
Landwehr, Julius Peter; Kühl, Niklas; Walk, Jannis; Gnädig, Mario

Article  —  Published Version

Design Knowledge for Deep-Learning-Enabled Image-
Based Decision Support Systems

Business & Information Systems Engineering

Provided in Cooperation with:
Springer Nature

Suggested Citation: Landwehr, Julius Peter; Kühl, Niklas; Walk, Jannis; Gnädig, Mario (2022) :
Design Knowledge for Deep-Learning-Enabled Image-Based Decision Support Systems, Business
& Information Systems Engineering, ISSN 1867-0202, Springer Fachmedien Wiesbaden GmbH,
Wiesbaden, Vol. 64, Iss. 6, pp. 707-728,
https://doi.org/10.1007/s12599-022-00745-z

This Version is available at:
https://hdl.handle.net/10419/308587

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s12599-022-00745-z%0A
https://hdl.handle.net/10419/308587
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


RESEARCH PAPER

Design Knowledge for Deep-Learning-Enabled Image-Based
Decision Support Systems

Evidence From Power Line Maintenance Decision-Making

Julius Peter Landwehr • Niklas Kühl • Jannis Walk • Mario Gnädig
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Abstract With the ever-increasing societal dependence on

electricity, one of the critical tasks in power supply is

maintaining the power line infrastructure. In the process of

making informed, cost-effective, and timely decisions,

maintenance engineers must rely on human-created,

heterogeneous, structured, and also largely unstructured

information. The maturing research on vision-based power

line inspection driven by advancements in deep learning

offers first possibilities to move towards more holistic,

automated, and safe decision-making. However, (current)

research focuses solely on the extraction of information

rather than its implementation in decision-making pro-

cesses. The paper addresses this shortcoming by designing,

instantiating, and evaluating a holistic deep-learning-en-

abled image-based decision support system artifact for

power line maintenance at a German distribution system

operator in southern Germany. Following the design sci-

ence research paradigm, two main components of the

artifact are designed: A deep-learning-based model

component responsible for automatic fault detection of

power line parts as well as a user-oriented interface

responsible for presenting the captured information in a

way that enables more informed decisions. As a basis for

both components, preliminary design requirements are

derived from literature and the application field. Drawing

on justificatory knowledge from deep learning as well as

decision support systems, tentative design principles are

derived. Based on these design principles, a prototype of

the artifact is implemented that allows for rigorous evalu-

ation of the design knowledge in multiple evaluation epi-

sodes, covering different angles. Through a technical

experiment the technical novelty of the artifact’s capability

to capture selected faults (regarding insulators and safety

pins) in unmanned aerial vehicle (UAV)-captured image

data (model component) is validated. Subsequent inter-

views, surveys, and workshops in a natural environment

confirm the usefulness of the model as well as the user

interface component. The evaluation provides evidence

that (1) the image processing approach manages to address

the gap of power line component inspection and (2) that the

proposed holistic design knowledge for image-based

decision support systems enables more informed decision-

making. The paper therefore contributes to research and

practice in three ways. First, the technical feasibility to

detect certain maintenance-intensive parts of power lines

with the help of unique UAV image data is shown. Second,

the distribution system operators’ specific problem is

solved by supporting decisions in maintenance with the

proposed image-based decision support system. Third,

precise design knowledge for image-based decision support

systems is formulated that can inform future system

designs of a similar nature.
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1 Introduction

With modern-day societies increasingly relying on elec-

trical power, the importance of continuous electricity

supply cannot be overlooked. Continuous power supply has

two central building blocks – the electricity generation as

well as its transmission and distribution to the consumer.

From the perspective of transmission or distribution system

operators, the maintenance program of the power line

infrastructure is crucial in avoiding unexpected disruptions.

These system operators have typically adopted condition-

based maintenance programs to minimize the probability of

equipment breakdowns (Pagnano et al. 2013; Jalil et al.

2019). Condition-based maintenance is considered as a

three-step process of data acquisition, data processing, and

maintenance decision-making (Jardine et al. 2006), with

the last step integrally including maintenance order plan-

ning (Gopalakrishnan et al. 2015).

Assessing the condition of the components in an elec-

tricity network includes inspecting towers or poles with

their connected components, conducting power lines, and

the surrounding vegetation of the two previous elements, as

it can cause short circuits. Operators routinely examine

these aspects regarding faults. Based on the operator’s

composed inspection reports, maintenance engineers need

to compile situation-dependent, well-defined, complete,

and prioritized maintenance orders. This requires the con-

sideration of several other factors, such as infrastructure

topology, available workforce and skill sets, scheduled

infrastructure revision projects, and bundling of mainte-

nance orders. Fast and accurate inspection as well as

complete and exhaustive data and information dissemina-

tion are crucial for efficient maintenance decision-making

and can reduce the risk of power outages due to component

failures, increasing the reliability of electricity supply.

Traditionally, the inspection is performed through

human visual observation by means of manual ground

inspection, helicopter-based patrolling, and tower climb-

ing. These inspection methods are costly, time consuming,

partly hazardous, do not comprehensively capture data, and

are hardly scalable. Recent technical advances in the fields

of unmanned aerial vehicles and image processing or

computer vision1 have spurred the development of auto-

mated power line inspection. Specifically, deep learning

has proven to boost the performance of image processing

applications (LeCun et al. 2015) – converging towards

human level performance or even surpassing humans (He

et al. 2015b). Researchers are therefore increasingly

focusing on the automatic vision-based detection of com-

ponents and the immediate diagnosis of faults in the

inspection of power lines (Liu et al. 2020) leaving only the

eventual maintenance decision-making for human

handling.

Previous research on power line maintenance has been

scattered, focusing on the technical building blocks. Today,

the majority of studies either focus on performing

unmanned aerial vehicle inspection flights autonomously

(Hui et al. 2018) (data acquisition), on task-specific image

processing approaches for component detection and fault

diagnosis (Nguyen et al. 2018) (data processing), or on

orchestrating the various technical components (Huang

et al. 2018; Homma et al. 2017) (interplay between data

acquisition and processing). So far, little effort has been

devoted to holistic and end-to-end considerations estab-

lishing a relationship between the solely technical prob-

lems of automating the data acquisition and processing and

the need for integrating and transferring the acquired data

and extracted information into maintenance decision-

making. To this end, we conduct a project to design and

evaluate a suitable decision support system following the

design science research paradigm (Hevner 2007) and its

common research guidelines (March and Smith 1995;

Winter 2008). We address the ever-increasing need for

maintaining the impeccable condition of power lines, and

consequently the reliability of electricity supply. We do so

by utilizing available technological possibilities for holistic

vision-based applications to provide decision support in

scoping and planning maintenance orders for maintenance

engineers through improved data and information quality.

We focus on addressing this need by answering the fol-

lowing research question (RQ):

How can an automated, efficient, and useful vision-

based power line maintenance decision support sys-

tem be designed?

By answering this question, we unlock the still largely

unregarded and nascent problem class of image-based

decision support systems, which we believe to be the higher

level abstraction for our specific vision-based power line

maintenance decision support system. In particular, fol-

lowing the dual mission of design science research of

developing usable artifacts for practice and generating

theoretical knowledge for the knowledge base (Gregor and

Jones 2007), we initially explore the challenges and issues

of power line maintenance to derive a number of design

requirements for image-based decision support systems.

Subsequently, we conceptualize design principles based on

1 Note that we will use the term image processing and computer

vision interchangeably, as there is no common agreement between the

boundaries of the two terms (Gonzalez and Woods 2018).

123

708 J. P. Landwehr et al.: Design Knowledge for Image-based Decision Support Systems, Bus Inf Syst Eng 64(6):707–728 (2022)



justificatory knowledge from image processing and deep

learning. Based on these design principles, we obtain a

number of design features to be used as our application

domain specific design for the image-based decision

support system for vision-based maintenance of power

line components. We instantiate these design features into

a concrete artifact that allows us to rigorously evaluate the

proposed design knowledge in practice.

The remainder of this work is structured as follows:

Sect. 2 summarizes the existing relevant literature. Next, in

Sect. 3, we introduce the research methodology. In Sect. 4,

we conceptualize our design knowledge for image-based

decision support systems, before we introduce the devel-

oped artifact as well as its various evaluations in Sect. 5.

Finally, in Sect. 6, we discuss our research findings, reflect

on the limitations of our work, and provide an outlook for

future studies.

2 Related Work

To determine the potential of extensively captured images

of power line components (PLCs), we review related work

and the literature background in several fields. First, we

briefly introduce foundations regarding deep learning (DL)

Sect. 2.1. In Sect. 2.2, we present how computer vision

(CV) is used for infrastructure inspection in different

application domains. Subsequently, in Sect. 2.3, we present

related work regarding automated vision-based power line

inspection using UAV-captured images. Afterwards, in

Sect. 2.4, we examine image-based decision support sys-

tems (IB-DSS) as a way to harness images in efficient

decision-making. We conclude this section by synthesizing

the presented literature and depicting our research gap in

Sect. 2.5.

2.1 Deep Learning

Within the past decade, machine learning has shown sig-

nificant results solving complex problems – both in theory

as well as in application within industry (Brynjolfsson and

Mcafee 2017). Especially in the field of DL,2 a family of

algorithms solely based on artificial neural networks with

multiple hidden layers, the developments grew rapidly

(Bharati and Pramanik 2020).

DL overcomes a general limitation of machine learning

to handcraft appropriate features in order to find and learn

patterns in input data. The advanced architecture gives DL

the capability to automate feature learning and conse-

quently reduce human effort (Janiesch et al. 2021). Hence,

DL is able to better deal with large-scale, noisy, and

unstructured data.

The exact amount and size of layers is a design choice

such that ideal architecture for a given problem and its data

must be found through experimentation (Goodfellow et al.

2016). Each layer is subject to learning and computes non-

linear input-output mappings which enables a DL model to

represent extremely intricate functions of its input (LeCun

et al. 2015).

Due to these capabilities, DL has brought breakthroughs

in processing images, videos and audio like speech (LeCun

et al. 2015). In particular, Convolutional Neural Networks

(CNNs) a class of DL algorithms which excel at learning

hierarchical features (Janiesch et al. 2021), are especially

suited for the application to feature-rich data – like images.

Therefore, DL is a promising candidate for applications

within the field of CV.

2.2 Computer Vision-Based Infrastructure Inspection

CV aims to equip computers with visual perception skills

similar to the human ones (Szeliski 2010). CV models

based on DL have led to a significant increase in perfor-

mance – DL models have even been proven to surpass

human-level performance for specific applications (He

et al. 2015b). Typically, four different CV tasks are dis-

tinguished on static images (Griebel et al. 2019): in image

classification the whole image is assigned a class label.

Object detection additionally outputs an approximate

location of the object of interest. Semantic segmentation

produces even more fine-granular information, as each

pixel is assigned a class label. In the specific case of in-

stance segmentation, neighboring objects of the same class

are distinguished additionally.

In the past years, several specific architectures have

been developed to allow for these different CV tasks.

While the two main optimization criteria are the accuracy

of the prediction and the time inferred to obtain the solu-

tion ever more tailored solutions building on CNNs are

being developed recently. Architectures such as VGG16

(Simonyan and Zisserman 2015) and ResNet (He et al.

2015a) for image classification and Faster R-CNN (Ren

et al. 2015) and SSD (Liu et al. 2016) for object detection

have proven to provide good accuracy at resonable infer-

ence time.

CV is utilized for infrastructure inspection in many

application domains. The typical challenges addressed with

CV in this area are cases where large amounts of physical

objects are to be inspected and they are geographically

remote and / or dispersed. Selected research articles are

presented in the following and summarized in Table 1.

A major application area is road surface inspection and

maintenance. Roads in bad condition can ultimately result

2 For a general introduction into machine learning and deep learning,

we refer the interested reader to Janiesch et al. (2021).
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in more accidents and higher costs (Baladi et al. 2017;

Gleave et al. 2014). Thus, CV is utilized to automatically

assess road surface condition and derive necessary main-

tenance actions. Over the last years this became possible

without expensive, specialized hardware (compare, e.g.,

Quintana et al. 2016). Chatterjee et al. (2018) show how

machine learning-based CV can be used to detect road

surface cracks and develop a ‘‘vision-based DSS for crack

detection’’. They offer first insights into a nascent design

theory for the application case of road crack detection on

the basis of images.

Not only roads, but also railways need to be inspected

periodically to ensure safe transports. Wei et al. (2019)

employ a Faster R-CNN to detect defects of railway track

fasteners. Gibert et al. (2017) propose a CNN-based mul-

titask learning approach that detects railway track fasteners

and crossties and classifies the state of these components.

Wind turbine blades are another physical object of

interest for CV-based infrastructure inspection. Akhloufi

and Benmesbah (2014) present a CV approach to identify

ice accreation on wind turbine blades. Ice accreation can

require a maintenance action since it can cause malfunction

and premature wear and is a safety hazard for nearby

people and infrastructure like roads and powerlines.

Shihavuddin et al. (2019) show how faults like leading

edge erosion can be detected with a Faster R-CNN on wind

turbine blades.

2.3 Automated UAV Vision-Based Approaches

for Power Line Inspection

In this work, we are particularly interested in CV solutions

for power line inspection relying on UAV images. From a

component-based view, power line inspection can be

divided into four major categories: towers or poles, insu-

lators, conductors, and fittings (Liu et al. 2020). Each of

these categories contains several subcomponents (Nguyen

et al. 2018) that typically vary in size, kind, and material

according to the voltage level. For instance, some part of a

distribution network with low voltage might have wooden

poles, small standing insulators, and a single, relatively thin

conductor. On the other hand, transmission networks usu-

ally have lattice steel towers, large suspending insulators,

and thicker conductors. Several studies have been pub-

lished that utilize various potential platforms (e.g., heli-

copter, satellite, and UAV) to collect different data types

(e.g., optical images, laser scanner data, thermal images,

and synthetic aperture radar images) and analyzed these

Table 1 Deep-learning-based power line inspection approaches to detect and diagnose multiple components and similar approaches from other

application domains

Articles Application

domain

Component detection Fault diagnosis Design

focus
Components Method Components Method

Chatterjee

et al. (2018)

Road

surface

inspection

Road Graph-based

hierarchical

clustering

Road cracks Multiple

machine

learning

classifiers

U

Shihavuddin

et al. (2019)

Wind

turbine

blade

inspection

Leading edge erosion, vortex generator panel,

vortex general panel with missing teeth, lightning

receptor

Faster

R-CNN

Fault diagnosis
treated as
detection task

x

Wei et al.

(2019)

Railway

track

inspection

Railway track fastener Faster

R-CNN

Fault diagnosis
treated as
detection task

x

Zhu et al.

(2018)

Powerline

inspection

Spacer, bird nest, insulator, damper, tower plate,

tower

Cascaded

Faster

R-CNN

– – x

Nguyen

et al. (2019)

Powerline

inspection

Pole, cross-arm, insulators Cascaded

Faster

R-CNN/SSD/

Yolo

Insulator, pole,

top cap, cross-

arm

ResNet50 x

Liang et al.

(2020)

Powerline

inspection

Defect tower foundation, insulator, grading ring,

contact terminal, triple-plate, earth wire, bird

thorn, bird nest, foreign body

Faster R-

CNN

Fault diagnosis
treated as
detection task

x

Our work Powerline

inspection

Insulator, bird nest, fitting, safety pin Cascaded

Faster R-

CNN/SSD

Safety pin ResNet50 U
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through different processing techniques (Matikainen et al.

2016). The vision-based approach – with image data from

the visible spectrum captured by UAVs and automatically

analyzed through image processing capabilities – has

gained the most attention and traction in the power line

inspection research domain (Liu et al. 2020).

With a few exceptions, automated vision-based power

line inspection based on UAV-captured images requires

two inherently related tasks (Liu et al. 2020): component

detection and localization as well as fault diagnosis. The

exceptions relate to objects such as bird nests, whose

detection already represents a fault. Previous research

applying image processing for the detection and fault

diagnosis of PLCs is numerous (Mirallès et al. 2014). Liu

et al. (2020) identify several characteristics and short-

comings of previous studies using UAV-captured images in

their exhaustive literature review. Most studies in the field

of vision-based inspection of power lines focus on the

insulator and its faults (Liu et al. 2020) – mainly missing

caps (e.g., Sampedro Pérez et al. 2019; Yang et al. 2019;

Zhai et al. 2018) – while little attention has been paid to

other components. The safety pin that prevents other

components from loosening and falling is the smallest

object in the power line and has, despite its importance,

received little attention and has only been regarded in fault

diagnosis but not in the detection step. Finally, both Liu

et al. (2020) and Nguyen et al. (2018) conclude that the

mediocre performance of task-specific approaches pre-

sented in the vast majority of studies has been superseded

by DL approaches that have improved the performance of

component detection as well as fault diagnosis.

To move towards the operationalization of automated

vision-based inspection, we require approaches capable of

detecting a wide variety of components and diagnosing

their faults in order to integrate them into a valuable sys-

tem. Although ‘‘the component detection is a relatively

mature area’’ (Liu et al. 2020)[p. 10], we found that only a

few articles shed light on detecting several components in a

single approach or pipeline. Besides the identified chal-

lenges, we therefore review all available DL-based

approaches that consider more than one component in the

detection step.

The first steps in this field were done by Zhu et al.

(2018), who investigate the cascading of two Faster

R-CNN architectures for high-voltage PLCs. While towers,

spacers, vibration dampers, and insulators are directly

detected from the input image on the first stage, the pixel

coordinates of the tower are used to crop the input image

and consequently feed it into the second stage to detect

small objects – in their case bird nests and tower plates.

Their results show that the cascaded architecture is able to

detect small objects at better performance. Nguyen et al.

(2019) propose a similar approach for low-voltage PLCs

(pole, cross-arm, insulator, or top cap) with a large number

of various subcomponents totaling 54 classes. The authors

detect poles in the first stage, crop the respective image and

detect other, smaller components in the second stage. In a

third stage, the recropped components are fed into image

classifiers to perform a fault diagnosis. This work shows

the feasibility of designing a cascaded multistage detection

and classification pipeline utilizing spatial relationships.

However, it does so only for larger components in terms of

pixel size. Liang et al. (2020) take a different approach.

They do not follow the prevalent approach of separating

detection and fault diagnosis, but skip the general detection

of PLCs and directly detect only components that exhibit

faults. While including a total number of ten fault types,

the work naturally states the problem of the detection of

intact components as defective components. It also does

not try to achieve the detection or fault diagnosis of overly

small components.

The aforementioned approaches can strongly facilitate

inspection and thus the prioritization of subsequent main-

tenance operations. Additionally, the data that is acquired

in an automatic and structured manner can serve as foun-

dation for predictive maintenance (Selcuk 2017). By uti-

lizing the data to train detection models (as shown later in

this work), continuous forecasts about the future occur-

rence of defects can be issued. A well-trained and deployed

model can, therefore, support experts in indicating future

maintenance needs early and prioritize potential work

orders.

2.4 Image-Based Decision Support Systems

The access to increasing volumes of images and the

capabilities of DL to process and extract information from

images creates the potential to harness this rich data and

DL methods to facilitate effective decision-making

(Chaudhuri and Bose 2020). Despite their capabilities, DL

methods, particularly CNNs, have found limited adoption

in extant research of IS in general (Kraus et al. 2020), and

specifically DSS. Most research performed on image-based

decision support focuses on the medical application

domain (Ben-Cohen et al. 2017; Comaniciu et al. 1999).

However, these works use highly specific medical scans

rather than images from the visible spectrum. Some

examples of the scarce literature on DL-enabled image-

based decision support in non-medical contexts include

vision-based maintenance and monitoring applications or

pattern analysis (Xie et al. 2020; Schumann et al. 2019;

Chaudhuri and Bose 2020; Nazerdeylami et al. 2019;

Jamshidi et al. 2018; Ren et al. 2020).

Despite the efficacy of DL methods for image process-

ing in related decision support contexts, none of the pre-

vious work provides guidance on how to design IB-DSS.
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Specifically, although all these studies aim for improved

data and information availability, close to no insight is

provided on how to bridge the gap between the sole image

processing as well as consequent information extraction,

and the respective efficient, high-quality decision-making.

2.5 Synthesis and Research Gap

This work aims to interweave two research domains. It

combines the applied research of image processing in

power line maintenance (PLM) with the need for decision

support in vision-based domains in general and in PLM in

particular. This allows us to tap new potential through

making previously unattainable data and information from

individual images available.

We address this potential by investigating the environment

of automated vision-based PLC maintenance, focusing on the

design of a holistic image-based decision support solution.

We develop design knowledge for IB-DSS and evaluate it by

instantiating a concrete artifact for PLC maintenance. We

extend the reviewed existing works (cf. Table 1) by manag-

ing to detect PLCs of extreme size difference (insulators and

safety pins), which we believe is a crucial prerequisite for

moving towards decision support in this domain.

3 Research Methodology

The research at hand develops design knowledge for IB-

DSS which supports the maintenance decision-making and

planning of maintenance engineers (MEs) for power lines.

Since design science research (DSR) has proven itself to be

not only a suitable but also an important paradigm to

develop IS in general (Gregor and Hevner 2013) and DSS

in particular (Arnott and Pervan 2012), we follow its steps

to develop and evaluate our artifact. At its core, DSR is a

problem solving paradigm that involves two primary and

distinct activities to design solutions to real-world prob-

lems: (1) the development of innovative artifacts in a series

of design activities based on a deep understanding of the

problem, justificatory knowledge, and the capabilities of

the researcher and (2) the evaluation of the novel artifact to

assess its ability and utility in solving the identified prob-

lem (Hevner et al. 2004). Following this ‘‘build-and-eval-

uate loop’’ (Hevner et al. 2004), we iteratively develop an

artifact to extend the knowledge base regarding IB-DSS.

Besides this loop – more precisely termed design cycle –

Hevner (2007) describes the existence of two additional

cycles: relevance and rigor. The three cycles are inherently

related and part of any DSR project. The relevance cycle

connects the environment, application domain, or case com-

pany of the research project to the design science activities by,

for instance, incorporating input from expert practitioners. It

does not only provide the requirements, problems, or chal-

lenges for the research, but also defines acceptance criteria

(Hevner and Chatterjee 2010). The rigor cycle relates the

design science activities to the existing knowledge base. It

provides knowledge from scientific theories, engineering

methods, experience, and expertise to the research project.

The often repeatedly performed design cycle is the core of any

DSR project and naturally builds on the insights from the two

previous cycles. Specifically, during a design cycle the

research iterates between construction and evaluation of an

evolving artifact (Hevner and Chatterjee 2010) to eventually

deploy the artifact in the environment aswell as distill insights

and output the research’s design knowledge contributions into

the knowledge base.

In the general view of our research displayed in Fig. 1 we

start with studying the environment in which the research is

embedded. We consequently state our application case

Fig. 1 Overview of the research

cycles and activities in the

conducted study (based on

Hevner 2007)
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(Sect. 4.1) and review related challenges and problems

(Sect. 4.2). Joining these insights with knowledge from

kernel theories we conceptualize principles and require-

ments for the problem class of IB-DSS. We subsequently

derive a concrete PLM artifact and, based on Turban et al.

’s (2010) high-level notion of a DSS, first focus on the

model component (MC) of our DSS artifact in the first

design cycle (Sect. 5.2). Afterwards we move to the user

interface component (UIC) in the second design cycle

(Sect. 5.3). To orchestrate the evaluation of our artifact, we

apply and follow the overarching Framework for evaluation

in design science (Venable et al. 2016) to rigorously

demonstrate the utility and efficiency of the artifact and its

underlying design knowledge. Figure 1 provides an over-

view of the performed evaluation episodes (EE) in these

design cycles. As it is our goal to indicate technical feasi-

bility as well as utility of IB-DSS enabled through DL, we

start with a technical evaluation and then move to a natu-

ralistic context within the application setting.

4 Application Case and Conceptualization

Our DSS artifact, built on images from the visible spec-

trum, intends to support MEs of power line infrastructure in

their decision-making. More precisely, our system supports

the planning and scoping of individual maintenance orders

for the repair and replacement of components through

improved data and information quality. Because the artifact

is to intervene in an organizational context, it is considered

‘‘socio-technical’’ (Gregor and Hevner 2013). To manage

the complexity of the artifact construction in terms of size

as well as social and technical components, Gregor and

Hevner (2013) suggest the explicit extraction of design

principles (DPs). We therefore conceptualize and suggest a

number of tentative DPs for the design of artifacts of the

problem class of IB-DSS by first investigating challenges

in power line maintenance (PLM). These are recast into a

prescriptive mode with appropriate abstraction yielding

preliminary design requirements (DRs), which then serve

as a basis for deriving the DPs.

4.1 Application Case and Decision Process

As the largest distribution system operator in Baden-

Württemberg, Netze BW supplies around 2.2 million cus-

tomers and operates a network of almost 100,000 km. The

distribution network, which is largely rural, poses chal-

lenges in the inspection of towers, poles, and overhead line

routes. Every year, Netze BW operators routinely carry out

around 7000 scheduled inspections of high-voltage towers

and lines, which include a visual inspection from the

ground or by helicopter. For around 1400 of these, towers

must be climbed physically. Whenever operators identify

an issue or defect on a tower during these inspections they

manually create a report including the location, description,

and if possible images. Based on these largely unstructured

inspection reports, MEs need to subsequently compile sit-

uation-dependent, well-defined, complete, and prioritized

maintenance orders. Accordingly, based on reported inci-

dents MEs first scan the report and verify the priority of the

incident. While the priority determines the processing

order, for any incident several maintenance order specific

details need to be compiled regardlessly. MEs will there-

fore check the topology surrounding an incident location as

it determines which device and equipment can be used.

Additionally, the incident and its preferred solution

approach determine whether either internal operators can

be dispatched or contractors are required. Another impor-

tant aspect especially for incidents of lower priority is the

consideration of forthcoming infrastructure revision pro-

jects. These can typically include the required maintenance

order and, thus, avoid additional work. Finally, to avoid

hazards during the maintenance work the respective cir-

cuits must be free of electrical current which requires

routing the current flow to other power lines. Hence, MEs

need to appropriately terminate these so called switches

based on the incident priority and in close consultation with

the grid control center as well as operators or contractors.

Since the electrical grid often offers small margins for

additional current flow such switches are often times dif-

ficult to set up. On this occasion MEs need to bundle

incidents on the same power line to use such switches as

efficiently as possible.

4.2 Challenges in the Power Line Maintenance

To understand PLM from a practitioner as well as a theo-

retical perspective, we started our research with a series of

expert interviews among the case company’s employees

and a structured literature review (SLR) of domain-specific

articles. The interviewees were chosen based on their their

work experience and affiliation to different departments

dealing with the various aspects of the PLM process (cf.

Table 2). This sampling allowed us to benefit from diverse

viewpoints and nuanced perspectives on the challenges of

PLM with today’s manual inspection.

To guarantee a rigorous overview, we conducted the

SLR following Webster and Watson (2002) and vom

Brocke et al. (2009) by querying various databases (cf.

Table 3). We harnessed a selection of search strings, as

displayed in Table 3, to retrieve the initial set of relevant
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articles. To extract only relevant articles, we defined three

exclusion criteria. If the paper examined or investigated

only one specific solution approach for the automation of

PLM, it was excluded. If a paper focused on constant

monitoring of power lines rather than periodic inspection, it

was also excluded. Finally, if on a thorough read of the

paper no challenges regarding PLM were mentioned, the

paper was ruled out. These exclusions allowed us to focus

on review and survey contributions for the automation of

PLM. The SLR conducted in January 2020 resulted in a

large number of potentially relevant contributions as

depicted in Table 3, with 22 papers remaining after the first

exclusion and 18 survey and review papers mentioning

challenges in today’s PLM.

Statements from both the interview transcripts and sci-

entific articles were then coded in an open coding process

and combined in a qualitative content analysis as proposed

by Mayring (1991) to derive a category system of today’s

PLM challenges. Table 4 on page 14 depicts part of the

identified challenges with the respective subchallenges and

their sources. These three challenges (C1–3) appeared to be

specific to our context of infrastructure inspection with its

concrete characteristics being dependent on power line

infrastructure and therefore inform the design of our arti-

fact. Further identified challenges attributed to company

and industry specifics can be found in Sect. A1 within the

Appendix (available online Supplementary material).

4.3 Design Requirements

Our DSS artifact intends to support MEs of power line

infrastructure in their planning and scoping of individual

maintenance orders to repair and replace components. To

accomplish this by systematically addressing the afore-

mentioned uncovered challenges in PLM with a vision-

based application, we cast these challenges into a pre-

scriptive mode and derive DRs as depicted in Fig. 2.

Consequently, we derive five DRs which describe our

system objectives and confine to which objectives our

subsequently derived design knowledge applies (Walls

et al. 1992). Because we target developing generalized

design knowledge for the problem class of IB-DSS, we

formulate the DRs on the relevant level of abstraction in

the following.

The infrastructure characteristics (C3.1–C3.4) pose

challenges with regard to efficient data capturing as, for

instance, power lines running across valleys or in moun-

tainous areas complicate inspection and hinder data

acquisition. In addition to this, the three inspection types

used in today’s PLM provide heterogeneous condition data

of varying quality (C2.1). Together, these factors result in

the need for an appropriate image quality relating to uni-

formly captured high-resolution image condition data

regardless of infrastructure characteristics and with process

consistency.

DR1 – Image quality: The system should uniformly

capture condition image data of sufficient quality.

Table 2 Overview of interview

participant to determine

challenges in power line

maintenance

ID Role Experience [Years]

Alpha Senior standardization engineer 10

Beta Operator of high- and medium-voltage power lines 25

Gamma Operations manager of high-voltage power lines 28

Delta Asset manager 12

Table 3 Search strings and respective results for the structured literature review

Search strings EBSCO WoS IEEE

Xplore

Scopus

‘‘Automat*’’ AND ‘‘Power line’’ AND ‘‘Inspection’’ 24 79 86 158

‘‘Power line’’ AND ‘‘Quality control’’ 4 89 12 141

‘‘Transmission line’’ AND ‘‘Automat*’’ AND (‘‘Inspection’’ OR ‘‘Monitoring’’) 21 97 213 370

‘‘Inspection’’ AND (‘‘Power line’’ OR ‘‘Transmission line’’) 104 393 547 1301

(‘‘Power line’’ OR ‘‘Transmission line’’ OR ‘‘Overhead lines’’ OR ‘‘Overhead power lines’’) AND

‘‘Condition monitoring’’

18 131 0 271

‘‘Challenges’’ AND ‘‘Power line’’ AND ‘‘Inspection’’ 2 7 8 24
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Image data contains large amounts of unstructured infor-

mation. However, the information contained in an image is

typically of little use if its observer lacks contextual

information. Context allows for a broader understanding of

specific pieces of information and it places them in a bigger

picture by for example providing temporal or geographical

information. Images of the infrastructure and in particular

of components therefore need to be contextualized in an

appropriate way. On the other hand, the infrastructure

characteristics (C3.1–C3.4) pose the requirement for pro-

viding infrastructural context to enhance decision-making.

DR2 – Context: The system should capture and pro-

vide context.

Today’s inspection process of power line infrastructure is

fully manual and labor-intensive. Above that, various

human-factor-related challenges (C1.1, C1.2, and C1.4)

influence the inspection’s susceptibility to errors. Addi-

tionally, characteristics of the infrastructure, such as

topography (C3.2) and extent (C3.3), result in an increased

labor effort for maintenance. To mitigate the limitations of

today’s inspection process, both parts of the process –

Table 4 Challenges in the maintenance of power lines based on expert interviews and a structured literature review

ID Challenge Subchallenge Source

C1 Complicating

workplace

characteristics

C1.1–Hazardous work

environment

Pagnano et al. (2013), Nguyen et al. (2018), Jones (2005), Li and Wang (2019),

Seok and Kim (2016), Huang et al. (2018), Toth and Gilpin-Jackson (2010); Alpha;

Beta

C1.2–Strenuous inspection

activities

Alpha

C1.3–Requirement for

broad expertise

Takaya et al. (2019), Pernebayeva and James (2020), Huang et al. (2018); Alpha;

Beta; Gamma; Delta

C1.4–Impact of

subjectivity

Nguyen et al. (2018), Jones (2005), Katrasnik et al. (2010), Toth and Gilpin-

Jackson (2010), Homma et al. (2017); Beta; Delta

C2 Inspectability

challenges

C2.1–Inspection type

related scope restrictions

Jones (2005), Katrasnik et al. (2010);Beta; Gamma; Delta

C2.2–Requirement for

unscheduled inspections

Matikainen et al. (2016)

C3 Infrastructure

characteristics

C3.1–Age of power line

infrastructure

Aggarwal et al. (2000), Toussaint et al. (2009); Alpha

C3.2–Extent of power line

infrastructure

Pagnano et al. (2013), Aggarwal et al. (2000), Pernebayeva and James (2020),

Huang et al. (2018), Homma et al. (2017); Alpha

C3.3–Topography of

infrastructure territory

Prasad et al. (2016), Deng et al. (2014), Aggarwal et al. (2000), Takaya et al.

(2019), Pernebayeva and James (2020), Matikainen et al. (2016), Seok and Kim

(2016), Huang et al. (2018), Toth and Gilpin-Jackson (2010), Homma et al. (2017)

C3.4–Vast spectrum of

inspection aspects

Nguyen et al. (2018), Prasad et al. (2016), Jones (2005), Homma et al. (2017);

Alpha; Gamma

Fig. 2 Design knowledge for image-based decision support systems with its respective instantiations
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image acquisition and image processing – should be

infused with automation capabilities.

DR3 – Automation: The system should allow for

automatic image acquisition and provide automated

image processing.

To make adequate maintenance decisions in terms of repair

or replacement prioritization, MEs require consistent

condition data. However, just as in any human-based

inspection, the fault diagnosis of power lines is character-

ized by the personal experience and expertise (C1.3) of the

inspector, making the evaluation or judgment subjective

(C1.4). To objectify the fault diagnosis and making it less

subject to the experiences of a wide variety of inspectors,

personal biases need to be eliminated or harmonized.

Consequently, the analysis of the condition data needs to

build upon equal decision parameters, achieving repro-

ducible results. By reproducibility of results we refer to

similar evaluation or fault diagnosis of a unique PLC

within a range of potentially changing environmental

conditions (e.g., lighting conditions).

DR4 – Reproducibility: The system should provide

image processing in a reproducible manner.

To draw inferences from the previously captured data and

extract crucial information, proper visualization is

required. Consequently, not only the quality but also the

presentation of information regarding faults in the power

line infrastructure are crucial. Specifically, it is important

to integrate and transfer the entire collected data from the

data acquisition and the extracted information from the

data processing into the maintenance decision-making to

enable the compilation of situation-dependent, well-de-

fined, complete, and prioritized maintenance orders.

DR5 – Visualization: The system should support the

process of decision-making with the visualization of

the extracted information.

4.4 Design Principles

In the following, we suggest several design principles

(DPs) which prescribe how to develop the artifact in order

to accomplish our predefined preliminary DRs (Chandra

et al. 2015). The translation process from DRs into tenta-

tive DPs is displayed in Fig. 2. The DPs use the knowledge

of several theories in order to meet the DRs. The main

contributions originate from the domains of image pro-

cessing, DL, DSS, as well as visual data exploration.

We have identified that the images of the PLCs need to

be captured uniformly and with sufficient quality (DR1).

Additionally, the system should capture context (DR2) of

the images for unambiguity regarding their location and

time. To address these design requirements, two consid-

erations have to be made: the type and kind of data col-

lected and the collection method, which we will refer to as

platform. The primary type of collected data is predefined

in our use case to be image data from the visual domain as

it (1) provides enough information to detect a wide variety

of common faults (Nguyen et al. 2018) – especially on

PLCs – and (2) allows fast comprehension by MEs. On the

other hand, the platform responsible for the data acquisition

needs to be able to acquire uniform image data. In partic-

ular, the platform should be able to combine the advantages

of today’s inspection methods of helicopter-based, ground-

based, and climbing-based inspection in a way that each of

these methods that are specifically suitable for different

components can be imitated. The platform is consequently

able to capture images from above, below, and the front

while maintaining a uniform viewing perspective per

component type. The system should also allow data

acquisition to happen in a potentially automated fashion

(DR3) to further increase the scalability and reduce human

involvement in the inspection process.

DP1 – Image acquisition: Provide the system with

(automated) capabilities for uniform acquisition of

images in context.

The system relies on a vision-based approach with captured

images containing information about the infrastructure

condition. The image data should be processed in an

automated and reproducible fashion (DR3 and DR4).

Image processing is necessary to process and analyze the

data in order to extract the desired information. Image

processing has traditionally been implemented for indus-

trial applications like quality control of manufactured parts,

as they exhibit inherently less challenging lighting condi-

tions and scene complexity than outdoor environments

(Mirallès et al. 2014). Owing to the rapid growth and

evolution of DL (Liu et al. 2020; LeCun et al. 2015) in

general and CNNs in particular, there are many successful

approaches that have improved the performance of visual

recognition systems in application areas such as self-

driving cars, face recognition, image search, and image

understanding (Nguyen et al. 2018) despite the challenging

conditions of outdoor application. CNNs provide a method

for automatically learning features in images, which can

drastically reduce the effort in hand-designing solutions

and improve generalization. In summary, this makes its

application promising for the analysis of images containing

PLCs (Jalil et al. 2019; Sampedro Pérez et al. 2019; Prates

et al. 2019). Consequently, based on the assumption that all

relevant components are captured in images, they can be

extracted using DL. In particular, the assessment of a

component’s condition features is determined by two

factors. First, the component needs to be detected in the
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captured image, containing one or more component

objects. Second, each detected component requires com-

ponent-specific fault diagnosis. The system should there-

fore include these two tasks performed by a DL approach.

DP2 – Image processing: Provide the system with

state-of-the art deep learning for the detection and

fault diagnosis of components.

Images containing PLCs form the basis of the IB-DSS for

vision-based maintenance. However, without any addi-

tional information the images can hardly be seen as

sufficient for a system designed for component mainte-

nance. To enable MEs in their decision-making, metadata

(Sen 2004) regarding the images or contained components

is required. The primary purpose of this metadata is to

provide context (DR2) to the reported data and therefore

provide enriching information that leads to knowledge

creation (Nicola 2005). It can describe both physical (e.g.,

towers and insulators) as well as digital objects (e.g.,

images and documents) through providing values or

information for certain characteristics (Clobridge 2010).

The main purpose of attaching metadata to a data item is to

uniquely identify it in a system and to find it by browsing

or searching (Burgin 2016). In the PLM, metadata can

range from geographical and temporal image tags all the

way to geographical location, age, history, et cetera of the

individual infrastructure components. However, the main

consideration to be taken here is that the physical objects,

such as towers, insulators, or conductors, are to be

considered the focal data as they represent the maintained

infrastructure. The captured images contain information

about these components and should therefore be appropri-

ately linked, at best based on the individual component.

DP3 – Metadata: Provide the system with metadata.

The availability of context in the form of simple metadata

such as the geographic location and a time stamp or

advanced/processed metadata such as the object location,

object type, and binary fault presence adds valuable

information to an IB-DSS. However, in terms of context

for the individual fault contained in an image, these details

are of limited help. In the light of fault diagnosis, the

required context (DR2) should be defined as parts of it that

can be accessed to clarify and understand the fault. The

combination of the contextualized fault diagnosis as well as

visualization of the extracted information (DR5) directly

results in necessary interpretability of the decision in the

fault diagnosis. Consequently, the decision of the fault

diagnosis should be interpretable for MEs such that they

are able to comprehend why for instance an insulator was

marked as faulty. Thereby, we adapt the definition of

Miller (2019)[p. 14] referring to interpretability as ‘‘the

degree to which an observer can understand the cause of a

decision’’. The interpretability of the results of the fault

diagnosis provides MEs with additional information (con-

text) at a PLC level which in turn enhances their ability to

make high-quality decisions.

DP4 – Interpretability: Provide the system with

interpretable fault diagnosis.

To facilitate decision-making in PLM, we found that

acquired and processed data should be visualized (DR5) to

the respective users in order to determine a fault’s

existence, location, and significance. Because such a user

interface can be considered as the ’’source of many of the

power, flexibility, and ease of use’’ (Turban et al. 2010, p.

100) of a DSS, it requires careful consideration. MEs face a

situation where they need to compile well-defined, com-

plete, and prioritized maintenance orders with a variety of

details and latent information requiring their consideration.

An appropriate interface should therefore harness visual

data exploration (Keim 2002) by integrating its user into

the data exploration process by applying their perceptual

abilities. It can help the personnel to answer the mission

critical questions such as the required equipment and

achieve high decision quality regarding maintenance

prioritization.

DP5 – Visual data exploration: Provide the system

with an interface for visual data exploration.

5 Image-Based Decision Support System for Vision-

Based Power Line Maintenance

To improve the planning and scoping of individual main-

tenance orders, enhanced data and information quality

needs to be provided to MEs. By following the prescribed

tentative DPs for an IB-DSS our designed and evaluated

artifact provides evidence of achieving this objective. The

artifact is integrated into our case company by deriving

specific capabilities to satisfy the DPs, termed design fea-

tures (DFs) (Meth et al. 2015). Accordingly, we present the

image data collection, their subsequent processing and

analysis through the MC, and the presentation of the results

through the UIC along with their respective DFs depicted

in Fig. 2 (cf. page 15) in the following three subsections.

5.1 Image Data Collection

The platform responsible for the image data collection is

required to capture images of sufficient quality. Conse-

quently, it needs to be able to acquire uniform, standard-

ized, and consistent image data in a potentially automated

way (DP1). UAVs equipped with capabilities to capture

optical images (DF1) meet these expectations (Nguyen
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et al. 2018; Matikainen et al. 2016; Spencer et al. 2019) for

our specific use case. This is due to three main reasons.

First, UAVs are able to capture images from above, below,

and the front, combining the best aspects of today’s heli-

copter, ground, and climbing inspection methods. Second,

a UAV’s ability to fly close to power lines allows it to take

detailed images. Finally, although an approach for UAVs’

autonomous navigation and image acquisition along power

lines still has to be developed, the general feasibility of this

automation step is undisputed (Nguyen et al. 2018).

5.2 Deep-Learning-Enabled Model Component

To build an efficient IB-DSS for infrastructure mainte-

nance, images containing relevant components, meaning

components that exhibit faults, need to be identified from

the entire dataset. For this purpose, we present the prepa-

ration, instantiation, and evaluation of our MC below.

5.2.1 Data Description and Preparation

To build a DL vision-based MC, large quantities of data are

required. We therefore collected images of PLCs, anno-

tated them according to our desired component classes,

prepared them for training through creation of several

datasets, and finally used them for model training.

The images were collected by flying a UAV along high-

voltage power lines in several selected areas in southern

Germany and circling around power towers to take pictures

of PLCs. The power line passages were selected so that the

captured images would contain diverse background scenes

and PLCs of varying age and type. For each power tower,

around 70 images were captured. Images containing faulty

safety pins were created artificially in collaboration with

field experts. Accordingly, an insulator and fitting appli-

cation was installed in the lower area of one power tower

(see Fig. 3 – left image) and a sequence of 608 images was

captured while modifying the splint itself as well as

changing the respective image perspective.

After collecting the images, each one was annotated

with bounding boxes (BBGT ) representing the ground truth.

Each BB was associated with one of five PLC classes

(insulator, fittingtop; fittingbottom; birdnest, safetypin) that

we chose for this project. These annotations and the

respective images eventually constituted our root dataset

DSRo, containing 1424 insulators, 1073 fittingstop, 1438

fittingsbottom, 61 birdnests, and 5186 safetypins. Two fur-

ther datasets DS1Co and DS2Fi were obtained through

subsampling DSRo to train different aspects of the object

detection as depicted in Table 5. Finally, DS3Pi was

derived to train the classifier for safetypins, with 1494

images of defective and 3692 images of intact safetypins.

The characteristics of the four datasets are summarized in

Table 5 and sample images are shown in Figs. 3 and 4 (cf.

page 21).

5.2.2 Instantiation of a Multistage Pipeline

Inspired by Nguyen et al. (2019) and Liu et al. (2020), we

designed a DL-based multistage component detection

(MSCD) and classification pipeline for high-resolution

images containing multisized objects with spatial rela-

tionships (DF2 and DF3) to satisfy DP2. This addresses the

requirement for automation (DR3) of infrastructure

inspection (Katrasnik et al. 2010; Montambault et al. 2010

and reproducability (DR4) of the derived results to mitigate

subjective decisions (Katrasnik et al. 2010; Toth and Gil-

pin-Jackson 2010). While our case company is interested in

the fault diagnosis of a significantly larger number of

components, for the purpose of this study we intend to only

demonstrate the feasibility of detecting both the smallest

components (safetypins), as well as the largest ones (in-

sulators), in images taken of high-voltage power lines – a

topic not yet considered in the automated inspection of

power lines. The pipeline consists of three elements

responsible for different detection and classification tasks,

as displayed in Fig. 5.

In the proposed MSCD pipeline, the (large) component

detector first detects insulator, fittingtop; fittingbottom;

Table 5 Characteristics of the datasets

Dataset #

Images

Image

resolution

Volume Annotation

type

#

Annotation

Objective

DSRo 1690 5280 9 3956 15.2

GB

BB ? label 9182 Single-stage component detection (insulator, fittingtop; fittingbottom;
birdnest, safetypin); derive data set DS1Co, DS2Fi, and DS3Pi

DS1Co 1589 5280 9 3956 14.3

GB

BB ? label 3996 Multistage large component (insulator, fittingtop; fittingbottom;
birdnest) detection

DS2Fi 1820 1200 9 1200 1.2 GB BB ? label 5186 Multistage small component (safetypin) detection from cropped

fittingtop and fittingbottom

DS3Pi 5186 60 9 60 35.3

MB

Label 5186 safetypin fault diagnosis
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birdnest from an input image. The detected fittings are

cropped from the input image and used as input for the

subsequent (small) component detector to detect safetypins.

The detected safetypins are recropped and passed into the

pin classifier for fault diagnosis.

For the implementation of the MSCD, we chose to

compare two well-proven DL object detection architectures

– SSD (Liu et al. 2016) and Faster R-CNN (Ren et al.

2015) – which we additionally benchmarked against a

single-stage component detection pipeline (SSCD),

meaning all components are detected in one step. We

selected ResNet as the backbone CNN for the object

detection architectures as well as our main classifier for the

fault diagnosis of the safetypins. To compare and bench-

mark the fault diagnosis, we chose the well-known VGG16

(Simonyan and Zisserman 2015) architecture. In both tasks,

image augmentation was used to improve the generaliza-

tion of the models. For object detection the brightness of

the images was randomly adjusted. For the classification

task, where cropped images of safetypins were classified,

Fig. 4 Exemplary images of the safetypin component type from the DS3Pi dataset. The defective safetypins (two to the left) are not completely

bent, while the intact ones (two to the right) are completely bent and consequently prevent slipping out

Fig. 5 Structure of our multistage power line component detection and classification pipeline for high-resolution images

Fig. 3 Exemplary images of the DSRo dataset containing insulators
(cyan), fittings (blue and dark blue), birdnest (not present), and

safetypins (pink). The images show various subcomponents of the

component types, captured from varying perspectives to ensure the

robustness of the model; the left image provides an impression of the

artificial setup for capturing defective safetypins (color figure online)
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we applied horizontal and vertical flipping, random

brightness adjustment, width as well as height range

shifting, and random image blurring.

The component detectors were implemented using the

Tensorflow3 DL framework4 (Abadi et al. 2015) with

models pretrained on the MS COCO dataset (Lin et al.

2014). The image classifiers were realized using the Keras

DL library5 (Chollet et al. 2015) which provides image

classification models pretrained on the ILSVRC dataset

(Russakovsky et al. 2015).

5.2.3 Evaluation of the Instantiated Model Component (EE

I.I & EE I.II)

For the evaluation of DF1–DF3 and DP1 and DP2

respectively, we conducted both an artificial evaluation to

closely assess the pipeline’s efficacy and efficiency as well

as a naturalistic evaluation to generally judge the design’s

acceptance and usefulness. In accordance, the evaluation

episodes were guided by the questions below:

EE I.I How well does the proposed DL-based MC

extract power line components of various sizes? How

well does it diagnose component faults?

EE I.II Do MEs regard the MC’s capabilities as helpful?

Artificial evaluation of the model component (EE I.I)

The efficiency evaluation of the proposed pipelines

required two considerations. First, the pipeline’s ability to

detect the chosen components needed to be evaluated.

Second, the accuracy of the fault diagnosis – which we

performed for detected safetypins – had to be assessed.

Evaluating the efficacy and efficiency of the detection

task in terms of average precision (AP) and mean average

precision (mAP) (Rafael Padilla and da Silva 2020), we

compared our proposed MSCD to the SSCD pipeline. As

we were working with our own proprietary dataset DSRo,

the available images were split into a training set com-

prising 80% of the data, with the remaining 20% used for

the evaluation set. To increase the evaluation’s validity,

images captured at one tower were held out from the ran-

dom split and solely utilized for the evaluation dataset,

while maintaining the split ratio. This image-level split was

kept consistent across the derived datasets DS1Co and

DS2Fi. The SSCD pipeline was fine-tuned to detect the

respective component classes using the DSRo dataset.

Accordingly, both detection stages of the MSCD pipeline

were fine-tuned on DS1Co and DS2Fi respectively. All

models were trained using the stochastic gradient descent

optimizer with 0.0003 (Faster R-CNN) and 0.001 (SSD)

initial learning rate respectively, 0.9 momentum, and batch

size 64. We determined the models by using early stopping

on the validation loss with a patience of 100 for all models.

The testing results of the different pipelines using the dif-

ferent architectures are shown in Fig. 6. The performance

for the safetypin class is disclosed in terms of inter pipeline

performance for both the SSCD and the MSCD pipeline as

well as the intra pipeline performance for solely the MSCD

pipeline.

We evaluated the fault diagnosis task performed for the

safetypins class in terms of weighted precision, weighted

recall, and weighted F1-score (Pedregosa et al. 2011) to

account for class imbalance. We applied a 3-fold cross

validated grid-search to identify the optimal combination

of parameters. We chose to account for the following

parameter: unfrozen convolutional layers, dense layer size,

optimizer and its respective learning rate, dropout rate, and

batch size. The images in dataset DS3Pi were shuffled, a

hold out set containing 10% of the images was retained and

the remaining images were split into 3 folds. Consequently,

for each grid search configuration three models were

trained with early stopping with patience 30. The best

resulting model of the Resnet and VGG16 model were

harnessed to be evaluated on the retained hold out set. The

results of the evaluation of the cropped safetypin classifi-

cation task based on the test set are shown in Table 6. All

details on the machine learning steps and choices are

depicted within Sect. A2 in the Appendix (Kühl et al.

2021).

Naturalistic evaluation of the model component (EE

I.II)

To answer whether the detection and fault diagnosis of

PLCs help MEs, we conducted nine purposefully sampled

(Coyne 1997) interviews with potential users of the IB-

DSS from our case company. The interviewees included

two senior MEs (Epsilon – Zeta) with a working experi-

ence of 34 and 41 years, five MEs (Eta – Lambda) with on

average 27 years experience, one operations manager (My)

with 28 years’ working experience, and one senior stan-

dardization engineer (Ny) with 10 years’ working experi-

ence. Each interviewee received a brief introduction to the

DF1-DF3. Accordingly, the image data collection setup

employing UAVs and the image analysis to detect and

diagnose PLCs was introduced. Exemplary images (cf.

Fig. 3, page 21) were shown to clarify the use case. The

interviewees were allowed to ask questions of compre-

hension. Subsequently, in a semi-structured interview

fashion each participant was asked to evaluate the DFs. A

detailed overview of the questionnaire can be found in

Appendix A3 on page 40. The question of whether each

presented DF appropriately addresses its respective DPs

served as the starting point. The interviewees opinion and

attitude regarding all DFs was explored and probing

3 Version 1.15.
4 In particular, the tensorflow object detection API.
5 Version 2.3.1.
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questions were asked if necessary. This allowed us to

assess the attitude of human expert workers towards the

technology. This initial evaluation of part of the IB-DSS’s

tentative design serve as initial mediation to ensure that the

final artifact can be designed as a useful and efficient

instrument for solving our research question.

In accordance with Hevner and Chatterjee ’s (2010)

suggestion for the analysis of confirmatory focus groups

and King ’s (1998) general proposal of template analysis

for textual data, we adapted the approach for the analysis of

the interview transcripts. The artifact’s DPs served as the

initial coding categories.

In general, the interviewees confirmed the usefulness of

the way the image acquisition (DP1) is performed and also

acknowledged the image processing (DP2) to extract

comparable, trustful, and helpful information. They

specifically confirmed the usefulness of the vision-based

approach for capturing a wide variety of different faults.

More significantly, the ability to ‘‘[...] look into the detailed

pictures is already of high value’’ (Iota) since it is easier to

scope maintenance operations from component images

rather than plain table entries. Additionally, the intervie-

wees emphasized the good quality of the images as well as

the improved perspective to view the PLCs and respective

defects, due to the UAVs being able to fly close to the

component of interest. Similarly, the functionality to

automatically analyze the images for components and their

faults was perceived as a major gain and precisely

addressed the request of interviewee Zeta: ‘‘It would

actually be quite interesting if someone or something

evaluates these pictures that the drone captures and then

just sends the damage.’’ The interviewees stressed several

particular factors. First and foremost, the prevention of

subjectivity was mentioned, leading to a uniformity in fault

diagnosis and consequently to a flawless comparability

between faults. Second, besides the presented ability to

detect insulators, fittings, birdnests and safetypins, the

interviewees assumed that several other components could

be added easily. However, in more detail two participants

raised doubts about the system’s ability to recognize severe

incidents such as completely broken and consequently

dangling insulators. Finally, six out of the nine participants

indicated, without being asked, that they felt there were

benefits in using an automated process to extract defective

components. They specifically mentioned benefits regard-

ing timeliness, cost, and performance in comparison to the

current manual inspection methods. However, although the

proposed extraction of faults generated generally positive

feedback, the need to ‘‘comprehend: how did this assess-

ment come about’’ (Ny) was mentioned. Consequently,

both the results and the reasoning of the fault diagnosis

require visualization.
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R-CNN and SSD on the five

selected component classes

Table 6 Safetypin crop classifier test results on the DS3Pi dataset

Architecture AUROC Weighted precision Weighted recall Weighted F1-score

VGG16 0.8114 0.80 0.80 0.78

ResNet50 0.8080 0.76 0.75 0.71
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5.3 User Interface Component

Supporting MEs based on improved data and information

quality requires making them accessible through a UIC. In

the following, we describe the UICs’ design and

evaluation.

5.3.1 Instantiation of the User Interface Component

To create a UIC that accomplishes the preliminary DRs of

visualization (DR5) of the network and related defects

(Shakhatreh et al. 2019), we implemented the artifact

based on the inferred DPs (cf. Fig. 2 on page 15) using

Tableau6 and Javascript. The artifact integrates two data

sources: (1) UAV-captured image data (DP1) and its

according metadata (DP3) as well as (2) metadata about the

physical objects of the power line infrastructure (DP3) at

our case company, such as geographical position or age.

Information that is extracted as part of the image pro-

cessing (cf. Sect. 5.2) is integrated into the artifact (DP2

and DP4). Finally, these building blocks are arranged in a

meaningful way to support decision-making through visual

data exploration (DP5). Figure 7 depicts the different

views and their interactive links along with the respective

DFs.

To satisfy DP5, the general layout of the UIC should

follow the visual exploration paradigm (Shneiderman

1996) and provide overview first, allow for zoom and filter

capabilities, and then accommodate details on demand. We

base our UIC on four different views which emphasize

different task properties in our multidimensional data and

maximize the availability of explicit and latent informa-

tion. View (1) provides an operational dashboard view

(DF7) to get a quick and aggregated sense of the condition

of the power line infrastructure. View (2) contains a geo-

graphical information system view (DF5) to find and

inspect adjacent infrastructure items and faults. This allows

MEs to explore both the incident location to determine

maintenance order specifics as well as further incidents

which can be bundled. View (3), a list-based view (DF6),

enables MEs to examine a large number of faults regarding

their attributes as well as to find specific faults. This may

help in either bundling incidents, making sourcing deci-

sions upon resource scarcity, or ordering replacement

components. View (4) presents a fault detail view to

inspect particular faults regarding the results of the fault

diagnosis, including properties, specifics, and context. It

consequently enables MEs to assess the faults priority,

judge the skills required for the faults resolutions, and

determine the affected circuit. The interactive visualization

(DF8) allows MEs to directly interact with the

visualizations to obtain and extract the relevant data at the

right time. A persistent filter sidebar with domain-specific

filters provides consistency across the first three views.

While View 1 through 3 already provide different levels of

zoom, the list-based view is the closest to viewing a single

fault. Users are therefore able to filter subsamples of faults

in View 1 as well as 2 and through interactive linking

consequently invoke their display in the list-based View 3.

Finally, detailed information on a particular fault identified

either in View 2 or 3 can be examined. Images of the

defective component are available in a gallery. To address

DP4, the gallery provides the user with visual fault

explanations (DF4) of the component for improved inter-

pretability of the fault diagnosis. In particular, the detected

defective component is framed by a bounding box for

convenient localization. Additionally, based on the type of

fault either a segmentation mask (for insulators) or a heat

map (for splints) is visualized. Besides the image gallery,

the user is able to expand related information showing

other faults on the power tower and the fault timeline of the

power tower. As a summary, a video demonstration of the

user interface shows all described views in detail.7

5.3.2 Evaluation of the User Interface Component (EE II)

For the evaluation of our UIC, we applied a qualitative

evaluation to test the proof of applicability in the real-

world context and to assess the usefulness as well as effi-

ciency. In particular we aimed to answer the evaluation

question:

EE

II

Does the instantiated UIC support MEs in making

improved decisions about planning and scoping

individual maintenance orders?

To answer this question, we remotely8 conducted nine

one-on-one, confirmatory workshops with the same par-

ticipants already questioned in EE I.II over the company’s

collaboration platform. This confirmatory evaluation

approach was chosen for two reasons. First, the flexibility

of the method enabled us to adapt the procedure if neces-

sary. Second, each user was able to individually explore

and use the prototype in their accustomed work setting,

which allowed the integration into the user’s working

routine and ensured that the artifact and its capabilities

were understood unambiguously.

For each workshop, we initially introduced the intent of

the UIC. We subsequently started a screen sharing session

and asked each participant to explore and use the UIC and

verbalize their thoughts. Whenever appropriate, the

researcher enriched the participant’s experience by

6 https://www.tableau.com/.

7 https://youtu.be/Y3oIJghtRT4.
8 Due to COVID-19.
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providing information about the DFs. Afterwards, each

participant was asked to fill out a survey based on Davis ’s

(1989) technology acceptance model (TAM). Finally, the

participant was asked to evaluate whether the presented

artifact addresses its decisive DPs during a semi-structured

interview. The question of whether each presented DF

appropriately addresses its respective DPs served as the

starting point. The transcripts of the workshops were ana-

lyzed in analogy to E I.II, using template analysis by King

(1998).

The survey results as well as the results from our

qualitative evaluation indicate that our instantiated artifact

is able to support MEs in their decision-making regarding

PLCs. While our TAM survey comprising the nine inter-

viewed experts cannot claim significance, it suggests the

tool’s usefulness as the perceived usefulness averaged 6.2

on a 7-point Likert scale. In accordance, the interviews

revealed that the artifact would support the MEs in their

everyday work by enhancing the availability of data and

information of the power line infrastructure and the

appropriate arrangement of the information. The confir-

matory workshops therefore showed that the underlying

design knowledge is suitable, useful, and effective for

developing IB-DSS artifacts aimed at the vision-based

maintenance of infrastructure.

In particular, the participants mentioned that the IB-DSS

allows fast and convenient visual data exploration (DP5)

while being helpful to experienced workers as well as (and

especially) those in training. The interviewed experts

mentioned that the artifacts’ capabilities for overview,

interactive zooming, and interactive filtering are the main

facilitators for convenient exploration. The interactive

zooming across the multiple views makes latent informa-

tion, for example staggering faults on one passage or the

circumstances around a tower, visually available. Finally,

the filter capabilities support finding relevant faults, as

‘‘[one] can filter out the unimportant ones’’ (Eta). However,

six participants requested additional filters based on further

metadata concerning the components in the infrastructure.

While the available metadata (DP3) regarding towers and

their identified faults was perceived as a good starting

point, all participants mentioned further data which could

be integrated: fault-related workflow tracking metadata as

well as component-related material and reordering meta-

data. The participants also recognized that the visual fault

explanations could mainly help them localize faults sig-

nificantly faster as well as develop a thorough compre-

hension and understanding of the fault. Specifically, it was

mentioned that the easier localization could reduce the

workload and accelerate the root cause analysis. On the

downside, it could hinder independent examination of the

images in the long run. The image augmentations conse-

quently provide fault interpretability (DP4). Most signifi-

cantly, all participants acknowledged that the IB-DSS is

especially suitable for improved maintenance decision-

making, as they would be able to ‘‘work more efficiently,

simply work more or even combine activities’’ (Epsilon).

In fact, besides the planning and scoping of individual

Detail view 4

View 1 View 3

DF7

DF5

DP2 – Image processing DP3 – Metadata DP4 – Interpretability DP5 – Visual data exploration

DF8

DF4

DF6

DF8
View 2

Fig. 7 Structure of our user interface with its different views and the transitions between the views
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maintenance orders, the improved data and information

availability and quality enhance four key decision-making

tasks: finding and discovering systematic faults (Epsilon,

Iota, Lambda), combining maintenance orders (Eta, Epsi-

lon, Kappa), discussing maintenance budget (My, Iota,

Ny), and scoping and planning long-term restoration pro-

jects (My, Kappa).

6 Discussion

In this section we depict the contributions and limitations

of our work and present an outlook regarding PLC

inspection and maintenance.

6.1 Contributions

Our results imply that our instantiated IB-DSS enables

maintenance engineers to make better, more informed

decisions about repairing or replacing PLCs by means of

improved data and information quality.

More generally, this suggests that the rich information

from uniformly acquired images extracted through deep-

learning-based image processing capabilities combined

with contextual information of metadata and inter-

pretability provided by visual data exploration is a valuable

solution to the information intensive context of mainte-

nance and monitoring applications. Figure 8 depicts the

schematic layout of these aspects. Consequently, we

hypothesize that our derived knowledge provides a nascent

design theory for the still underresearched class of IB-DSS.

This design knowledge might be particularly valuable for

creating automated decision support systems in informa-

tion-intensive contexts where decision-makers largely rely

on unstructured vision-based image data. This in turn

would increase the quality of decision both in terms of

efficiency and effectiveness (Kraus et al. 2020).

The schematic layout of our conceptualized design

principles, as depicted in Fig. 8, therefore provides pre-

scriptive knowledge that may serve as a blueprint (Gregor

and Jones 2007) to develop similar systems for vision-

based applications.

In our specific use case of PLC inspection, the proposed

IB-DSS relying on UAV generated images can provide

multiple benefits compared with the status quo. It can

prevent accidents since hazardous inspection methods like

tower-climbing are no longer necessary – as the inspection

of the towers is now performed by unmanned UAVs. While

no coherent numbers are available within Europe, recent

reports from the US demonstrate that power line work is

listed among top 10 most dangerous jobs. Each year, over

40 power line workers receive fatal injuries resulting from

falling or electrocution (Schwarz and Drudi 2018). While

certainly only a share of these workers die during inspec-

tion activities (rather than the repair activity itself), it is

desirable to save every life possible. The non-fatal injuries

amount to 1200 per year in the US (Schwarz and Drudi

2018) and the typical reasons are falling, slipping and

tripping. We also expect significant reduction of injuries in

this area, once automation of inspection is implemented.

Currently, the data that MEs work with are tables of

compiled inspection reports with heterogeneous assess-

ments of a distributed workforce. The standardized data

acquisition and processing results in (1) more reliable and

(2) more structured data. Combined with the benefits of a

unified interface that provides metadata and latent, infor-

mation maintenance decisions are fully comprehensible.

In total, the participants of the confirmatory workshop

affirmed that the IB-DSS enhances their decision-making

substantially. As mentioned by Epsilon, Theta, Kappa, and

My, besides the pure planning of maintenance orders the

artifact could moreover be utilized for other tasks, like the

combination of maintenance orders or the planning of long-

term restoration projects.

DP2
Image processing

DP3
Metadata

Model component User interface component(Image) Data component

DP4
Interpretability

DP5
Visual data
exploration

DP1
Image acquisition

Metadata 
component

Fig. 8 Schematic layout of the

design principles of image-

based decision support systems
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6.2 Limitations

While meeting Gregor and Jones ’s (2007) six common

criteria for design theories, our design knowledge for IB-

DSS carries limitations that open opportunities for future

research. Our research can only be generalized to a limited

extent because it was conducted at one company in the

power line infrastructure domain and focused on a selec-

tion of defect cases. While we can claim some general-

ization by supporting our design through kernel theories

and other studies, further IB-DSS should be developed for

other use cases and in other domains to extend and con-

solidate the design theory. Furthermore, our research lacks

quantification of the effect on the field efficiency of the

image processing. Quantitative studies in this regard could

be conducted to benchmark the artifact’s effects in terms of

performance of automated versus manual image

processing.

6.3 Future Design Activities

Within our presented research, we showed novel ways to

design condition-based maintenance systems. More pre-

cisely, we utilized images captured by UAVs which were

subsequently automatically analyzed and included within

an image-based decision support system. Figure 9 shows a

possible general road map demonstrating increasing

maintenance maturity, with the next evolutionary step

being to use the data as well as the generated models not

only as a basis for maintenance order planning, but

moreover to predict maintenance needs for the (distant)

future, i.e., predictive maintenance.

In regard to the practical aspects at the case company,

the artifact is currently prepared for a broader implemen-

tation and deployment into the business. For these steps,

the solution is containerized (Rufino et al. 2017) to allow

for flexible and scalable applications. An expert team

analyzes the different possibilities of automated UAV

routing (Avellar et al. 2015) to allow for a continuous and

correct collection of the required data. Meanwhile, experts

are being educated on the possibilities of integrating the

tool into their current day-to-day processes, supported by

an expert for change management of industrial business

processes (Bokrantz et al. 2020). One remaining challenge

is the aspect of data storage and management, e.g., within a

data warehouse. On the basis of the required data volume

shown in Table 5 on page 20, we estimate a total volume of

images for a one-time acquisition of the complete network

of our case company of 9 TB. How often this data has to be

refreshed and how precisely it is stored (e.g., hybrid cloud)

needs to be discussed for future iterations of the artifact.

In a broader context, the automated inspection of PLCs

will be an important, yet only intermediate step for PLC

maintenance in the future. The image data used in this

work can be combined with multiple additional data

sources such as weather and location characteristics (e.g.,

sun exposure and topology). The inclusion of additional

sources of information can enable an accurate prediction of
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Fig. 9 Road map towards predictive maintenance
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future maintenance needs which further facilitate effective

planning and resource utilization.

7 Conclusion

Planning and preparing maintenance orders in power line

maintenance is a challenging task for maintenance engi-

neers, as they must rely on human-created, heterogeneous,

and largely unstructured information. These characteristics

make the process both time-intensive and costly, which can

adversely affect the continuous supply of electricity. As

most research on power line maintenance focuses on

automated inspection through UAV-captured images and

deep learning, there is an apparent gap in literature for

transferring the acquired data into maintenance decision-

making.

Following the design science research guidelines, we

designed, developed, and evaluated an artifact to address

this research gap. Initially, we rigorously analyzed the

challenges in power line maintenance. Building on these,

we conceptualized design principles for an image-based

decision support system that integrates the capabilities of

deep learning to extract faulty components from a set of

captured images and appropriately presents the information

to relevant users. Accordingly, we implement our design

principles in an exemplary artifact. The evaluation using a

technical experiment as well as two qualitative evaluation

episodes with long-standing experts indicates the utility of

our design knowledge and can therefore inform future

system designs of similar nature.
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Jaakkola A, Kukko A, Heinonen T (2016) Remote sensing

methods for power line corridor surveys. J Photogram Remote

Sens 119:10–31

Mayring P (1991) Qualitative inhaltsanalyse. In: Flick U, Kardoff Ev,

Keupp H, Rosenstiel Lv, Wolff S (eds) Handbuch qualitative

Forschung: Grundlagen, Konzepte, Methoden und Anwendun-

gen. pp 209–213

Meth H, Mueller B, Maedche A (2015) Designing a requirement

mining system. J Assoc Inf Syst 16:799–837

Miller T (2019) Explanation in artificial intelligence: insights from

the social sciences. Artif Intell 267:1–38

Mirallès F, Pouliot N, Montambault S (2014) State-of-the-art review

of computer vision for the management of power transmission

lines. In: Proceedings of the 2014 3rd international conference

on applied robotics for the power industry. pp 1–6

Montambault S, Beaudry J, Toussaint K, Pouliot N (2010) On the

application of VTOL UAVs to the inspection of power utility

assets. In: 2010 1st international conference on applied robotics

for the power industry. pp 1–7

Nazerdeylami A, Majidi B, Movaghar A (2019) Smart coastline

environment management using deep detection of manmade

pollution and hazards. In: 2019 5th conference on knowledge

based engineering and innovation (KBEI). pp 332–337

Nguyen VN, Jenssen R, Roverso D (2018) Automatic autonomous

vision-based power line inspection: a review of current status

and the potential role of deep learning. Int J Electr Power Energ

Syst 99:107–120

Nguyen V, Jenssen R, Roverso D (2019) Intelligent monitoring and

inspection of power line components powered by UAVs and

deep learning. IEEE Power Energ Technol Syst J 6:11–21

Nicola H, Kappeler U-P, Daniela N, Thomas S, Matthias G (2005)

Benefits of integrating meta data into a context model. In: Third

IEEE International Conference on Pervasive Computing and

Communications Workshops. IEEE, pp 25–29
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