCF) 0.9 0.5 0.4 0.9 0.9 0.8 0.9 0.7 0.5 0.9 1.2 1.4

var
(
πLF)+ var

(
∆yBCF) 0.9 0.6 0.4 0.9 0.9 0.8 0.9 0.7 0.4 0.9 1.2 1.6

var
(
πBCF)+ var

(
πLF)+ var

(
∆yBCF) 0.9 0.7 0.4 0.9 1 0.7 0.9 0.8 0.4 0.9 1.4 1.2

Table 7: Model-robust monetary policy rules of models with different features
Notes. The features are: calibrated and estimated models, models with and without financial friction, models with and without
wage friction, and models with a hybrid and forward-looking Philips curve. HF stands for fluctuations shorter than 2 years,
BCF for fluctuations between 2 and 8 years, and LF for cycles longer than 8 years. All objective functions include a term for
restraining the variability of changes to nominal interest rates (∆r) with a weight of 0.5.
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Appendix A Models (acronyms) and their key features

Model M1 Paper Estimation Wage Financial Phillips
acronyms M1 M1 period frictions frictions curve
US_ACELm M1 Altig, Christiano, Eichenbaum and Linde (2011) 1959Q2-2001Q4 Yes Yes hybrid
US_ACELswm M2 Altig et al. (2011) 1959Q2-2001Q4 Yes Yes forward
US_BKM12 M3 Bils, Klenow and Malin (2012) 1990M1-2009M10 Yes No hybrid
US_CD08 M4 Christensen and Dib (2008) 1979Q3-2004Q3 No Yes forward
US_CFOP14 M5 Carlstrom, Fuerst, Ortiz and Paustian (2014) 1972Q1-2008Q4 Yes Yes hybrid
US_CPS10 M6 Cogley, Primiceri and Sargent (2010) 1982Q4-2006Q4 No No hybrid
US_DG08 M7 de Graeve (2008) 1954Q1-2004Q4 Yes Yes hybrid
US_DNGS15_SWpi M8 del Negro, Giannoni and Schorfheide (2015) 1964Q1-2008Q3 Yes No hybrid
US_FMS13 M9 Feve, Matheron and Sahuc (2013) 1960Q1-2007Q4 Yes No hybrid
US_FU19 M10 Fratto and Uhlig (2020) 1984Q1-2015Q4 Yes No hybrid
US_HL16 M11 Hollander and Liu (2016) 1982Q1-2015Q1 No Yes hybrid
US_IAC05 M12 Iacoviello (2005) 1974Q1-2003Q2 No Yes forward
US_IR04 M13 Ireland (2004) 1980Q1-2001Q3 No No forward
US_JPT11 M14 Justiniano, Primiceri and Tambalotti (2011) 1954Q3-2009Q1 Yes No hybrid
US_KS15 M15 Kriwoluzky and Stoltenberg (2015) 1964Q1-2008Q2 No No forward
US_LWY13 M16 Leeper, Walker and Yang (2013) 1984Q1-2007Q4 Yes No hybrid
NK_BGUS10 M17 Blanchard and Gali (2010) calibrated Yes No forward
NK_CFP10 M18 Carlstrom, Fuerst and Paustian (2010) calibrated No Yes forward
NK_CK08 M19 Christoffel and Kuester (2008) calibrated Yes No hybrid
NK_GK09lin M20 Gertler and Karadi (2011) calibrated No Yes backward
NK_KRS12 M21 Kannan, Rabanal and Scott (2012) calibrated No Yes hybrid
NK_PP17 M22 de Paoli and Paustian (2017) calibrated No Yes forward
NK_RA16 M23 Rannenberg (2016) calibrated No Yes hybrid
NK_RW97 M24 Rotemberg and Woodford (1997) calibrated No No forward
US_PM08 M25 Carabenciov, Ermolaev, Freedman, Juillard, Kamenik, Korshunov and Laxton (2008) 1994Q1-2008Q1 No No hybrid
US_PM08fl M26 Carabenciov et al. (2008) 1994Q1-2008Q1 No Yes hybrid
US_SW07 M27 Smets and Wouters (2007) 1966Q1-2004Q4 Yes No hybrid
US_VI16bgg M28 Villa (2016) 1983Q1-2008Q3 Yes Yes hybrid
US_YR13 M29 Rychalovska (2016) 1954Q1-2008Q3 Yes Yes hybrid

Table A1: Key features of models used
Notes. All models feature nominal price stickiness.
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Appendix B Maximal Overlap Discrete Wavelet Transform with the

Haar filter when J=4

By using the Maximal Overlap Discrete Wavelet Transform (MODWT) with the Haar filter, a variable

Xt can be decomposed as in equations (1)-(3) in the paper. In our analysis we compute a J=4 level

decomposition. The corresponding time series components are thus given by:

XD1
t =

Xt −Xt−1

2

XD2
t =

Xt +Xt−1 − (Xt−2 +Xt−3)

4

XD3
t =

Xt +Xt−1 +Xt−2 +Xt−3 − (Xt−4 +Xt−5 +Xt−6 +Xt−7)

8

XD4
t =

Xt + ...+Xt−7 − (Xt−8 + ...+Xt−15)

16

XS4
t =

Xt + ...+Xt−15

16
.

The sum of XD1
t and XD2

t gives the HF component of the series (which captures fluctuations with a period

less than 2 year), the sum of XD3
t and XD4

t gives the BCF component (which captures fluctuations between

2 and 8 years), whereas the LF component corresponds to XS4
t .
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Appendix C Robustness tests

Objective functions λy = 1 λy = 0.5 λy = 1;h = 4 λy = 1; BCF: 1-4y λy = 1; BCF: 1-8y
functions ρ απ αy ρ απ αy ρ απ αy ρ απ αy ρ απ αy

var(π) 0.9 0.9 0.2 0.9 0.9 0.2 0.9 1 1.2 0.9 0.9 0.2 0.9 0.9 0.2
var

(
πBCF) 0.9 0.7 0.2 0.9 0.7 0.2 0.9 0.8 0.7 0.9 0.6 0.2 0.9 0.8 0.2

var
(
πLF) 0.9 0.7 0.2 0.9 0.7 0.2 0.9 0.8 0.7 0.9 0.8 0.2 0.9 0.7 0.2

var
(
πBCF)+ var

(
πLF) 0.9 0.9 0.2 0.9 0.9 0.2 0.9 1 1.2 0.9 0.9 0.2 0.9 0.9 0.2

var(π)+λy var(∆y) 0.9 1 0.9 0.9 1 0.7 0.9 1.2 1.6 0.9 1 0.9 0.9 1 0.9
var

(
πBCF)+λy var

(
∆yBCF) 0.9 0.7 0.6 0.9 0.7 0.4 0.9 1 1.2 0.9 0.6 0.7 0.9 0.8 0.7

var
(
πLF)+λy var

(
∆yBCF) 0.9 0.7 0.5 0.9 0.7 0.4 0.9 0.9 1 0.9 0.9 0.6 0.9 0.8 0.7

var
(
πBCF)+ var

(
πLF)+λy var

(
∆yBCF) 0.9 0.9 0.5 0.9 0.9 0.4 0.9 1 1.2 0.9 1 0.6 0.9 0.9 0.7

Table C1: Model-robust monetary policy rules - robustness tests
Notes. Importance of output growth in objective function (λy) is set to 0.5. h=4 depicts the forward horizon of inflation in the
monetary policy rule (equation (4)). The rightmost columns with the term “BCF” depict the time horizon of BCF definition
in the objective function. All objective functions include a term for restraining the variability of changes to nominal interest
rates (∆r) with a weight of 0.5.

35



References

Altig, David, Lawrence Christiano, Martin Eichenbaum, and Jesper Linde, “Firm-Specific Capital,

Nominal Rigidities and the Business Cycle,” Review of Economic Dynamics, 2011, 14 (2), 225–247.

Bils, Mark, Peter J. Klenow, and Benjamin A. Malin, “Reset Price Inflation and the Impact of Mone-

tary Policy Shocks,” American Economic Review, 2012, 102 (6), 2798–2825.

Blanchard, Olivier and Jordi Gali, “Labor Markets and Monetary Policy: A New Keynesian Model

with Unemployment,” American Economic Journal: Macroeconomics, 2010, 2 (2), 1–30.

Carabenciov, Ioan, Igor Ermolaev, Charles Freedman, Michel Juillard, Ondrej Kamenik, Dmitry

Korshunov, and Douglas Laxton, “A Small Quarterly Projection Model of the US Economy,” IMF

Working Papers 2008/278, International Monetary Fund 2008.

Carlstrom, Charles T., Timothy S. Fuerst, Alberto Ortiz, and Matthias Paustian, “Estimating con-

tract indexation in a Financial Accelerator Model,” Journal of Economic Dynamics and Control, 2014,

46 (C), 130–149.

, , and Matthias Paustian, “Optimal Monetary Policy in a Model with Agency Costs,” Journal of

Money, Credit and Banking, 2010, 42 (s1), 37–70.

Christensen, Ian and Ali Dib, “The Financial Accelerator in an Estimated New Keynesian Model,”

Review of Economic Dynamics, 2008, 11 (1), 155–178.

Christoffel, Kai and Keith Kuester, “Resuscitating the wage channel in models with unemployment

fluctuations,” Journal of Monetary Economics, 2008, 55 (5), 865–887.

Cogley, Timothy, Giorgio E. Primiceri, and Thomas J. Sargent, “Inflation-Gap Persistence in the

US,” American Economic Journal: Macroeconomics, 2010, 2 (1), 43–69.

de Graeve, Ferre, “The external finance premium and the macroeconomy: US post-WWII evidence,”

Journal of Economic Dynamics and Control, 2008, 32 (11), 3415–3440.

de Paoli, Bianca and Matthias Paustian, “Coordinating Monetary and Macroprudential Policies,” Jour-

nal of Money, Credit and Banking, 2017, 49 (2-3), 319–349.

36



del Negro, Marco, Marc P. Giannoni, and Frank Schorfheide, “Inflation in the Great Recession and

New Keynesian Models,” American Economic Journal: Macroeconomics, 2015, 7 (1), 168–196.

Feve, Patrick, Julien Matheron, and Jean-Guillaume Sahuc, “A Pitfall with Estimated DSGE-Based

Government Spending Multipliers,” American Economic Journal: Macroeconomics, 2013, 5 (4), 141–

178.

Fratto, Chiara and Harald Uhlig, “Accounting for Post-Crisis Inflation: A Retro Analysis,” Review of

Economic Dynamics, 2020, 35, 133–153.

Gertler, Mark and Peter Karadi, “A model of unconventional monetary policy,” Journal of Monetary

Economics, 2011, 58 (1), 17–34.

Hollander, Hylton and Guangling Liu, “The equity price channel in a New-Keynesian DSGE model

with financial frictions and banking,” Economic Modelling, 2016, 52, 375–389.

Iacoviello, Matteo, “House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle,”

American Economic Review, 2005, 95 (3), 739–764.

Ireland, Peter N, “Money’s Role in the Monetary Business Cycle,” Journal of Money, Credit and Bank-

ing, 2004, 36 (6), 969–983.

Justiniano, Alejandro, Giorgio Primiceri, and Andrea Tambalotti, “Investment Shocks and the Rel-

ative Price of Investment,” Review of Economic Dynamics, 2011, 14 (1), 101–121.

Kannan, Prakash, Pau Rabanal, and Alasdair M. Scott, “Monetary and Macroprudential Policy Rules

in a Model with House Price Booms,” The B.E. Journal of Macroeconomics, 2012, 12 (1), 1–44.

Kriwoluzky, Alexander and Christian A. Stoltenberg, “Monetary Policy and the Transaction Role of

Money in the US,” Economic Journal, 2015, 125 (587), 1452–1473.

Leeper, Eric M., Todd B. Walker, and Shu-Chun Susan Yang, “Fiscal Foresight and Information

Flows,” Econometrica, 2013, 81 (3), 1115–1145.

Rannenberg, Ansgar, “Bank Leverage Cycles and the External Finance Premium,” Journal of Money,

Credit and Banking, 2016, 48 (8), 1569–1612.

Rotemberg, Julio J. and Michael Woodford, “An Optimization-Based Econometric Framework for

37



the Evaluation of Monetary Policy,” in “NBER Macroeconomics Annual 1997, Volume 12” NBER

Chapters, National Bureau of Economic Research, 1997, pp. 297–361.

Rychalovska, Yuliya, “The implications of financial frictions and imperfect knowledge in the estimated

DSGE model of the U.S. economy,” Journal of Economic Dynamics and Control, 2016, 73 (C), 259–

282.

Smets, Frank and Rafael Wouters, “Shocks and Frictions in US Business Cycles: A Bayesian DSGE

Approach,” American Economic Review, 2007, 97 (3), 586–606.

Villa, Stefania, “Financial Frictions In The Euro Area And The United States: A Bayesian Assessment,”

Macroeconomic Dynamics, 2016, 20 (5), 1313–1340.

38



Bank of Finland Research Discussion Papers 2025 

ISSN 1456-6184, online 

1/2025 

2/2025 

Fabio Verona 
From waves to rates: enhancing inflation forecasts through combinations of frequency-domain 
models 

Alexander Dück – Fabio Verona 
Beyond one-size-fits-all: designing monetary policy for diverse models and frequencies


	BoF DP 2/2025
	Introduction
	The setup
	DSGE models
	Central bank preferences and objective functions
	Taylor rules
	Frequency decomposition

	Optimized monetary policy rules
	Model-specific rules
	Model-robust rules
	Quantifying the costs of insuring against model uncertainty and ignoring frequency-specific fluctuations
	The cost of insuring against model uncertainty
	The cost of ignoring frequency-specific fluctuations

	Model-robust monetary policy rules and and the features of the models
	Robustness tests

	Conclusions
	DV_draft_2024_12_13_Appendix.pdf
	Models (acronyms) and their key features
	Maximal Overlap Discrete Wavelet Transform with the Haar filter when J=4
	Robustness tests 0

	Recent Bank of Finland Research Discussion Papers 2025


