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Abstract

Globally optimal free flight trajectory optimization can be achieved with a combination
of discrete and continuous optimization. A key requirement is that Newton’s method for
continuous optimization converges in a sufficiently large neighborhood around a mini-
mizer. We show in this paper that, under certain assumptions, this is the case.

Keywords Shortest path - Flight planning - Free flight - Optimal control - Discrete
optimization - Global optimization - Newton’s method

Mathematics Subject Classification 49M15 - 49M37 - 65110 - 65L.70 - 90C26

1 Introduction

Around the world countries are implementing Free Flight airspaces that allow air-
craft to choose their own route, as opposed to being restricted to a predetermined
three-dimensional network. The primary factors that influence costs are time
and fuel consumption, which are closely interrelated [1]. Based on the relative
weights of these factors (cf. cost index) the optimal airspeed can be determined,
which typically remains largely constant [2—4]. Additionally, the vertical flight
path can usually be predetermined using aircraft performance data [5]. Conse-
quently, the problem can be well approximated in a way proposed by Zermelo in
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1931 [6], which involves finding the most efficient trajectory from point A to B
for an aircraft flying at a constant airspeed in a given two-dimensional wind field.

The Free Flight Trajectory Optimization Problem is usually solved using
direct or indirect methods from Optimal Control [5, 7-11]. These are highly effi-
cient, but suffer from one key drawback: They only converge locally and are thus
dependent on a sufficiently good starting point. This makes such methods, used
as a standalone, incapable of meeting airlines’ high expectations regarding the
global optimality of routes.

In [12-14] a deterministic two-stage algorithm was proposed that combines
discrete and continuous optimization in order to find a globally optimal solution
to the free flight trajectory optimization problem. With this approach the expo-
nential complexity of other branch and bound based algorithms is circumvented.

The primary objective of the first stage is to obtain a finite sample in a system-
atic manner that adequately covers the search space. This deterministic approach
eliminates the potential for infinite runtime, which may occur when using sto-
chastic global optimization algorithms, such as Particle Swarm Optimization,
Simulated Annealing, or Monotonic Basin Hopping [15-18].

One approach is to create a locally dense directed graph with a specific density
determined by the node spacing /4 and connectivity length £, thereby implicitly
defining the sample. The instances can then be selected in order of quality by
applying Yen’s algorithm [19] to calculate the k' shortest paths.

Promising paths serve as initial guesses for a subsequent refinement stage in which
a continuous solution to the problem is calculated up to the desired accuracy.

Analytical evidence and numerical experiments have demonstrated that the new
hybrid algorithm has a time complexity of O(#~"), making it superior to the conven-
tional purely discrete approach, which has a time complexity of O(Z~°) [12]. In this
context, £ refers to the maximum arc length in a graph and the discretization length
in a continuous optimization scenario. Thus, £ ~lgerves as a comparable metric for
the precision of the solution.

The present paper is concerned with the second stage. One way to generate a
continuous solution is to apply Newton’s method to the first order necessary condi-
tions (the KKT-conditions) — an approach commonly referred to as Newton-KKT
or Sequential Quadratic Programming (SQP) (see, e.g., [20]). It is now shown that
there is a quantifiable domain around a global optimum such that Newton-KKT con-
verges if initialized accordingly.

Since the computational effort of the first graph-searching stage depends exclu-
sively on the problem instance, i.e., the wind conditions, the algorithm asymptoti-
cally inherits the super fast convergence rates of the Newton-KKT method.

The paper is structured as follows. After defining the problem and introducing a
formulation that is convenient for the analytical discussion in Section 2, we formally
state the necessary and sufficient conditions as well as the Newton-KKT approach
in Section 3. The proof of convergence is provided in Section 4 followed by a con-
clusion emphasizing the impact on previous and future work.
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2 The Free Flight Trajectory Optimization Problem
2.1 Notation

Throughout this article lower case subscripts, e.g., x, or &,, denote partial deriva-
tives, while total derivatives are indicated by primes, e.g., T’ or f’. Locally and glob-
ally optimal quantities are indicated by single and double superscript stars, respec-
tively, e.g., &* or &**. If not stated otherwise, we assume || - || to denote the />-norm.
Accordingly, we use the following quantitative definition of the L*-norm in terms of
the 2-norm.

Definition 1 Let f : Q — R". Then we define
fll e :=1inf{C >0 : |[f(0)|l, < Cforaa. x € Q}. 1)

2.2 Problem Statement

Neglecting any traffic flow restrictions, we consider Lipschitz-continuous flight
paths & € C*1(]0, 1[, R?) connecting origin £(0) = x,, and destination &(1) = x,,. By
Rademacher’s theorem, such paths are almost everywhere differentiable, and moreo-
ver contained in the Sobolev space wheqo, 1[, R?).

A short calculation reveals that an aircraft travelling along such a path & with
constant airspeed v through a three times continuously differentiable wind field
w € C3(R?, R?) with bounded magnitude [|w(x)|| < V reaches the destination after a
flight duration

1
T(¢) = /0 (&), &.(0)) dr 2)

with &, denoting the time derivative of £ and

3

—&w+ \/(?ETTW)2 + @ = wTw)E e

)
v —wlw

f6.6) =1, =

see [12-14].

Among these paths &, we need to find one with minimal flight duration 7(§),
since that is essentially proportional to fuel consumption [1]. This classic of optimal
control is known as Zermelo’s navigation problem [6]. It can easily be shown that in
case of bounded wind speed, the optimal trajectory cannot be arbitrarily longer than
the straight connection of origin and destination. Hence, every global minimizer is
contained in an ellipse Q C R? with focal points x,, and xj,.

The flight duration T as defined in (2) is based on a time reparametrization
from actual flight time ¢t € [0, T'] to pseudo-time = € [0, 1] according to the actual
flight trajectory x(¢) = £(z(f)) such that ||x,(f) — w(x(#))|| = v, where x, denotes the
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so-called ground speed, i.e., the derivative of position x with respect to the unscaled
time ¢. As a consequence, the actual parametrization of £ in terms of pseudo-time
7 is irrelevant for the value of 7. Calling two paths &, & equivalent if there exists
a Lipschitz-continuous bijection r : ]0, 1[ — ]0, 1[ such that &(r(z)) = &(z), we can
restrict the optimization to equivalence classes. Moreover, every equivalence class
contains a representative with constant ground speed ||£,(7)|| = L for almost all 7,
that can be obtained from any & with || (7)|| # 0 V7 via

o=t NP / .ol @
o TEI )

Hence, we introduce z :=(L,£) € Z := R X X and the affine space of valid
trajectories

X = {£e W10, I[LR?) | &©0) = x,. &(1) =xp). (%)
and subsequently consider the equivalent constrained minimization problem
1?61%1 T¢), st h(z)=0 foraa r€]0,1[ (6)
with
h:Z—A:=L%J0,1[R), zm &TE —1L° 7

If the constraint is satisfied, L also represents the path length, since

1
/ IEllde = L. ®)
0

Note that 7 : X — R is Fréchet differentiable with respect to the corresponding
linear space

8X 1= W10, 1[, R?) ©

of directions 6¢ with zero boundary values, that consequently do not change origin
and destination, equipped with the norm

16&1xee = 116& 1l Lo go,1p) + 116&- M zo10,1p- (10)
Further we define the linear space
6Z ;=R x6X (11)
and equip the spaces Z and 6Z with the norms

lzllze = ILI + 1€l 2= o.1py + W€z llLoo.1p> — and (12a)

lzll 22 = ILI + 1€l 2000 + W€ 20,1 (12b)

@ Springer
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3 Continuous Optimization: Newton-KKT

In order to find a continuous solution to the free flight optimization problem (6) we
apply Newton’s method to the first order necessary conditions (the KKT-conditions),
which is also known as sequential quadratic programming (SQP). Before we formally
introduce Newton’s method, we discuss the necessary and sufficient conditions for
optimality, which also defines the goal of the presented algorithm.

3.1 Optimality Conditions
3.1.1 Necessary Conditions

The goal of the present paper is to find an isolated globally optimal solution £** to (6)
that satisfies T(E**) < T(E) VE € X, contrary to a local optimizer £* that is only
superior to trajectories in a certain neighborhood, T(£*) < T(&) VE € ME*) C X.
An isolated global minimizer satisfies the necessary Karush-Kuhn-Tucker (KKT)
optimality conditions [21] given that it is a regular point, which is always the case,
as confirmed by the following Theorem.

Theorem 1 Let z = (L, &) € Z with L > 0 and assume there is a direction u € R?
and ¢ > 0 such that ffTu > ¢ almost everywhere. Then, W (z) : 6Z — L*(]0, 1]) is
surjective, i.e., 7 is regular.

Proof Let f € L*(]0, 1[) be given and b := éjTTu > c. We set

i
b if/2dr
L[, b'dr

and
g=b"'(f/2+L5L), &&, = gu.

Due to b > ¢ almost everywhere, b~'is bounded and hence g, &, € L*(0,1]). By
construction, fol 6¢&, dr = 0 holds, such that 6z = (6L, 6&) € 6Z.
Now we obtain

W (2)[62) = 2&,76¢, — 2LSL

= 2bg — 2LSL
= 2(f/2 + LSL) — 2LSL
=f,

and thus the claim.

For A € A*, the Lagrangian is defined as
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L(z, 2) :=T(&) + (4, h(2). (13)
The KKT-conditions guarantee for a regular minimizer z** the existence of a
Lagrange multiplier A** € A*, such that
0= L (" AM)[éz]  Véz€6Z,
0= (84, h(z*™)) Véie AN

hold, where 6z := (6L, 6&) € 6Z. In our case, these necessary conditions read

1
0=T'(E)[6&] +2 /0 A (8ETEX —SLL)dT Y ézE€SZ (142)

=0 (16)

1
0= / SA(E e — (L)) dr Véie A*. (14b)
0

Let us for a moment consider the unconstrained problem analogous to (6),

L (15)

Any global minimizer E** of (15) is clearly non-isolated due to possible
reparametrizations of the time. Let £** denote the equivalent trajectory with
constant ground speed, i.e., ||£,**(z)|| = L** for almost all z. Both solutions
Exx, g*¥* gatisfy the first order necessary condition

0=T/(E"[6E] V&¢ € 6X. (16)

Moreover, £** — together with L** from (8) — is a global minimizer of the
constrained problem, which indicates that the ground speed constraint (7) is only
weakly active. We confirm this by showing that the corresponding Lagrange
multipliers A** vanish.

Lemma 2 Let 7** = (E**,L**) be a global minimizer of (6). Then, this solution
together with

=0 a7)
satisfies the necessary conditions (14).
Proof Since £** is also a global minimizer of the unconstrained problem, the necessary
condition (16) states that 7'(£**)éé = 0. The term /01 Ax*(8E.TE X — SLL**)dr

of (14a) vanishes for A** = 0. (14b) is satisfied because ||£,**|| = L** for almost all
7 €10, 1[.

@ Springer



Operations Research Forum (2023) 4:63 Page7of41 63

3.1.2 Sufficient Conditions

Now we turn to the second order sufficient conditions for optimality. In general,
a stationary point (z*, A*) is a strict minimizer, if, in addition to the necessary
conditions above, the well known Ladyzhenskaya-Babuska-Brezzi (LBB) condi-
tions (e.g., [22]) are satisfied, which comprise (a) the so-called inf-sup condition
and (b) the requirement that the Lagrangian’s Hessian regarding z, £_,, need be
positive definite on the kernel of /.

The inf-sup condition states that for the minimizer z* there is a k¥ > 0 such that

. (64, 1'(z*)[5z])
inf S >
8320€L2(10.1D) e 572 16 A1l 120,11 1162l 22

pead

(18)
Formally, the second part of the LBB-conditions requires that there is a B > 0
such that
L2962 > B |l52]12,
for any 6z € 6Z that satisfies
(6A, K (Z9)[62]) =0 V64 € L*(0,1)).
In the present case, this reads

1
T"(E9)[8E) +2 / A*(8&,76¢, - 5L7)dr > B||5z)I, (19)
0

for any 6z € 6Z such that
1
/ sA(8¢.TE X —SLL*)dr =0 VéA e L*(]0,1]).
0

In case of a global minimizer z** = (E**,L**), this can be reduced using
A** = 0 from Lemma 2. Moreover, the constraint is equivalent to requiring that
8¢ T ** = SLL** almost everywhere. With this, we conclude that for any iso-
lated global minimizer z** of (6) that satisfies the inf-sup condition, there exists
a B > 0 such that

T"(&)[8¢, 6.1 > Bllszll2, (20)

for any 6z € 6Z such that 6 T¢_ ** = L L** almost everywhere.

It is important to note that the second order sufficient conditions are formu-
lated in a L2-setting, while differentiability only holds in L®. This is known as
two-norm-discrepancy [23].

@ Springer
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3.2 Newton’s Method

In order to provide a more compact notation, we use y :=(z, ) EZXA* =: Y in
this context and define F as the total derivative of the Lagrangian,

F:ZXNAN v 862" XA, F(y) := L'z, A). 21)
On Y we define the following norms,

Lxllys = llzllzo + [ All 0,1 @nd (22a)

lxlly2 = llzllz2 + 1Al 20,1 (22b)

The problem is now to find a y** such that the first order necessary conditions
for optimality as stated in (14) are satisfied, which translates to

F(x*™)=0. (23)
Applying Newton’s method, we iteratively solve

F'(OAx"T = =F(x") (24)

for A y* and proceed with y**! « y*k + A ¥k, starting with some initial value »°. In
other words, in every iteration we need to find (Azk, A/lk) such that

T"(EOSENAE + (A%, B ()621AZF]Y + (ALK, K (Z)[62])

25
_TENsE - KOS Veresz, Y

(64, W (ZD[AZF]) = —(64, h(Z)) V64 € A*. (25b)

4 Proof of Convergence

On the way to prove the existence of a non-empty domain B(y**,R) such that
Newton’s method as defined in Section 3.2 converges to the corresponding global
minimizer y**, if initialized with a starting point within this neighborhood, we
first prove that the KKT-operator F’ is invertible and that the Newton step A y* is
always well defined. Essentially, this is the case if the LBB-conditions as given in
(18) and (20) are satisfied. Hence, we will show that there is a R > 0 such that the
inf-sup condition is satisfied and that the Lagrangian is positive definite on the
kernel of the constraints for any y € B(y**,R) . Further, we show that an affine
covariant Lipschitz condition holds, which finally helps to complete the proof.

Before we get there, we recall the following Lemma from [13, Lemma 7]
which provides a bound for the path length of a global minimizer.

@ Springer
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Lemma3 Let 7** = (L**,&*) be a global minimizer of (6), let |||« < ¢y, and
define L = ||x;, — x| Then it holds that

ol

+

<l

L<L*™ < °F. (26)
0

<l
ol

As most of the subsequent results hold in a L*-neighborhood of a minimizer, we
introduce the following notation.
Definition 1 We call the L*®-neighborhood of a pointz€ Zorx € Y,

Bz, R) :={Zz€Z: ||Z—zllz= <R} or (27a)

B(x,R) :={7 €Y : 17— xlly« <R}, (27b)

respectively.
Moreover, we provide three simple yet useful bounds that hold in such a L*®
-neighborhood of a minimizer.

Lemma4 Let y** = (z**, A**) be a global minimizer of (6) and the corresponding
Lagrange multipliers. Then for every y € B(y**, R) it holds that

L** —-R<L <L +R, (28a)
L** =R <& M wqoy  SL*™*+R, (28b)
0 < [[AMlgoqoip =R (28¢c)

Proof The first two inequalities follow immediately, since a global minimizer satis-
fies the constraint from (6). The latter two are a direct consequence of Lemma 2.

4.1 Inf-Sup Condition
We now show that the inf-sup condition, introduced in (18), holds in a certain neighbor-
hood around a global minimizer. First, however, we point out that deviations 6¢ and 6&,

from a trajectory are inherently related and that the former is always bounded by the latter.

Theorem 5 (Wirtinger’s inequality)
Let 6¢ € H (10, 1[). Then

2 1 2
”55”112(]0’1[) S ;ll(sngLZ(]O)l[) (29)
holds.
Theorem 6 Let 7** be a global minimizer of (6). Further, let there be a constant ¢ > 0

and some direction u € R? with||u|| = 1such that u"£.** > c for almost all €0, 1.
Then for any z = (L, &) € B(z**, R) with R < c there is some x > 0 such that

@ Springer
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(LR @oz])

inf
A#0eL2(10,1D sze6z || Al 20,1 16211 22

with

v+c R e
K(R) = (c—R)l—+2< _°+~>] .

v—cy L
Proof For f € L*(]0, 1]) we define
—_ 1 - —_
:/ fdreR and f=f-f,
0
respectively, such that (]_‘ 1) 2qoap = 0and

=2
”f”Lz(](]l[) |lf+f||L2(]01[) ”f”LZ(]Ol[) f

With

V+¢y -

L+R > L**+R>2b:=¢u>c-R (30)
V—2c (26)

we choose 6, = %;lu and 6L = ﬁ(ﬁ —(c— R)E). Note that 6¢ € 6X holds. For
this choice, we obtain for 6z = (6L, 6&)

1
(4K ()[62]) = / (2&,76&, 4 = 2LSLA) dr
0
1
= / bAAdr — 2LSLA
0

1
= / (bA? + bAA)dr — 2LSLA
0

1
. . _
2 =R g0+ </0 bidr - 2L5L>/1

1 - —_— —_—
= (c =Rl + </ bidr —bl+(c - R)A)A
0

-2
(C - R)(“A”LZ(]O 1D + 4 )
R)”A“LZ(]O ]D
Moreover, we have

1.
161 20,1 < §||/1||L2(]o,1[>

and, since clearly ¢ < L**,
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|6L]

IA
hl’_“
—

3 ||b||L2(]0,l[)”Z”LZ(]O,I[) +(c— R)|E|)

SIA

L** + R 2gop + (€ — R)|E|>

R - —_
T Z> (IZgoun + 121,

(32)

<l N =
+
ol
S

IA
A/~
<I
|
Sl

which implies

2 _ 2 2 2
1820, = IOEIF: g0, + 1880y + 6L

3 2 2
5 ”551'”[/2(]0!1[) + 0oL

29)
-, = 2
3 00 v+c, R - —\2
S g”iHLz(]O,l[) + <_\}—— EO + z) <||)’”L2(]0,1[) + i)
332 vtcy R\ 32 V+cy R\ =
< gll’”'m(]o,u) +2<‘_’_Eo + z) AN 2 0.0 +2<ﬁ + Z) il
-, = 2
3 v+cy R - -2
: l§+2<6—zo " Z) ]<”1”L2<10,1r>” )
-, = 2
3 v+ R> )
= —+2<_ =2 ) |11 g0
ls v—c¢y, L ] L2(J0,1D
Consequently,
_ - -1/2
’ 3 v+cy R 2
(4K ([oz]) 2 (c = R) st 2 == + 7 141l 20,11y 116211 22
— %

yields the claim.

4.2 Positive Definiteness of the Lagrangian

The next step in order prove invertibility of the KKT-operator F'(y), (24), is to
show that the second partial derivative of the Lagrangian £(y), (13), with respect
to the state z is positive definite on the kernel of the linearized constraints. On the
way we derive a similar result for the objective T(&), (2) for which we first derive
an upper bound for its third derivative.

Lemma 7 Let ||wll;mq < & sv!\/% W llpo@ < T IWellpm@) <o and

IWell oy < €3 and define v* :=V" —¢,. Then, for any & € X, the third directional
derivative of f as given in (3) is bounded by
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77 (&, E)IBE, 8, PIAE, AE 1

s<7olléllllc‘>'§||2+7z N )uA:u

— 2 12 75 2
A

T

withy; > 0,i €0,...,5, given as

_ __ _ _ c
Yo = %(3%? +2lcicv + 20322>, 75 = 4Ov_;’

_ _ .z
n=y <29c + 7vc2> 7a =20, (32)

—2 — — 1
Y, = ‘3(5701 + 13vc,), Vs = 18;.

The proof can again be found in the Appendix. With this result we can derive a
bound for the third directional derivative of 7.

Theorem 8 Let (L**,&**) be a global minimizer of (6) and define L := ||x;, — x,||
and A& :=&E—E**. Moreover, let |w(p)|| <¢y < v/\/_ lw.®I <<,

W@ <¢5, and ||w,.(P)|| <5 for every p € Q. Then, for any & € X with
Ay < R < L, it holds that

|T”,(§)[55] [AS | <||6§”L2(]01[) + ”56 ”Lz(]Ol[)) ”AéllCU.l(]O,l[)' (33)

with ||A§||c0vl(]o,1[) = ||A§||Lm(]0,1[) + ”Afr”Lw(]o,l[) and

— v+c 7 12
F::max{( L+R>y0+y2 ~7/4 +Q
V3

V- C() (34)

_ 73 Vs
yl ~ ) = + —
2(L—R) 2(L-R) (L-R):?
andy,, ... ,ysas given in Lemma 7 above.

Proof From the definition of T in (2), we know that

1
T"(©)[6E1°[AE] = / f"(E EDISE, 88, PIAE, AE, Jdr,
0

Inserting the bound from Lemmas 4 and 7 above and using Young’s inequality
yields
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1T (©)[6E1[AL]|

1
—_— 2 —_—
< /0 (70|I§TIIII5§II i A+ >IIA§II

— 2 75 2
A& || dr.
1
< ||A§||Lw/
0

1
AL / A
S ||z: I

Lr/s+
< IIAfSIILw/ < L+R>yoll&f||2+y2II5§IIII5<§ I+ II5€ I*dr
8) 0 V—cg L

2d‘L’

IIE II

T

1
A e | 71168117 5
+ A& I, /0 71 16€l - R)ZII & N%d

Z_ T
ik 2 ZEEA TPH
< llAg). [((V_COHR)yo + )u&:u (L_R +Z >||5¢T||Lz]

_ 12 73 v
A o =
+ 1AL [(Y] - R))” Ellz, <2(L—R)+ i R)2>” &I ]
(334) f(llaglliZ(]o’lD + ”657:”[12(]0’1[)) ||A§||C0-‘(]0,1[)-

Having bounded the third derivative of T, we can estimate the potential decay
of T” and thus derive a lower bound for the size of this neighborhood. Similarly,
we can bound 4" and hence L.

Theorem 9 Let ||W||L°°(Q) $~ EO < V/\/g, ||WX||L°°(Q) < E], ”Wxx”L""(Q) < 62, and
Wil o) < €3 and define L := ||xp, — xp||. Moreover, let y** = (z**, 1**) be a
globally optimal solution to problem (6), that satisfies the necessary and sufficient
conditions (14), (18), and (20) with B > 0. Then there is a0 < R < min { j_ f), ; }
with T from Theorem 8 such that

L (6l = = II52II (35)

holds for any y € B(y**,R) and any 6z € 6Z such that §TT5§T = L6L holds almost
everywhere.

Proof Let A¢ := ¢ — &** and note that [| A&l w01y < 1Az]lze <R < %. Then we
obtain

@ Springer



63 Page 14 of 41 Operations Research Forum (2023) 4:63

1
T"(O16¢,6¢, 1 = T"(E*)I8¢, 8¢, 1 / T"(& + VADI6E, 6¢, P[AE, AL, 1 dv

0

1
3 Blozl + [ 77+ vapls o5 PIag. Ag 1dv

0
2
> B —
—3) ”5Z”22 (”5§”L2(]01D + ”55 ||L2(]01[)> ”AZ“Z"°

> Bllszll2, — Tl16zl1%, | Azl e
2, Bzl =Tz, lacl,
LS
> 1oz,
Further, we point out that

R<

N | =

L**
< —, 36
<= (36)

which together with the bounds from Lemma 4 yields

1
(" @)1621) = / A(6e,"se, — 817 )dr
0
1 Ts 2
-/ A(naéuz—(éf—f’> dz
0 L
1 2 2
IS N7 116& I
|M||L°°(]01[)<||5§ ||Lz(]0][)+/0 - 1z dr
> _“A”L""(]O,l[)(”(sé ”LZ(]O 1D T/ ”551”2 dT
0

(L** +R)
28) _R<||5§ ||L2(]O 1D m”aé ||L2(]0 1D

(L** +R)? )
Z _R<1 (L** —R)2 ”651” 2(10,1[)

2 > —10R||6&, “Lz(]o i)

_: 2
4 ”651” 2(10,1[)
> §||5 12
> —=|6z
azyy 4 z

Together, these bounds yield the claim with
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L,.(6z]* = T"(&)SE + (W' (2)[62])

B

B
> |6zl - fllﬁzlléz

>

&l

2
ll6zl17.-

4.3 Upper Bound for the Lagrangian

As a counterpart to the previous Lemma, we also derive an upper bound for L_, close
to a minimizer. Again we start with the underlying function f in order to bound the
error in the objective function T .

Lemma 10 Let |||l ;o) < ¢o < V/\/g Wello@) < €15 and ||wy, |l 1oy < ¢, More-
over, let 22 :=V" —¢,. Then, for any & € X, the second directional derivative of f as
given in (3) is bounded by
" (£, E)I8E, 8E 168, 62,11 < BolIE,NIISENN5E]]
+B, (115111182, 1| + 118, 1111621 (37
Ao lIE N 16 SE I
with
-2 - _
— Cl C2 — Cl —_
Bo = 14v—3+4v—2, py=7—,and  f,=

bl
V2

(38)

I< &

The proof can be found in the Appendix.
Theorem 11 Ler z** = (L**,E**) be a global minimizer of (6) and Az : =z — 7**.
Moreover, let ||wl|;«q) < ¢y < D/\/g, Wellpo@) < €15 and ||wyllpeq) < €. Also

define v* := - ¢y and L := ||xp — xpll. Then, for any z € B(z**,R) , the second
directional derivative of T as defined in (2) is bounded by

IT"(OIAEP] < BllAzl, (39)
with B := El + max { (@Z + R)Eo, % } and EO’EI’E2 as defined in Lemma 10.
V—Cy
Proof From the definition of 7 in (2) we know that
1
T"(OIAL AL, ) = / [IAE, AE, Pdr,
0

which, together with the bounds from Lemmas 4 and 10 as well as Young’s inequal-
ity, then leads to
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| _
IT" (&AL, A, P S/ <ﬂol|§T||||A§||2+2ﬁ1| p ”22” . 2) dt
0 T

1
< BoL** +R) / IAE]Pdr
(28) 0

_ 1
+25, / lAglillag, ldz

L**+R/ 1AL, Idr
*k
< (@ +RBo+ 51 1A

+ (E] L**ﬂz )” é ||L2(]0 10

< (4 r)5,+5, ) 1A
= V—EO + ﬂ0+ﬂ1 [l §||L2(]Ol[)

B,
<ﬁ1 + T+R )”Af ”LZ(]OI[)

2
< B(IlAélle(]o 1D + ”Aér” 2(]0’1[))

< BllAzll,
(12b)

Theorem 12 Let y** = (**, A**) be a global minimizer of (6) and the correspond-
ing Lagrange multipliers. Then for every y € B(y**,R) and every 6z € 6Z it holds
that

L (N162P) < (B+R) 152l (40)
with l_S’(R) from Theorem 11.

Proof Using the bound from Theorem 11 and Young’s inequality, we get
L8| = IT"@L6EY + (W' (2)[62)%)|
1
< Blldz]|2, + / |A(6&,7 8¢, — 8L7)| dr
(39)
< E”dZ” + 1Al =0, 1[)(||5ég ||Lz(]0 it 5L2>
7 2 2 2
< Blldel: + R(152 1., + 5L

< (B+R)ldzl,
(12b)

@ Springer



Operations Research Forum (2023) 4:63 Page 17 of41 63

4.4 Invertibility of the KKT-Operator

Using the previous three results, which together state the existence of a neighborhood
around a minimizer such that the LBB-conditions are satisfied, we are now ready to
prove that the KKT-operator F” is invertible.

Lemma 13 Let y** = (z**, A**) be a global minimizer of (6), that satisfies the first
and second order conditions for optimality with some B > 0, and the corresponding
Lagrange multipliers. Further, let there be a u with ||u|| = 1such thatu’ €,** > ¢ > 0
for almost all T €]0, 1[. Then for F as given in (21) it holds that

IF'CO™ ly < 41)
for every y = (z,A) € B(y**,R) and

~ 41 4B+R)\ B+R
wl—\/EmaX{E,K<l+ B > Kz} (42)

and E(R) and k(R) as given in Theorems 6 and 11, respectively.

Proof The proof builds on some prerequisites that have been established above and
are briefly summarized.

(i) In Theorem 6 it was proved that the inf-sup condition is satisfied:

(A, W (2)[62])

inf su Kk > 0.
SA€L?(10,1]) szes7 ”5Z”22”5/”|Lz(]0’1[)

(ii) In Theorem 9 it was proved that £_ is positive definite on the kernel of the
constraints, i.e.,

2 1" 2 " 2 § 2
L (N8l = T"OL6EF + (W' @l62) 2 T llezll,

for all 6z € 6Z such that 4’ (z)[6z] = O.
(iii) In Theorem 12 it was proved that £_, is bounded from above as

|L.Col621%| = |T" (@8 + (W' @[621*)] < B+ Rz,

Under these conditions, it follows from Brezzi’s Splitting Theorem [22, Thm. 4.3]
that F’(x) is isomorphic. Further, it can be shown that for every right hand side F(x)
of the saddle point problem (24) there is exactly one solution (Az, AA) with
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1Azl < % IT'(&) + (4. K @)l

1 4B+ R)
+ ;(1 + T)”h(z)”Lz(]O,l[)’

4B+R
18420y < %(1 + %)nr(:) ALK @)z

B+R 4B +R)
+ = <1+ 3 )llh(Z)||L2(Jo,1[)-

With |FGOIl = IT'©) + (4 B @)1, + 1@, ., follows that

4B+R
1Azl < V2 max {% %(1 + %) } IFCGI

1 4B+R\ B+R
||A/1||L2(]0,1[)§\/§max 1+ ( ) , IECOIl
K K2

B

which directly yields

2 _ 2 2 2
18715 2 1A + 1A ) < @] IFCO

withw, = \/Emax { %, %(1 + @ ), % } This completes the proof, since

Iazlle

IF () ly. = sup <
ol IFGO 2

1

4.5 Lipschitz Constant

We are on the verge of presenting a Lipschitz constant for the free flight problem.
To accomplish this, we introduce an additional bound in the form of a Lemma. This
bound incorporates the constant 3, which is derived in the Appendix (Lemma 18). It
serves to define an upper limit on the second derivative of f as defined in 3. Its value
is contingent upon the overall characteristics of the wind field.

Lemma 14 Let y** = (z**, A**) be a global minimizer of (6) and the corresponding
Lagrange multipliers. For any yic(, 5, € B(x**, R) there is a B such that

||(F/()(2) - F,()(l))[)Q = xllly: £yl — xilly2 43)
with

w, = (8 + B)R. (44)
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Proof From Lemma 4 it directly follows that

|L, —L,| < 2R, (45a)
€2 = & illoqoap < 2R, (45b)
14, — 4 ”L""(]O,l[) <R (45¢)

Using these bounds as well as the Cauchy-Schwarz inequality and Young’s inequal-
ity, we show that for any 6 y € 6Z x L*(]0, 1[) with||8 ¥ l22¢0.1p < litholds that

[( Ao, W (22)[z5 — 21, 62]) — (A1, B (2))z2 = 21, 620
1
=| /0 A6, (E,, — &) — 6Ly — L))
- (8T — &) — SL(Ly — Ly))d7|

1

= /O (g = 3)BET (Ern — &0 = BL(Ly — L))
1

< /0 1y — A IBEIE » — £, llde

1
+|5L||L2—L1|/ |6AldT
0

1 1/2 1
< [ / ||6§,||2dr] [ / (Az—Anzuﬁ,,z—é,,luzdr]
(CS) 0 0

+16L| [Ly = Lyl 4 — Al

1/2

1 1/2
< 11681l [sz / 1Ay = A& — &0y ||dr]
45) 0
+ R |6L] |L2 —Ll|
1/2 1/2
& VRRISE N2y = 2 1060 = 012

+RISLI L, ~ L]

\/_

2
S 5 RS2 (14 = Ayl + 1162 = Eeallz]

+R|SL| |Ly - Ly

\/_

2
<SR[ = Agle + 16e2 = &z
+R|L, - L]
< R[HAZ =2l +Eea = Eenlle + 16 = &1l + 1Ly — Ly |]
1/2
< 2R[|M2 —allyy + len =&y, + 116 = &1, + 1L, — Lllz]
= 2Rl — xilly2

2b)
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as well as

[(Ay = A1, (W (z9) = W' (z)))[82])]

1
— / (s = A (s — & )88, — (Ly — L)3L)dx|
0
1
< / [Ay = A& 0 — &1 I 6E, |IdT
0

1
+1L, —L1||5L|/ |4, — AldT
0

1 1
< / ||5é’f||2d7] [/ (A = A?NIE, — 51,1”20'7]
(CS) 0 0
+ Ly — Li||8L|1| Ay — Ayl

1/2 172

! 1/2
< |I6& 1l [2R2/ [ = A4l 11E:2 —51,1||df]
(45) 0

+R|L, — L,||6L|
1 1/2
< V2R [ / (A = A€, — éf,lndr]
0
+R|L, — L]
1/2 1/2

< V2RIA, = 41208 — &l
(CS)

+R|L, — L]

V2
< R[4 = Al + 10 — &l 2]
Y 2

+R|L, — L]

< R[Il/lz = Allz + 16en = Seallie + & = Sullpz + 1Ly — Lll]

1/2
< OR(l1dy = Ayl + ey — & il + & — &7+ ILy — L1|2]

= 2R - 2
02b) s — xilly

and
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(82, (' (z3) = I (2 )z — 2y )

1
= /0 SA(Ern = &) (e = &) — (Ly = L)P)dr|

1 1
< / 16AII1E, 5 — &, 1 IPdT + (L, — Ly)* / |5A]dT
0

0

1
<R / ISAI1E.» — &, 1l + 2RILy — L, 15211
0

1 1/2 1
< 2R[/ 6/1sz] [/ ||§,2—611II2dT]
(CS) 0 0 ’ ’

+2R|L, = Li| 164l
S2RI6AN 2 NS 2 — Enll2

+2R|Ly — Ly| 1641
S2R|E 5 =& 4l +2RIL, — Ly

1/2

S2R(Ay = Al + &0 = &oalle + 116 — &l + 1L, — L1|]
172
<A4R([[4, - 11”%2 + 1€, - 51,1”22 +11& - §1||iz +|L, - L1|2]
= 4R - 2.
02b) L2 = x1lly2

As shown in Lemma 18 in the Appendix, there is a B < oo such that

[(F" (&) =" ED)[E — &, 6¢]

< Byfley = &1 + 6. — &P/ 1512 + 15,11,

which provides the following bound, as
(T"(&) = T"(ED)IE — &, 8]
1
= I/O (f"(&) = 1" (€D)1& — &, 6¢1dr]

1
<B / V& = &R + 1162 — & 1P/ 15EIP + 162, 17ds
0

1 1
< 5/ & = &1+ 11&,, — &, ||2dT/ lI6&11> + 168, |*dx
(CS) 0 0

7 2 2 2 2
S B<”§2 - 51”[{2(]0!1[) + ”5‘[,2 - 5‘[,1 ”LZ(]O,I[)) <”5§”L2(]0s1[) + ”5§T||L2(]O’1D)

< B”Iz = 2l 16 xly:
(22b)

< BRIy, = x1llye-
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Finally, we use the bounds derived above to show that for any 6x with ||6x]|y. < 1
it holds that

I(F' () = F' Q) — 2108211 = [(T"(&) = T (£)[8¢, &, — &1
+ (A, W' ()62, 2 — ;1)
— (AL B (262,20 — 71]1)
+ (A = 4y, (W (z) = W (z)))[62])
+ (64, (W' (zp) = W' (z))lzy — 2y 1)
< BRIy - 1illy:
+ 2R, — xilly2
+ 2Rl o — x1llye
+4R| . — xilly2
<@+ BRIx - 1y
Loyl — xlly:
with
o,(R) = (8 + B)R.
This directly yields the claim, as
I ) = F'Godlea = ailllzqoany = ;Sup NF Go) = F'Gl = - 6711
Xly2=

<l = xilly:-
(46)

4.6 Convergence of Newton's Method

We are now ready to connect the results outlined above to prove that the Newton-
KKT method applied to the free flight optimization problem (6) converges to a
global minimizer as characterized in Section 3.1 provided that there is a u € R?
with ||u|| = 1 such that u”&¢_** > ¢. Roughly speaking, the optimal route needs to
head towards the destination, dominating any route that involves flying the oppo-
site direction. It is intuitively clear that this holds even for relatively strong wind
conditions.

Theorem 15 Let y** = (z**, A**) be a global solution of (6) that satisfies the first
and second order conditions for optimality with B > 0. Moreover let there be a ¢ > 0
and a u € R? with ||u|| = 1 such that u’ £, ** > c for almost all t €10, 1[. Finally, let
® 1= w,w,, as given in Lemmas 13 and 14.
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Then there is a R > 0, such that the ordinary Newton iterates defined in Sec-
tion 3.2 converge to y** at an estimated rate

[0)]
12 = e < St = 2 e, 47)

if initialized with y° € B(y**,R.) and provided that the iterates y* remain in
B(xy**,Rc). Moreover, y** is unique in B(y**,R;).

Proof In Theorems 6, 9 and 12 we showed that the inf-sup condition is satisfied,
that, £_ (x) is positive definite on the kernel of the constraint for all x € B(y**, R.),
and that it is bounded from above. Consequently, F’(y) is invertible with

IF() <o, Yy eB(x*™.Re).
as confirmed in Lemma 13. Further, it follows from Lemmas 13 and 14 that

IF Q)™ (F' () = F'Co)o — allly
<NWF' Q) My IF () = F'Qedlea — 211y
<ol = 1lly
<ol = xlly

for x1, 2, € B(x**,Re). It is clear that since w, is bounded and w, = (8 + B)R,
there is a R > 0 such that  := @@, < 2. We now define ¢, := y* — y** and
proceed for u €]0, 1] as follows:

I+ udx = x|y
= lleg — uF' (O F(9 1y
= |ley — uF' (N EGE) = FOr )|y
——

=0
-1 rl
=11 = we, = uF' G [y (F/(rF = se) — F' (%)) er ds |ly:
<A = llelly: + S lleglly.
which yields the claim with y = 1 as
w
llexrlly2 < E”ek”ﬂ'

In order to prove uniqueness in B(y**, R.), assume there is a second solution
2% # % with F(y*) =0 and y* € B(y**,R.). Initialized with y° := x* it cer-
tainly holds that y' = y*. However, from (47) we obtain

w
lx' = "l < Ellxo =2 Ny < 12° = 2" My,

due to @ < 2, which yields a contradiction.
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5 Conclusion

It has been demonstrated that the Newton-KKT method can be used to solve the
free flight trajectory optimization problem under certain conditions. These condi-
tions are i) the requirement for the iterates to remain within a L*-neighborhood of
the solution, and ii) a starting point that is sufficiently close to the solution. Such
a suitable starting point can be found efficiently by calculating shortest paths on a
specific graph [13]. Hence an important tool for efficient deterministic global opti-
mization of the free flight problem has been established.

Appendix
A.1 Global bounds

The derivative f = ¢, of parametrized time as defined in (3) consists of two terms,
the tailwind term

&'w
fi=- ) (48)
8
g=v —wlw, 49)
and the length term
_ 1/2
fr=g (WP + g 7e)) " (50)
At each time 7, we obtain

V=V -0 <g <V (51)

The directional derivatives of g in direction 6& and A¢ € 6X read

g'5¢ = —2w'w, 8¢ (52)

= |Ig'll < 26,7, (53)

567858 = —268"wlw,6¢ — 2wy [w, 8¢, 5¢] (54)

= lg"ll <2 +756cy). (55)

g"[8E, 62, A&l = 6w, [w,6¢, 8, AE] = 2w, [w, 6, 6€, AE]) (56)
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= lg"”Il £2@3c,c, + ¢ye). (57)
For the tailwind term, we consider
fl(E,EDI88, 88,1 =g 2(E, w)(g'68) — g7' ¢, w88 — g~'wTs& (58)

which is bounded by

o

y CoC1 € o
[f{ (&, E)16&, 66, 1] < Zv_“ + ") IE1I6&1 + ‘;”551”- (59)

The second directional derivatives is

1 ENOE, 6L NI0E. 6F,1 = —2g7 (' 6E)E, W)(g'68)  +872(5F, w)(g'5E)

+872(E, W 58)(8'88)
+g72(g'6E)(E, W, 89)
— ¢ wlE,. 8¢, 681

+ 872, w)(8E7 g 88)
— g7 (88, w,58)
+ g72(g/6E) (W' 8E,)

- 8788 w88)
(60)
and in particular

M EDBE, 88,17 = —2g73(g/ 666, w)  +2872(g'68)(E, W, 8¢)
+ g 2(6ET " 5E)E, W) —g ' Wy &, 6E, 6E] (61)
—2g71(6&, " w,58) +2g72(3¢,"w)(g'88),

which yields
28 G 6 T
~ o~ 0 2 ~
V(8 €188, 68,1188, 85,11 < 8= +6—1 + 2= + | [I£I[lI8E |1 5Z]
1% 1% Vv A%
R
1 ~
+ [20—4 + —;] I8, I1115€]]
14 14
—2— _
C()Cl cy ~
+ [2—4 + —2] [ESIEA
v 14
(62)
and
oF Tt o, T
2
(& EN6E6E T < |82 46— 4202 + —5] e Nnsen
Vv Vv Vv Vv
T T - - (63)
C0C1 Cl
+ [4—4 +2—2] [ESIEAN
14 14
respectively.
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Finally, the third directional derivative is

FI(EEDIBE, 88, P[AE, AL,

= 6g74g' AE)(G'6E(E W)  —4gT (g SE)AET " 5E)(E, W)
—2g73(g' AE)(SET g 8E)(E, T w) +872g"[8E, 8¢, AEI(E, W)
—2g73(g'68)% (&, W, AE) +g72(6E 8" 88)(&, W, AE)
—4g73(g' AE)(g'BE)(E, w,88) +287H(AET ¢ 6&)(E, W, 68)
+2g-2(g 8EW[E,, 88, A8]  +g72(g' AW, [&,, 68, 5¢]

8 Wel£,. 08, 52, AL ©4)
—2g-3(g'6§>2(A5 w) +g72(8E" 8" 5E)(AE, W)
+2g72(g'8E)(AE, W, 68) —g "W [AE,, 8¢, 6¢]
—4g73(g' AE)(G'E)(BE, W) +287H(AE " 5E)(8E, W)
+2872(g'8E)(6&, W, A¢) +2g72(g' A&E)(6&, W, 68)
—2g7'w,[8€,, 5E, AE],

which is bounded by

If]"(&,€,)[8&, 6, 1P [AE, A1
< M[E—i<48"—0 +48%2 46

Clcz <24 0 + 1860>
3 (2— + 1>]||5:|| lag] (65)
=2 53 = _ Ez
HEE +67°> * —<2— + 1)] ISEIP AL, I

)
3

o Z A
5 162—3 + 12;”) +5 <4K—S + 2)] 6118 N ALl
Before we turn to the length term f,, we first consider the term

= (& W) + g, "¢ (66)
with

)
2 2 2=
VIIEN S F L IENY .

We also note that

Then
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F/(& )8, 8¢, =2(&, " w)(BE. W) + (&, w,88)) -
+(g'88) (&, e +2g(&, 88,

which is bounded by

-2
|F'(£, €8¢, 86¢,1] < 20 [|EIBE, Il + 4coc, € IPI8E], (68)

The second derivative is

F"(&,&,)[6¢, 6¢,116¢, 6¢,]
= 2(¢,"w)(8¢,Tw,6¢) + 208, w, 88)(8E,"w)

+2(8E W), W) + 28, W, 88)(E, W, 88)

+ 20T WIW[E,. 86, 68]  +2(8ELw)(E, W, 6¢) (69)

+ 208, W) (EELw,58) + (8" g"68)(E, e

+2(g'86)(3ELE,) +2(g'68)(&, " 6¢,)

+2g(8¢" 8¢,)

and in particular
F'(£,E)[8¢, 66,1 = 4, w)(8E, w,8¢) +4(5, w)(E, w,58)

+2(8¢,"w)? +2(5, " w,88)°
+2(8, " Ww[£,.68.68]  +(8878"68)(E,"E,)
+4(g'68)(8¢,7¢,) +2g(5¢,78¢,),

(70)

which yields

P&, €166, 66,1162, 51| < (4 + 4252, ) IE. I 13211152

+8coc 1€ NIBEINISE I
+8cocy €SS M6l

=2 ~
+2v |16&,11116& I

(71)

and

P&, £18,88, 1P| < (4 + 4208, ) I, IP N6
+ 16552, 11¢, 5211115, | 72)
+ 252”551”2,

respectively. The third derivative is
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F"'(&,E)168, 68, 17[6¢, 8¢, ]

= 4(5E w)(5¢, W, 6€)

+4(E Tww, [8E,, €, 5€]

+4(5&,Tw)(BE w,5E)
+ 4058, w)(8E,Tw,5E)

+ 4w 8w, [E,, 8E, 6E]
+ 2, W W, [E,, 6E, 8E]
+ 26, W)W, [8E,, 8¢, 5E]

+2(5€7g"5E)SE &,)
+4(g'56)(8¢,75¢,)

which is bounded by

+ 4w, 08)(8E,Tw 5¢)

+ 488, w,58)(&,Tw,5¢)

+ 488, ww, €., 6¢, 6]

+ 4, W, 8E)SE L w,6)
+2(8E W, [E,, 8, 5¢]
+2(E, Wi, [&,, 6, 8¢, 6¢]
+ g'"'[8¢, 8¢, 8E1(E,"E,)
+4(5¢" g"88)6¢,7¢,)
+2(g'88)(8¢," 8¢,),

|F" (£, &)[8E, 6 TP (6E. 6.1 < 4l|E,117Cocs + 3¢, )16 |1 SE]

+811£, 11} + e I6E I 16, I
+16]IE I + e lISEN 168 N11ISE]
+ 16¢,c, [18€][16&, 11 18E. I

+8¢yc, 162, 1171621

For the length term f, = g~'4/F, we thus obtain

1

FEEDE, 86,1 = —g72(g/8EF'* + ig—lF-‘/ZF’[&:, 8&.1,

which is bounded by

e

1136 €168, 62,11 < <2 i
14

The second derivative is

1 (&.6)16¢,6¢,116¢,6¢,] =

@ Springer

E()E] _3:2
+a—5 JIEAocH + 207 I8

287(8'68)(8'5E)F'
—gH(6¢" g 8O
- S8 SR P ISE 5,
- S8 T 52, 52,

+ 28 R85, 115%, 62,

— Lg R 68, 66,1155, 62,

(73)

(74)

(75)

(76)

(77)
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and in particular
2873 (g6 F'/?
_ g_2(5§Tg”5§)F1/2
— g2 (g'8&)F P F'[8¢, 6¢,]

Y E 68,68, =

| (78)
+ 587 FPF 68, 66,
1y
- ¢ PR 6,7,
which yields
V(& E)N6E, 8E,116E, 6 1]
zﬁzfv Eé_? @ +3ge)v 1"'COCz
< |80 4 1285 | pEREN | R e g l6E]
1';2 C, ¥
+ 4%+43—§‘ loglilios. i (79)
B =2
N 4 +4COCI I8¢, I8
[ -4 ~
+ 7||5T||-1||6¢T||||5:T||
and
V(& €88, 68,1
—20= 222 2122y F24TE
Cc,C (€] + v ¢y +cc
Slgo; TP Rl M s
% v y
=2
GV GC 50
+|8-— + 8- l1gellllse, | o
V \%

—4 -2
+ l: ]Ilé I 18¢, 1%

The third derivative is

@ Springer



63 Page 300f41 Operations Research Forum (2023) 4:63

1 (€.&188, 68, 58,6, ] = — 6574 (5'66)(s'66)°F/?
+4g7(g/65)(5E' ¢ 5)F /2
+g73(g/ 88 F 2 F' (8¢, 8¢,
+2¢7°(8'58)(3¢" ¢ 60)F
- g7%¢"'16¢, 8¢, 6E1F'/?
- 3876ET g B 5%, 52,
+g7(g' 888/ 88)F P FI 8¢, 8¢,
- 38 g s P F 56,66
+ 1876 F 15, 68,1152, 5%,
- %g’z(g’ﬁf)F’l/zF"[zSé, 8, 116¢, 6, ]
+87(8'86)(g 60)F 12 F 162, 8¢, 31
— 286 O P 52,66,
+ 1876 OF (5, 66,1152, 5%,
- %g*z(g’csf)F*“ZF"[a&, 8, 116¢, 6, ]
+ 18P 155, 66,
+ 2 P 68,68, 155, 62,
- %g*‘F*/ZF' (6, 6£,1F"'[6¢, 8¢, 115¢, 6]
- 28O P 52, 6,
1

- Zg‘lF‘”zF"[ar:, 8E 1P F'[8E,8E, ]

+ 287 PR 68,5, PI6E 62, ),

which is bounded by
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T EDBE, 8 1P [0E, 6E 1]

2 (e e
L2l (T T
v y\y

(O8]
1<, | 2!
MY
[ %)
N
[
I< 1<l
+
[@)
< | |
RO
+
~
<
<
L“’|c>hm
| N——

2 2 ) —2—2
| ¢, oy

Y § T
V2 22 v

653 CO v _3 21
+—3 32 +2—+8—+4— I6&11°116&l
v v v?

+2<@+¥ —§>]n5¢u [R5
y\r ¥ v (82

- /= —2— =3
C C Ve, C ~
+ —2<—° + >+ —;’)] lIsIse, Hsel
y\r v v
_ =2 —4
SCOCI X
+ - 1 +3— +z IBEINNSE, NISE, I
1€, 11V v
_ —2 —4
4 Focr 1435 420 o Pz
1€, NIv3 ’

3:4 :2

3% v >,

v 5<1+ V—2>||6§T||2||657||.
Y 4

Lemma 16 Let||w(p)|l < ¢, < V/\/— 2wl < eplwe @I < . and||w . (P)II < €
for every p € Q. Moreover let v =V - c0 andv =7 + ¢, Then, for any ¢ € X,
the third directional derivative of fas given in (3) is bounded by

1F7(&, 6168, 56, PIAS, AL,
< (n:fn?onae:nz+?2||5§||||6§T|| + el ) lagl

= 2 73
+<y1||6¢|| + EIENNSEN + o 16 I > 1A

with
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7, 37¢ +21¢,,v + 2 7, = 40—
Yo = ( ¢ C GV + 2¢3v ) V3= ,
v ! VI
7, = (2952 +7ve ) 7. =20
1= 3 Y& s 4 = LU=
v 1 VI
_ 1 ) _ _ 1
Yy = —3(57c1 + 13vc,), 75 =18 -
v VlIE

Proof We obtain f by adding f; and f,. The third derivative of f can thus be bounded

using (65), (82), and the triangle inequality.
[F"[6¢, 8¢, P[AE, AL,

< I ”[ <1+2“° +2””° +2% )

+6“62 +3C—°+6 °

=< 1<l

<1+1

=2 =3
+6z—; <1 +6% +4”C° + Sj—g + 16?—3 + 82

1|AC
+1 (2%

)4

_z_
<2+3C°+2 +18 +4 +14 )

|V‘>I

+

I=

2

+- 4j—;<2+4 +3“°+2 +18 4145
425 <1+4C°+2 +aloy i—i)]lléfuuaf:,
=2
i (1435 +25 >|I5§IIII5§TIIIIA§T||
e (1 +3% +2”—> 51”11 A¢1l
—4
e ||25< >||5~f IPIAE |-

With%“ < L we note that

\/g’

<

IA

< |S!
NI*—‘
I< 1<l
I< 1<l

and obtain
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" [6&, 8€,P[AE, AE,]| < el [E_3<§ " E)
v [v\2 2

+
(@)}
‘ﬁ
1< (=
N o
(38

|
N[ \©
+
o
N W
N——

=3
+6%<177 + 3\[>] I5eI ALl

1157 13 ¢
_[_ 1+——2] ISEIPIIAE, |
vi2vy
e
;57 L 132 ]II5§IIII5§TIIIIA§II

o&|[]|6 A
+4 ”5 B —IBEIISE NAE I
0 A
+2 |Ié B — I8 1P IAg]
135
———[I8& 1”11 A& I,
8llé. %y

Rounding up the values yields the bound

& ¢
"sE, 6,11 1l < 4— 42¥+74 sl IAE]

1 c c
+= 29_; + 7| 1B AE |
) v v

1 E? [
+ = |57 + 13=lI8EIISE, AL
v v v

+40”§ [z 1o ME Az |

+on§ I AR NS

+1s| 188 218,
Iy

Lemma 17 Let |[w(p)|| < ¢ <V/\/_ lw.@Il < ¢, and ||w, ()|l < ¢, for every
)
p € Q. Moreover let 22 =3 — Co andv =7V + 5(2). Then, for any & € X, the sec-

ond directional derivative of f as given in (3) is bounded bys
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(&, €158, &, 118E, 8,11 <BollE IISENNISEN + By lIGENISE I
+ BilISEMISEN + BollE N~ 15E NISE, |
with
-2 -

_ _14C| 4c2 - _C -
By = ‘;'f' R ‘61_7ﬁ’ B, =

Proof We obtain f by adding f; and f,. The second derivative of f can thus be
bounded using (62), (79), and the triangle inequality.

- = —2-2
[f" (&, E)I8E, 8€,1[6¢, 8¢, < ggﬁgf%v_;” + 120%

D= __Z= -2 =
c\v+cycyv + 3chc) + ¢y ¢y
+2

v4
Z+co, ¢
0“2 ~
+2m—— —i] . IS 82l
vy

S __ = —2— - - =
CoCrV (g CoC1 € -~
|4 2 A S

__=2 —2— — _
CcnC1V CnC CnC C
0*1 o1 0*1 1

v v v

+ |4

= IBEIINIBE. I
_':4 - =2
V V

5 73] A" 1€ NBE, -

With

<1|S!

we note that

1
< —
_ﬁ’

<

>

< |S!
i< i<l
[0%]
SIS
9,

=
A
|
o
=3
=9
I< 1<l
IA

and obtain

. 3\o & -
[F"(€, £16¢, 68,1[6¢, 68,1 < 9+4\/; = tas | lEAsciiocl

13, N
+ Wll&frllllcséll
13, .
+ 2—VZII5§IIII5§T|I

15 - -
+ N 8EBE .
Y
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Rounding up the values yields the bound

=2 _
IF" (&, E)I6E, 8¢, 1[6&,6¢ 1] < 142—; + 4%] e NS SE]

Z .
+ 7= 8¢ M116¢]|
\%

c -
+ 7 I6EIISE, I
\%

4 B -
+ ;Iléfll M8 NNBE, .

A.2 Bounds in a neighborhood of a minimizer

Below we derive bounds that hold in a L*-neighborhood of a global minimizer. Let
X** = (**, A**) be a global minimizer of (6) and the corresponding Lagrange mul-
tipliers. Moreover, let x,,x, € B(x**, R) and define Ax := x, — x,. Then it holds that
||Ax|ly~ < 2R and consequently

1AEN 0.1 (2%1) 2R, (83)
NAS N L= o.1p (2§a) 2R. (84)

Let[|wll e @) < €os Wellroi@) < €1 Wil o) < €55 and [[w, |10y < €3, then the
following bounds hold,

1
Iw(&) = wE)l = I/ W&y + uod)6&ldu | < ¢ ||6¢ll < 2Rcy, (85)
0

1
W (&) =w CDIl =1 [ W& + u6d)du | < 6, ||6¢1| < 2Rc,, (86)
0

1
W) = W)l = | [y + e | <Tl5El < 265 67
0
Moreover, we show that

l8(&) — g€ = [7° = w(E)W(&) =V + w(&) (&)
= W& W(E) — w(E) (&)
< 2¢,c, [|8¢|l
< 4Rcyc,

(88)
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18(&,)7 — 8(€)°| = 1(8(&) — g(ENNE(E) + g(&))]
< (265, 18&1H@2v)
< 4¢ye, v [16¢|
< 8RC,,V
18(&,)° — 8(&))°| = 18(&,) — 8(€)I 18(&))* + 28(£))g(&,) + 8(&,)°]
< (260, 18EID @)
< 8eye v [16¢]

< 16RZ,¢,7v"

1
lg'(&) —&'EDI = I/0 " + usdlégldu |

<2 +ey)llsel
< 4R(C; +C46y)

1
1g" (&) — ¢ @)l = | /0 ¢ (& + usE)du|

< 2(3¢,¢, + eI 5E]

Furthermore, with F as given in (66), and (28) we get
) )
VL =R <VNEIP S FLIEITY <L +R™

and

)
|F'(£,€)[88.621] <20 |EI8E, | + 42qc, IE, 11 8E]l

=2
<20 (L + R)I6E N + dege, (L + RIS

This yields

|F(§2’ 51—,2)1/2 - Ir(gl7 ér,l)l/2|
< Ly F &+ use)™ PFE) + usg) dy |

=2
v (L**+R) 2¢4¢;(L**+R)?
< S leg ) + =8|

@ Springer

(89)

(90)

oD

92)

(93)

(94)



Operations Research Forum (2023) 4:63 Page370f41 63

|[F(&,, fr,z)_ll/z - F(, 51,1)_]/2|
< 51 Jo F&y +ud&y ™ F (& + pse)dp| ©5)

=2
v (L 4R 2841 (L**+R)?
— v}(L**-R)? ”557” + V(L**—R)? ”65”

|[F(&,, fr,z)_i/z - F(, 51,1)_3/2 |
<31 o F&y +udey ™ F (& + pse)dp| 96)

=2
v (L 4R 2G4 (L**+R)?
— W(L**-R) ”557” + VS(L**—R)S ”65”

For f as defined in (48), we obtain
(/&0 &) = f1'(E1, €. D) [AE, AE,1[6€, 8¢, ]
= 8(£)7°8(&) 7| = 28(£)° (&' (&)8E)(EL,W(EN(E (E)A8)

+28(6)° (8 (€))8E)(E , w(E )G (£)Ad)
+8(£)8(&)(8E, WG (&) A8)

— 8(&) (€3, TWEN)(E (€)Ag)
+8(&)8(E)EL, W (£)5E) (¢ (E)AL)
— 8(&)’8(EN(E] W, (£)8E)(g (6))AE)
+8(£) 8(E)ELWEDNAET ¢"(£)5¢)
— 8(&) g(EDNE WENNAE ¢ (&)5¢)
+8(6)’8(6)(g (E)8E)EL W (&)A8)
— 8(&)° (€D (EDEENEL W (E)AY)
— (&)’ 8(&) (B¢, w (&)AE)

+ 8(&,))° (€ (8, w,(£)AE)

— 8(&))°8(&) W (&)IE, 5. AE, 5E]

+8(5) 86w (EDIE, 1, AL, 5¢]

+ (£’ 8(&)(8 (E)BE(W(E)T AE,)

— 8(&)°8(&)(& (E)BEw(ENTAE,)

— 8(&)*8(&,) (AL, T, (£,)8¢)

+8(&) g(EDHAE, W (£)5)|.

Using the bounds from above we finally obtain
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(/G0 &02) = /(1. £0)) [AE, AL 162, 52,1
< AR\ IAEIR + 18817/ 16EI + N6, I

7
with

B = % (5 + 802,¢, 7" + 85y, ¥ + 1227, + 16¢,¢, + 40T
4 (98)
+ 163, + 12¢,C, + 4¢, + 4%, +253).
For f, as defined in (50) we obtain
(5 (&:.0) = 17 (£1.€,.1)) [AE, AE,1[8€. 8¢,]
= g(&)7g(&) | 285 (§'(5,)88)(g (&) AEF (&))"

—28(5,) (g (€)6E) (' (ENAEF(E)'?
— 8(&)8(E (AE g (£,)38)F (&)
+ 8(ENg(E) (AL " (E)SEF(E)'/?

- 288 GE) ADF (&) PR I5E, 55,

+ 2gE08E) (6 ADFE) P E)I5. 52,

- %g@z)g(f:l)3(g’(52)6¢>F<§2>‘”2F’<§2>[A¢, A&]

+ %g(csl)g(éz>3<g’<¢1>6¢>F<él>‘1/2F’<51>[A¢, A&]

+ %g(éz)zg@lfF(r:z)'” 2F(E)IAE, AEN[8E, 6E,]

— %g(fl)zg(fﬂ(fl)-” 2F(EDIAE, AEN[8E, 6E,]

— ig(@)zg(fl>3F(52)—3/2F'(¢2)[A:, A& JF'(&,)[6¢, 6¢,]

+ %g(él)zg(€2)3F(€1)‘3/ 2F(EDIAE, AEF' (€)[6E, 65,]] .

Using the bounds from above, this yields
(' (60 &:0) =15 (&1, &, [8E, 8E,116¢, 8¢, 1| < ﬁzR\/||A§||2 + IIAETIIQ\/II&SII2 + |I5§T%|;9)

with
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A

4
ﬁzﬁﬁ

20 + 10¢, + 7¢, + ¢3 + 10¢,¢, + 368,¢, V" + 88y, v

+203,C, + 85,C5 + 202, + 247,¢,

3 6 6 (100)
+ (Y(L** —-R) + E3(L>w —R)3 + ES(L** —R)5>

<$2(L** +R) + 26,0, (L** + R)2>] .

Lemma 18 Let x** = (z**, A**) be a global minimizer of (6) and the correspond-
ing Lagrange multipliers. Moreover, let x,,x, € B(x**, R) and define Ax := x, — x,.
Then there is a B < oo such that

[(F" (&, E:0) = [ (&1, E,.1)) [AE, AEBE, 68,11 < BR ||lx, — x|l 16x]l.  (101)
Proof With (97) and (99) we obtain

("0 &00) = 16100 ) [AE AEIISE 5E,1|
<N/ E0n) = f11 (610 & DAL AEIIBE, 52, 1]
I (. Een) =11 E AL ALIISE, 5E |

< ER\/||A§||2 + ||A51||2\/||5§||2 + (18,117
< BR |lx, — x| llox]|

with B = max{ﬁl, ﬁz I3
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