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Abstract
Output-based controllers are known to be fragile with respect to model uncertain-
ties. The standard H

∞
-control theory provides a general approach to robust control-

ler design based on the solution of the H
∞

-Riccati equations. In view of stabilizing 
incompressible flows in simulations, two major challenges have to be addressed: the 
high-dimensional nature of the spatially discretized model and the differential-alge-
braic structure that comes with the incompressibility constraint. This work demon-
strates the synthesis of low-dimensional robust controllers with guaranteed robust-
ness margins for the stabilization of incompressible flow problems. The performance 
and the robustness of the reduced-order controller with respect to linearization and 
model reduction errors are investigated and illustrated in numerical examples.

Keywords Robust control · Incompressible flows · Stabilizing feedback controller

1 Introduction

We consider the incompressible Navier–Stokes equations with inputs and outputs 

(1a)v̇ = −(v ⋅ ∇)v +
1

��
𝛥v − ∇p + Bu,
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 and the question when a linear output-feedback controller K ∶ y ↦ u can stabilize 
this nonlinear system around a possibly unstable steady state in the presence of sys-
tem uncertainties. Here, the variables v and p describe the evolution of the velocity 
and pressure fields in a given flow setup that is parametrized through the Reynolds 
number �� , the operator B models the actuation through the controls, and C is the 
output operator.

We will approach this question through a semi-discrete and linearized approxi-
mation to  (1), model order reduction to cope with the high dimensionality of the 
controller design problem, and the design of controllers that can compensate for a 
large class of system uncertainties. Basically, our argument is that discretization and 
model reduction errors are of the same nature such that a proven robustness margin 
can possibly overcome unmodeled uncertainties, too. Anyways, in order to poten-
tially work in physical setups, any model-based controller needs a certain robustness 
against inevitable model errors. This rules out the standard linear quadratic Gauss-
ian (LQG) design that has no guaranteed stability margin [21]. A general remedy is 
provided by H

∞
-controllers that, provably, can compensate for linearization errors 

[7, 14, 30], discretization errors [8, 19], and truncation errors [37].
The H

∞
-theory roots in the 1980s [48]; see also [23, 24] for the historical back-

ground. In view of its application in simulations, the development of state-space for-
mulations [22, 24] meant a breakthrough since it came with general formulas for 
the controller design based on the solutions of indefinite Riccati equations. None-
theless, the computational effort for solving these Riccati equations is significant 
so that, up to now, this design approach has rarely been considered in large-scale 
simulations let alone the case where algebraic constraints are present, that is for 
differential-algebraic equations (DAEs) or descriptor systems. If one leaves aside 
the offline effort for designing the controller, the theory seems well suited for large-
scale problems since the controllers allow for a low-dimensional approximation with 
a-priori estimates on performance and robustness [37]. The involved reduction is 
based on balanced truncation and the related LQG-approach has been investigated 
for descriptor systems in [36]. Thus, with flow control in mind, the solution of large-
scale Riccati equations related to DAEs enables the use of the general H

∞
-theory. 

It has been acknowledged that for general DAE systems, the standard symmetric 
Riccati equations are only suitable under very restrictive conditions [6]. A nonsym-
metric version has been shown to provide a true generalization for the H

∞
-controller 

[10] to the index-1 case and is widely applicable for LQG-design for impulse con-
trollable descriptor systems [31, 45].

In this work, we consider the incompressible Navier–Stokes equations with con-
trol inputs in the momentum equation and velocity measurements only, so that the 
input-to-output behavior can be equivalently realized as a system of ordinary dif-
ferential equations (ODEs). Still, we keep the DAE structure since the correspond-
ing transformation will not be available in practice. Then, the challenge is to realize 

(1b)0 = ∇ ⋅ v,

(1c)y = Cv,
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what is suggested by the ODE theory without explicitly resorting to transformations 
and projections. Therefor, we adapt the established technique of realizing the projec-
tions through the solution of saddle-point systems [2, 28, 32, 46], such that structure 
and sparsity are preserved during all operations.

The H
∞

-feedback control for the 2D incompressible Navier–Stokes equations 
has been treated in [20] from a theoretical perspective. Therein, unmodeled bound-
ary inputs are considered and existence of optimal feedback solutions is shown with 
the help of Riccati equations. The general H

∞
-control problem is discussed in [3, 

Ch. 5]. Here, summing up the relevant research, the established state-space theory is 
adapted to the infinite-dimensional incompressible Navier–Stokes equations.

In this paper, we explore the Riccati-based H
∞

-controller design for spatially dis-
cretized two-dimensional incompressible flows. To this end,

• we adapt the theory for the implicit treatment of the incompressibility constraint 
to the H

∞
-optimization problem,

• we leverage H
∞

-balanced truncation to reduce the dimension of the controller 
design problem,

• we provide numerically accessible formulas for a-priori estimation of the robust-
ness of the controller with respect to the H

∞
-balanced truncation model reduc-

tion error as well as linearization errors, and
• illustrate the performance in two challenging numerical examples.

As a result, we provide a complete numerical approach that makes H
∞

-control-
ler design feasible for large-scale Navier–Stokes systems and provides computable 
bounds on the robustness of the performance with respect to both linearization 
errors [14] and model reduction errors [37]. The situation that the controller is based 
on inexact linearizations is relevant in applications and fits well into the presented 
framework; cf. [8, 14, 30]. The presented numerical studies are based on the popular 
setup of the two-dimensional wake behind a cylinder; see, for examples, [17, 26, 27, 
39, 47].

This paper is organized as follows: In Sect. 2, we introduce the concepts of H
∞

-controller design and truncation via the solution of Riccati equations and how the 
theory extends to semi-discretized incompressible Navier–Stokes equations. In 
Sect. 3, we discuss numerical methods for the solution of large-scale Riccati equa-
tions that implicitly respect the incompressibility constraint and provide a summary 
of steps for the design of robust low-dimensional controllers with the accompanying 
formulas. By means of two flow setups, we report on the performance of the result-
ing low-dimensional controllers in Sect. 4. The paper is concluded in Sect. 5.

2  Mathematical basics

In this section, we introduce the basic concept and state-space approach of robust 
H

∞
-controller design and how the relevant formulas are realized for incompressible 

flow control setups.
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2.1  Riccati‑based H
∞

 controller design

For practical applications, the design of controllers that provide a certain robustness 
against disturbances is essential, as neither models nor numerical computations are 
fully able to match reality. The H

∞
-control theory provides the design of such con-

trollers. In general, linear time-invariant systems of the form 

 with E,A ∈ ℝ
n×n , B1 ∈ ℝ

n×m1 , B2 ∈ ℝ
n×m2 , C1 ∈ ℝ

p1×n , C2 ∈ ℝ
p2×n , D11 ∈ ℝ

p1×m1 , 
D12 ∈ ℝ

p1×m2 , D21 ∈ ℝ
p2×m1 , and D22 ∈ ℝ

p2×m2 , are considered. In  (2), the internal 
states x are influenced by the control inputs u and disturbances w, and the user can 
observe the measurements y and performance outputs z of the system. The basic aim 
is to find a feedback controller K ∶ y ↦ u that internally stabilizes  (2). Consider-
ing (2) in frequency domain allows the formulation of the system’s input-to-output 
relation in terms of its (partitioned with respect to the different inputs and outputs) 
transfer function

Let also K(s) denote the transfer function of the controller K, the disturbance-to-
performance behavior of the system can be formulated as

where Z and W are the Laplace transforms of the performances and disturbances, 
and Ip2 denotes the p2-dimensional identity matrix. F  is a lower linear fractional 
transformation. With (3), the optimal H

∞
-control problem is to find a controller K 

that solves

where ‖.‖H
∞

 is the H
∞

-norm. In general, this optimization problem (4) is too dif-
ficult to solve. Instead, one can consider a relaxation in terms of the suboptimal H

∞

-control problem: Find a stabilizing controller K such that

which is then solved successively for decreasing robustness margins � → �𝗈𝗉𝗍.

(2a)Eẋ(t) = Ax(t) + B1w(t) + B2u(t),

(2b)z(t) = C1x(t) + D11w(t) + D12u(t),

(2c)y(t) = C2x(t) + D21w(t) + D22u(t),

G(s) =

[
C1

C2

]
(sE − A)−1

[
B1 B2

]
+

[
D11 D12

D21 D22

]
=∶

[
G11(s) G12(s)

G21(s) G22(s)

]
.

(3)
Z(s) =

(
G11(s) + G12(s)K(s)

(
Ip2 − G22(s)K(s)

)
−1
G21(s)

)
W(s)

=∶ F(G,K)W(s),

(4)min
K stabilizing

‖F(G,K)‖H
∞

=∶ ����,

(5)‖F(G,K)‖H
∞

< 𝛾 ,
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A state-space theory has been developed that provides formulas for such suboptimal 
controllers. For ease of notation and theoretical derivations, we use the following set of 
assumptions:

Assumption 1 (Simplifying and necessary assumptions for the H
∞

 -controller 
design) In the formulation of system (2), we have that 

1. E is invertible,
2. D11,D22 = 0,
3. (sE − A,B1) is stabilizable and (sE − A,C1) is detectable,
4. (sE − A,B2) is stabilizable and (sE − A,C2) is detectable,

5. D�
12

[
C1 D12

]
=

[
0 I

]
 , and 

[
B1

D21

]
D�

21
=

[
0

I

]
.

We will comment on the assumptions in Remark 1 after we have introduced the pro-
cedure to design an H

∞
-robust controller.

Proposition 1 (Existence of H
∞

-controllers [22, 49]) Given a 𝛾 > 𝛾��� , there exists 
an admissible controller K if and only if there are unique, symmetric positive semi-
definite stabilizing solutions XH

∞

 and YH
∞

 to the regulator and filter H
∞

 -Riccati 
equations

and, additionally,

where �max(M) denotes the maximum eigenvalue of the matrix M.

In the case that Proposition 1 holds, a stabilizing controller solving (5), known in the 
literature as the central or minimum entropy controller, is given via

where the system matrices can be computed as 

(6a)A�XE + E�XA − E�X(B2B
�
2
− �−2B1B

�
1
)XE + C�

1
C1 = 0,

(6b)AYE�
+ EYA�

− EY(C�
2
C2 − �−2C�

1
C1)YE

�
+ B1B

�
1
= 0,

(7)𝛾2 > 𝜆max(YH
∞

E�XH
∞

E),

K ∶

{
�E ̇̃x(t) = �Ax̃(t) + �By(t),

u(t) = �Cx̃(t),

(8a)Ẽ = E,

(8b)Ã = A + EYH
∞

(�−2C�
1
C1 − C�

2
C2) − B2B

�
2
XH

∞

EZH
∞

,

(8c)B̃ = EYH
∞

C�
2
,
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 with ZH
∞

= (In − �−2YH
∞

E�XH
∞

E)−1 ; see [22, Sec. III.C] for the general case and 
also [37, Eqs.  (16) and  (17)] for the normalized case described in the following 
section.

Remark 1 (Comments on the simplifying and necessary assumptions) With E invert-
ible, our Assumption 1 is equivalent to the standard set of assumptions made in H

∞

-robust controller design; cf., e.g., [22, Sec. II.A].
The assumptions on stabilizability and detectability with respect to B2 and C2 are 

clearly necessary for the existence of a stabilizing output feedback controller in the 
case of no disturbances. Stabilizability and detectability with respect to B1 and C1 
are assumed to simplify both the formulas and the derivations, and can be relaxed 
towards conditions that ensure that the Riccati equations (6) are solvable in the H2 
case, i.e., as � → ∞ . A further relaxation would possibly rule out the proposed Ric-
cati-based approach; cf. [49, Ch. 17.1].49, Ch. 17.1].

Assumption 1 (2) is basically made for simplicity of the formulas. With the trans-
formation K = (I + D22K̂)

−1K̂ that maps a controller for D22 = 0 onto an equivalent 
controller for the case that D22 ≠ 0 , the assumption of D22 poses no restriction at all. 
Similarly, the restriction to D11 = 0 can be lifted but complicates the formulas a lot.

Finally, the necessary part of Assumption 1  (5) is that these matrices have full 
rank. The explicit structure can then be achieved by input and output transforma-
tions. If, however, the full-rank condition is not met, then the formulation may lead 
to a singular control problem; see, e.g., [49 , Ch. 17.1].

2.2  The normalized H
∞

 problem and low‑rank robust controllers

The target application of this work is output-based feedback control of a nonlin-
ear system that is robust against system uncertainties stemming from linearization 
and reduction errors. As a general model for the linearization uncertainty, we will 
assume that the system matrix A is subjected to an additive perturbation. In this case, 
in a feedback arrangement, disturbance inputs will be induced by the measurements 
of the perturbed state and enter the system as a perturbation of the control input. 
Accordingly, in (2), one can consider B1 = B2 =∶ B and C1 = C2 =∶ C , which leads 
to the so-called normalized H

∞
-control problem; see [37].

A robust H
∞

-controller based on the normalized problem then applies in our con-
text as follows. First, its robustness margin � can be weighed up against the sys-
tem error that arises from the truncation of certain states of the controller. Since a 
full-order controller would be of the same size as the system, such a truncation sig-
nificantly supports the efficient evaluation of the feedback law during a simulation. 
Second, the robustness can cover the system error that comes from an inaccurate 
linearization. In this section, we discuss both application scenarios and provide rel-
evant a-priori and a-posteriori estimates.

(8d)C̃ = −B�
2
XH

∞

EZH
∞

,
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As for controller truncation, we consider the H
∞

-balanced truncation approach 
as it has been reported in [37]. Therefor, we introduce another special case of (2), 
namely the so-called normalized LQG system

 In the terms of the general system (2), the particular structural assumptions made 
for (9) mean that

and

and imply that Assumption 1 is fulfilled if (sE − A,B) is stabilizable and (sE − A,C) 
is detectable. Moreover, this form of B1 , B2 , C1 and C2 implies that

and, from Proposition 1, that the existence of an admissible controller, which solves 
the suboptimal H

∞
-control problem (5) for the gain � , is equivalent to the existence 

of symmetric positive semi-definite matrices XH
∞

 and YH
∞

 , which solve 

 such that the spectrum condition  (7) holds and the matrix pencils 
sE − (A − (1 − �−2)EYH

∞

C�C) and sE − (A − (1 − �−2)BB�XH
∞

E) are stable.
By means of the two matrices XH

∞

 and YH
∞

 , the so-called H
∞

-balanced trunca-
tion of the system can be computed [37, Prop. 4.10] that enables the truncation of 
system or controller states with an a-priori control on the approximation error. A 
practical implementation of this H

∞
-balanced truncation (HINFBT) for large-scale 

systems is shown in Algorithm 1 that uses the square root balancing approach with 
approximating low-rank factorizations of XH

∞

 and YH
∞

 . An implementation of Algo-
rithm 1 for the dense system case can be found in [11].

An error bound for the approximation computed by Algorithm 1 is given in terms 
of normalized coprime factorizations:

(9a)Eẋ(t) = Ax(t) + Bw1(t) + Bu(t),

(9b)z1(t) = Cx(t),

(9c)z2(t) = u(t),

(9d)y(t) = Cx(t) + w2(t).

B2 = B, C2 = C, B1 =

[
B 0

]
, C1 =

[
C

0

]

D11 = 0, D22 = 0, D21 =

[
0 I

]
, D12 =

[
0

I

]
,

B1B
�
1
= B2B

�
2
= BB� and C�

1
C1 = C�

2
C2 = C�C

(10a)AYH
∞

E�
+ EYH

∞

A�
− (1 − �−2)EYH

∞

C�CYH
∞

E�
+ BB�

= 0,

(10b)A�XH
∞

E + E�XH
∞

A − (1 − �−2)E�XH
∞

BB�XH
∞

E + C�C = 0,
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Proposition 2 (H
∞

-balanced truncation error bound [37]) Let G(s) = M(s)−1N(s) 
and Ĝ(s) = M̂(s)−1N̂(s) be normalized left coprime factorizations of the original sys-
tem G and the reduced-order model Ĝ obtained by HINFBT (Algorithm 1) with the 
robustness margin 𝛾 > 𝛾��� , respectively. Then, a bound for the approximation error 
is given by

with � =

√
1 − �−2 and the characteristic H

∞
 -values �k.

An important consequence of Proposition 2 is that the robustness margin � can be 
put in context with the approximation error of the reduced-order model and, conse-
quently, the final reduced-order controller. Thereby, one can estimate the size of the 
reduced-order controller, which is needed to still stabilize the original system.

In general, let G(s) = M(s)−1N(s) and Ĝ(s) = M̂(s)−1N̂(s) be as in Proposition 2 
the normalized left coprime factorizations of the original system and the reduced-
order approximation computed by HINFBT (Algorithm 1), and define

to be the scaled coprime factor error, with � =

√
1 − �−2 and � used in HINFBT 

(Algorithm 1). Then, it has been shown in [37, Cor. 5.5] that a sufficient condition 
for the reduced-order central controller K̂ based on Ĝ to stabilize the original system 
G is

(11)
‖‖‖
[
�(N − N̂) M − M̂

]‖‖‖H
∞

≤ 2

n∑

k=r+1

��k√
1 + �2�2

k

,

(12)𝛽𝜖 ∶=
‖‖‖
[
𝛽(N −

�N) M −
�M
]‖‖‖H

∞
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where �̂� ∶= ‖F(�G, �K)‖H
∞

 . The condition given in (13) is not practical since it can 
only be evaluated after the computation of the reduced-order model and the com-
putation of the H

∞
-norm of a large-scale error system is needed. A more practical 

alternative to (13) can be derived from the a-priori estimate in Proposition 2. Con-
sider the HINFBT error bound (11) to define

or, more precisely,

Note that 𝜖 ≤ 𝜖 necessarily holds. Since Ĝ is constructed by HINFBT (Algorithm 1) 
it also holds that �̂� ≤ 𝛾 for � the robustness margin used in Algorithm 1. Therefor, a 
sufficient a-priori condition for stabilization of the full-order system by the reduced-
order central controller is

Remark 2 (Performance loss of reduced-order controller [37]) We need to note that 
while a reduced-order controller K̂ guarantees the stabilization of the full-order plant 
using conditions like (13) or (15), it negatively influences the performance gain of 
the closed-loop system. One can show that if the full-order central controller (8) sat-
isfies ‖F(G,K)‖H

∞

< 𝛾 , then for the reduced-order controller K̂ based on a HINFBT 
reduced-order model (Algorithm 1) using the performance gain � it holds that

where 𝜖 and � describe the approximation error and its a-priori bound as in  (12) 
and (14), �̂� = ‖F(�G, �K)‖H

∞

≤ 𝛾 and � =

√
1 − �−2 . In practice, the bounds in (16) 

quickly converge to �̂� or � , respectively, for increasing reduced order.

Another purpose of the robustness margin � is to ensure stability of the closed-
loop system in the presence of system uncertainties. The amount of uncertainty 
that is guaranteed to be compensated is given in the following proposition.

Proposition 3 (Stabilization of disturbed systems [35, Cor. 3.7]) Given the system 
G(s) = M(s)−1N(s) of the form  (9) and a stabilizing controller K that solves the 
sub-optimal H

∞
 -controller problem  (5), i.e., ‖F(G,K)‖H

∞

< 𝛾 holds for a given 

(13)𝜖(𝛽 + �̂�) < 1,

�� ∶= 2

n∑

k=r+1

��k√
1 + �2�2

k

,

(14)� ∶= 2

n∑

k=r+1

�k√
1 + �2�2

k

.

(15)𝜖(𝛽 + 𝛾) < 1.

(16)‖F(G, �K)‖H
∞

≤ �̂� +
𝜖(1 + �̂�)(1 + 𝛽 + �̂�)

1 − 𝜖(𝛽 + �̂�)
< 𝛾 +

𝜖(1 + 𝛾)(1 + 𝛽 + 𝛾)

1 − 𝜖(𝛽 + 𝛾)
,
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robustness margin � . Let G�(s) = M�(s)
−1N�(s) be another system in normalized 

LQG form (9), then K is guaranteed to also stabilize G� if

holds.

In view of stabilization of incompressible Navier–Stokes equations by linear 
output-feedback controllers, the following considerations are relevant with respect 
to the estimate  (17). It has been shown that an error in the linearization used for 
controller design, smoothly transfers to a coprime factor perturbation in the trans-
fer function; see [7, 30]. Accordingly, with increasing accuracy in the computation 
of the linearization, the difference becomes arbitrarily small such that, eventually, a 
robust controller based on a numerically computed linearization will be able to sta-
bilize the system.

We end this section with a summary of the a-priori-type conditions for the con-
struction of reduced-order stabilizing controllers in form of the following theorem.

Theorem  1 (Sufficient a-priori conditions for stabilization of disturbed systems) 
Given a system G = M(s)−1N(s) in normalized LQG form (9) and a reduced-order 
system Ĝ computed by HINFBT (Algorithm  1) with the robustness margin � . The 
central controller K̂ based on Ĝ is guaranteed to stabilize the full-order system G if

where � =

√
1 − �−2 , and � is computed from the truncated characteristic H

∞
 -val-

ues (14). Additionally, the reduced-order central controller K̂ is guaranteed to stabi-
lize all systems G�(s) = M�(s)

−1N�(s) for which

holds, and where

Note that this theorem allows to adaptively choose the size of the reduced-order 
controller depending on the stabilization of the original full-order system and the 
amount of disturbances that shall be compensated by the reduced-order controller.

2.3  Semi‑discretization and linearization of Navier–Stokes equations

Next, we briefly discuss how a linear finite dimensional ODE system can be derived 
as base of the controller design for the nonlinear incompressible Navier–Stokes 
equations. Details of the discretization and the modeling of boundary control will be 
discussed together with the numerical examples in Sect. 4.

(17)
‖‖‖
[
N − N𝛥 M −M𝛥

]‖‖‖H
∞

< 𝛾−1.

𝜖(𝛽 + 𝛾) < 1,

‖‖‖
[
N − N𝛥 M −M𝛥

]‖‖‖H
∞

<
(
𝛾
G�K

)
−1

�
GK̂

= � +
�(1 + �)(1 + � + �)

1 − �(� + �)
.
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A finite elements discretization of the incompressible Navier–Stokes equations 
(1) leads to the semi-discrete system: 

 where E ∈ ℝ
n
v
×n

v is the (invertible) mass matrix, A� ∈ ℝ
n
v
×n

v is the discrete approx-
imation of 1

��
� , F ∶ ℝ

n
v → ℝ

n
v models the convection, J ∈ ℝ

n
p
×n

v and J� represent 
the discrete divergence and gradient, B ∈ ℝ

n
v
×m and C ∈ ℝ

p×n
v are the discretized 

input and output operators, and where f ∈ ℝ
n
v and g ∈ ℝ

n
p are the inhomogeneities 

that arise from the inclusion of the inflow boundary condition in strong form. Let v
∞

 
be the steady state with u = 0 so that with v� = v − v

∞
 and A(∞)

∶= A� + (�vF)(v∞) , 

 provides a linearization that can be used for regulating the deviation v� from the 
steady state and, thus, for designing a controller for stabilizing v

∞
 . With the assump-

tion that the chosen finite elements scheme is LBB-stable, one can define a discrete 
realization of the Leray projector

that maps v(t) into the kernel of J along the orthogonal complement (in the inner 
product induced by the mass matrix E) of J� . Making use of � and the identities 
�E = E��—which holds for symmetric E—and ��v� = v� , we can eliminate the 
discrete pressure p and the algebraic constraint 0 = Jv� and rewrite  (19) as ODE 
system 

 For such a realization in terms of an ODE system (21), H
∞

-robust controllers can 
be defined via the solutions to the projected H

∞
-Riccati equations 

(18a)Ev̇ = A�v + F(v) + J�p + Bu + f ,

(18b)0 = Jv + g,

(18c)y = Cv,

(19a)Ev̇𝛿 = A(∞)v𝛿 + J�p + Bu,

(19b)0 = Jv� ,

(19c)y� = Cv� ,

(20)��
∶= In

v

− E−1J�(JE−1J�)−1J,

(21a)Ev̇𝛿 = 𝛱A(∞)𝛱�v𝛿 +𝛱Bu,

(21b)y� = C��v� .

(22a)
�
(
A(∞)

)�
��XE + E�X�A(∞)��

− (1 − �−2)E�X�BB���XE +�C�C��
= 0,
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In the context of nonlinear flow control, the problem of linearization errors and 
compensation by reduced-order controllers has been considered in [14]. There 
it is mentioned that linearization errors in  (19) from (18) result in additive dis-
turbances on the transfer function, which can be handled as disturbances in the 
coprime factorization. In fact, the coprime factorization can be explicitly written 
down.

Proposition 4 (Normalized left coprime factorization for flow problems [14]) Given 
the system (19) such that (21) restricted to the image of � is detectable. The normal-
ized left coprime factorization of (19) is given by

where the system matrices are

and with YH
∞

 , the stabilizing solution of (22).

The representation in Proposition 4 allows for the explicit computation of dis-
turbances on the coprime factorizations, e.g., for the evaluation of the necessary 
robustness as in (17), accessible to numerical simulations.

3  Numerical methods

3.1  Projector‑free realization for incompressible flows

In principle, the projected Riccati equations  (22) could be treated by estab-
lished Riccati equation solvers. However, in practice, the resulting system matrix 
�A(∞)�� will be large scale and dense, which makes further computations 
barely feasible in terms of computation time and memory consumption. Also, a 
systematic error can easily be introduced by inaccurate computations with  (20). 
Therefore, like in many similar applications, e.g., [2, 25, 28], we derive a suitable 
implicit implementation of the projection as it was proposed initially in [32].

We note that only the projected parts X� ∶= ��X� and Y� = ��Y� of the 
Riccati solutions X and Y contribute to the controller; see (8) and [9]; where X� 
and Y� solve the equations 

(22b)
�A(∞)��YE�

+ EY�
(
A(∞)

)�
��

− (1 − �−2)EY�C�C��YE�
+�BB���

= 0.

[
N(s) M(s)

]
= C(sE −A)

−1
[
B −L

]
+

[
0 Ip

]
,

E =

[
E 0

0 0

]
, A =

[
A(∞)

− (1 − �−2)EYH
∞

C�C J�

J 0

]
,

C =

[
C 0

]
, B =

[
B

0

]
, L =

[
(1 − �−2)EYH

∞

C�

0

]
,
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 These Eqs. (23) are derived from (22) by pre- and postmultiplication with � and 
�� , respectively, and by means of the identities �2

= � and �E = E�� . In com-
putational methods for large-scale sparse Riccati equations [12, 13, 34, 43, 44, 46], 
low-rank factors Zk of the solution are computed such that, e.g., Y� ≈ ZkZ

�
k
 , by 

applying repeated solves of shifted linear systems that for (23b) read like

With the requirement that the right-hand side lies in the appropriate subspace, i.e., 
W = ��W , (24) can be equivalently formulated as

Here, the scalar pi ∈ ℂ is a shift parameter that usually occurs in the considered 
iterative low-rank solvers like Newton-ADI or Krylov subspace methods; see, e.g., 
[12, 13, 34, 43, 44, 46]; and Z

⟂
 is an auxiliary variable.

3.2  Computation of low‑rank controllers

The practical construction of a reduced-order controller for (18) follows, in princi-
ple, the different steps mentioned in this paper so far with some additional numeri-
cal tricks. For simplicity, we give a final summary of the performed steps in the 
following:

Step 1. Computation of a suitable robustness margin: So far, the margin � was 
assumed to be given, but in fact it can be computed utilizing the necessary and 
sufficient conditions for the existence of a stabilizing controller from Proposi-
tion 1. In practice, we solve repeatedly (23) for different instances of the robust-
ness margin and use (7) to determine the next iterate. Thereby, a sufficient � can 
be computed.
Step 2. Construction of the reduced-order model: Now, the full-order system (18) 
needs to be reduced by Algorithm 1. Therefore, we use the final low-rank solu-
tion factors Z�

k
 and Z�

k
 of the projected algebraic Riccati equations (23a) and (23b), 

respectively, from the previous computation of the robustness margin in Step 1 
corresponding to the computed � such that X� ≈ Z�

k

(
Z�
k

)� and Y� ≈ Z�
k

(
Z�
k

)� . 
Algorithm 1 is then used for the system matrices E, A(∞) , B, C by setting the low-
rank factors of the Riccati equations to be R = Z�

k
 and L = Z�

k
 . The rest follows 

exactly Algorithm 1. The order r of the reduced-order model can be determined 

(23a)
�
(
A(∞)

)�
��X�E�

+ EX��A(∞)��

− (1 − �−2)EX�BB�X�E�
+�C�C��

= 0,

(23b)
�A(∞)��Y�E + E�Y��

(
A(∞)

)�
��

− (1 − �−2)E�Y�C�CY�E +�BB���
= 0.

(24)(�A��
+ piE)Z = W.

[
A + piE J�

J 0

][
Z

Z
⟂

]
=

[
E�W

0

]
.
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by using the criteria in Theorem 1 for the stabilization of the full-order system 
and possible disturbances. This gives the reduced-order system matrices Ê = Ir , 
Â , B̂ and Ĉ.
Step 3. Construction of the reduced-order controller: The system matrices of the 
reduced-order central controller K̂ can then be computed adapting the formulas 
in (8). First, an approximation to the solutions of the H

∞
-Riccati equations (6) for 

the reduced-order system is directly given by 

 with the low-rank factors Z�
k
 and Z�

k
 from the computation of the robustness mar-

gin, and W and T the truncation matrices from HINFBT in Algorithm 1. Then, 
the system matrices of the reduced-order controller are given by 

 where ẐH
∞

= (Ir − �2ŶH
∞

X̂H
∞

)
−1.

4  Numerical examples

4.1  Example setups

As numerical examples, we consider here two-dimensional flows through a channel 
with circular obstacles, exemplarily depicted in Fig. 1, with controls acting on the 

ŶH
∞

= W�EZ�
k
(Z�

k
)
�E�W and X̂H

∞

= T�E�Z�
k
(Z�

k
)
�ET ,

(25a)̃̂
E = Ir,

(25b)̃̂
A = Â − (1 − �−2)ŶH

∞

Ĉ�Ĉ − B̂B̂�X̂H
∞

ẐH
∞

,

(25c)̃̂
B = ŶH

∞

Ĉ�,

(25d)̃̂
C = −B̂�X̂H

∞

ẐH
∞

,

Γ1

Γ2

Γw Γw

Γw

Γw

ΓoutΓin

Fig. 1  Computational domain of the cylinder wake
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boundary of the obstacles, and with observation of locally spatially averaged veloci-
ties in a domain of observation downstream of the obstacles. The generic model 
then reads 

 Here, n denotes the inward normal of the boundaries, gin models the inflow bound-
ary condition via a parabola that takes the value 0 at the edges and 2/3 at the center 
of the inflow boundary, respectively, and gi and ui are control shape functions and 
scalar control value functions. The condition  (26c) for the outflow is the standard 
do-nothing condition. The geometrical extensions, the choice of the parameters uin 
and �� , and the definition of the output operator C , and of the shape functions are 
given in the description of the test cases below and in Table 1.

4.1.1  Test case: cylinder wake

As first example, we consider the cylinder as it has been described in the bench-
mark work [42] in an enlarged domain to reduce the stabilizing effects of the 
channel walls; see Fig. 2. To readily include the boundary controls in the finite 

(26a)v̇(t) + (v(t) ⋅ ∇)v(t) −
1

��
𝛥v(t) + ∇p(t) = 0, in 𝛺,

(26b)∇ ⋅ v(t) = 0, in �,

(26c)1

��

�v

�n
v(t) − np(t) = 0, on �out,

(26d)v(t) = 0, on �w,

(26e)v(t) = ngin, on �in,

(26f)v(t) = ngiui(t), on �i, i = 1, 2.

(a) Steady state solution. (b) Snapshot of disturbed flow.

0 2 4 6 8 10 12 14 16 18

−0.5
0

0.5
1

time t

ou
tp

ut
y
(t
)

Fig. 2  Example simulation of the cylinder wake with no control input at �� = 60
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elements  discretization, we relax the Dirichlet control conditions  (26f) towards 
Neumann conditions via

with a parameter � that is supposed to be small; see, e.g., [33] for convergence prop-
erties of this relaxation in optimal control of stationary flows. The shape functions 
gi are chosen to be gi(x) = cos(si(x)) − 1 , where si ∶ Γi → [0, 2�] , for i = 1, 2 , para-
metrizes the arc length of the control boundaries; see [5, Sec. 9.3], where also the 
assembling of the associated control operator is explained.

4.1.2  Test case: double cylinder

As second example, we borrow the numerical setup from [18] of the wake with 
two cylinders in two dimensions; see Fig. 3. The actuation of the flow happens 
through controlled rotation of the individual cylinders. This means that, instead 
of the inflow conditions (26f), we prescribe the control boundary conditions as

where the Γi are the two boundaries of the cylinders, t�i
 denote the tangential vec-

tors at the boundaries, ri are the radii, and the ui are the two scalar input functions, 
for i = 1, 2 . Although these boundary conditions have no normal component, e.g., 
v ⋅ n = 0 at �i , for i = 1, 2 , and, thus, can be included in a weak formulation with a 
bounded input operator B (cf. [4, Sec. 3.1]), we use the same Robin relaxation (5, 
Sec. 9.3] with the penalization parameter 27) that is defined to relax controls with 
normal components.

(27)v(t) = ngiui(t) − �
(

1

��

�v

�n
(t) − np(t)

)
on Γi, i = 1, 2,

v||Γi
= t

Γi
riui, i = 1, 2,

(a) Steady state solution. (b) Snapshot of disturbed flow.
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Fig. 3  Example simulation of the double cylinder example with no control input at �� = 60
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4.1.3  Further computational setup for both test cases

The spatial discretization in both test cases is done with P2 − P1 Taylor-Hood finite 
elements. The input operators are assembled as described in [ � set to 10−5 . Since the 
output operator C is of distributed type, its assembling with finite elements is straight 
forward.

We assemble the coefficients of the corresponding linearized system (19) and follow 
the procedure laid out in Sect. 3.2. Therefor, we compute robustness margins � and the 
corresponding low-rank approximations to the stabilizing solutions of  (23) using the 
low-rank Riccati iteration method from [15]. This approach is suited to solve Riccati 
equations like (6) with indefinite quadratic terms by splitting the computations into two 
steps: first, the solution to the classical LQG-Riccati equations is computed and, after-
wards, residual Riccati equations are solved to update the overall solution. While this 
method was originally developed for Riccati equations with indefinite quadratic terms, 
it also allows us here to efficiently compute the stabilizing solutions of (23) for many 
different instances of the robustness margin to find suitable � for controller design. 
Therein, we use the low-rank Newton-ADI [12, 46] as solver for the LQG-Riccati equa-
tions and the low-rank RADI [13] for the update residual equations. The final com-
puted robustness margins � for both test examples are given in Table 2.

The reduced central output-based feedback controller is then synthesized via (25), 
with its coefficients

Thus, with v
∞

 denoting the target state and linearization point, the closed-loop sys-
tem reads

For the time discretization, we use a uniform grid of size h and employ backward 
differencing of second order in the linear part including the controller and the 
extrapolation

for the nonlinearity. Using one step of Heun’s method for the initialization, this 
results in a time integration scheme of order two. As the initial value, we use the 
corresponding steady state v

∞
 . To trigger the instabilities, we add an input perturba-

tion that acts at the beginning of the simulation like

̃̂
A,

̃̂
B, and

̃̂
C.

Ev̇ = A�v + F(v) + J�p + B
��C��x + f ,

0 = Jv + g,

�̇�x =
��A��x +

��BC(v − v
∞
).

F(v(t + h)) ≈ 2F(v(t)) − F(v(t − h))

u𝛿 =

{
10−6 sin(2𝜋t), for t ∈ [0, 1],

0, for t > 1.
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The final simulation setups and all parameters that define the simulations for both 
test cases are listed in Tables 1 and 2.

Remark 3 (Validity of Assumption 1) The problem at hand derives from a state-space 
system with input operator B and output operator C that is brought into the normal-
ized form  (9). Accordingly, Assumption 1 is reduced to stability and detectability 
with respect to the given inputs and outputs; cf. the discussion after Eq.  (9). Due 
to the involvement of the projector � in the underlying ODE (21), for example, the 
system (sE −�A(∞)��,�B) will always have nonstabilizable modes on the imagi-
nary axis so that it can not be stabilizable in the standard definition. However, the 
modes associated with the kernel of � are excluded from the dynamics, so that 
notions of stabilizability and detectability can be adapted, e.g., by using the reduced 
coordinates as in [32].

Still, an analytical confirmation of Assumption 1 is a difficult task. There exist 
relevant fundamental work (see, e.g. [38]) but these results are generic and do not 
respect particular input operators and specific domains, let alone the discretization. 
Instead, one may resort to a numerical approach to establish stabilizability as pro-
posed in [7, Sec. 5].

Finally, we want to remark that this stability and detectability is both neces-
sary and sufficient for the existence of the stabilizing Riccati solutions and the 

Table 1  Simulation setups

For the computation of the Reynolds number, v̄ = 1 is the average inflow velocity and the dynamic vis-
cosity � is chosen accordingly

Cylinder wake Double cylinder

Domain [0, 5] × [0, 1] [−20,−20] × [70, 20]

Obstacles Circle of radius r
0
= 0.05 located at 

(0.5, 0.67)

Two circles of radius r
1
, r

2
= 0.5 

located at (0, 1) and (0,−1)
Controls Outlets at the cylinder periphery at ± �

3
 of 

arc length �
6

Independent rotation of both cylinders

Observation domain [2, 2.1] × [0.3, 0.7] horizontally split into 3 
equally sized subdomains

[5, 6] × [−2, 2] horizontally split into 4 
equally sized subdomains

Reynolds number �� 60 =
1⋅0.05

5

6
10−3

=
v̄⋅r

0

𝜈
60 =

1⋅1

5

3
10−2

=
v̄⋅(r

1
+r

2
)

𝜈

Table 2  Simulation and controller parameters

Cylinder wake Double cylinder

Time interval [0, 30] [0, 300]
Time step size h 0.00075 0.00390625
Relaxation parameter � 10

−5
10

−5

Dimension of (v(t), p(t)) (41,718, 5418) (45,528, 5809)
Robustness margin � 313.0176 12.5418
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convergence of the employed algorithms. Thus, a failure of the algorithms means 
that the assumptions do not hold and vice versa.

4.2  Numerical results

The experiments reported here have been executed on a machine with 2 Intel(R) 
Xeon(R) Silver 4110 CPU processors running at 2.10  GHz and equipped with 
192 GB total main memory. The computer is run on CentOS Linux release 7.5.1804 
(Core).

The solutions to the large-scale projected Riccati equations (23) have been com-
puted in MATLAB 9.7.0.1190202 (R2019b) using the routines from the M-M.E.S.S. 
library version 2.0.1 [16, 41]. Also, the errors in coprime factorizations have been 
computed in MATLAB. For the spatial discretization, we employ the FEniCS [1] 
finite elements  toolbox and the python module dolfin_navier_scipy [29] to extract 
the discrete operators for the computation of the feedback gains and for the time 
integration, which is done in SciPy.

We investigate the computed controllers in terms of robustness against controller 
reduction and robustness against linearization errors via the following criteria:

• Does the robustness margin � cover the linearization error, i.e., 

 as in (17)?
• Does the robustness margin cover the a-priori estimate for the truncation error, 

i.e., 𝜖(𝛽 + 𝛾) < 1 as in Theorem 1? (For reference, we also check the less con-
servative a-posteriori estimate 𝜖(𝛽 + 𝛾) < 1 ; cf. (13).)

• Does the controller work in the numerical experiment, i.e., does it stabilize the 
steady state by completely suppressing the oscillations that can be observed in 
the uncontrolled cases as illustrated in Figs. 2 and 3?

Remark 4 (Comments on computing � ) In the presented setup where the solutions 
to the Riccati equations are approximated via low-rank factorizations, the value of 
most of the discarded characteristic H

∞
 values �k is not known so that the precise 

computation of � as in (14) is not possible. As it is common practise, we set those �k 
that are not covered from the low-rank factorization to zero and compute � by means 
of the remaining. This is well inline with the working hypothesis of the low-rank 
approximations, that the characteristic values show a rapid decay towards zero.

Remark 5 (Comments on linearization errors) Our analysis of the linearization error 
follows the goal of robustifying the observer-based controller. Thus, we will con-
sider linearization errors like inexact computations of the linearization points as it 
may arise in numerical calculations. Whether or not the linear controller is suitable 

‖𝛥‖H
∞

∶=
���
�
N − N𝛥 M −M𝛥

����H
∞

< 𝛾−1
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for the nonlinear model is a question of performance, which is not considered here. 
In our numerical examples, we choose the linearization point as starting point and 
add small input perturbations such that we may well assume that we are close to the 
working point and the linearization principle for controller design ensures the per-
formance. For estimates on the admissible deviation from the working point in the 
infinite-dimensional Navier–Stokes model see, e.g., [40].

To examine the linearization error, we proceed as follows: For the cylin-
der wake, we consider the linearization error that stems from an incomplete 
iteration for the steady state computation. That is, in (21), instead of the exact lin-
earization A(∞)

= A� + (�vF)(v∞) based on the exact steady state v
∞

 , we consider 
A(�)

∶= A� + (�vF)(v�) , where v
�
 is the approximation to v

∞
 that is obtained after 

� Picard iterations started from the steady state solution for �� = 40 . For the dou-
ble cylinder, we found that at �� = 60 , the steady state is so unstable that 
the Picard iteration does not converge. The computation can be done by a Newton 
iteration that, however, does not provide a smooth parametrization of the approx-
imation in the relevant region because of its fast convergence. Therefor, we con-
sider the perturbed coefficient A(�)

= A� + (�vF)(v
(�)
) , where v(�) as the steady state 

solution to the problem with the Reynolds number perturbed by � thousandths, 
i.e., ��(𝓁) = (1 +

𝓁

1000
) ⋅ 60 . We parametrize the truncation error via the truncation 

threshold tol that defines ��� > 𝜎r+1 ≥ 𝜎r+2 ≥ ... , i.e., the size of those character-
istic H

∞
-values that are discarded in Algorithm 1.

We have checked the performance in the simulations by examining the empirical 
variances in the time series of the output signal in the third and fourth quarters of 
the time interval. If the difference between the fourth and third segment is negative, 
we conclude that the oscillations were on the decline. If the difference is positive 
but in the order of 10−15 , we conclude that the signals were dominated by numeri-
cal errors. In both cases, the corresponding setup was reported as stabilizing in the 
simulation. In Table 3, we have tabulated the computed coprime factor errors of the 
different linearizations and identified the threshold where ‖𝛥

�
‖ < 𝛾−1.

The search of the parameter ranges for successful controller setups is illustrated 
in Fig. 4. Therein, each mark denotes a simulation that either failed (unstable behav-
ior) or has been stabilized. For a better practical understanding, we added addition-
ally to the truncation tolerance tol the orders of the reduced controllers used in the 
simulations. The a-priori and a-posteriori stability criteria are added as horizontal 
lines and the bound for the linearization error as vertical line. The intersection of 
both hatched areas are the regions where the controller setups are predicted to be 
stable by both criteria.

For the cylinder wake, the estimates precisely confine the range where the 
controllers are functional; see Fig.  4a. The a-priori estimate  (15) turns out to be 
away from the observed failures by a factor larger than 8, and the bound on the lin-
earization error by a factor of 2

1

2 . Successful stabilization has been observed further 
outside of the region predicted by the bound on the linearization error and also out-
side the a-posteriori estimate defined by the truncation error.

The simulations for the double cylinder are shown in Fig. 4b. Here, the 
picture is even more compliant with the predictions as the a-posteriori estimate for 
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the region of stabilization perfectly separates the failed from the stabilized simula-
tion. The a-priori bound for the truncation error suggests a tol of 0.002, which is 
a significant underestimate of the stability region and therefor not shown in Fig. 4b. 
On the other hand, the bound for the linearization is again too conservative for 
the actual region of stabilization, this time by a factor of 4. Curiously, increasing 
slightly the order of the H

∞
-controller allows to perform successful simulations with 

a perturbation of the �� number up to about 14%. As for the cylinder wake, this 
shows that successful stabilization can be observed outside the region predicted by 
the linearization error bound while the error estimates for the truncation error do not 
leave a margin.

5  Conclusions

As the numerical examples have illustrated, the use of the general Riccati-based 
low-order H

∞
-controller design is well feasible for incompressible flows in simula-

tions. The provided estimates on the guaranteed robustness have been proven relia-
ble though, in some cases, conservative. Together with the theoretical results of ear-
lier works that H

∞
-controller can compensate various model errors, the availability 

of efficient general purpose numerical methods is key for the applicability of these 
model-based controllers in simulations and even experiments.

Table 3  Computed left coprime factor errors

Bold values indicate the largest perturbations for which the error is less than < 𝜸−1

� ‖�(�)‖H
∞

(a) Inexact linearizations for the cylinder wake example
12 1.1113
24 0.0861
46 0.0034
47 0.0029
48 0.0029
96 0.0007
(b) Perturbed �� numbers for the double cylinder example
-96 0.3022
-48 0.1540
-25 0.0807
-24 0.0775
-12 0.0389
-6 0.0194
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