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Abstract

In this paper, tests for fractional cointegration that allow for structural breaks in
the long-run equilibrium are proposed. Traditional cointegration tests cannot handle
shifts in fractional cointegration relationships, a limitation addressed here by allow-
ing for a time-dependent memory parameter for the cointegration error. The tests
are implemented by taking the extremum of a residual-based fractional cointegration
test applied to different subsamples of the data. The subsampling procedures include
sample splits, incremental samples, and rolling samples. A fairly general cointegration
model is assumed, where the observed series and the cointegration error are fraction-
ally integrated processes. Under the alternative hypothesis, the tests converge to
the supremum of a chi-squared distribution. A Monte Carlo simulation is used to
evaluate the finite sample performance of the tests.

Highlights:

• Extension of a residual-based test for fractional cointegration.

• Incorporation of potential changes in long-run equilibrium through subsampling.

• Subsampling techniques include split samples, incremental, and rolling samples.

• The proposed subsample tests exhibit higher power than the full-sample test.

Keywords: Fractional Cointegration, Long Memory, Monte Carlo, Persistence Breaks,
Structural Breaks, Subsample Analysis

JEL classification: C12, C32
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1 Introduction

Since the influential works of Engle and Granger (1987) and Johansen (1988) on cointegra-

tion, numerous papers have explored long-run equilibria between time series, including cases

where the error is a fractionally integrated process. Fractional cointegration has been ap-

plied to various fields, such as exchange rates, stock volatility, and commodity prices (e.g.,

Cheung and Lai (1993); Robinson and Yajima (2002); Christensen and Nielsen (2006)).

The impact of structural breaks on cointegration relationships has been widely studied in the

literature (e.g., Andrews et al. (1996); Inoue (1999); Johansen et al. (2000)). Moreover,

studies show that long memory time series can exhibit changes in persistence over time

(e.g., Beran and Terrin (1996, 1999); Kim (2000); Sibbertsen and Kruse (2009)).

For these reasons, structural breaks and shifts in persistence may disrupt long-run equilibria.

In this paper, a subsample testing framework for fractional cointegration is proposed, accom-

modating fixed or time-varying relationships. Such subsample testing is particularly relevant

when the null hypothesis of no cointegration cannot be rejected for the complete sample, as

it allows practitioners to identify potential cointegration within specific periods. To this

end, the residual-based test proposed by Wang et al. (2015) is extended to detect changes in

fractional cointegration relationships. Following Davidson and Monticini (2010), the pro-

posed methodology employs sample splitting as well as incremental and rolling subsampling,

ensuring that subsamples grow with the complete sample to maintain the consistency of the

tests. A similar analysis was recently performed by Rodrigues et al. (2024), who generalize

the Hassler and Breitung (2006) test for fractional cointegration.

The remainder of the paper is organized as follows. The underlying model and tests are

presented in Section 2, while the results of the Monte Carlo study supporting the superior-

ity of the subsample tests over the full-sample test are discussed in Section 3. Concluding

remarks are given in Section 4.
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2 Tests for fractional cointegration in subsamples

Consider the following bivariate model, as presented in Wang et al. (2015),

yt = βxt +∆−δ{υ1t}

xt = ∆−d{υ2t},
(1)

where t = 1, 2, . . . , T , ∆ = 1 − L, L denotes the lag operator, and ∆−d =
∑∞

j=0 bj(−d)Lj,

where bj(d) = Γ(j+d)
Γ(d)Γ(j+1)

for d ̸= 0,−1,−2, . . . , and Γ(·) is the Gamma function with

Γ(0)/Γ(0) = 1 and Γ(ω) = ∞ for ω = 0,−1,−2, . . . . In this model, xt and yt are non-

stationary long memory processes, integrated of order d > 1/2. The parameter δ ≤ d

determines the memory of the regression residuals, which are given by ut = yt − βxt. If

δ < d, xt and yt are fractionally cointegrated. Model (1) encompasses the traditional coin-

tegration framework when d = 1 and δ = 0. Moreover, υt = (υ1t, υ2t)
′ are white noise

processes as specified in the following assumption:

Assumption 1. Let υt = A(L)ϵt, where A(L) =
∑∞

j=0AjL
j. Further assume that

(i) det(A(1)) ̸= 0 which implies
∑∞

j=1 j∥Aj∥2 < ∞, where ∥·∥ denotes the Euclidean

norm;

(ii) ϵt
iid∼(0,Ω), where Ω is positive definite, and E∥ϵt∥q < ∞ for some q ≥ 4, q > 2/(2d−

1);

(iii) fii(0) > 0, i = 1, 2, where fij(0) is the (i, j)-th element of the spectral density of υt,

denoted as f(λ), at frequency zero.

The conditions in (i) and (ii) imply that xt and yt are type-II fractionally integrated

processes as defined by Marinucci and Robinson (1999), so that the functional central limit

theorem from Marinucci and Robinson (2000) can be applied. The moment condition spec-

ified in (ii) is inherently satisfied for any nonstationary process under the assumption of
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Gaussianity (Robinson and Hualde (2003)). Lastly, the conditions in (ii) and (iii) im-

ply that f(λ) is Lip(ξ) for some ξ > 0, ensuring the regularity required to establish the

asymptotic properties of the test statistics defined later. Assumption 1 is convenient as

it is satisfied by the conventional stationary and invertible autoregressive moving average

processes.

Under the null hypothesis, there is no fractional cointegration, i.e., H0: δ = d. Typ-

ically, the alternative hypothesis assumes the presence of fractional cointegration across

the entire set of observations. In this study, the alternative of fractional cointegration in

subsamples is of interest, implying that the memory of the cointegration residuals varies

over time, making the cointegration relationship dynamic. It is defined as H1: δt < d for

t = ⌊λ1T ⌋+ 1, . . . , ⌊λ2T ⌋ and δt = d elsewhere, with 0 ≤ λ1 < λ2 ≤ 1 and ⌊λ1T ⌋ < ⌊λ2T ⌋.

Given that d, δ, and f(0) are unknown in practical applications, the following assumption

is required to derive the estimates d̂, δ̂, and f̂(0).

Assumption 2. Under the null and the alternative hypotheses,

(i) there exists a κ < ∞ so that

|d̂| + |δ̂t| ≤ κ, (2)

and for some η > 0,

d̂ = d+Op(T
−η) and δ̂t = δt +Op(T

−η), (3)

(ii) f̂(0)
p→ f(0), where

p→ stands for convergence in probability.

Condition (2) in (i) is not restrictive when d̂ and δ̂t are optimizers of their respective

functions over compact sets, which is typical for implicitly defined estimators (Robinson and

Hualde (2003)). To fulfill Condition 3, a wide range of parametric and semi-parametric

long memory estimators is available. However, estimating δt requires prior estimation of

ut. For this purpose, the cointegrating vector β can be estimated using either ordinary least
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squares (OLS) or narrow-band least squares. For a discussion of potential issues under H1,

see Hualde and Velasco (2008).

For fixed truncation points, λ1 and λ2, the residual-based test for fractional cointegration is

F̂ = F (δ̂t, f̂
τ
22(0), λ1, λ2) =

(⌊λ2T ⌋ − ⌊λ1T ⌋)−1/2∑
t=τ ∆

δ̂txt(
2πf̂ τ

22(0)
)1/2

, (4)

where f̂ τ
22(0) is defined over the subinterval τ = ⌊λ1T ⌋ + 1, . . . , ⌊λ2T ⌋, and

∑
t=τ denotes∑⌊λ2T ⌋

t=⌊λ1T ⌋+1 throughout the paper. This leads to the following theorem.

Theorem 1. Given that Assumptions 1 and 2 are satisfied and the data is generated ac-

cording to the model specified in Eq. (1), it follows that F̂ ⇒ N(0, 1) under H0, and

F̂ = Op(T
d−δt) under H1, where ⇒ denotes weak convergence.

The proofs of the theorems are provided in the Appendix. Since the truncation points λ1

and λ2 are unknown in empirical applications, the subsample testing framework proposed by

Davidson and Monticini (2010) is adopted, which involves the introduction of the following

sets:

ΛS = {{0, 1/2} , {1/2, 1}} , (5)

Λ0f = {{0, s} : s ∈ [λ0, 1]} , (6)

Λ0b = {{s, 1} : s ∈ [0, 1− λ0]} , (7)

Λ0R = {{s, s+ λ0} : s ∈ [0, 1− λ0]} , (8)

where λ0 ∈ (0, 1) is a preselected value. The set ΛS splits the sample into two equal

halves. Incremental forward and backward samples, denoted by Λ0f and Λ0b respectively,

are constructed with a minimum length of ⌊λ0T ⌋ and a maximum length of T . This design

allows for the detection of structural breaks occurring after ⌊λ0T ⌋ and before ⌊(1− λ0)T ⌋.

The rolling window samples, denoted as Λ0R, consist of subsets with a fixed length of ⌊λ0T ⌋,

designed to identify windows of fractional cointegration with unknown start and end points.

5



Additionally, the split sample and rolling window subsets are augmented by the full-sample

test:

ΛS∗ =ΛS ∪ {0, 1}, (9)

Λ0R∗ =Λ0R ∪ {0, 1}. (10)

The subsample fractional cointegration tests are obtained by applying the test in Eq. (4) to

the sets in Eqs. (5) - (10). The split sample tests are expressed as:

FS = max
{λ1,λ2}∈ΛS

F 2(δ̂t, f̂
τ
22(0), λ1, λ2), (11)

FS∗ = max
{λ1,λ2}∈ΛS∗

F 2(δ̂t, f̂
τ
22(0), λ1, λ2). (12)

Incremental forward and backward tests are defined as:

FIf (λ) = max
λ0≤λ≤1

F 2(δ̂t, f̂
τ
22(0), 0, λ), (13)

FIb(λ) = max
0≤λ≤1−λ0

F 2(δ̂t, f̂
τ
22(0), λ, 1), (14)

while rolling window tests are given by:

FR(λ) = max
0≤λ≤1−λ0

F 2(δ̂t, f̂
τ
22(0), λ, λ+ λ0), (15)

FR∗(λ) = max
{λ1,λ2}∈Λ0R∗

F 2(δ̂t, f̂
τ
22(0), λ1, λ2). (16)

These test statistics can be generalized as:

FK(λ1, λ2) := max
λ1∈Λ1,λ2∈Λ2

F 2(δ̂t, f̂
τ
22(0), λ1, λ2), K = S, S∗, If , Ib, R,R∗.

Based on Theorem 1 and the findings in Davidson and Monticini (2010), the limit distri-

bution for the test statistics in Eqs. (11) - (16) can be stated.

Theorem 2. Under Assumptions 1 and 2, and given that the data is generated from a

model as in Eq. (1), then under the null hypothesis of no fractional cointegration, it follows

that

FK(λ1, λ2) ⇒ sup
λ1∈Λ1,λ2∈Λ2

χ2
1(λ1, λ2), K = S, S∗, If , Ib, R,R∗.
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3 Monte Carlo simulation

In this section, the finite sample properties of the proposed tests are obtained by Monte Carlo

simulations. To ensure comparability with Wang et al. (2015), the approximate maximum

likelihood estimator by Beran (1995) is used to determine the memory parameter d. This

estimator is defined as the minimizer of the objective function S(d) =
∑⌊λ2T ⌋

t=⌊λ1T ⌋+2 e
2
t (d),

where et(d) =
∑t−1

j=0 aj(d)xt−j, and aj(d) =
∑min(m,j)

k=0 (−1)k
(
m
k

)
bj−k(−γ). Here, γ = d−m,

γ ∈ (−1/2, 1/2), m ≥ 0 is an integer defining the degree of differencing required to achieve

stationarity, and bj is defined in Section 2. The estimator is T 1/2-consistent for any real

d > −1/2 and is asymptotically normal. Furthermore, the consistent estimator f̂ τ
22(0) =

1
2π(⌊λ2T ⌋−⌊λ1T ⌋)

∑
t=τ

(
∆d̂xt

)2

is applied, while the cointegrating vector is estimated using

OLS from a model excluding a constant term. Finally, the memory parameter δt of the

residuals is estimated with the same method as d.

Model (1) is the data-generating process with β = 1, υt = (υ1t, υ2t)
′ are Gaussian white

noise processes with E[υt] = 0, Var(υ1t) = Var(υ2t) = 1 and Cov(υ1t, υ2t) = ρ = 0. The

initial values of υ1t and υ2t are set to zero as in Wang et al. (2015). The sample sizes are

T = 250 and 500, with the fractional parameters d = 0.9 and 0.7. For each d, let δt = d,

d − 0.4 and d − 0.6. Throughout all simulations, λ0 = 0.5 for both the incremental and

rolling tests. The finite sample properties are obtained via 5,000 Monte Carlo repetitions.

In Table 1 the critical values for the tests in Eqs. (11) - (16) are shown. Since the proposed

tests depend only on the estimation error δt− δ̂t under H0 and not on the specific values of

d and δt, the critical values are averaged over d = {0.6, 0.7, 0.8, 0.9, 1}.

The empirical size of the subsample tests and the full-sample test by Wang et al. (2015),

denoted as FW , is shown in Table 2. The full-sample test is oversized for all nominal

significance levels and sample sizes, whereas the empirical size of the subsample tests is

close to the nominal size, except for the incremental backward test.
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Table 1: Critical values at 1%, 5% and 10% for the subsample tests, averaged over d =

{0.6, 0.7, 0.8, 0.9, 1} with 5,000 Monte Carlo repetitions.

FS FS∗ FIf FIb FR FR∗ FS FS∗ FIf FIb FR FR∗

T = 250 T = 500

1% 26.457 26.714 24.647 17.091 47.088 47.228 16.973 17.268 17.252 11.261 27.178 27.178

5% 12.322 12.490 12.223 7.847 22.220 22.220 8.860 8.979 9.339 6.055 14.746 14.759

10% 8.162 8.295 8.218 5.327 14.654 14.655 6.163 6.268 6.669 4.247 10.572 10.585

Table 2: Empirical size of full-sample and subsample tests at nominal significance levels of

1%, 5% and 10%.

FW FS FS∗ FIf FIb FR FR∗ FW FS FS∗ FIf FIb FR FR∗

d T = 250 T = 500

0.9

1% 0.038 0.007 0.007 0.009 0.004 0.009 0.009 0.026 0.008 0.008 0.008 0.004 0.010 0.010

5% 0.107 0.044 0.045 0.048 0.025 0.047 0.047 0.070 0.039 0.040 0.046 0.019 0.043 0.043

10% 0.154 0.091 0.091 0.099 0.053 0.095 0.095 0.131 0.100 0.100 0.101 0.046 0.100 0.100

0.7

1% 0.040 0.014 0.014 0.010 0.021 0.013 0.013 0.026 0.012 0.012 0.008 0.023 0.011 0.011

5% 0.097 0.055 0.055 0.046 0.082 0.056 0.056 0.077 0.057 0.056 0.044 0.082 0.053 0.053

10% 0.153 0.102 0.101 0.093 0.135 0.100 0.100 0.134 0.120 0.116 0.100 0.157 0.108 0.108

For the empirical rejection frequencies under H1, three scenarios are considered.
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Scenario 1: Constant fractional cointegration relationship throughout the sample.

Scenario 2: Constant fractional cointegration in the first half, no cointegration in the

second half: 
δt < d, for t = 1, ..., 0.5 T,

δt = d, for t = 0.5 T + 1, . . . , T.

Scenario 3: No cointegration in the first half, constant fractional cointegration in the sec-

ond half: 
δt = d, for t = 1, ..., 0.5 T,

δt < d, for t = 0.5 T + 1, . . . , T.

The empirical power of the tests at a 5% significance level is presented in Table 3. Compared

to the full-sample test, the subsample tests exhibit higher power, even under the constant

fractional cointegration relationship in Scenario 1. In Scenarios 2 and 3, the backward

and forward incremental tests have lower power than the full-sample test. This is because

the forward test is designed to detect changes from fractional cointegration to no fractional

cointegration (Scenario 2), while the backward test is designed for Scenario 3. Lastly,

the power of all tests increases with larger sample sizes and greater differences d− δt.

Additionally, the critical values, size, and power were computed for ρ = 0.5. Since the

results are qualitatively similar to those with uncorrelated innovations, they are not reported.
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Table 3: Empirical power of full-sample and subsample tests at a nominal significance level

of 5%.

FW FS FS∗ FIf FIb FR FR∗ FW FS FS∗ FIf FIb FR FR∗

Scenario 1

d δt T = 250 T = 500

0.9
0.5 0.798 0.828 0.829 0.841 0.834 0.820 0.820 0.847 0.915 0.915 0.934 0.931 0.931 0.932

0.3 0.930 0.965 0.966 0.980 0.980 0.978 0.979 0.950 0.988 0.988 0.998 0.998 0.997 0.998

0.7
0.3 0.807 0.834 0.838 0.839 0.889 0.838 0.838 0.851 0.921 0.922 0.942 0.960 0.947 0.947

0.1 0.922 0.968 0.970 0.982 0.987 0.984 0.984 0.950 0.989 0.990 0.998 0.999 0.998 0.998

Scenario 2

d δt T = 250 T = 500

0.9
0.5 0.358 0.581 0.590 0.672 0.055 0.554 0.556 0.378 0.705 0.716 0.781 0.070 0.696 0.697

0.3 0.459 0.816 0.826 0.886 0.102 0.821 0.822 0.459 0.890 0.902 0.945 0.113 0.906 0.909

0.7
0.3 0.369 0.581 0.587 0.670 0.176 0.567 0.568 0.393 0.714 0.729 0.793 0.234 0.717 0.718

0.1 0.456 0.807 0.821 0.873 0.245 0.816 0.817 0.497 0.892 0.903 0.948 0.331 0.918 0.919

Scenario 3

d δt T = 250 T = 500

0.9
0.5 0.317 0.669 0.666 0.151 0.723 0.673 0.673 0.323 0.788 0.786 0.194 0.819 0.800 0.800

0.3 0.412 0.875 0.874 0.212 0.918 0.872 0.872 0.426 0.929 0.928 0.286 0.951 0.930 0.930

0.7
0.3 0.347 0.676 0.673 0.163 0.765 0.619 0.619 0.364 0.788 0.786 0.217 0.863 0.759 0.759

0.1 0.448 0.877 0.877 0.244 0.929 0.859 0.859 0.464 0.931 0.931 0.315 0.964 0.924 0.924

4 Conclusion

In this paper, residual-based tests for fractional cointegration are proposed that can ac-

commodate changes in the underlying long-run equilibrium. The tests allow for unknown

integration orders for both the observed time series and the cointegration residuals. Nev-

ertheless, valid plug-in estimation is obtained under mild assumptions. The proposed tests

are shown to converge to the supremum of a chi-squared distribution and to have higher

power than their full-sample competitor, even in the presence of a constant fractional coin-

tegration relationship over the complete set of observations. The approach presented in this
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paper offers greater flexibility compared to the conventional constant fractional cointegration

assumption, making it suitable for a wide range of applications.
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Appendix

Proof of Theorem 1. The proof follows the lines in Wang et al. (2015), while their

arguments are localized to the interval ⌊λ1T ⌋ + 1, . . . , ⌊λ2T ⌋. It relies on the fact that

when T diverges, ⌊λ2T ⌋ − ⌊λ1T ⌋ also diverges as long as 0 ≤ λ1 < λ2 ≤ 1.

Let g(d, zt) = ∆dzt, then g(d, zt) =
∑t−1

i=0 bi(d)zt−i if zt = 0 for t ≤ 0 and g(r)(d, zt) =∑t−1
i=1 b

(r)
i (d)zt−i, where b

(r)
i (d) = (∂r/∂dr)bi(d). Using a Taylor expansion around d, with

some constant R, it follows that

(⌊λ2T ⌋ − ⌊λ1T ⌋)−1/2
∑
t=τ

∆δ̂txt − (⌊λ2T ⌋ − ⌊λ1T ⌋)−1/2
∑
t=τ

∆δtxt

= (⌊λ2T ⌋ − ⌊λ1T ⌋)−1/2
∑
t=τ

(
g(d− δ̂t; υ2t)− g(d− δt; υ2t)

)
=

1√
(⌊λ2T ⌋ − ⌊λ1T ⌋)

R−1∑
r=1

(δt − δ̂t)
r

r!

∑
t=τ

g(r)(d− δt; υ2t)

+
(δt − δ̂t)

R

R!
√

(⌊λ2T ⌋ − ⌊λ1T ⌋)

∑
t=τ

g(R)(d− δ̃t; υ2t)

=


op(1), under H0,

op(T
d−δt), under H1,

(A.1)
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where δ̃t ∈ (min(δt, δ̂t),max(δt, δ̂t)).

It can be derived that
∣∣∣b(r)i (0)

∣∣∣ ≤ Kr(log(i+1))r−1

i−r+1
, for i ≥ r and some constant Kr.

Under H0, Var
(∑

t=τ g
(r)(0, υ2t)

)
= O(T (log T )2r). This result follows from a modifica-

tion of the proof of (C.8) in Robinson and Hualde (2003), using Assumption 1 and the

bound of
∣∣∣b(r)i (0)

∣∣∣. Consequently,
∑

t=τ g
(r)(0, υ2t) = Op(T

1/2(log T )r). The first term

of (A.1) is Op(T
−η log T ), which follows directly from Assumption 2. In addition, by

the bound of
∣∣∣b(r)i (0)

∣∣∣, g(R)(δ − δ̃; υ2t) = Op(T
1/2) uniformly in T , so that the second

term in (A.1) is Op(T
1−Rη). As long as R > (1 + η)/η, then (A.1) is Op(T

−η log T ) =

op(1). Since f̂
τ
22(0) consistently estimates f τ

22(0) according to Assumption 2, it follows that

F (δ, f τ
22(0), λ1, λ2) − F̂ = op(1). When δ = d, Theorem 1 in Marinucci and Robinson

(2000) implies that F (δ, f τ
22(0), λ1, λ2) =

(⌊λ2T ⌋−⌊λ1T ⌋)−1/2 ∑
t=τ υ2t

(2πfτ
22(0))

1/2 ⇒ N(0, 1), and therefore,

F̂ ⇒ N(0, 1).

Under H1, Var
(∑

t=τ g
(r)(d− δt, υ2t)

)
= O(T 2(d−δt)+1(log T )2r), and

∑
t=τ g

(r)(d−δt, υ2t) =

Op(T
d−δt+1/2(log T )r), following the proof of (C.8) in Robinson and Hualde (2003). The

first term of (A.1) is Op(T
d−δt−η log T ) and by Lemma C.4 of Robinson and Hualde (2003),

Var(g(R)(d − δt, υ2t)) ≤ K
∑t−1

i=1(log i)
2Ri2(d−δt)−2 for some constant K. Consequently,∑

t=τ g
(R)(d − δt, υ2t) = Op((log T )

RT d−δt) and for the second term in (A.1) it holds

Op((log T )
RT−ηR+d−δt). If R > d−δt

η
, then this becomes Op(T

d−δt−η log T ). As a result,

(A.1) is op(T
d−δt). It follows that F (δt, f

τ
22(0), λ1, λ2)− F̂ = op(T

d−δt). Under Assumption

1 and Theorem 1 of Marinucci and Robinson (2000), F (δt, f
τ
22(0), λ1, λ2) = Op(T

d−δt) and

finally, F̂ = Op(T
d−δt), which completes the proof.

Proof of Theorem 2. The proof follows directly from Theorem 1 and the arguments in

Davidson and Monticini (2010).
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