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Abstract
Public transportation networks are typically operatedwith a periodic timetable. The periodic event scheduling problem (PESP)
is the standard mathematical modeling tool for periodic timetabling. PESP is a computationally very challenging problem:
For example, solving the instances of the benchmarking library PESPlib to optimality seems out of reach. Since PESP can
be solved in linear time on trees, and the treewidth is a rather small graph parameter in the networks of the PESPlib, it is
a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth, or even
better, fixed-parameter tractable algorithms. We show that deciding the feasibility of a PESP instance is NP-hard even when
the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced
PESP instances, where the feasibility problem is trivial. Moreover, we showW[1]-hardness of the general feasibility problem
with respect to treewidth, which means that we can most likely only accomplish pseudo-polynomial-time algorithms on input
networks with bounded tree- or branchwidth. We present two such algorithms based on dynamic programming. We further
analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For
event-activity networks with a special—but standard—structure, we give explicit and sharp bounds on the branchwidth in
terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters
on the smallest instance of the benchmarking library PESPlib.

Keywords Periodic event scheduling problem · Periodic timetabling · Treewidth · Branchwidth · Carvingwidth

Mathematics Subject Classification 68Q17 · 90B20 · 68Q25 · 90B06 · 90B35 · 90C35 · 90C39

1 Introduction

Creating and optimizing timetables is substantial for plan-
ning and operating public transportation networks. Both in
local traffic and in long-distance train networks, timetables
are often periodic, i.e., the schedule of trips repeats after a
certain time period T , e.g., 60 min.

Mathematically, periodic timetabling is captured by the
periodic event schedulingproblem (PESP,Serafini&Ukovich,
1989). The idea behind PESP is to model arrival and depar-
ture events of trips in a public transportation network as
vertices (events) of a directed graph. Dependencies between
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events, such as driving of a vehicle or changing at a station,
are modeled as arcs (activities) connecting pairs of events.
These activities comewith restrictions on their duration, e.g.,
driving from one station to the next might take at least 7 min.
Then, a solution to PESP is an assignment of times in [0, T )

to each event (a periodic timetable) such that the activity
duration restrictions are respected. We refer to Sect. 2 for
rigorous formulations.

Deciding whether a periodic timetable exists is an NP-
complete problem, even if T ≥ 3 is not considered as part
of the input. This result can be proved by a polynomial-time
reduction in T - Vertex Coloring, where a T -coloring of a
graph corresponds to event times in {0, 1, . . . , T −1} (Odijk,
1994). This suggests a close relationship between PESP and
coloring problems. In fact, both PESP and Vertex Col-
oring are solvable in linear time on trees, regardless of T .
Furthermore, for any T , deciding if a graph admits a T -
coloring is fixed-parameter tractable when parameterized by
treewidth. More precisely, there is a function f such that for
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a given graph G on n vertices with a nice tree decomposi-
tion of treewidth ≤ k and a natural number T , there is an
O( f (k, T ) · n) algorithm deciding the T -Vertex Color-
ing problem on G (Arnborg & Proskurowski, 1989).

This motivates the investigation of parameterized com-
plexity of PESP. In fact, the treewidth turns out to be rather
small on the instances of the benchmarking library PESPlib
(Goerigk, 2012). This library is a collection of 20 periodic
timetabling problems, none of which could be solved to opti-
mality in the past years. In Sect. 3, we recall some standard
notions from parameterized complexity, list values or give
bounds for several typical graph parameters for the small-
est PESPlib instance R1L1, and give an overview on the
complexity landscape for these parameters. The correspond-
ing hardness results, algorithms, and the computation of the
parameters make up the content of the following three sec-
tions of the paper.

We show in Sect. 4 that, in contrast toVertex Coloring,
PESP is not fixed-parameter tractable when parameterized
by treewidth unless P = NP. Even if the event-activity net-
work has treewidth 2 or branchwidth 2, i.e., every connected
component is series–parallel, it is an NP-complete prob-
lem to decide whether a feasible periodic timetable exists.
When considering reduced PESP instances, where the activ-
ities carry only lower bounds, but no (non-trivial) upper
bounds, we prove that it is NP-complete to decide if there
exists a periodic timetable whose weighted periodic slack
is below a given threshold. Both proofs work by a reduc-
tion in the Subset Sum problem. As a by-product, we also
obtain an NP-hardness result on networks of carvingwidth
3. As a consequence, if P �= NP, then there are only pseudo-
polynomial-time algorithms available for both the feasibility
and the reduced optimality problem.Moreover, the existence
of fixed-parameter tractable algorithms allowing a unary
encoding of the period time T is shown to be unlikely, as
we show that deciding the feasibility of a PESP instance is
W[1]-hard w.r.t. the vertex cover number and hence for the
treewidth.

We construct a dynamic program that solves PESP based
on branch decompositions in Sect. 5. This provides a pseudo-
polynomial algorithm for networks of bounded branchwidth
or treewidth. A straightforward tree decomposition analogue
is presented in the Appendix. We also prove that the fea-
sibility version of PESP is fixed-parameter tractable when
parameterized by the cyclomatic number, i.e., the dimension
of the cycle space of the event-activity network. For com-
puting periodic timetables with minimum weighted periodic
slack, we give a polynomial-time algorithm when the cyclo-
matic number is bounded.

As PESP instances arising from public transportation net-
works typically have a special structure, we show in Sect. 6
that on this type of event-activity networks, the branchwidth
can be related to invariants of an underlying line network:

Roughly speaking, the number of lines at a station of a public
transport network is a (sharp) lower bound on the branch-
width of the event-activity network. The carvingwidth of the
often planar line network provides an upper bound, which is
also sharp. Finally, we exploit the relation to line networks
in order to compute bounds on the parameters discussed in
this paper for the smallest PESPlib instance R1L1.

The presentation finishes with a few concluding remarks
in Sect. 7.

2 The periodic event scheduling problem

The periodic event scheduling problem (PESP) was intro-
duced in Serafini and Ukovich (1989). PESP instances
comprise the following ingredients:

– a directed graph G (often called event-activity network)
with vertex set V (G) (events) and arc set A(G) (activi-
ties),

– a period time T ∈ N,
– lower bounds � ∈ Z

A(G)
≥0 with �a < T for all a ∈ A(G),

– upper bounds u ∈ Z
A(G)
≥0 with ua ≥ �a for all a ∈ A(G),

– weights w ∈ Q
A(G)
≥0 .

In the application of periodic timetabling in public trans-
port, the events are typically arrivals or departures of a vehicle
at a station, and activities model driving between stations,
dwelling at a station, passenger transfers, or safety constraint
such as minimum distances between vehicles (Liebchen &
Möhring, 2007). Theweights often reflect the number of pas-
sengers using an activity.

Definition 2.1 Given (G, T , �, u) as above, a periodic
timetable is a vector π ∈ [0, T )V (G) such that there exists a
periodic tension x ∈ R

A(G)
≥0 satisfying

∀i j ∈ A(G) : �i j ≤ xi j ≤ ui j and π j − πi ≡ xi j mod T .

(1)

Intuitively, π gives the cyclic order of the events, and x
corresponds to the duration of the activities. If there exists a
periodic timetableπ , then a periodic tension can be computed
by

xi j := [π j − πi − �i j ]T + �i j , i j ∈ A(G), (2)

where [·]T denotes the modulo-T -operator taking values in
[0, T ). Conversely, from a vector x ∈ R

A(G)
≥0 with � ≤ x ≤ u,

one can construct a periodic timetable with tension x by a
graph traversal; see also Lemma 2.7.
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In terms of the incidence matrix B of G and its transpose
Bt , condition (1) can be rewritten as

� ≤ x ≤ u and Btπ ≡ x mod T .

Since B and hence are Bt are totally unimodular (Schrijver,
1986, Example 19.2) and the bounds �, u are integer, it fol-
lows that if a periodic timetable exists, then there is also an
integer timetable with an integer periodic tension. However,
in general, it is not at all clear that a periodic timetable exists:

Definition 2.2 (T - PESP- Feasibility) Given a tuple
(G, T , �, u) as above, decide if there exists a periodic
timetable π .

Theorem 2.3 (Odijk, 1994) T - PESP- Feasibility is NP-
complete for fixed T ≥ 3.

Proof It is clear that T - PESP- Feasibility is in NP, as a
feasible timetable π with periodic tension x serves as certifi-
cate. We recall the proof in order to emphasize the natural
relationship between PESP and Vertex Coloring. Recall
that the T -Vertex Coloring problem is to decide for an
undirected graph H whether it admits a T -coloring, i.e., a
map f : V (H) → {0, . . . , T − 1} such that f (i) �= f ( j)
for every pair (i, j) of adjacent vertices in H .

Fix T ≥ 3. Given an undirected graph H , construct a
T - PESP- Feasibility instance (G, T , �, u) as follows:G is
obtained from H by arbitrarily directing the edges, and set
� := 1, u := T − 1. Then, H admits a T -coloring if and
only if (G, T , �, u) has a periodic timetable π . Namely, if
f : V (H) → {0, . . . , T − 1} is a T -coloring, then setting
πi := f (i) for all i ∈ V (G) is a periodic timetable, as
for every arc i j ∈ A(G) then holds xi j = [π j − πi ]T =
[ f ( j)− f (i)]T ∈ [1, T −1]. Vice versa, if the PESP instance
is feasible, then there is an integer timetable, giving rise to a
T -coloring. 	


So far, we have neglected the weight vector w ∈ Q
A(G)
≥0 .

The weights come into play in the optimization variant of
PESP, which we state as its corresponding decision version.
If x is a periodic tension, we call y := x−� ≥ 0 the periodic
slack.

Definition 2.4 (T - PESP- Optimality) Given a tuple
(G, T , �, u, w) as above and a number M , find a periodic
timetable π with periodic slack y such that wt y ≤ M .

Minimizing the weighted periodic slack, or equivalently,
the weighted periodic tension, can be interpreted as min-
imizing the total travel time of all passengers in a public
transportation network. Clearly, T - PESP- Optimality is
an NP-hard optimization problem. However, in many non-
railway public transport networks, minimum distances are
neglected for planning, and the driving and dwelling times of

vehicles have a rather small span, so that they can be assumed
as fixed. Contracting the corresponding activities yields a
graph where only transfer activities remain, and these have
typically no restrictions on their durations in the sense that
lower and upper bounds differ by at least T − 1. This moti-
vates the following specialization of PESP, called reduced
PESP in Pätzold and Schöbel (2016):

Definition 2.5 (T - RPESP- Optimality)Given (G, T , �, u,

w) as above with u ≥ � + T − 1 and a number M , find a
periodic timetable π with periodic slack y such that wt y ≤
M .

Note that the feasibility problem is trivial to solve: In fact,
any integral vector π ∈ [0, T )V (G) is a periodic timetable,
because for any activity i j ∈ A(G),

�i j ≤ xi j = [π j − πi − �i j ]T + �i j ≤ T − 1 + �i j ≤ ui j .

Theorem 2.6 (Nachtigall, 1993) For any fixed T ≥ 3, T -
RPESP- Optimality is NP-hard.

Proof We adapt the proof of Nachtigall to our notions and
notations. Fix some period time T ≥ 3.We reduce T - PESP-
Feasibility to T - RPESP- Optimality.
Let (G, T , �, u) be a T - PESP- Feasibility instance. With-
out loss of generality, assume that u − � < T , because if the
instance is feasible, then there is a periodic tension x satis-
fying x < � + T by (2). Add to each arc a ∈ A(G) from
i to j a reverse copy a with �a := [−ua]T . Set all weights
w to 1. For this T - RPESP- Optimality instance, let π be a
periodic timetable with tension x as defined in (2). Then, for
any original arc a holds �a ≤ xa < �a + T and xa ≡ −xa
mod T . For the slacks ya and ya , we obtain

ya + ya = [xa − �a]T + [ua − xa]T .

Since 0 ≤ xa − �a ≤ ua − �a < T and −T < �a − xa ≤
ua − xa ≤ ua − �a < T ,

ya + ya =
{
ua − �a if ua − xa ≥ 0,

ua − �a + T if ua − xa < 0.

In particular, for the weighted slack of the T - RPESP- Op-
timality instance holds

∑
a∈A(G)

(ya + ya) ≥
∑

a∈A(G)

(ua − �a),

and equality holds if and only if xa ≤ ua for all a ∈
A(G). This means that the T - PESP- Feasibility instance
is feasible if and only if the described T - RPESP- Opti-
mality instance has weighted periodic slack at most M :=∑

a∈A(G)(ua − �a). 	


123



160 Journal of Scheduling (2022) 25:157–176

We turn now to simple algorithms for T - PESP- Opti-
mality. Consider at first instances where undirecting the
event-activity network G results in a tree (shortly, G is a
tree):

Lemma 2.7 Suppose that G is a tree on n vertices. Then,
T - PESP- Optimality on (G, T , �, u, w) can be solved in
O(n) time. Moreover, � is an optimal periodic tension, and
the minimum weighted periodic slack is 0.

Proof If undirectingG results in a tree on n vertices, then the
transpose Bt of the incidence matrix B of G is a (n − 1) × n
matrix of full rank n−1. In particular, Btπ = � has a solution
over Z, and reducing modulo T gives a feasible periodic
timetable π∗ with periodic tension � and hence weighted
periodic slack 0.

Avoiding linear algebra, π∗ can as well be obtained by
traversing the tree, starting with π∗

v = 0 at an initial vertex v

and setting π∗
j := [π∗

i + �i j ]T when traversing i j ∈ A(G),
and π∗

j := [π∗
i − �i j ]T if j i ∈ A(G) is traversed. A depth-

first traversal takes O(|V (G)| + |A(G)|) = O(n) time. 	

On general networks, there are several ways to give naive

exponential-time algorithms for T - PESP- Optimality:

Lemma 2.8 On instances (G, T , �, u, w) with n events and
m activities, T - PESP- Optimality can be solved in

1. O∗(T n−1), or
2. O∗(2n−1nn−2), or
3. O∗(3m) time,

where O∗(·) means O(·) ignoring polynomial factors.

Proof

1. Enumerate all T n integral vectors in [0, T )V (G),
compute x by (2), and check the bounds. This is an
O(mTn) algorithm. If π is a periodic timetable, then for
any d ∈ R,π ′ defined byπ ′

i := [πi+d]T for all i ∈ V (G)

is a periodic timetable with the same periodic tension. In
particular, only T n−1 vectors have to be enumerated.

2. By Nachtigall (1998), if G is weakly connected and the
instance is feasible, there is an optimal periodic tension
x∗ and a spanning tree F of G such that x∗

a ∈ {�a, ua}
for all a ∈ A(F). Enumerate all O(nn−2) spanning trees
F of G. For each such F , enumerate all 2n−1 vectors
x ∈ ∏

a∈A(F){�a, ua}. Interpreting x as a periodic tension
defines a periodic timetable π ∈ [0, T )V (G) which can be
computed by an O(n + m) depth-first traversal as in the
proof of Lemma2.7 (replacing � by x). Use (2) to compute
the periodic tension xa of all O(m) remaining co-tree arcs
a /∈ A(F) and check if the bounds are satisfied. If G is
not connected, T - PESP- Optimality can be solved on
each component individually.

3. Let B denote the incidencematrix ofG. Then, themodulo
constraint Btπ ≡ x mod T is satisfied if and only if there
is a vector p ∈ Z

A(G) such that Btπ = x − T p. Since
any entry of Btπ lies in the interval (−T , T ), and any
tension computed by (2) satisfies x ∈ [0, 2T ), it suffices
to consider p ∈ {0, 1, 2}A(G), cf. Liebchen (2006, Lemma
9.2). The algorithm is now to solve the problem

Minimize wt y

s.t. Btπ = x − T p,

� ≤ x ≤ u

for each fixed p ∈ {0, 1, 2}A(G). This is a series of 3m

linear programs. 	


Somewhat unsurprisingly, Lemma 2.8 implies that all
three presented PESP variants are solvable in polynomial
time when the number of events or the number of activities
is fixed. In the remainder of the paper, we investigate sev-
eral graph parameters and their effects on the parameterized
complexity of PESP.

3 Parameters

3.1 Parameterized Complexity

Parameterized complexity is an active topic in the context
of scheduling; see, for example, Mnich & van Bevern, 2018.
Before introducing the parameters discussed in this paper, we
recall several standard notions from the field of parameter-
ized complexity and refer to the books (Downey & Fellows,
1999) and (Cygan et al., 2015) for further details.

Aparameterized problem over an alphabetΣ is a language
L ⊆ Σ∗ × N. A parameterized problem L is called fixed-
parameter tractable (FPT) if there are an algorithm A, a
computable function f : N → N, and a constant c ∈ N

such that for each (x, k) ∈ Σ∗ × N, A decides whether
(x, k) ∈ L within f (k) · size(x, k)c steps. In this case, we
will call A an FPT algorithm. The class of FPT problems
forms a complexity class, which will also be denoted by FPT.

A parameterized problem L belongs to the complexity
class XP if there are an algorithm A and functions f , g :
N → N such that A decides whether (x, k) ∈ L within
f (k) · size(x, k)g(k) steps. Clearly, FPT ⊆ XP.
Generalizing FPT algorithms to non-deterministic algo-

rithms, we obtain the complexity class para-NP. We have
FPT = para-NP if and only if P = NP, and no para-NP-hard
problem can be in XP.

For parameterized problems L ⊆ Σ∗
L×N andM ⊆ Σ∗

M×
N, a parameterized reduction of L to M is an algorithm A
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Table 1 Parameters of R1L1

Parameter Value

No. of vertices 3664

No. of arcs 6385

Cyclomatic number 2722

Vertex cover number 1832

Diameter 88

Maximum degree 26

Branchwidth ∈ [58, 70]
Treewidth ∈ [57, 97]
Carvingwidth ∈ [29, 1820]

that transforms an instance (x, k) ∈ Σ∗
L × N to an instance

(x ′, k′) ∈ Σ∗
M × N such that

1. (x, k) ∈ L if and only if (x ′, k′) ∈ M ,
2. k′ ≤ f (k),
3. A requires f (k) · size(x)c time,

where f : N → N is computable and c ∈ N is a constant,
and both f and c are independent of (x, k).

Finally, we define the complexity class W[1] as the class
of all parameterized problems that admit a parameterized
reduction to the k- Clique problem. It is known that FPT ⊆
W[1] ⊆ XP ∩ para-NP, and it is believed that FPT �= W[1].

3.2 Parameter search

We now return to PESP. The benchmarking library PES-
Plib (Goerigk, 2012) contains 20 difficult T - PESP- Opti-
mality instances, created with the LinTim toolbox with
data of the German railway network (Goerigk et al., 2013).
Despite several efforts, none of the instances is currently
solved to proven optimality.

For the event-activity network of the smallest PESPlib
instance R1L1, the values of several typical graph parame-
ters in parameterized complexity are summarized in Table 1.
Most of the parameters are easy to obtain; we will elaborate
in Sect. 6 on the computation of the others. The cyclomatic
number, also known as feedback edge set number, is a com-
monmeasure for the difficulty of PESP instances, as it counts
the number of integral variables used in a cycle-based mixed
integer programming formulation (Borndörfer et al., 2019).
However, parameters such as treewidth and branchwidth are
much smaller. As T - PESP- Optimality is solvable in linear
time on trees by Lemma 2.7, it seems therefore reasonable to
investigate parameterized algorithms in termsof treewidth. In
particular, we could ask whether there is a polynomial-time
algorithm for PESP on event-activity networks with bounded
treewidth, i.e., T - PESP- Optimality belongs to XP. Even

# vertices
2.8

# arcs
2.8

cyclomatic no.
+ vertex cover no.

cyclomatic no.
+ diameter

5.13

cyclomatic
number
5.11, 5.12

vertex cover
number

4.23

diameter
4.19

treewidth
4.6, 4.7

branchwidth
4.14

carvingwidth
4.17

(4.12)

(4.16)

(4.24)

5.8, 5.9

FPT

XP

W[1]-hard

para-NP-hard

unknown

Legend:

T -PESP- T -PESP
Feasibility Optimality

theorem no.

a

b
bounding b bounds a
FPT algorithms propagate up
hardness propagates down

Fig. 1 Parameter hierarchy and complexity results for T - PESP- Fea-
sibility and T - PESP- Optimality

better,wewonder if there is an FPT algorithm.Unfortunately,
the answer is negative unless P = NP.

The complexity landscape of the parameters discussed in
this paper is manifold. An overview of the results and the
relations between the parameters is depicted inFig. 1.Wewill
introduce the parameters in the next two sections, presenting
hardness results in Sect. 4 and algorithms in Sect. 5.

4 Hardness results

4.1 Para-NP-Hardness

4.1.1 Reducing SUBSET SUM

Definition 4.1 (Garey & Johnson, 1979, SP13) The Subset
Sum problem is the following: Given r ∈ N, c ∈ Z

r≥0 and
C ∈ Z≥0 with C ≤ ∑r

i=1 ci , is there a z ∈ {0, 1}r such that
ct z = C?

The Subset Sum problem is weakly NP-complete (Karp,
1972). We will at first construct a polynomial-time reduction
in Subset Sum to T - PESP- Feasibility.
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0 1 2 3 . . . r − 1 r

[0, c1]

[c1, T ]

[0, c2]

[c2, T ]

[0, c3]

[c3, T ]

[0, cr ]

[cr, T ]

[C,C]

Fig. 2 Instance I (r , c,C): arcs a are labeled with [�a, ua], T :=∑r
i=1 ci + 1

Definition 4.2 For a Subset Sum instance (r , c,C) as
above, define I (r , c,C) as the instance (G, T , �, u) for
T - PESP- Feasibility as depicted in Fig. 2 with T :=∑r

i=1 ci + 1.

Lemma 4.3 The Subset Sum instance (r , c,C) has a solu-
tion if and only if T - PESP- Feasibility has a solution on
the instance I (r , c,C).

Proof Let π be a periodic timetable for I (r , c,C). Then,
[πi − πi−1]T ∈ {0, ci } holds for all i ∈ {1, . . . , r}. Set

zi :=
{
1 if [πi − πi−1]T = ci ,

0 otherwise,
i = 1, . . . , r .

For the arc (0, r), we then obtain

C = [C]T = [πr − π0]T

=
[

r∑
i=1

(πi − πi−1)

]
T

=
[

r∑
i=1

zi ci

]
T

=
r∑

i=1

zi ci ,

and found a positive answer to the Subset Sum problem
on (r , c,C). Conversely, any vector z ∈ {0, 1}r such that
ct z = C yields a feasible periodic timetable π by setting

π0 := 0 and

πi := πi−1 + zi ci , i = 1, . . . , r .

	


4.1.2 Treewidth

Definition 4.4 (e.g., Robertson & Seymour, 1984) Given a
graph G, a tree decomposition of G is a pair (T ,X ) consist-
ing of a tree T and a family of bags X = (Xt )t∈V (T ) with
Xt ⊆ V (G) for each t ∈ V (T ) such that

1.
⋃

t∈V (T ) Xt = V (G),

0, 1, 2 0, 2, 3 0, 3, 4 . . . 0, r − 1, r

Fig. 3 An optimal tree decomposition of width 2 for the I (r , c,C)

network

2. for each a ∈ A(G), there is a bag Xt containing both
endpoints of a,

3. for each v ∈ V (G), the subforest of T induced by {t ∈
V (T ) | v ∈ Xt } is connected.

The width of a tree decomposition is maxt∈V (T )|Xt | − 1,
and the treewidth of G is defined as the minimum possible
width of a tree decomposition, i.e.,

tw(G) := min

{
max

t∈V (T )
|Xt |

∣∣ (T ,X ) is a tree
decomposition of G

}
− 1.

This definition applies to both undirected and directed
graphs, and as well to multigraphs. According to Defini-
tion 4.4, the treewidth of a graph with multiple edges equals
the treewidth of the graph where all multiple edges between
two vertices are replaced by a single edge. The simple con-
nected graphs of treewidth 1 are precisely the trees.

Lemma 4.5 For any Subset Sum instance (r , c,C) with
r ≥ 2, the event-activity network G of the instance I (r , c,C)

has treewidth 2.

Proof The path of length r depicted in Fig. 3, where each
node is labeled with its bag, is a tree decomposition of G.
Checking the properties of a tree decomposition is straight-
forward. The maximum bag size is 3, and hence tw(G) ≤ 2.
Removing one of the two arcs from i to i+1, i = 0, . . . , r−1,
does not change the treewidth in the sense of Definition 4.4.
As r ≥ 2, this results in a simple graph containing a cycle,
so that tw(G) ≥ 2. 	


An alternative way to see that the network G of I (r , c,C)

has treewidth at most 2 is to observe that G is series–parallel
(see, for example, Bodlaender & van Antwerpen-de Fluiter,
2001, Lemma 3.4). With Lemmas 4.3 and 4.5, we obtain:

Theorem 4.6 T - PESP- Feasibility isNP-complete on net-
works of treewidth 2.

Since the transformation in the proof of Theorem 2.6
reduces T - PESP- Feasibility to the T - RPESP- Optimal-
ity problem by adding antiparallel arcs, which does not alter
the treewidth, we have moreover:

Theorem 4.7 T - RPESP- Optimality is NP-complete on
networks of treewidth 2.

Remark 4.8 If simple graphs are desired, one can dispose of
the parallel arcs in I (r , c,C) by subdividing any arc with
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bounds [0, ci ] into two arcs with bounds [0, ci ] and [0, 0]
without affecting the feasibility of the PESP instance. More-
over, one checks that this does not increase the treewidth of
I (r , c,C).

Remark 4.9 In the proof of Lemma 4.3, the period time
T is chosen very large. The above NP-completeness the-
orems hence do not hold when T is fixed. We will give
a pseudo-polynomial algorithm for T - PESP- Optimality
with bounded branchwidth in Sect. 5, showing that fixing
both T and the treewidth results in a polynomial-time algo-
rithm.

Remark 4.10 Wewant to remark that there has already been a
paper (van Heuven van Staereling, 2018) titled Tree Decom-
position Methods for the periodic event scheduling problem.
However, the title is misleading, as the algorithm there is
about finding trees in the network rather than considering
tree decompositions in the usual sense.

4.1.3 Branchwidth

Definition 4.11 (Robertson & Seymour, 1991)Given a graph
G, a branch decomposition of G is a pair (B, ϕ), where B is
a tree such that every non-leaf node has degree 3, and ϕ is a
bijection from the leaves of B to A(G). Deleting an edge e of
B disconnects B into two subtrees and hence partitions the
leaves of B into two sets. Applying ϕ, this yields a partition
A = A1

e

.∪ A2
e . This defines in turn a vertex separator Se ⊆ V

as the set of vertices that are incident both to an edge in A1
e

and to an edge in A2
e .

The width of a branch decomposition (B, ϕ) is defined as
maxe∈E(B) |Se|. The branchwidth of G is then the minimum
possible width of a branch decomposition, i.e.,

bw(G) := min

{
max

e∈E(B)
|Se|

∣∣ (B, ϕ) is a branch
decomposition of G

}
.

Treewidth and branchwidth are related as follows:

Theorem 4.12 (Robertson & Seymour, 1991, 5.1) If bw(G)

≥ 2, then

bw(G) ≤ tw(G) + 1 ≤
⌊
3

2
bw(G)

⌋
.

It follows immediately that both T - PESP- Feasibility and
T - RPESP- Optimality are NP-complete on networks with
branchwidth 3. We prove below that the NP-completeness is
already given for branchwidth 2.

Lemma 4.13 For any Subset Sum instance (r , c,C), the
event-activity network G of the instance I (r , c,C) has
branchwidth 2.

(0, 1)(0, 1) (1, 2)(1, 2) (2, 3)(2, 3) (n− 1, n)(n − 1, n)

(0, n). . .

2 2 2 2 2 2 2 2

2 22 2 2 2

Fig. 4 An optimal branch decomposition of width 2 for the I (r , c,C)

network

Proof Figure 4 shows a branch decomposition of G, where
the leaves are labeled with the corresponding arc and the
edges are labeled with the cardinality of the correspond-
ing vertex separator. This is clearly a branch decomposition.
Checking the cardinalities of the vertex separators is again
straightforward, and hence bw(G) ≤ 2. The network G can-
not have branchwidth 1, as in any branch decomposition, the
edge incident to the leaf representing (0, r) always induces
the vertex separator {0, r} of size 2. 	


Theorem 4.14 The problems T - PESP- Feasibility and T -
RPESP- Optimality are NP-complete on networks with
branchwidth at most 2.

Proof For T - PESP- Feasibility, this follows by combining
Lemma 4.3 with Lemma 4.13. Introducing anti-parallel arcs
in the network of I (r , c,C) does not increase the branch-
width of 2: In the branch decomposition of the proof of
Lemma 4.13, replace a leaf with a vertex of degree 3 adjacent
to two new leaves corresponding to the two anti-parallel arcs.
The newedges have vertex separators of size 2. Therefore, the
transformation in the proof of Theorem 2.6 does not alter the
branchwidth, and T - RPESP- Optimality is NP-complete
on networks with branchwidth at most 2. 	


Another approach to proveLemma4.13 andTheorem4.14
is to exploit that a graph of treewidth at most 2 has branch-
width at most 2 (combine, for example, Bodlaender & van
Antwerpen-de Fluiter, 2001, Lemma 3.5 with Robertson &
Seymour, 1991, 4.2).

4.1.4 Carvingwidth

Carvingwidth is defined analogously to branchwidth, by
labeling the leaves of an unrooted binary treewith the vertices
of the original graph instead of the edges.

Definition 4.15 (Seymour & Thomas, 1994) Given a graph
G, a carving decomposition of G is a pair (C, ψ), where C is
a tree such that every non-leaf node has degree 3, and ψ is
a bijection from the leaves of C to V (G). Removing an edge
e of C induces a partition of the leaves of C, and hence via
ψ also a partition V (G) = V 1

e

.∪ V 2
e . Let δ(V 1

e ) (= δ(V 2
e ))

denote the set of cut edges.
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0

1+ 1− 2+ 2− (r − 1)+ (r − 1)−

r. . .3 2 3 2 2 3
3 3 3 3 3 3

Fig. 5 An optimal carving decomposition of width 3 of the modified
I (r , c,C) network

The maximum cardinality of δ(V 1
e ) taken over all e ∈ E(C)

is the width of (C, ψ). The carvingwidth of G is defined as

cw(G) := min

{
max
e∈E(C)

|δ(V 1
e )| ∣∣ (C, ψ) is a carving

decomposition of G

}
.

The definition of carvingwidth applies as well to multi-
graphs, but in contrast to branch- and treewidth, it is sensitive
to multiple edges: The carvingwidth is at least the maxi-
mum vertex degree Δ(G), as for each v ∈ V (G), cw(G) ≥
deg(v) = |δ(v)|. Carvingwidth is related to branchwidth as
follows:

Theorem 4.16 (Nestoridis&Thilikos, 2014;Eppstein, 2018)
Let G be a graph with maximum vertex degree Δ(G). Then,

max

(
Δ(G),

⌈
1

2
bw(G)

⌉)
≤ cw(G) ≤ Δ(G) · bw(G).

Theorem 4.17 T - PESP- Feasibility is NP-complete on
networks of carvingwidth at most 3, and T - RPESP- Opti-
mality isNP-complete on networks of carvingwidth at most
6.

Proof Let r ≥ 2 and consider again an instance of the form
I (r , c,C) with event-activity network G. Then, Δ(G) = 4,
so that cw(G) ≥ 4. For all i ∈ {1, . . . , r − 1}, split vertex
i into two new vertices i+ and i−, connected by a single
directed arc (i+, i−) with bounds �i+,i− = ui+,i− = 0. The
splitting is done in such a way that the arcs entering i are
now entering i+, and the arcs leaving i are leaving i−. Any
periodic timetable has the same value at i+ and i−, so that
the proof of Lemma 4.3 carries over. However, the modified
graph has maximum degree 3. The carving decomposition
in Fig. 5, where the edges labeled with the number of cut
edges, has width 3. Hence, T - PESP- Feasibility is NP-
complete on networks of carvingwidth 3. As a consequence,
keeping in mind the arc duplication occurring in the proof of
Theorem 2.6, T - RPESP- Optimality is NP-complete for
carvingwidth 6. 	


We also obtain from the proof of Theorem 4.17 that T -
PESP- Feasibility is in fact NP-complete on networks with
maximum degree 3.

Remark 4.18 T - PESP- Optimality is trivial to solve on
graphs G with cw(G) = 1, as then Δ(G) ≤ 1 by The-
orem 4.16. If cw(G) = 2, then Δ(G) ≤ 2, so that any
weakly connected component of G, seen as an undirected
graph, is either a path or a cycle. T - PESP- Optimality is
solvable in linear time on paths (Lemma 2.7). We will see
later in Theorem 5.12 that T - PESP- Optimality admits a
polynomial-time algorithm when the cyclomatic number is
bounded by a constant, and in particular on a single cycle.

4.1.5 Diameter

The diameter of a graph is the maximum length of an undi-
rected shortest path between two vertices.

Lemma 4.19 T - PESP- Feasibility isNP-hard on networks
with diameter 1.

Proof For the first statement, we turn the instances I (r , c,C)

used in Lemma 4.3 into complete graphs by adding activities
a with �a = 0 and ua = T −1 and observe that this does not
alter the feasibility. 	


In Sect. 5, we will give an FPT algorithm for T - PESP-
Optimalitywhen both diameter and cyclomatic number are
bounded.

4.2 W[1]-Hardness

List Coloring dates back to Vizing (1976) and Erdős et al.
(1980). It is known to be W[1]-hard when parameterized by
treewidth (Fellows et al., 2011), or by the vertex cover num-
ber (Fiala et al., 2011, Theorem 1). We will now describe
a parameterized reduction in the List Coloring problem
to T - PESP- Feasibility, which will be useful for two pur-
poses.

At first, we can deduce the W[1]-hardness of T - PESP-
Feasibility w.r.t. the vertex cover number.

Secondly, note that reducing the Subset Sum problem
does still allow for FPT algorithms for T - PESP- Feasibili-
ty w.r.t. treewidth or branchwidth when the period time T is
encoded in unary. We show that in this situation, T - PESP-
Feasibility is W[1]-hard, i.e., there is most likely no such
“pseudo”-FPT algorithm. In particular, we can only hope for
“pseudo”-XP algorithms, where the exponent of T is a non-
constant function of the parameter. We will indeed present
such an algorithm in Sect. 5.

4.2.1 Reducing LIST COLORING

Definition 4.20 The List Coloring problem is the follow-
ing: Given a graph H together with a finite list L(v) ⊆ Z≥0

for each v ∈ V (H), decide whether there is a vertex coloring
of H such that each vertex v is colored with a color in L(v).
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Given a List Coloring instance (H , L), we construct a
T - PESP- Feasibility instance (G, T , �, u) as follows:
Define T := maxv∈V (H) L(v) + 1. Let G be any orientation
of H . For each edge of H , we define for the corresponding
activity a in A(G) the bounds �a := 1 and ua := T −
1. Further add a new vertex v0 to G. Let v ∈ V (H) with
L(v) = {c1, . . . , cr }, c1 < · · · < cr . Add r parallel activities
a1, . . . , ar from v0 to v, with bounds

�ai := ci , uai := ci−1 + T , i = 1, . . . , r ,

where we set c0 := cr − T . This way, we model the dis-
junctive constraints of choosing a color in L(v) as a PESP
instance (Liebchen & Möhring, 2007, §3.3).

Weclaim that (H , L)has a feasible list coloring if and only
if (G, T , �, u) admits a feasible periodic timetable. Thus, let
π ∈ [0, T )V (H) be a list coloring for (H , L). If i j ∈ A(H),
then π j �= π j , so that [π j − πi − 1]T ≤ T − 2 is a feasible
periodic slack. Extendπ to a timetable onG by settingπv0 :=
0. Let v ∈ V (H), and assume that v is colored with the j th
color from its list, i.e., πv = c j ∈ L(v). For i ∈ {1, . . . , r},
for the i th activity ai from v0 to v, the periodic tension would
be

[πv − πv0 − �ai ]T + �ai = [c j − ci ]T + ci

=
{
c j if i ≤ j,

c j + T if i > j .

In the first case c j ≤ T ≤ ci−1+T , and in the second ci > c j
implies c j + T ≤ ci−1 + T . We conclude that π is a feasible
periodic timetable.

Conversely, consider a feasible periodic timetable π ∈
[0, T )V (G). By a shift replacing π by [π − πv0 ]T , we can
assume that πv0 = 0. By restriction, using that π j �= πi for
all i j ∈ A(H), π yields a coloring of H . It remains to check
that this is a feasible list coloring. The periodic tension on an
activity ai from v0 to v must satisfy

[πv − πv0 − �ai ]T + �ai = [πv − ci ]T + ci ≤ ci−1 + T

for all i ∈ {1, . . . , r}. Suppose that there is an index j such
that c j ≤ πv < c j+1. Then, the above inequality for i = j+1
means

πv + T = [πv − c j+1]T + c j+1 ≤ c j + T ,

henceπv = c j . Ifπv ≥ cr , thenπv ≤ c0+T = cr . Finally, if
πv < c1, then πv ≤ cr − T < 0, contradicting πv ≥ 0. This
shows that πv ∈ {c1, . . . , cr }, so that π is indeed a feasible
list coloring.

We have hence proved the following:

Lemma 4.21 A List Coloring instance (H , L) has a solu-
tion if and only if (G, T , �, u) is feasible.

4.2.2 Vertex cover number

Definition 4.22 For a graphG, its vertex cover number vc(G)

is defined as the minimum cardinality of a vertex cover of G.

Theorem 4.23 T - PESP- Feasibility is W[1]-hard when
parameterized by the vertex cover number.

Proof List Coloring is W[1]-hard when parameterized by
the vertex cover number (Fiala et al., 2011, Theorem 1). Con-
struct a T - PESP- Feasibility instance (G, T , �, u) from a
List Coloring instance (H , L) as in Lemma 4.21. Since
all arcs in G not present in H are connected to v0, we obtain
vc(G) ≤ vc(H) + 1. 	


It remains unclear whether T - PESP- Feasibility or T -
PESP- Optimality admit polynomial-time algorithms for
fixed vertex cover number, i.e., if these problems belong to
XP. InSect. 5.3,we show that fixingboth vertex cover number
and cyclomatic number enables an FPT algorithm for T -
PESP- Optimality.

4.2.3 Treewidth and diameter revisited

The treewidth of a graph is known to be bounded by its vertex
cover number:

Lemma 4.24 (Fiala et al., 2011, §2) Let G be a graph. Then,
tw(G) ≤ vc(G).

Moreover, the vertex cover number bounds the diameter,
as any path of length d contains at least d/2 vertices of any
vertex cover. As a direct consequence of Theorem 4.23, we
hence obtain:

Corollary 4.25 T - PESP- Feasibility is W[1]-hard when
parameterized by treewidth, branchwidth, or diameter.

5 Parameterized algorithms

5.1 A dynamic program for bounded branchwidth

5.1.1 PESP and vertex separators

The Subset Sum problem is weakly NP-complete and
can be solved by pseudo-polynomial-time algorithms. In
the following, we present a dynamic program for T -
PESP- Optimality running in pseudo-polynomial time for
event-activity networks of bounded branchwidth. Since T -
PESP- Optimality comprises both T - PESP- Feasibility
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and T - RPESP- Optimality, this implicitly gives pseudo-
polynomial time algorithms for these problems as well.

The key insight for our dynamic programming approach
is the following decomposition property: Let
I = (G, T , �, u, w) be a T - PESP- Optimality instance.
For any partition A(G) = A1

.∪ A2, we can partition I into
two subinstances I 1 resp. I 2 restricted to the activities in
A1 resp. A2. If y is a feasible periodic slack on I , then the
restrictions y1 resp. y2 to I 1 resp. I 2 yield feasible periodic
slacks with the property

∑
a∈A(G)

wa ya =
∑
a∈A1

wa y
1
a +

∑
a∈A2

wa y
2
a . (3)

On the level of timetables, we obtain from a timetable π on
I two timetables π1 resp. π2 on I 1 resp. I 2 such that π ,
π1, and π2 all coincide when restricted to the events of the
vertex separator S associated with the partition of A(G) as
in Definition 4.11.

Conversely, we can glue two periodic timetables π1 and
π2 together to a timetable π on I if the restrictions to a vertex
separator S satisfyπ1|S = π2|S . The corresponding periodic
slacks then hold Eq. (3).

Definition 5.1 Let I = (G, T , �, u, w) be a T - PESP- Op-
timality instance, and let S ⊆ V (G). For a vector ρ ∈
[0, T )S , defineOPT(I , S, ρ) as theminimumweighted slack
of a periodic timetable π on I when additionally π |S = ρ is
required.

For minimum weighted slacks, the above discussion
shows the following:

Lemma 5.2 Let I = (G, T , �, u, w) be a feasible T - PESP-
Optimality instance. Let A(G) = A1

.∪ A2 be a partition
with vertex separator S giving subinstances I 1 and I 2 of I .
Then,

OPT(I ) = min{OPT(I 1, S, π |S) + OPT(I 2, S, π |S) |
π is a feasible per. timetable on I }.

More generally, if additionally the timetable is fixed on W ⊆
V (G) to ρ ∈ [0, T )W , then

OPT(I ,W , ρ) = min{OPT(I 1, S ∪ W 1, π |S∪W 1)

+ OPT(I 2, S ∪ W 2, π |S∪W 2) |
π is a feasible periodic timetable

on I with π |W = ρ},

where Wi = W ∩ V i denotes the intersection of W with the
set of events V i of I i , i = 1, 2.

5.1.2 A branch decomposition approach

Since branch decompositions naturally encode vertex sep-
arators, we describe at first a branch-decomposition-based
dynamic program for T - PESP- Optimality. Let I =
(G, T , �, u, w) be a T - PESP- Optimality instance. We
assume that G is 2-edge-connected when seen as undirected
graph. Let (B, ϕ) be a branch decomposition of G with node
set V (B) and edge set E(B). Subdivide an arbitrary edge of
E(B) and call the new node τ the root. Recall from Defini-
tion 4.11 that every edge e ∈ E(B) corresponds to a partition
A = A1

e

.∪ A2
e with vertex separator Se. We assume that A1

e is
the subset of activities coming from the component ofB\{e}
not containing the root τ .

Algorithm 5.3 For each edge e ∈ E(B), we compute an
|Se|-dimensional table Fe having an entry for each π ∈
{0, . . . , T −1}Se . The table Fe is filled by a dynamic program
starting from the edges e ∈ E(B) incident to leaves and with
decreasing distance to the root:

1. If e ∈ E(B) is incident to a leaf corresponding via ϕ to
an activity i j ∈ A(G), then set

Fe(π) :=
{

wi j yi j if yi j ≤ ui j − �i j ,

∞ otherwise,

where yi j := [π j − πi − �i j ]T .
2. If e is incident to two edges e1, e2 with larger distance

from the root, then set

Fe(π) :=min{Fe1(π ′|Se1 ) + Fe2(π
′|Se2 ) |

π ′ ∈ {0, . . . , T − 1}Se1∪Se2 , π ′|Se = π}.

3. If the tables of the two edges e1, e2 incident to τ have
been computed, return

min{Fe1(π) + Fe2(π) | π ∈ {0, . . . , T − 1}Se1 }.

Lemma 5.4 Let e ∈ E(B), π ∈ {0, . . . , T − 1}Se . Denote by
Ie the subinstance of I containing precisely the activities in
A1
e .

1. If Fe(π) < ∞, then Fe(π) = OPT(Ie, Se, π).
2. If Fe(π) = ∞, then Ie is infeasible.

Proof Recall from Sect. 2 that it suffices to consider timeta-
bles with values in the discrete set {0, . . . , T − 1}, as � and
u are integer.

If e is incident to a leaf associated with an activity i j ∈
A(G), then A1

e = {i j} and Se = {i, j}, as G is 2-edge-
connected. Hence, OPT(Ie, Se, π) is the minimum weighted
slack of the activity i j when the timetable at i resp. j is fixed
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toπi resp.π j . Therefore, we set Fe(π) towi j [π j −πi −�i j ]T
if the slack [π j − πi − �i j ]T is feasible and otherwise to ∞.

Otherwise, let e be adjacent to e1, e2 ∈ E , with e1, e2
having larger distance from the root than e. Then, A1

e =
A1
e1

.∪A1
e2 and hence Se ⊆ Se1∪Se2 .Moreover, (Se1∪Se2)\Se

is the vertex separator of the partition of A1
e = A1

e1

.∪ A1
e2 .

Applying Lemma 5.2 for W = Se and S = (Se1 ∪ Se2) \ Se
yields the formula in Algorithm 5.3. 	


Lemma 5.5 If k = maxe∈E(B) |Se| and m = |A(G)|, then
Algorithm 5.3 computes OPT(I ) or decides that I is infeasi-
ble in O(mT �3k/2�) time.

Proof We first consider correctness. At the root τ with inci-
dent edges e1, e2, Algorithm 5.3 computes the tables Fe1, Fe2
such that Fei (π) = OPT(Iei , Sei , π) for all π and i = 1, 2
by Lemma 5.4. Observe that A1

e1 = A2
e2 , A

2
e1 = A1

e2 , and
Se1 = Se2 , so that by the first equation in Lemma 5.2,

OPT(I ) =min{OPT(Ie1 , Se1 , π) + OPT(Ie2 , Se2 , π) |
π ∈ {0, . . . , T − 1}V feasible timetable}.

This is precisely reflected in the third step of Algorithm 5.3,
treating infeasible subinstances with infinite objective value.

Concerning running time, Step 1 can be done in O(T 2)

time and is called m times. Step 3 takes O(T k) time since
|Se1 | ≤ k. As any node in the rooted branch decomposition
has either 0 or 2 children and there are m leaves, there are
m −1 edges for which Step 2 is called. Each of the |Se| table
entries requires to take a minimum over |(Se1 ∪ Se2) \ Se|
previously computed table entries.

We claim that

2|Se1 ∪ Se2 | ≤ |Se1 | + |Se2 | + |Se|.

If i ∈ Se1 \ Se2 , then i is adjacent to an activity a ∈ A1
e1 and

a′ /∈ A1
e1 . Since A

1
e1 and A1

e2 are disjoint, a /∈ A1
e2 . As i /∈ Se2 ,

then also a′ /∈ A1
e2 , and consequently a′ /∈ A1

e = A1
e1 ∪ A1

e2 .
It follows that i ∈ Se, and any such i appears hence twice in
the right-hand side of the above inequality. By symmetry, the
same holds for all i ∈ Se2 \ Se1 . Clearly, any i ∈ Se1 ∩ Se2 is
counted both in |Se1 | and in |Se2 |. This proves the claim. The
relation between the separators is also depicted in Fig. 6.

Since the size of any of the three vertex separators is
bounded by k, we obtain

|Se| + |(Se1 ∪ Se2) \ Se| = |Se1 ∪ Se2 | ≤
⌊
3k

2

⌋
.

Thus, Step 2 accounts in total for a running time of
O(mT �3k/2�), and this dominates the other steps, as k ≥ 2
since |Se| = 2 for every edge e incident to a leaf of B. 	


A1
e1

A1
e2

Se1
S
e
2Se

Fig. 6 Relation between Se, Se1 , and Se2

Having presented the core dynamic program, we now turn
to the surrounding problems:

Finding an optimal branch decomposition If bw(G) ≤ k,
then there is a linear-time algorithm computing a branch
decomposition of width ≤ k (Bodlaender & Thilikos, 1997).

Computing an optimal timetableBy additional bookkeeping,
we can not only compute the minimum weighted slack, but
also a periodic timetable realizing this slack.

2-edge-connectedness It is clear from the description of T -
PESP- Optimality that the problem can be solved on each
weakly connected component of G individually. Moreover,
if one of these components is not 2-edge-connected, then the
optimal periodic slack of any bridge will be zero (Borndörfer
et al., 2019, §3.2). Hence, one can safely assume w.l.o.g. that
G is 2-edge-connected. Note that this assumption implies
bw(G) ≥ 2.

Fixing If π is a feasible periodic timetable and d ∈ R, then
the timetable π ′ defined by π ′

i := [πi +d]T for all i ∈ V (G)

is feasible as well and produces the same periodic slack. In
particular, in Algorithm 5.3, for all e ∈ E , one can choose an
event i ∈ Se and then fix πi = 0. Thus, Algorithm 5.3 can
be adapted to run in O(mT �3k/2�−1) time.

As a consequence, in conjunction with Lemma 2.7 and
Theorem 4.14, we obtain

Theorem 5.6 For k ∈ N, there is an O(mT �3k/2�−1) algo-
rithm solving T - PESP- Optimality on networks G with m
activities and bw(G) ≤ k. In particular, if k ≥ 2 is fixed, then
the problems T - PESP- Optimality, T - PESP- Feasibility
and T - RPESP- Optimality are all weakly NP-complete.

Bounding treewidth and carvingwidth

It is also possible to construct a tree-decomposition-based
dynamic program for bounded treewidth. This tree decom-
position version is expected to be asymptotically faster, but
requires potentially more space. We refer to the Appendix
for details.
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Weomit a carving-decomposition-based algorithm.Bound-
ing the carvingwidth by k means that the branchwidth is
boundedby2k according toTheorem4.16, andwe can invoke
Algorithm 5.3.

5.2 Cyclomatic number

We have already seen in Lemma 2.8 that fixing the number of
events or the number of activities leads to FPT algorithms for
T - PESP- Optimality. In this subsection, we discuss fixed-
parameter tractability by cyclomatic number. The cyclomatic
number is a common measure for the difficulty of PESP
instances, as it counts the number of integral variables used
in a cycle-based mixed integer programming formulation
(Borndörfer et al., 2019).

Definition 5.7 Let G be a graph on n vertices, m edges and
c weakly connected components. The cyclomatic number of
G is defined as μ(G) := m − n + c.

The following seems to be folklore:

Lemma 5.8 Let G be a graph. Then, tw(G) ≤ μ(G) + 1.

Proof We give a proof by induction on μ(G). If μ(G) = 0,
then G is a forest and therefore tw(G) = 1.

Now, let G be a graph with μ(G) > 0. Then, G contains
a cycle and hence an edge e such that G ′ := G \ {e} has the
same number of connected components as G, and μ(G ′) =
μ(G) − 1. By induction hypothesis, tw(G ′) ≤ μ(G ′) + 1 =
μ(G), so that we find a tree decomposition (T ,X ) of G ′
with maximum bag size at most μ(G) + 1. If there is a bag
containing both endpoints of e, then (T ,X ) is also a valid
tree decomposition forG, and so tw(G) ≤ μ(G). Otherwise,
let i be an endpoint of e and add i to each bag of (T ,X ).
This is a tree decomposition forG of widthμ(G)+1, so that
tw(G) ≤ μ(G) + 1. 	


While it is true that treewidth and branchwidth can be
bounded in terms of each other (see Theorem 4.12), this does
not hold for treewidth and cyclomatic number:

Lemma 5.9 For k ≥ 2, there is a class Ck of simple connected
graphs such that tw(G) ≤ k holds for all G ∈ Ck , but for
any N ∈ N, there is a graph G ∈ C with μ(G) ≥ N.

Proof Let Ck be the class of graphs G built from a finite
disjoint union of cliques of size k with vertex sets V1, . . . , Vr
together with one additional vertex v joined to each vertex
from each clique. Let T be a path on the vertices {1, . . . , r},
and set Xi := Vi ∪ {v}, i = 1, . . . , r . Then, (T ,X ) is a
tree decomposition of G and, as |Xi | = k + 1, we have
tw(G) ≤ k. The cyclomatic number of G is given by

μ(G) =
(
r · k(k − 1)

2
+ rk

)
− (rk + 1) + 1 = r · k(k − 1)

2
,

and for k ≥ 2, this goes to infinity as r → ∞. 	

Lemma 5.10 On networks where no vertex has degree 2,
T - PESP- Optimality is FPT when parameterized by the
cyclomatic number.

Proof Let (G, T , �, u, w) be a T - PESP- Optimality
instance. We can safely remove all i ∈ V (G) with deg(i) =
1, as in any optimal solution, the incident activity must have
periodic slack 0. Hence, we can assume that G has minimum
degree 3. By the Handshaking lemma,

2m =
∑

i∈V (G)

deg(i) ≥ 3n,

and hence

μ = m − n + c ≥ n

2
+ 1,

so that n ≤ 2μ − 2. This means that fixing μ provides a
fixed bound on the number n of events, and we conclude by
Lemma 2.8. 	


Contracting vertices of degree 2 is a preprocessing tech-
nique that is applied to large PESP instances, for example, in
Goerigk and Liebchen (2017) and Borndörfer et al. (2019).

Theorem 5.11 T - PESP- Feasibility is FPT when parame-
terized by the cyclomatic number.

Proof Let (G, T , �, u) be a T - PESP- Feasibility instance.
Remove all events of degree 1 from G, as this does nei-
ther affect feasibility nor alter the cyclomatic number. Now,
all degree 2 vertices of G are arranged on (undirected)
paths between two vertices of degree ≥ 3. Consider such
a path from s to t with deg(s), deg(t) ≥ 3, forward activ-
ities a1, . . . , ar and backward activities b1, . . . , bs . Delete
all intermediate vertices between s and t and insert a single
activity a from s to t with

�a :=
r∑

i=1

�ai −
s∑

j=1

ub j and ua :=
r∑

i=1

uai −
s∑

j=1

�b j .

Clearly, if x is a feasible tension with �ai ≤ x ≤ uai and
�b j ≤ xb j ≤ ub j for all i and j , then also �a ≤ xa ≤
ua with xa := ∑r

i=1 xai − ∑s
j=1 xb j . Conversely, any xa

with �a ≤ xa ≤ ua can be split into feasible tensions on
all ai and b j . Thus, this transformation preserves feasibility.
Moreover, contracting vertices of degree 2 does not change
the cyclomatic number, so that we can assume that G has
minimum degree 3. Invoke Lemma 5.10. 	

Theorem 5.12 T - PESP- Optimality is inXPwhen param-
eterized by the cyclomatic number.
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Proof Let F be a spanning forest of G and let γ1, . . . , γμ be
its fundamental cycles, seen as incidence vectors
{−1, 0, 1}A(G). Then (e.g., Nachtigall, 1998), x ∈ R

A(G)

is a feasible periodic tension if and only if

� ≤ x ≤ u and ∀i ∈ {1, . . . , μ} : γ t
i x ≡ 0 mod T .

Decomposing γi = γi,+ − γi,− into positive resp. nega-
tive part γi,+, γi,− ∈ {0, 1}A(G), the modulo constraints are
equivalent to

∀i ∈{1, . . . , μ} :
γ t
i x = T zi ,⌈
γ t
i,+� − γ t

i,−u
T

⌉
≤ zi ≤

⌊
γ t
i,+u − γ t

i,−�

T

⌋
,

zi ∈ Z.

These are the so-called cycle inequalities (Odijk, 1994). In
particular, for each i , one has to check at most

⌊
γ t
i,+u − γ t

i,−�

T

⌋
−

⌈
γ t
i,+� − γ t

i,−u
T

⌉
+ 1

≤ (γi,+ + γi,−)t (u − �)

T
+ 1

values for zi . Since, as in the proof of Theorem 2.6, we can
assume w.l.o.g. that u − � < T , we have the estimate

zi ≤ |{a ∈ A(G) : γi,a �= 0}| + 1 ≤ n + 1,

as the γi are simple cycles and hence contain at most n ver-
tices.

The description of the polynomial-time algorithm is as
follows: Enumerate all O((n + 1)μ) integral vectors
(z1, . . . , zμ) satisfying the cycle inequalities and solve the
problem

Minimize wt x

subject to � ≤ x ≤ u,

γ t
i x = T zi , for all i ∈ {1, . . . , μ}.

This is a minimum cost network tension problem and can
be solved in polynomial time by network flow approaches
(Hadjiat &Maurras, 1997; Nachtigall & Opitz, 2008). Alter-
natively, the above minimization problem can be solved by
linear programming. 	


It remains open whether T - PESP- Optimality can be
solved with an FPT w.r.t. the cyclomatic number.

5.3 Cyclomatic number and diameter

The main obstacle for a FPT for T - PESP- Optimality is
that the cyclomatic number does not bound the number of
vertices. However, if, for example, one additionally fixes the
diameter, then also T - PESP- Optimality becomes fixed-
parameter tractable:

Corollary 5.13 T - PESP- Optimality is FPT when param-
eterized by cyclomatic number and diameter.

Proof We adapt the proof of Theorem 5.12. In our final esti-
mate of zi , the number of activities contained in γi can be
bounded from above by 2d if d denotes the diameter of the
graph. 	


A by-product of Corollary 5.13 is that T - PESP- Opti-
mality is also fixed-parameter tractablewhen parameterized
by cyclomatic number and vertex cover number.

Finally, we want to remark that fixing both the cyclomatic
number and the diameter does not bound the number of ver-
tices:

Lemma 5.14 For any k ∈ N, there is an infinite class of sim-
ple connected graphs of diameter at most 2 and cyclomatic
number at most k.

Proof For r ≥ k, let G be a star graph on r leaves. Connect k
distinct pairs of leaves by an edge. Then, μ(G) = (k + r) −
(r + 1) + 1 = k and G has diameter 2. 	


6 Structure of realistic event-activity
networks

In this section, we discuss the size of the so far discussed
graph parameters on realistic periodic timetabling instances.
We consider networks with a special structure based on line
networks. This structure is the direct outcome of a typical
modeling process (Nachtigall, 1998; Liebchen & Möhring,
2007; Schöbel, 2017; Pätzold et al., 2017). For example,
the railway networks in the benchmarking library PESPlib
(Goerigk, 2012) are found as subgraphs of networks with this
structure. For this type of networks, we give lower and upper
bounds on the branchwidth in terms of the underlying line
network.We use this theoretical result to compute bounds on
the branchwidth of the smallest PESPlib instance R1L1.

6.1 Line-based event-activity networks

Public transportation systems of cities, but also railway ser-
vices, are typically organized in lines.

Definition 6.1 A line network (N ,L) is a directed multi-
graph N , together with a set L of directed walks on G such
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that the arc set A(N ) is the disjoint union of A(�) over all
lines � ∈ L.

Line networks reflect the maps which public transport
companies offer for passenger information, displaying sta-
tions and lines. Depending on the precise application, lines
may also constitute non-simple paths or contain cycles (e.g.,
London’s Circle Line or Berlin’s Ringbahn). In the context
of line planning, we interpret a line network as a frequency-
expanded line plan, i.e., some lines might have the same
vertex sequence. Given a line network (N ,L), construct an
event-activity network G as follows:

1. For each line � ∈ L and each arc i j ∈ A(�), create adepar-
ture event (i, �, dep) and an arrival event ( j, �, arr), and
connect these by adrivingactivity ((i, �, dep), ( j, �, arr)).

2. For each vertex i ∈ V (N ) and each line � ∈ L, add
a dwelling activity ((i, �, arr), (i, �, dep)) if both events
exist.

3. For each vertex i ∈ V (N ) and each pair (�1, �2) of distinct
lines, add a transfer activity
((i, �1, arr), (i, �2, dep)) if both events exist.

Definition 6.2 An event-activity networkG is line-based if it
arises from a line network (N ,L) by the above construction.
Shortly, G is based on (N ,L).

Denote by deg+(i) resp. deg−(i) the number of outgoing
resp. ingoing arcs at i . We summarize some straightforward
structural properties of line-based networks in the following
lemma:

Lemma 6.3 Let G be based on (N ,L).

1. G is bipartite, the parts being the departure and arrival
events, respectively.

2. Every departure event has a unique outgoing activity, and
every arrival event has a unique ingoing activity. In both
cases, these are driving activities.

3. The driving activities in G form a perfect matching in G.
4. Deleting the driving activities from G and undirecting

the arcs results in the disjoint union of complete bipartite
graphs Kdeg+(i),deg−(i) over i ∈ V (N ).

Remark 6.4 Our definition of line-based networks disregards
headway activities, which are typically employed to model
different line frequencies or safety distances. However, the
railway instances found in the PESPlib do not feature this
particular kind of activities. (See §6.3 for the analysis of
R1L1.)

6.2 Branchwidth of line-based networks

To give bounds on the branchwidth of line-based event-
activity networks, we start with a well-known result on the
branchwidth of minors:

Theorem 6.5 (Robertson & Seymour, 1991, 4.1) If G is a
graph and H is a minor of G, then bw(H) ≤ bw(G).

By Lemma 6.3, this implies that if G is based on (N ,L),
then

bw(G) ≥ max
i∈V (N )

bw(Kdeg+(i),deg−(i)).

As we did not manage to find a reference in the literature
for the branchwidth of complete bipartite graphs, we give a
proof here:

Lemma 6.6 The complete bipartite graph K p,q has branch-
width min(p, q).

Proof Assume p ≤ q. Let P and Q denote the two parts,
|P| = p, |Q| = q. The vertex separator associated with any
neighborhood δ(w) for w ∈ Q is given by P . Moreover,
if E � δ(w) is a proper subset, then the cardinality of the
corresponding vertex separator is |E | + 1 ≤ p. Take any
ternary treewithq leaves labeledwith the vertices inQ. Then,
replace each leafw by any ternary tree with p leaves, labeled
by the edges in δ(w). The result is a branch decomposition
of Kp,q of width p. This shows bw(Kp,q) ≤ p.

To show that bw(Kp,q) ≥ p, we make use of tangles.
That is, if we can find a collection T of subsets of E(Kp,q)

such that

1. for each A ∈ T , the size of the corresponding vertex
separator is at most p − 1,

2. for each A ⊆ E(Kp,q) inducing a separator of size ≤
p − 1, either A or its complement is in T ,

3. for any three sets A1, A2, A3 ∈ T , their union is not
E(Kp,q),

4. for each A ∈ T , the subgraph induced by A does not
contain all vertices of Kp,q ,

then bw(Kp,q) ≥ p or p ≤ 2 holds (Robertson & Seymour,
1991, 4.3). Clearly, bw(K1,q) = 1, as these are star graphs,
and bw(K2,q) = 2, as these are series–parallel and contain
cycles. Hence, suppose p ≥ 3 and define

T := {A ⊆ E(Kp,q) | sep(A) ≤ p − 1,

|V (Kp,q [A]) ∩ P| ≤ p − 1,

|V (Kp,q [A]) ∩ Q| ≤ p − 1},

where sep(A) denotes the cardinality of the vertex separator
associated with A, and Kp,q [A] is the subgraph induced of
Kp,q by A. We check the above properties:
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1. This is clear.
2. Let A ⊆ E(Kp,q) with sep(A) ≤ p − 1 and suppose

that Kp,q [A] contains all vertices of P . Then, there must
be a vertex v ∈ P incident to some edge of A, but not
contained in the separator. Hence, A must contain δ(v),
and every vertex w ∈ Q is incident to the edge vw ∈ A.
Similarly, if A contains at least p vertices from Q, then
it contains δ(w) for at least |V (Kp,q [A]) ∩ Q| − (p − 1)
vertices w ∈ Q.
Thismeans if sep(A) ≤ p−1 and A /∈ T , then A contains
δ(v) for some v ∈ P and δ(w) for at least q − (p − 1)
vertices w ∈ Q. The subgraph induced by the comple-
ment of A hence does not contain v, and it also does not
contain at least q − (p − 1) vertices of Q. Therefore, the
complement of A is in T .

3. It follows by the argument in 2. that for each A ∈ T , the
vertex separator is given by V (Kp,q [A]). Now Kp,q [A]
is a simple bipartite graph on at most p − 1 vertices. It
follows that |A| ≤ (p − 1)2/4. Now, if A1, A2, A3 ∈ T ,
the cardinality of their union is at most 3(p − 1)2/4 <

p2 ≤ pq = |E(Kp,q)|.
4. This follows as |V (Kp,q [A])| ≤ 2p−2 < 2p ≤ p+q =

|V (Kp,q)|.

Hence, we conclude bw(Kp,q) = p. 	


Theorem 6.7 Let G be a line-based event activity network,
based on the line network (N ,L). Then,

max
i∈V (N )

min(deg+(i), deg−(i)) ≤ bw(G) ≤ cw(N ),

and both bounds are sharp.

Recall from Sect. 4.1.4 that cw(N ) denotes the car-
vingwidth of N , and that

cw(N ) ≥ max
i∈V (N )

(deg+(i) + deg−(i)).

Speakingmore intuitively, the carvingwidth is hencebounded
by the maximum number of lines departing and arriving at
a stop of the line network. In practice, line networks are
often planar, and the carvingwidth of planar graphs can be
computed in polynomial time by the ratcatcher algorithm
(Seymour & Thomas, 1994).

Proof of Theorem 6.7 The lower bound follows from
Lemma 6.3, Theorem 6.5, and Lemma 6.6. For r ∈ N, let Nr

be a graph on the vertex set {0, 1, . . . , 2r}, and arcs (i, 0) for
i ∈ {1, . . . , r} and (0, i) for i ∈ {r+1, . . . , 2r}. The lines are
given by L := {(i, 0, i + r) | i ∈ {1, . . . , r}}. The resulting
line-based event-activity network Gr has the structure of a
complete bipartite graph Kr ,r plus 2r activities connecting

the Kr ,r with events of degree 1 each. It follows that

bw(Gr ) = r = max
i∈V (Nr )

min(deg+(i), deg−(i)).

As Nr is a star graph on 2r rays, its carvingwidth is easily
determined to be 2r . Hence, we found a family of graphs for
which the lower bound is sharp, and the upper bound is larger
than the lower bound.

Concerning the upper bound, we first partition the activ-
ities of G: For each i ∈ V (N ), let Ai denote the set of
all activities incident to some departure event at i . Then,
{Ai | i ∈ V (N )} partitions A(G) because of the bipartite
structure ofG. For i ∈ V (N ), let (Bi , ϕi ) be a branch decom-
position of the subgraph of G induced by Ai . Add a root bi
to each Bi by subdividing an arbitrary edge. Let (C, ψ) be an
optimal carving decomposition of N . Attach to every leaf v

of C the tree Bψ(v), identifying v with bψ(v). This results in
a branch decomposition (B, ϕ) of G.

Now, let e ∈ E(B) and let A(G) = A1
e

.∪A2
e be the induced

partition. If e ∈ E(Bi ), then one of A1
e , A

2
e is contained in

Ai , so that the vertex separator Se has size at most deg+(i)+
deg−(i): Se contains at most all deg−(i) arrival events at i ,
and everyother vertex in Semust be either a departure event or
the unique arrival event following a departure event. Observe
that deg+(i)+deg−(i) ≤ cw(N ) due to Theorem 4.16. In the
other case that e ∈ E(C), there is a subset We ⊆ V (G) such
that A1

e = ⋃
i∈We

Ai . Each vertex of the vertex separator
Se is hence an arrival event at some i ∈ We. The set Se is
in bijection to δ(We) by mapping ( j, �, arr) to i j ∈ A(�) ⊆
A(N ),where (i, �, dep) is the uniquedriving activity entering
( j, �, arr). Hence, as C was chosen to be optimal, |Se| =
|δ(We)| ≤ cw(N ).

Finally, we show that the upper bound is sharp: For
r ∈ N, let N ′

r be a directed simple cycle on r vertices.
Then, cw(N ′

r ) = 2. The event-activity network G ′
r based

on N ′
r is then a directed simple cycle on 2r vertices and

has branchwidth 2. On the other hand, the lower is not 2, as
maxi∈V (N ′

r )
min(deg+(i), deg−(i)) = 1. 	


6.3 Parameters of R1L1

6.3.1 An upper bound on branchwidth

The networkG in its original shape does not satisfy the prop-
erties of Lemma 6.3. However, with small modifications, we
can find a line network N such that G is a subgraph of an
event-activity network based on N .

Transfer activities a ∈ A(G) are in practice typically rec-
ognized by a large span ua−�a . As the period time is T = 60,
we let At := {i j ∈ A(G) | ua−�a ≥ 59}. We call any vertex
i with i j ∈ At for some j an arrival event, and analogously
any vertex j with i j ∈ At for some i is called a departure
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Fig. 7 Removed part of R1L1, events recognized as departures are
marked yellow

event. This is well defined and extends to a bipartition of G
into arrival resp. departure events.

Now, we interpret any activity from a departure to an
arrival is called a driving activity. The set of driving activities
is not quite a perfect matching in G: There are two arrival
events (84 and 256) with two ingoing driving activities, and
two arrival events (53 and 177) with no ingoing driving activ-
ity. This is due to four mysterious activities with lower and
upper bound 0 breaking the structure at this particular spot;
see Fig. 7. However, the vertices 53 to 84 and 177 to 256
can be removed from G by sequentially deleting vertices of
degree 1. Since the remaining network has branchwidth at
least two, removing vertices of degree 1 has no effect on
branchwidth:

Lemma 6.8 Let G be a connected graph, and let v ∈ V (G)

be a vertex of degree 1. If bw(G \ {v}) ≥ 2, then bw(G) =
bw(G \ {v}).
Proof By Theorem 6.5, bw(G \ {v}) ≤ bw(G). For the
reverse inequality, consider a branch decomposition
(B, ϕ) of G \ {v}. Since G is connected, v is adjacent to
some vertex w of degree ≥ 2. Choose an edge e �= {v,w}
incident with w, and replace the leaf of B corresponding to
e by a node with the two children e and {v,w}. This is a
branch decomposition of G. The size of the vertex separator
corresponding to {v,w} is 1, the size of the separatorw.r.t. e is
at most 2, and all other vertex separators remain unchanged.
This shows bw(G) ≤ bw(G \ {v}). 	


With this adjustment, G has 3552 vertices and 6273 arcs.
G satisfies now properties 1–3 of Lemma 6.3. Deleting the
driving activities yields a disjoint union of bipartite graphs
Gi , but they are not all complete. We define N now as the
network obtained from G by contracting all these bipartite
graphs Gi to a single vertex i . Then, G is a subgraph of an
event-activity network based on N , choosing, for example,L
as the set of all single-arc walks. By Theorems 6.5 and 6.7,
bw(G) ≤ cw(N ).

The network N obtained in this way is unfortunately not
planar. Themaximumdegree in N is 62, so that cw(N ) ≥ 62.
To compute an upper bound, we first preprocess N by remov-
ing vertices of degree 2, as this does not alter carvingwidth

(Belmonte et al., 2013, Lemma 6). We use then the Kura-
towski subgraph detection algorithm implemented in the
Python package networkx (Hagberg et al., 2008) to recur-
sively remove (multi-)arcs from N until the graph becomes
planar. We prefer arcs of low multiplicity, and a sequence
of 20 removals of simple arcs finally yields a planar graph
N ′. We implemented the ratcatcher method of Robertson and
Seymour to compute cw(N ′) = 62 and an optimal carving
decomposition. As V (N ′) = V (N ), this is also a carving
decomposition of N , but the width increases to 70. We hence
conclude cw(N ) ∈ [62, 70] and bw(G) ≤ 70.

6.3.2 A lower bound on branchwidth

Since G is only realized as a subgraph of an event-activity
network based on N , we cannot invoke Theorem 6.7 directly.
Of course, it remains true that bw(G) is at least the branch-
width of the (disconnected) subgraphG ′ obtained by deleting
the driving activities. G ′ is reasonably small, but there seems
to be no freely available software for exact branchwidth com-
putations. However, there are treewidth codes, andwe use the
algorithm by Tamaki (2019), which has been implemented
for the PACE 2017 challenge on exact treewidth computa-
tions (Dell et al., 2018). It turns out that
tw(G ′) = 20, hence bw(G) ≥ 14.

The largest of the components of G ′ is a bipartite graph
withmaximumpart size 31. If this componentwere complete,
then Theorem 6.7 would have predicted bw(G) ≥ 31.

Toobtain a better boundonbw(G), we use balancedvertex
separators:

Lemma 6.9 (Robertson & Seymour, 1995, 3.1) Let G be a
graph. Then, there is a vertex separator S with |S| ≤ bw(G)

and

max(|V 1|, |V 2|) ≤ 2

3
|V (G)| − 1

2
|S|,

where V (G) = V 1
.∪V 2

.∪ S, and no vertex in V 1 is adjacent
to a vertex in V 2 and vice versa.

We now compute a minimum cardinality vertex separator
subject to the balance constraint of Lemma 6.9 by plugging
in a straightforward integer program into the CPLEX1 12.10
solver. We do not use the full network G as input, but take a
smaller network that is obtained after standard preprocessing
for T - PESP- Optimality instances (Borndörfer et al., 2019,
§3.2). This network is a minor of G, so that we obtain a valid
bound on the branchwidth. CPLEXfinds a vertex separator of
cardinality 58 and is able to solve the instance to optimality.
We conclude bw(G) ≥ 58.

1 https://www.ibm.com/analytics/cplex-optimizer.
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6.3.3 Treewidth and carvingwidth

Since bw(G) ∈ [58, 70], we obtain by Theorem 4.12 that
tw(G) ∈ [58, 104]. As the maximum degree in R1L1 is 26,
cw(G) ∈ [29, 1820]byTheorem4.16.Determining the exact
treewidth of G turns out to be computationally infeasible.
We instead use TCS-Meiji (Tamaki, 2019) and FlowCutter
(Hamann & Strasser, 2018), the best two submissions of the
PACE 2017 challenge on heuristic treewidth computations
(Dell et al., 2018), with different random seeds to obtain a
better upper bound on tw(G). The best bound we could find
was tw(G) ≤ 97.

6.3.4 Practical implications

The instance R1L1 has a period time of T = 60. It becomes
clear from Table 1 that none of the algorithms presented in
Sect. 5 can be applied for solving R1L1 in practice. For
example, storing T bw(G)−1 ≥ 6057 table entries for the
branch-decomposition-based algorithm 5.3 as 32-bit integers
would require roughly 9 · 10101 bytes of space.

7 Conclusion

The results of this paper underline that PESP is a noto-
riously hard problem. Although there are several primal
heuristics available, the promising global approaches fail to
compute provably optimal solutions: For example, mixed-
integer programming formulations suffer from weak linear
programming relaxations and transformations to Boolean
satisfiability problems scale badly. It fits into this picture
that exploiting structural parameters such as treewidth does
not lead to a polynomial-time algorithm unless P �= NP,
and to no pseudo-fixed-parameter algorithm unless FPT �=
W[1]. Moreover, the dynamic programs of Sect. 5 are only
of theoretical interest. It is even unclear for tentatively large
parameters as cyclomatic number and vertex cover number if
T - PESP- Optimality becomes fixed-parameter tractable.

On the positive side, it has been demonstrated in Lindner
and Liebchen (2019) that balanced edge separators lead to
benefits when computing lower bounds of T - PESP- Opti-
mality instances. We think that this should also carry over
to vertex separators, and that good heuristic tree or branch
decompositions may be useful as a source for separators in
order to tackle PESP by a divide-and-conquer approach.
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Appendix A Dynamic program from tree
decompositions

In this appendix, we develop a tree decomposition analogue
of Algorithm 5.3. Let I = (G, T , �, u, w) be a T - PESP-
Optimality instance. Let (T ,X ) be a tree decomposition.
We assume that (T ,X ) is rooted, i.e., we pick an arbitrary
leaf node τ ∈ V (T ) and turn T into an arborescence where
all edges point away from τ . Further suppose that the tree
decomposition is nice (Kloks, 1994, Definition 13.1.15), i.e.,
each node t ∈ V (T ) with bag Xt fits into precisely one of
the following categories:

– Root: t = τ ,
– Leaf : t �= τ , t has no children, and |Xt | = 1,
– Introduce: t has exactly one child u and one parent, Xu ⊆

Xt , and |Xt | = |Xu | + 1,
– Forget: t has exactly one child u and one parent, Xt ⊆

Xu , and |Xt | = |Xu | − 1,
– Join: t has exactly two children u1, u2 and one parent,
and Xt = Xu1 = Xu2 .

Algorithm A.1 For each node t ∈ V (T ), we compute a
|Xt |-dimensional table Dt having an entry for each π ∈
{0, . . . , T − 1}Xt . The table Dt is filled by the following
dynamic program from the leaves to the root, depending on
the role of the node t in the nice tree decomposition:

– If t �= τ is a leaf, then Xt = {i} for a single event i ∈ V .
For all π ∈ {0, . . . , T − 1}, set Dt (π) := 0.

– If t is an introduce vertexwith child u, then Xt = Xu∪{i}
for some event i . Put

Dt (π) := Du(π |Xu ) +
∑

i j∈A(G): j∈Xu

wi j yi j

+
∑

j i∈A(G): j∈Xu

w j i y ji ,
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where, for i j ∈ A(G),

yi j :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[π j − πi − �i j ]T
if [π j − πi − �i j ]T ≤ ui j − �i j ,

∞
otherwise.

– If t is a forget vertex with child u, then Xt = Xu \ {i} for
some event i . Set

Dt (π) := min{Du(π
′) |

π ′ ∈ {0, . . . , T − 1}Xu , π ′|Xt = π}.

– If t is a join vertex with children u1 and u2, then Xt =
Xu1 = Xu2 . If Du1(π) < ∞ and Du2(π) < ∞, define

Dt (π) :=Du1(π) + Du2(π)

−
∑

i j∈A: i∈Xt , j∈Xt

wi j [π j − πi − �i j ]T ,

otherwise set Dt (π) := ∞.
– If t = τ is the root, then compute Dτ treating τ as a
forget node. Return

min{Dτ (π) | π ∈ {0, . . . , T − 1}Xτ }.

For a node t ∈ V (T ), define Gt as the subnetwork of
G induced by the events in the bag of Xt and the bags of
all descendants of t in T . Denote by It the corresponding
T - PESP- Optimality subinstance of I .

Lemma A.2 Let t ∈ V (T ) be a node of the tree decomposi-
tion and π ∈ {0, . . . , T − 1}Xt .

1. If St (π) < ∞, then St (π) = OPT(It , Xt , π).
2. If St (π) = ∞, then there is no feasible periodic timetable

on It coinciding with π on Xt .

Proof Let Gt = (Vt , At ). If t �= τ is a leaf, then At = ∅,
and both statements are trivial.

Introducing an event i at t with child u means that

Vt = Vu
.∪ {i},

At = Au
.∪ ({i j ∈ A : j ∈ Xu}

.∪ { j i ∈ A : j ∈ Xu}).

The latter is a partition of the activities of Gt whose vertex
separator is contained in Xu . Due to Lemma 5.2, Dt (π)must
hence equal Du(π |Xu ) plus the minimum weighted slack of
the subinstance associated with At \ Au fixing the timetable
at Xt , and the latter is precisely given by the formula in
Algorithm A.1.

When forgetting an event i at t with childu, thenGt = Gu .
However, the timetable has to be fixed at Xt which contained
one vertex less than Xu , so that we minimize over all table
entries where the timetable restricted to Xu is the same.

If t is a join vertex with u1 and u2 as children, then Gt =
Gu1 ∪Gu2 . We apply Lemma 5.2 to At = Au1

.∪ (Au2 \ Au1)

and to Au2 = (Au2 \ Au1)
.∪ (Au1 ∩ Au2). Note that by the

connectedness property of the tree decomposition, any activ-
ity Au1 ∩ Au2 has both endpoints in Xt = Xu1 = Xu2 , so that
Xt contains the vertex separators of both partitions. Now, the
minimum weighted slack on Gt is the sum of the minimum
weighted slacks on Gu1 and Gu2 , subtracting the minimum
weighted slack of the activities that have been counted twice,
i.e., Au1 ∩ Au2 . Hence, the minimum weighted slack on Gt

can be computed as described in Algorithm A.1. If fixing the
timetable π on Xt yields an infeasible timetable, then either
Du1(π) or Du2(π) must have been infinite, and vice versa.

Finally, if t = τ is the root, then τ has degree one and
hence has a unique child u, so that we can treat it as a forget
node. 	

Lemma A.3 If the instance I is feasible, then Algorithm A.1
returnsOPT(I ), and otherwise∞. Moreover, AlgorithmA.1
runs in O(|V (T )|T k+1) time, where k := maxt∈V (T ) |Xt |−
1.

Proof By Lemma A.2, at the root τ , the table entry Dτ (π)

is the minimum weighted slack on the subnetwork Gτ = G
fixing the timetable at Xτ to π (or ∞). Minimizing over
all entries in Dτ hence gives the minimum weighted slack of
the T - PESP- Optimality instance (or detects infeasibility).
The running time estimate is straightforward, as we need to
fill each of the |V (T )| tables with at most T k+1 entries and
only employ summation and minimization. 	

Theorem A.4 For k ∈ N, there is an O(nT k) algorithm solv-
ing T - PESP- Optimality on event-activity networks G with
n events and tw(G) ≤ k.

Proof By Bodlaender (1996), if tw(G) ≤ k, then a tree
decomposition with O(n) nodes realizing width tw(G) can
be found in O( f (k) · n) time. This can be transformed into
a nice tree decomposition on O(n) nodes within O(n) time
(Kloks, 1994, Lemma 13.1.3). Applying Lemma A.3 pro-
vides an O(nT k+1) algorithm.Using the samefixing strategy
as for Theorem 5.6, we obtain an O(nT k) algorithm. 	

Remark A.5 The branch-decomposition-based algorithm of
Theorem 5.6 has an asymptotic running time of
O(mT �3 bw(G)/2�−1), and the tree-decomposition-based one
runs in O(nT tw(G)) time; see Theorem A.4. By Theo-
rem 4.12, if G happens to be 2-edge-connected, then

nT tw(G) ≤ mT �3 bw(G)/2�−1,
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so that the tree-decomposition-based algorithm can be
expected to be asymptotically superior.

Remark A.6 In terms of memory, Algorithm 5.3 with the fix-
ing strategy needs to store at most T bw(G)−1 table entries
per edge, whereas Algorithm A.1 (with fixing) stores at most
T tw(G)−1 entries per node. In both cases, atmost 3 tables need
to be stored at the same time, as any node in one of the decom-
positions has at most 2 children. Since bw(G)−1 ≤ tw(G) if
bw(G) ≥ 2, the branch-decomposition-based method poten-
tially requires less space.
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